
f
• j •

MULTI-USER SYSTEM

Marinchip 9900 Network Operating System

Multi-user Version (NOS/MT) User Guide

For Release 2.5

by John Walker

(C) Copyright 1981 Marinchip Systems

All Rights Reserved

Revised January 1981

M • h • S 16 St. Jude Road ~ arlne Ip ~ gstems Mill Valley, CA 94941 • (415) 383-1545

•

Marinchip 9900 Network Operating System User Guide

Table of contents

1. Introduction -2
1 . 1. Structure of this manual -2
1 .2. Notation conventions -3
1 .3. Implementation changes and restrictions -4

2. General concepts -5
2.1. The file system -5
2.1.1. Storage devices -5
2.1.2. Volumes, directories, and files -5
2.1.3. File names -7
2.1 .4. Multiple names for a file -8
2.1.5. Assumed volume and directory -9
2.1.6. File privacy and access restrictions -10
2.1.6 . 1. Privileged mode -11
2 . 1 .6. 2 . Directory creation mode -11
2.1.7. File addressing and space allocation -12
2.1.8. Memory files -12
2.1.9. Device files -13
2.1 .10. Unformatted -disc support -13
2.1 .11. Conunon file nomenclature -14
2.1 .12. File access procedure -14
2.1.12.1. Predefined file indices -15

3. Using the system from a terminal -16
3.1. Loading the system -16
3.2. Logging in -16
3.3. System command mode -17
3.4. Executing programs from command mode -17
3.5. User commands -18
3.5.1. DISMOUNT - Dismount volume from storage unit -18
3.5.2. MOUNT - Mount volume on storage device -18
3.6. Terminal support -19
3.6.1. Terminal input -19
3.6.1.1. Line delete -20
3.6.1.2. Character delete -20
3.6.1.3. Word delete -20
3.6.1 .4. Retype input line -20
3.6.1.5. Expansion of control characters -21
3.6.1.6. Escape input -21
3.6.2. Terminal output -21
3.6.2.1. Output pause -21
3.6.3. Program interrupt key -22

4. USing the system from a program
4.1. System calls
4.1.1. Process control
4.1.1.1. EXITS (02) Terminate process

i

-23
-23
-23
-24

Marinchip 9900 Network Operating System User Guide

Table of contents

4.1.1.2. DELAYS (04) Timed delay -24
4.1.1.3. TRAPS (OE) Reset error action -24
4.1.1.4. MEMS (OF) Determine memory limits -26
4.1.1.5. EXECS (11) Execute a program -26
4.1.1.6. GETIDS (1B) Get group and user identity -27
4.1.1.7. SETIDS (1C) set user and group identity -27
4.1.2. File control -28
4.1.2.1. OPENS (05) Open a file -28
4.1.2.2. CLOSES (06) Close a file -29
4.1.2.3. CREATES (07) Create a file -29
4.1.2.4. DELETES (09) Delete a file -31
4.1.2.5. LINKS (08) Create link to file (alias) -31
4.1.2.6. FDUPS (22) Duplicate file index -32
4.1.2.7. FSTATS (12) Obtain file status -33
4.1.2.8. OSTATS (23) Obtain open file status -35
4.1.2.9. MKDIRS (OA) Make file into directory -36
4.1.2.10. ALLOCS (13) Allocate contiguous file -37
4.1.2.11. ASDIRS (lA) Assume default directory -37
4.1.2.12. CHACCS (18) Change access/privacy modes -38
4.1.2.13. CHOWNS (19) Change file ownership -38
4.1.3. Input/Output -39
4.1.3.1. READS (OB) Read from a file -39
4.1.3.2. WRITES (OC) Write to a file -40
4.1.3.3. SEEKS (00) Set file address pointer -41
4.1.3.4. IOCTLS (10) Set device file modes -41
4.1.3.5. SCRIPTS (20) Set file for standard input -42
4.1.3.6. SYNCS (15) Write out all changed data -43
4.1 .4. File and record locking -44
4.1.4.1. FLOCKS (24) Lock/Unlock access to a file -44
4.1.5. Volume maintenance requests -47
4.1.5.1. MOUNTS (16) Mount volume on storage unit -47
4.1.5.2. DMOUNTS (17) Dismount storage volume -49
4.1.5.3. VSTATS (1F) Obtain unit/volume status -49
4.1.5.4. PREPS (21) Write directory on volume -52
4.1.5.5. SBOOTS (14) Set boot file -53
4.1.6. System environment requests -53
4.1.6.1. TIMES (1D) Return current time -54
4.1.6.2. STIMES (lE) set system time -54
4 . 1 . 7 . System ca 11 error codes - 55
4.2. Program execution environment -56
4.2. 1. Memory allocation -56
4.2.2. Initial workspace -56
4.2.3. Program parameter string -56
4.2.4. Program parameter table -57
4.3. System subroutines -60
4.3.1. Calling sequence conventions -61
4.3. 2 . Output editing package -61
4.3.2.1. Edit mode -61

ii

Marinchip 9900 Network Operating System User Guide

Table of contents

4.3.2.1.1. EDITS - Enter edit mode -62
4.3.2.1.2. EDITXS - Terminate edit mode -62
4.3.2.1.3. EDITRS - Re-enter edit mode -62
4.3.2.2. The column pointer -63
4.3.2.2.1. ESKIPS - Position column pointer relative -63
4.3.2.2.2. ECOLS - Position column pointer absolute -63
4.3.2.2.3. ECOLNS - Retrieve current column number -63
4.3.2.3. Character editing -64
4.3.2.3.1. ECHARS - Store single character -64
4.3.2.3.2. ECOPYS - Copy Character string -64
4.3.2.3.3. EMSG1S - Copy string to stop character -64
4.3.2.4. Message editing -65
4.3.2.4.1. EMSGS - Start message editing -65
4.3.2.4.2. EMSGRS - Continue message editing -65
4.3.2.5. Numeric editing -65
4.3.2.5.1. EDECVS - Variable length decimal edit -65
4.3.2.5.2. EDECFS - Fixed length decimal edit -66
4.3.2.5.3. EHEXVS - Variable length hexadecimal edit -66
4.3.2.5.4. EHEXF$ - Fixed length hexadecimal edit -66
4.3.2.6. Sample use of the editing package -67
4.3.3. Storage and linked list subroutines -68
4.3.3.1. Dynamic memory allocation routines -68
4.3.3.1.1. BEXP$ - Add space to buffer pool -69
4.3.3.1.2. BGETS - Allocate a buffer: error if none -69
4.3.3.1.3. BGETA$ - Allocate a buffer: return if none -70
4.3.3.1.4. BRELS - Release buffer -70
4.3.3.1.5. Buffer allocation errors -70
4.3.3.2. Linked list routines -71
4.3.3.2.1. INITQS - Initialise queue links -71
4.3.3.2.2. INSERTS - Insert buffer at queue end -71
4.3.3.2.3. PUSH$ - Insert buffer at queue start -72
4.3.3.2.4. REMOVES - Remove next buffer from queue -72

5. Optional system ·features
5.1. Printer driver
5.1.1. Opening the printer
5.1.2. Output to the printer
5.1.3. Closing the printer
5.2. Offline file printing
5.2.1. Opening the offline access file
5.2.2. Output to the offline access file
5.2.3. Closing the offline printer file
5.2.4. Offline and direct print contention
5.3. Background batch capability
5.3.1. Batch space nomenclature
5.3.2. Opening a batch space
5.3.3. Output to a batch space
5.3.4. Input from a batch space

iii

-73
-74
-74
-74
-74
-76
-76
-76
-77
-77
-78
-78
-78
-79
-79

Marinchip 9900 Network Operating System User Guide

Table of contents

5.3.5. Closing a batch space -79

6. System utility programs -80
6.1. ACCESS - Set file privacy modes -81
6.2. ALIAS - Create alternate name for file -82
6. 3 . ASM - Assembler -83
6.3.1. Galling the assembler -83
6. 3. 2 . For more information -83
6.4. ASSUME - Set assumed volume and directory file -84
6. 5. BASIC - BASIC interpreter -85
6.5.1. calling BASIC -85
6.5.2. For more information -85
6.6. BeOPY - Binary file copy -86
6.6. 1. Examples of use -86
6.6.2. Copying contiguous files -86
6.6.3. Messages -87
6.7. BOOTFlLE - Set system load file -88
6.8. BRAINS - BRAINSTORM diagnostic package -89
6.8. 1. Running BRAINSTORM -89
6.8.1.1. Memory diagnostic -89
6.8.1.1.1. Memory subtests -91
6.8.1 .1 .1 .1. 1A: Clear to zero -91
6.8.1.1.1.2. lB: Set to all ones -91
6.8.1.1.1.3. 2A: Sliding one bit -91
6.8.1.1.1.4. 2B: Sliding zero bit -91
6.8.1.1.1.5. 3: Address interference test -92
6.8.1.1.1.6. 4: Addressing validation -92
6.8.1.1.1.7. 5: Byte addressing -92
6.8. 1 .2. Processor diagnostic -93
6.9. CONVERT - Convert Disc Executive files -94
6. 10. CREATE - Create file -95
6. 11. DELETE - Delete file -96
6.12. DIRECT - List file directory -97
6.13. DU - Disc utility -99
6.13.1. Using the disc utility -99
6.13.1.1. Mounting discs for access -99
6.13.1 .2. Disc utility conunands -99
6.13.1.2.1. A - Dump in ASCII -100
6.13.1. 2.2. CD - Copy disc -100
6.13.1.2.3. CT - Copy track -101
6.13.1. 2.4. 0 - Dump in hexadecimal -101
6. 1 3. 1 .2 . 5. DI - Dismount vol ume -1 01
6.13.1.2.6. END - End disc utility -102
6. 13. 1. 2.7. MO - Mount volume -102
6.13.1.2.8. N - Read and dump next sector -102
6.13.1.2.9. PA - Patch buffer -102
6.13.1.2.10. R - Read into buffer -103
6.13.1.2.11. RA - Read and dump in ASCII -103

iv

Marinchip 9900 Network Operating System User Guide

Table of contents

6.13.1.2.12. RD - Read and
6.13.1.2.13. VD - Validate
6.13.1.2.14. VT - Validate
6.13.1.2.15. W - Write
6.13.1.2.16. WB - Write back

dump in hexadecimal
disc
track

6.14. EDIT - Text editor
6.14.1. calling the editor
6.14.2. Using the editor
6.14.3. Temporary files
6.14.4. For more information
6.15. ERROR? - Edit message for error code
6.16. FDIAG - File diagnostic
6.16.1. File diagnostic operation
6.16.2. Error messages
6.17. LINK - Linker
6.17.1. Linking a program
6.17.1.1. Shorthand linking
6.17.1.2. Normal interactive linking
6.17.1.2.1. Defining the output file

OUT command
6.17.1.2.2. Specifying the program base

BASE command
6.17.1.2.3. Naming the input file(s)

IN command
6.17.1.2.4. Table of contents files

LOC command
FETCH command

6.17.1.2.5. Listing the memory map
MAP command

6.17.1.2.6. Closing out the program
END command

Comments 6.17.1.3.
6.17.1.4.
6.17.1.5.

Executing the program
If there are undefined symbols

REF command
6.17.2. Sample Linker use
6.17.3. Linker error messages
6.18. LOGIN - Log on to system
6.18.1. USing LOGIN
6.18.2. User database file maintenance
6.19. MAKEDIR - Make directory file
6.20. MCOPY - Multiple File Copy Utility
6.20.1. Using MCOPY
6.20.2. File selection masks
6.20.3. Multiple specifications
6.20.4. Error messages
6.21. OWNER - Change file ownership
6.22. PASCAL - Sequential Pascal compiler

v

-103
-103
-103
-104
-104
-105
-105
-105
-106
-106
-107
-108
-108
-108
-110
-110
-110
-111
-111
-111
-111
-111
-112
-112
-112
-113
-113
-113
-113
-114
-114
-114
-114
-115
-115
-115
-116
-119
-119
-120
-122
-123
-123
-124
-125
-125
-126
-127

Marinchip 9900 Network Operating System User Guide

Table of contents

6.22.1. Calling the compiler
6.22.2. Executing the program
6.22.3. Temporary files
6.22.4. For more information
6.23. PREP - Write initial file directory
6.24. SCRIPT - Execute commands from file
6.25. TCOPY - Text file copy utility
6.25.1. Using TCOPY
6.25.1.1. Examples of use
6.25.1.2. Error messages
6.26. TIME - Set I Display system time
6.27. VSTAT - Print volume status
6.28. WORD - Word processor
6.28.1. Using WORD
6.28.2. For more information

-127
-127
-127
-128
-129
-130
-131
-131
-131
-132
-133
-134
-135
-135
-135

7. System library subroutines -136
7.1. DFLOAT.REL - Double precision floating -137
7.2. FLOAT.REL - Single precision floating -139
7.3. TEXTIN.REL - Read text input file -141
7.4. TEXTOUT.REL - Write text output file -143
7.5. TRACE.REL - Instruction trace -145

vi
.~

NOS User Guide - Introduction

1. Introduct ion

The Marinchip Network Operating System is a general-purpose
operating system for the Marinchip 9900 computer. The Network
Operating System provides a comprehensive set of functions to
programs running under its control. The general design goals of
the system may be summarised as follows:

Provide device-independent interfaces for all system calls.
This enables use of new hardware as it becomes available
without requiring changes in existing programs.

Shield programs from hardware-imposed restraints, and allow for
predictable expansion in hardware capacities in the coming
years. The system implements a byte-addressable file space
allowing individual files as large as four thousand million
bytes.

Provide a software structure allowing the configuration of
multi-user, multi-tasking, multi-node networks containing an
unlimited number of loosely coupled systems. The system has
been designed so that the addition of these capabilities
requires no redesign of the system or programs running under
its control. The file privacy, user identification, and access
rights required in such a system were designed into the Network
Operating System from the start.

Offer the user and application developer a "friendly"
environment. The system provides powerful and convenient
terminal support, flexible file naming and accessing
conventions, and a complete set of software tools for software
development and maintenance.

Allow addition of services to the system without modification
of the system itself. Most system services are simply user
programs. The user can add to these services simply by writing
new programs.

1.1. Structure of this manual

This manual begins with a discussion of general concepts
underlying the design of the system. Since most system functions
relate to the file system, the largest part of this section
discusses the structure and use of the file system.

Next, the system is described as seen by
connected to the system. For most

2

a user at a terminal
users who use high-level

NOS User Guide - Introduction

languages, this will be all the knowledge of the system they
requlre. Thls section discusses both the terminal support
provided by the system and system commands available from the
terminal.

The next section of the manual is intended for the assembly
language programmer and discusses the interface to the system for
programs running under its control. This section discusses both
system calls and subroutines provided by the system.

The next section describes optional system features, which mayor
may not be present in a given system, depending on the hardware
and software configuration.

Next, a summary of the standard programs provided by Marinchip
Systems is provided. For some programs, the description in this
section constitutes the complete documentation. For others, the
appropriate Marinchip Systems user manual is referenced.

Finally, descriptions are given of all the standard relocatable
subroutines provided by Marinchip Systems. These subroutines are
used primarily by assembly language programmers to access various
system services.

1.2. Notation conventions

The following conventions are used in examples given in this
manual.

Items enclosed in corner brackets like < this) refer to a an item
of the type described by the name within brackets. For example,
(number> refers to any valid number.

Items enclosed in square brackets like [this] represent optional
items. This notation is used both for optional repetition of
items and for items for which a default is assumed when omitted.
The text will explain what default is assumed when specifications
are omitted.

An ellipsis (...) is used to represent optional repetition of the
preceding item, separated by the preceding delimiter. When this
notation is used, any number of it.ems may be specified, limited
only by the overall restriction on the length of the
specification.

All examples of input to the system are given in UPPER CASE TYPE.
The system is actually insensitive to the case of input, so the
actual input may be either upper case, lower case, or mixed.

3

.----

NOS User Guide - Introduction

1 .3. Implementation changes and restrictions

This manual attempts to describe the Network Operating System as
accurately as possible. Due to the time required to revise and
reprint a publication of this size, however) this manual does not
contain information which changes from release to release of the
system. That information, plus notes on known restrictions,
problems, and hardware support may be found in the publication
"Marinchip 9900 NOS/MT System Memorandum" which is issued with
every release of the system itself.

,

4

NOS User Guide - General Concepts

2. General concepts

This chapter discusses the basic concepts of the Network Operating
System.

2.1. The file system

The file system provided by the Network Operating System is a byte
addressable, multi-level directory system. There is a separate
file system on each volume (unit of storage) known to the system.

The Network Operating System offers a very general and flexible
file system. Because of the large number of options and cases
available, the following discussion may be difficult to understand
until you have more experience with the system and the concepts on
which the file system is based. Don't be upset if you don't
understand all of the following information on the first reading.
You will seldom have cause to use all of the features and
capabilities described below, nor need you understand them to make
effective use of the system for your application.

2.1.1. Storage devices

A STORAGE DEVICE is the physical equipment which is used to
implement the file storage. Examples of storage devices are
floppy disc drives, disc cartridge drives, and fixed disc drives.
The storage device is distinct from the actual storage medium used
in the device (although 1n the case of devices such as fixed
diSCS, no physical distinction exists). All storage devices in
the system are numbered, and ref"erred to by their number . The
lowest numbered device is 1, which is usually the device on which
the system volume is mounted, and other devices are numbered 2, 3,
etc.

2.1.2. Volumes, directories, and files

A VOLUME is a physical unit of storage. Examples of volumes are
floppy diSCS, hard disc packs, and fixed disc surfaces . A volume
may be REMOVABLE (such as a floppy disc») or FIXED (such as a
fixed disc surface). All volumes have VOLUME NAMES, which are
user-assigned names of from 1 to 14 characters which uniquely
identify the volume.

5

NOS User Guide - General Concepts

Before the files on a volume can be accessed, the volume must be
MOUNTED on a storage device. The process of mounting involves
first physically installing the volume on the device, then issuing
a MOUNT command to the system which causes it to add the volume to
the list of active volumes in the system. A volume is removed
from the system by issuing a DISMOUNT request to the system, and
upon completion of that request, physically removing the volume.
The volume from which the system was loaded will be automatically
mounted by the system. Other volumes must be mounted and
dismounted by the user.

Files are created on volumes. Each volume contains a table in
which an entry is made for each file on the volume. This table is
referred to as the FILE INDEX TABLE. The maximum number of files
that may be placed on a volume is specified when the system is
generated. The storage available on a volume is assigned to files
either automatically as they are written into, or explicitly when
a contiguous file is allocated.

A file may be either a DATA FILE or a DIRECTORY FILE. A data file
is the normal kind of file used by programs, and may contain
programs or data. The system imposes no structure on these files,
although the programs using them may require certain data to be
present. A directory file contains FILE NAMES and entry numbers
in the file index table, and is used by the system to look up
files on the volume. Directory files may be read by the user, but
may be written only by the Network Operating System. There may be
any number of directories on a volume. System calls allow the
user to create and delete directories as well as regular data
files.

Each volume contains at least one file, called the ROOT DIRECTORY.
The ROOT DIRECTORY contains at least one entry, for itself. The
file name in this entry is tI.tI, which is the name used by a
directory to refer to itself. The root directory may (and
normally will) contain other names, which may be either data
files, or directory files. All directories contain the name "."
which refers to the directory itself. In addition, all
directories other than the root directory contain the name " .. ",
which refers to the directory in which that directory is defined.
The file accessed by the name It •• " is referred to as the PARENT
DIRECTORY of a directory. It is possible to trace back from any
directory to the root directory by continuing to access the II "

name until a directory is found which does not contain it. That
directory is the root directory on the volume.

6

NOS User Guide - General Concepts

2.1.3. File names

Files are referenced by a FILE NAME. The most general form of a
file name is:

(device/volume):(/](name1)/(name2)/ . . . /(namen)

Because the structure of a file name is potentially complex and
involves many concepts basic to the operation of the file system,
let us examine several cases.

First, consider the name:

PAYROLL:NAMEFILE

The name "PAYROLL" re£ers to the name of the volume on which the
desired file resides. If this volume is not currently mounted on
the system, the file name is in error and will be rejected by the
system. If the volume PAYROLL is mounted, the system will search
the root directory on it for the file NAMEFILE. If that file
cannot be found, the file name is incorrect. If found, the
process of finding the file is completed.

Frequently it is desired to collect a group of files together that
bear some relationship to one another. For example, suppose we
have a Payroll system, and we wish to keep a copy of files of
hours worked and paychecks printed for each month. We could code
the names of these files to include the year and month, but a
clearer and more useful approach would be to place the files in a
directory with the name of the month. To do thiS, we would create
1n the root directory a file with, say, the name MARCH. We would
tell the system that the file MARCH was to be a directory. Then,
we would create within that directory files called, say, HOURS and
CHECKS. We could then access the paychecks for March by using the
file name:

PAYROLL:MARCH/CHECKS

Upon encountering this name, the system would look up the
MARCH on volume PAYROLL as in the NAMEFILE example above.
finding a slash after the name, the system would make sure
the file MARCH was a directory (and reject the name if not),
proceed to search that directory for the file CHECKS.
process can be extended to as many levels as desired.
example, a name such as the following:

PAYROLL: 1978/JULY/MFGDIV/HOURS

file
Upon
that

and
This

For

might be used to access the file containing the hours worked for

7

NOS User Guide - General Concepts

employees in the manufacturing division of a company in July of
1978.

A complete file name is sometimes referred to as a PATH NAME,
since it describes the path taken to locate the file. The path
starts at the root directory on a volume and specifies all the
directories leading finally to the file desired. Each segment of
the path name refers to a name in the directory represented by all
the names to its left. These names are from 1 to 14 characters in
length, and are composed of upper-case ASCII letters, numbers, and
the special characters:

S . -

Names may be supplied to the system in either upper or lower case,
but will be converted to upper case before use. Hence, case is
insignificant in looking up files.

2.1.4. Multiple names for a file

A file must have at least one entry in a directory in order to
exist, but may have as many entries in as many directories as
desired. Each entry in a directory is referred to as a LINK to a
file. There is nothing special about the first (or original) name
of a file: all links are equivalent. There is a system call which
can be used to create a new name that points to an existing file.
A file will not be physically deleted as long as there are any
links to it. The system call which deletes a file removes a
specific name for the file (after which its name can be
immediately reused for another file), but only releases the
storage for the file if the name being deleted is the only name
for the file. Consider the following case:

1. User Joe creates a file DSK1 :UTIL/MYSTUFF
2. User Charley creates a link to Joe's file

called DSKl :CHARLEY/JOESTUFF
3. Joe deletes DSK1:UTIL/MYSTUFF

At this point, the directory entry for Joe's file is deleted, but
since Charley still has a link to the file, the file itself is not
deleted. Joe is free to create a new file called
DSKl :UTIL/MYSTUFF, and that file will be distinct from the file
Charley accesses as DSK1:CHARLEY/JOESTUFF. When Charley deletes
DSKl :CHARLEY/JOESTUFF, the file will be physically deleted and its
space released, since that deletion removes the last link to the
file.

Only data files may have multiple names. The system does not

8

NOS User Guide - General Concepts

allow multiple names for directories. This restriction is
enforced eo make the design of programs which process the file
directory more stra1ghtforward, not because of any structural
reason.

2.1.5. Assumed volume and directory

In normal use of the system, users will do most of their work
within one directory, and on one volume. To eliminate the need to
specify the entire name of a file (which may contain many names
separated by slashes), the system allows the specification of an
assumed volume and directory. Wflen the system encounters a file
name with no volume specification and no leading slash, the search
for the file will commence in the assumed directory on the assumed
volume. For example, let us assume we have a system where each
department using the system has its own directory, within which
there is a directory for each user. If Joe Smudley works for the
Engineering department, his directory might have a name like:

PACK14:UFILES/ENGINEERING/SMUDLEY

Let us assume that Joe works on several projects, and has grouped
the files for each project in a directory within his directory. A
typical data file name, then, might be:

PACK14:UFILES/ENGINEERING/SMUDLEY/256KRAM/MASK

where 256KRAM is the directory Joe has created for files relating
to that project, and MASK is a file within that directory. Now
unless Joe is a very fast typist and has a very durable keyboard,
he is likely to complain that the system is somewhat cumbersome to
use if he has to specify that name every time. The system can be
set up to assume any portion of the file name, starting at the
volume, and extending as far as desired. In addition, the
assumption can be made automatically for each user at the time he
signs on to the system. The system Joe uses will probably have
been told to assume:

PACK14:UFILES/ENGINEERING/SMUDLEY

when Joe signs on. Joe will then be able to say simply:

256KRAM/MASK

and the system will automatically get the right file. If he
wishes to work entirely within the directory 256KRAM, he can tell
the system to assume it, and reference his file simply as:

9

NOS User Guide - General Concepts

MASK

But) you ask) what happens if Joe wants to read one of Charley
Smushbender's files? It is not necessary to undo the assumption
of the directory, only to specify the complete name with a leading
slash (I) before the first name. For example:

IUFILES/ENGINEERING/SMUSHBENDER/64BITMPU/PINOUT

This will assume the same volume as Charley's assumed directory,
that is, PACK14. -If the file desired is on another volume, Joe
can specify that volume name. Whenever a volume name is specified
as part of a file name, the search for the name will start in the
root directory of that volume, so there is no need to specify a
leading slash in such a name.

2.1.6. File privacy and access restrictions

Associated with each user of the system is a GROUP NUMBER and USER
NUMBER. Both are numbers in the inclusive range from 0 to 65535,
and identify which group (department, division, tribe, etc.) the
user belongs to, and his number within that group. The system
Will set these numbers automatically from the user database when
the user Signs on to the system. There are three basic things you
can do with a file:

Read it
Write it
Execute it (or if a directory, look up files in it)

The system allows you to specify whether these things can be done
by:

Yourself
Members of your group
Everybody else

You can specify the privileges aSSOCiated with a file when you
create it. If you don't specify, default privileges gotten from
your user database entry will be used. You can change the file
privileges only of files you own.

In addition to the file privacy modes, a user can specify
additional access restrictions at the time a file is opened. For
example, a user may be permitted to both read and write a file by
the file privacy bits, but may choose to open the file for input
only to protect against inadvertent destruction of data in the
file. All file privacy checks are performed at the time a

10

NOS User Guide - General Concepts

SpeCific request is made referenc1ng the file. Hence, changes in
the file privacy bits will take effect immediately.

The file privacy bits also apply to directory files, but with a
slightly different meaning. The Execute privilege refers to the
ability to search a directory, that is, to have the system look up
files in it. The Read privilege continues to control whether a
user may open the directory and read its text like any other file
(note that one may not list the directory with the DIR utility
without having Read permission for it). Users are not allowed to
directly write directory files, as all directory maintenance is
done by the system. However, the Write privilege is still
meaningful for directories. A user may not make any request that
would cause the system to modify the directory (such as creating a
new file in it, or deleting a file in it) unless he has the Write
privilege on the directory.

2.1.6.1. Privileged mode

A user logged in with group number 0 and user number 0 is
considered to be PRIVILEGED. The system will bypass all file
privacy and access restriction tests for requests submitted by
such a user. In addition, certain system commands and system
calls are available only to privileged users. These restricted
commands are identified in their descriptions in this manual. The
privileged user concept is necessary to bypass system security for
system-wide maintenance functions (such as backing up user files),
and to restrict access to functions whose unrestricted use might
imperil system integrity.

2.1.6.2. Directory creation mode

A special privileged mode enables a user to create an empty file
directory on a blank volume, or to recreate the file directory on
a volume previously used for another purpose. Since this
operation may result in the irretrievable loss of files stored on
a volume, extra special security is attached to this function.
The function of creating directories may only be executed if the
requestor is logged into the system with group number 0 and user
number 666. The password associated with this user is normally
revealed only to those with a genuine need to know, and changed
frequently.

1 1

NOS User Guide - General Concepts

2.1.7. File addressing and space allocation

The Network Operating System considers a file to be a collection
of bytes. Any number of bytes may be read or written by one I/O
request. Associated with each open file is an I/O pointer, which
contains the number of the byte to be read or written next. The
pOinter starts at zero (the first byte of the file) when the file
is initially opened, and is incremented by the number of bytes
transferred when any data is read from or written to the file.
Thus, to access the file sequentially, the user need only read or
write the file. A system call is provided by which the user can
set the I/O pointer to any desired value. Use of this call allows
random access to the data in the file. The file may be read or
written starting at any byte boundary; the system will worry about
physical device block sizes and perform the correct operations.
The file pointer is a 32 bit number, permitting file addresses as
large as four thousand million bytes.

When a file is created, no space is initially assigned to it. As
the file is written, the system automatically allocates space from
the pool of free space on the volume on which the file resides and
assigns it to the file. Files will never contain "holes": if the
first write to a file is at byte 1,000,000, all the space from
address zero to that byte will be allocated by that write. If a
write requires allocation of space and there is no space left on
the volume, the I/O request will be rejected by the" system.

Optionally, the user may request that the system allocate a
contiguous block of space for a file. Contiguous files can be
random accessed faster than normal files, and are also useful for
large-volume IIO applications such as program loading. A request
for contiguous allocation may be rejected when enough space is
available for the file because that space contains no contiguous
area as large as desired. The system attempts to allocate space
so as to maintain the largest possible contiguous area, but user
file creation and deletion may thwart this process.

2.1.8. Memory files

The Network Operating System allows banks of memory to be
configured as file storage devices. These blocks of memory may be
as large or as small as desired, allowing for both high speed
scratchpad usage or very large memory applications requiring speed
that only memory can deliver. Memory banks configured as storage
units work exactly like a fixed disc unit, except that all data
stored in the memory file is, of course, lost when power is
removed from the system. Otherwise, no special conSiderations are

12

NOS User Guide - General Concepts

required when using a memory file. Thus 1 programs may be made to
use memory files when they are available, and disc storage when
they are not . Memory files may be used in conjunction with the
file and record locking mechanism (FLOCKS) to provide high speed
intercommunication between programs running on the same system.

2 . 1.9. Device files

All system peripherals, such as the user terminal(s), printer(s),
paper tape readers and punches, etc., are included in the file
system. These "Device files" are given special names within the
Network Operating System. These names are specified with no
volume speCification, and are treated as always within the current
directory. Consequently, user files may not have the names of
system-defined device files. The device files present in a system
depend upon the system configuration. Only the user terminal
device file and the parameter string device file are always
present. The standard names assigned to device files are as
follows:

CONS.DEV
PARAM.DEV

User terminal
Program parameter string

other device files may be added if additional hardware support is -~
configured in the Network Operating System. The only restrictions
in use of device files stem from their hardware limitations: it
is meaningless to input from a paper tape punch, or to rewind a
printer. Attempts at such levity will normally be ignored by the
system.

Additional device files may be added when the system is generated.
An installation will normally provide device files to allow access
to whatever nonstandard hardware is present at the site. In
addition, the device file mechanism is used to implement various
system features such as background batch and offline file
printing. For information on locally implemented device files,
consult the persons responsible for maintenance of the system at
your installation. The device files used by system features will
be discussed in the sections of this manual that describe those
features.

2.1.10. Unformatted disc support

Normally, disc storage is not explicitly dealt with by the user.
Instead, the user uses the disc through the file system, which
performs allocation and release of space, and lets the user work

13

NOS User Guide - General Concepts

with named files rather than absolute addresses. For some
applications, such as reading and writing discs to be used on
other systems or initialising discs to be used with the system, it
is necessary to be able to read and write a disc directly. The
Network Operating System provides this facility through the disc
device file mechanism. A disc volume may be mounted for arbitrary
format access through the device file mechanism by using an
asterisk as the volume name on the MOUNT command. The volume will
be made available for IIO through the device file, but will not be
incorporated into the file system as it would be on a normal
mount. Once the volume is mounted 7 .the user may then open the
device file for the unit on which the volume is mounted. This is
done by opening the file named:

(device):DISCS·DEV

where (device) is the name (1, 27 3, etc.) of the disc device.

Privileged users may use the DISCS.DEV mechanism to read and write
any volume in the system, while nonprivileged users may use the
DISCS.DEV file only on volumes explicitly mounted for arbitrary
access.

2.1.11. Common file nomenclature

Since disc files and device files can be used for the most part
interchangably, throughout the rest of this manual they will be
referred to by the generic term (file>. Where the manual says a
<file) should be named, either a device file or a general disc
file name may be used.

2.1.12. File access procedure

Normal access to a file consists of opening the file, performing
accesses to it, then closing the file. Before a file can be
accessed, it must be opened. The OPENS request takes a file name,
opens the file for access, and returns a FILE INDEX by which the
user refers to the file in subsequent requests. The CREATES
request acts like the OPENS request, except that the file will be
created if it does not already exist (OPENS will error if the file
does not already eXist). Accessing the file is done using the
various system calls to read and write the file. When the user is
done with the file, it should be closed with the CLOSES request.

14

NOS User Guide - General Concepts

2.1.12.1. Predefined file indic@s

When a program receives control from the system, the file indices
0, 1, and 2 will be already opened. These indices are assigned as
follows:

Index

o
1
2

Use

Standard Input
Standard OUtput
Message OUtput

Standard Input (0) is where programs normally receive their
commands, Standard Output (1) is the file where normal program
output is directed, and Message Output (2) is where error messages
which require immediate user action should be directed. The
Standard Input file is initially assigned to the user's terminal,
but may be attached to another rile with the SCRIPT command (or
SCRIPTS system call). The Standard Output and Message Output
indices are currently always directed to the user's terminal, but
later releases of the system will permit the user to redirect
these files also.

15

NOS User Guide - Use From a Terminal

3. Using the system from a terminal

This chapter describes the system as seen by the user at a
terminal. This is a complete description of the system for all
users except those coding Assembler programs which call the
system. Assembly language interface information will be found in
the chapter "Using the system from a program" later in this
manual. The later chapter of this manual, "System utility
programs", is also of interest to non-assembly language
programmers. It provides a summary of commands which are not part
of the Network Operating System itself, but are provided by
Marinchip Systems on the standard system volume.

3 . 1. Loading the system

Depending upon the system configuration, the system may be either
automatically loaded when power is applied to the machine, or may
have to be loaded from the Marinchip 9900 Debug Monitor. If the
Debug Monitor is configured, the system is loaded by entering the
command:

BOOT

When the system has been successfully loaded, the system will
print the system sign on message on all terminals:

Running on MT: Marinchip NOS/MT ver 2.5
x system(s), nnK user space.

The "x" in the message will be the number of systems connected
together in the resource-sharing network, and the "nn" will be the
size of the free space available for user programs in multiples of
1024 bytes.

3.2. Logging in

Once the system has been loaded, the user will be asked to
1dentify himself by the message:

Enter user name:

The user should respond with his user identification name
(assigned by the system manager). If the user name is incorrect,
the user will be asked for the user name again. If the user name
1s on file with the system, the system will respond with the

16

NOS User Guide - Use From a Terminal

query:

Enter password:

and the system will expect him to enter the correct password for
the user name. The password will not be echoed to the user's
terminal as it is entered. Any of the local editing keys on the
terminal will cause the password entered so far to be discarded
and the password prompt to be retyped. The Control C key will
restart the log in process wi th "Enter user name:". If the
password is incorrect, the "Enter password: n prompt wi 11 be
reissued until the correct password is supplied (or the log in
aborted with Control C).

When the proper password is supplied, the user will be granted
access to the system. A message will be printed informing the
user of the group and user numbers assigned to the user name he
used, and any initialisation specified for the user will be
performed.

The user may sign off and log back in with a different user name
simply by using the command "LOGIN". Refer to the section on
LOGIN in the chapter "System utility programs" for a more complete
description of the use of and functions available in the log in
process.

3 . 3. System command mode

Once the user has successfully logged in and any initialisation is
complete, the system will type the system command prompt. This is
simply a colon (:) typed at the start of a line. When this prompt
is typed, the system is waiting for the next command from the
user. At this point the system will accept a system command, or
the name of a program to be executed.

3.4. Executing programs from command mode

If the name typed by the user is not a special system command (see
below), it will be assumed to be the name of a file containing a
program to be executed. ~le file name typed by the user will be
looked up in the user's current working directory (see the section
"Assumed volume and directory" above), and if found will be loaded
and executed. If the name cannot be found in the user's
directory, the system library file:

1 :BIN

17

NOS User Guide - Use From a Terminal

will be searched for the name entered by the user. If the program
is found in the system binary library, it will be executed. If
the program is not found in either the user directory or the
system library, the system will respond with an error message and
return the user to system command mode.

Programs executed from the terminal may be either executable
binary programs created by the Linker (LINK), or pseudo-code files
generated by compilers such as BASIC and Pascal. If the program
named is pseudo-code, the system will determine this from
examination of the file and automatically load the correct
interpreter package to execute the pseudo-code. The user need not
know what type of file is being executed. Device files may not be
executed as programs.

3.5. User commands

These
being
later

The system contains a very small set of bUilt-in commands.
commands are executed directly by the system rather than
executed from disc as are the commands described in the
chapter of this manual titled "System utility programs".
bUilt-in commands are bUilt-in because they provide functions
for various reasons cannot practically be made disc resident.

3.5.1. DISMOUNT - Dismount volume from storage unit

DISMOUNT < volume/device>:

The
that

The volume deSignated will be dismounted from the storage unit on
which it is mounted. Note that either the device or the volume
name may be specified. If any files are currently open on the
volume, the command will be rejected. After the DISMOUNT command
has successfully completed, the volume may be removed.

The most common problem encountered when trying to DISMOUNT a
volume is forgetting that you have ASSUMEd a directory on that
volume. The system will not permit the volume to be dismounted
until that reference is dropped. See the discussion of the ASSUME
utility program for more information on this operation.

3.5.2. MOUNT - Mount volume on storage device

MOUNT <device>:<volume>
MOUNT < device> :

18

NOS User Guide - Use From a Terminal

MOUNT <device>:*

The MOUNT command is used to inform the system that a volume has
been mounted on a physical storage device and that files on it
should be made accessible. The actual mounting of the volume is
done first, then the MOUNT command is issued. The first form of
the MOUNT command is the most common. ~1e <volume> name given is
verified against the name on the volume mounted, and the command
rejected if the names do not agree. The second form of the MOUNT
command will accept any volume mounted on the <device>, as long as
it is a valid file system volume. The third form of the MOUNT
command is used to mount volumes which are not formatted for use
with the file system. Volumes mounted in this manner may be
accessed only through the disc device file (DISCS.DEV) mechanism.
This type of MOUNT is used primarily when using discs used to
interchange information with other systems. A volume containing
system files may not be mounted for arbitrary access through the
DISCS.DEV file unless the user requesting the MOUNT is privileged.
This restriction prevents destruction of system files through the
DISCS.DEV mechanism.

3.6. Terminal support

The system contains an extensive handler for the terminal through
Which the user interacts With the system. Since the user spends
so much time using the terminal, the system goes to great pains to
make the interaction as pleasant as possible.

3.6.1. Terminal input

The user may type input on the terminal whenever a prompt appears
from the system or a program has requested input. Once the first
character of input is typed by the user, all output will be held
until the line is either entered by pressing the RETURN key or
struck out. In addition, the user may "type ahead ll input before
it it requested by the system or a program. There is a limit on
the number of lines that may be typed ahead. When this limit is
reached, the system will refuse to accept any more lines (by not
responding to the REl'URN key) until the system or program accepts
one of the lines queued for it. This input lock situation can be
escaped with the Control C key (see below). Several special
functions are provided by control keys while input is being
entered.

19

NOS User Guide - Use From a Terminal

3.6.1.1. Line delete

The entire line of input entered so far by the user may be deleted
by pressing the Control X key (ASCII code CAN). This will echo AX
on the terminal, throwaway the line typed in so far, and retype
the prompt for the line (if any). The user may then re-enter the
input from the start.

3.6.1.2. Character delete

The last character typed may be deleted by pressing the Backspace
(Control H) key. If the terminal is a CRT device, the character
will be rubbed out on the display and the cursor will back up.
Any number of characters may be rubbed out by successive
depressions of the backspace key. If all characters on the line
have been rubbed out, the bacKspace will be ignored.

3.6.1.3. Word delete

The last word typed may be rubbed out by pressing the Control W
key. This will delete characters starting from the end of the
line and working towards the start until an alphanumeric character
is encountered. Then alphanumeric characters will be deleted
until a non-alphanumeric is found. This will have the result of
rubbing out the last word entered. If the terminal is a CRT
display, the word will physically disappear from the screen and
the cursor will back up over it.

3.6.1.4. Retype input line

All input line editing with the above special keys is very easy to
understand and use if the terminal is a CRT display. If the
terminal is a hard copy device, however, overtyping many
characters may make it very hard to ascertain just what is about
to be sent as input. Pressing the Control R key will retype any
prompt for the line, then type the current input line as it
stands. The carriage will be left at the end of the input line so
that further corrections may be made, if required. This key may
be used at any time when entering input.

20

NOS User Guide - Use From a Terminal

3.6.1.5. ExPansion of control characters

ASCII control characters that do not have special editing
functions documented above will be expanded when echoed to an
up-arrow (A) followed by the letter which one presses along with
the Control key to generate the code. Trlis feature allows easy
editing of input containing control characters without the
confusion of trying to edit characters that aren't visible.

3.6.1.6. Escape input

Any ASCII ct~racter can be entered as input by preceding it with
the Escape key. The Escape will not be echoed, and the character
following it will be echoed directly to the terminal and placed in
the input buffer. This allows carriage return or any of the local
editing characters to be treated as normal characters and input to
a program. Note that to input the Escape character itself two
Escapes must be typed, as the first forces the second as a normal
character. .

3.6.2. Terminal output

Output sent to the terminal by programs will simply be typed as
sent, except that line feeds will be inserted automatically
following carriage return characters, and delay characters will be
automatically inserted to accomodate the carriage return, line
feed, and form feed delay requirements of the terminal device.
Note that control characters sent to the terminal by programs will
not be expanded into the "up-arrow" form. This allows programs to
freely send control characters that perform special functions on
the user terminal.

3.6.2.1. Output pause

Pressing the Control S key while the output is being sent to the
terminal will cause the system to pause at the end of the next
output line. The system will send no more output to th~ terminal
until Control S is typed again. Thus, Control S may be used as a
"push-push" switch to halt and resume output.

21

NOS User Guide - Use From a Terminal

3.6.3. Program interrupt key

An executing program may be interrupted by pressing the Control C
key at any time. Any input or output in progress or queued will
be aborted. If the program has requested the terminal interrupt,
it will be diverted to its interrupt point so that the interrupt
may be serviced. If the program does not service the terminal
interrupt, it will be terminated. A program can disable the
program interrupt key by assuming direct control of the user
terminal. In this "raw mode", the program is responsible for
handling all control characters and may take whatever action it
desires when any character is pressed.

22

NOS User Guide - System Calls

4. Using the system from a program

The Network Operating System provides tr~ee basic services to
programs running under its control : a set of system calls to
perform services provided by the system, information regarding
parameters passed to the program by its caller and about the
environment in which the program is executed, and a set of common
subroutines used by most software in the system provided to reduce
the size of the many programs that use them.

4.1 . System calls

All system calls are made using the extended operation facility of
the M9900 CPU. The XOP 1 instruction is reserved for system
calls, and is referred to as JSYS (Jump to SYStem) throughout this
manual. The Marinchip 9900 Assembler recognises the mnemonic JSYS
for XOP 1. The operand of the JSYS instruction is a packet that
contains the code for the request being made and storage for
passing of parameters between the calling program and the system.
The format of the packet depends upon the request being made, but
the first byte is always the request index and the second byte is
always a status returned by the system . A zero status always
indicates normal completion of the request. A nonzero status
signifies some abnormal event. A table of status codes and their
meanings is given following the description of the system calls.
Any nonobvious use of status codes by specific system calls is
noted in the description of the call.

The following paragraphs describe the system calls. In the
paragraph heading, the mnemonic for the system call is given,
followed by the hexadecimal code for the request. Parameters
passed to the system will appear as simple names. Parameters
returned will be enclosed in parentheses.

A file which defines the mnemonics for the system calls is
provided by Marinchip Systems on the standard system disc. It may
be included in an assembly language program by the statement:

COpy "1 :SOURCE/JSYS$"

4.1.1. Process control

The process control requests control the processes, state, and
memory allocation of an active program.

23

NOS User Guide - System calls

4. 1 . 1 . 1. EXITS (02) Terminate process

·
EXITS

· . ·
termination status

· . ·
The executing process is terminated. If the <termination status>
is zero, the operating system will treat the termination as normal
and print no message. If < termination status) is nonzero, the
system will print a message containing the status (edited in
hexadecimal). Storing an error code into the < termination status>
and performing an EXITS is an easy way of indicating an error
condition within a program.

4.1.1.2. DELAYS (04) Timed delay

DELAYS (status) · . ·
time in milliseconds · . ·

The process executing the DELAYS request will be delayed for a
time interval approximately equal to the specified <time in
milliseconds>. Since on many configurations the resolution of the
real time clock is substantially less than one millisecond, and
also since other system work may delay immediate return to the
delayed process, this request cannot guarantee precise timing. In
the requested delay time is less than the minimum time resolution
of the system real time clock, that minimum time will be the
length of the delay.

4.1.1.3. TRAPS (OE) Reset error action

24

NOS User Guide - System Calls

........ ,'
TRAPS · . ·

selection mask bits · . ·
trap routine address

· . ·
(prev addr) / (reent addr) · . · .. .

(prev mask) / (error type, code)
· . ·

(additional status)
· . · .. .

(additional status)
· . ·

The TRAPS request allows a program to catch various errors which
may occur during execution of a program. Currently, the only
error action which may be reset using the TRAPS request is the
Control C interrupt from the user terminal. If Control C is
pressed while a program is executing and a TRAPS request has not
been made to reset the action, the program will be terminated. If
a TRAPS request is made with the < selection mask bits> equal to 1,
then when the Control C key is pressed, control will be
transferred to the address stored in < trap routine address>. When
this occurs, the address at which the running program was
interrupted will be stored in the < (reent addr) > field, and the
error type and code (zero for the Control C interrupt) will be
stored in the «error type, code» field. If it is desired to
return control to the interrupted program, it is necessary only to
Jl~ to the address stored in the < (reent addr» field. The error
action may be restored to the system's normal default assumption
by setting the selection mask bit for that error to zero. If the
entire <selection mask bits) field is zero, standard action will
apply for all errors, and the value in < trap routine address> is
irrelevant. Whenever a TRAPS request is executed, the <prev addr>
field will be set to the address of the request packet used in the
last TRAPS call made, and the < prev mask> field will be set to the
mask bits used in that call. This information permits subroutines
wishing to reset error action to return it to the state in effect
when they were called. Trle «additional status» fields are
currently unused, and are reserved for future extensions of the
Network Operating System.

When writing programs which use the TRAPS request, it is important
to remember that the program may be interrupted at any time.
Hence, user programs must make sure that the action taken by the
interrupt does not leave the program in an invalid state.
Normally, the best way to handle a TRAPS interrupt is to set a
flag and return to the interrupted program, which then tests the

25

.--...

NOS User Guide - System calls

flag later and takes the desired action.

4.1.1.4. MEMS (OF) Determine memory limits

MEMS (status)
: ... :

subfunction · . ·
(first free address)

· . ·
(free area length) · . ·

The MEMS request is used by a program to determine the limits of
memory available to that program. To determine the free memory
available, the (subfunction > must be set to 1. Upon return from
the MEMS request, the «first free address» field will contain
the address of the first byte of storage following the current
program and its parameter table, and the < (free area length»
field will contain the length of this area in bytes. Use of the
MEMS request allows programs to automatically adapt themselves to
use however much free memory is available on the system on which
they are run. MEMS is particularly useful when used in
conjunction with the dynamic buffer allocation routines described
in the "System subroutines" section later in this manual. A
program may determine the amount of free memory available with
MEM$, construct a buffer pool conSisting of that space using
BEXPS, and then allocate and release storage from the pool using
BGETS and BREL$.

4. 1 . 1 . 5 . EXECS (11) Execute a program

EXECS (status) · . ·
command length

· . ·
command address

· . ·
The EXECS request permits one program to load and execute another
program. The program loaded will overlay the calling program, so
return to the calling program is not possible. <command address>
is the address of an ASCII string containing the command to call
the program to be executed, and < command length> gives the length

26

NOS User Guide - System calls

of the command string. The cOI1lmi..~nd string is identical to the
command which would be typed on the user's terminal to call the
program, and may contain parameters following the program name.
Since normal completion of an EXECS request causes the calling
program to be overlayed, control will return following the JSYS
instruction only if an error occurs (in which case an abnormal
status will be stored in the «status» field). Errors detected
while loading the new program will generate an error message and
return the user to command mode, since the calling program has
already been overlayed.

4.1.1.6. GETIOS (1B) Get group and user identity

GETIOS (status)
· . ·

(real group 1D)
· . ·

(real user 10)
· . · .. .

(effective group 10)
· . ·

(effective user 10) · . ·
This request allows an executing program to determine the identity
of its caller. The packet will be filled with the group and user
numbers of the user who is logged in on the terminal (in the
fields «real group 10» and «real user ID»), and the group and
user identification the current program is executing under (in the
fields «effective group 10» and «effective user 1D»). The
real and effective fields will differ only if the currently
executing program belongs to a different user than the calling
user and has the mode set which causes the system to assume the
identity of the program owner when the program is executed.

4.1.1.7. SETIDS (1C) Set user and group identity

27

NOS User Guide - System calls

SETIOS (status)
·

group 10
· . ·

user 10
· . ·

default privacy modes · . ·
The SETIDS request sets both the real and effective identity of
the user to the contents of the (group ID) and (user IO) fields.
A privileged program may change the identity to any desired
values, but a nonprivileged caller may only change the identity
back to the real group and user identity of the user. This
permits a program running under the identity of its owner to
assume the identity of its caller (after having determined it via
GETIDS) . Note, however, that such a program may not change back
to the identity of its owner, as that would violate the rules for
a nonprivileged call to SETIDS. The (default privacy modes) field
specifies the mode bits to be assumed for the CREATES request when
the < privacy modes} field in the CREATES packet is zero. See the
discussion of CREATES below for a description of privacy mode
bits. If this field is zero, the default privacy modes will not
be changed.

4.1.2. File control

The file control system calls include requests to create, delete,
open, close, read, write, poSition, and to set and read various
file modes.

4.1.2.1. OPENS (05) Open a file

OPENS (status)
: ... :

name length (file index) · . ·
name address · . ·
access mode

· . ·
The OPENS request opens a f 'ile for access. The address of the
ASCII string containing the name of the file to be opened should

28

NOS User Guide - System calls

be stored in the {name address} field. and the length of the file
name string should be placed in the <name length) field. If the
file is found and opened normallY7 the «status» field will be
set to zero, and < (file index» will be set to the index which is
used in all subsequent references to the file. The <access mode>
field controls how the file may be accessed. If zero, both
reading and writing will be permitted. If 1, only writing will be
allowed, and if 2, only reading will be allowed. If an error
occurs, the «status» field will be set to an error code
indicating the nature of the error (see the section "System call
error codes" below), and the file will not be opened. There is a
limit on the number of files a program may concurrently have open.
This limit is specified when the system is generated. Contact the
person responsible for system generation at your installation for
the limit in the system you are using. The OPENS request is used
to open both disc and device files. All files must be opened
before being used. A given file may be open more than once: a
unique file index will be assigned for eaCh OPENS request, and
separate address pointers will be maintained Eor each open
instance of a file.

4.1.2.2. CLOSES (06) Close a file

CLOSES (status)
· . ·

file index · . · .. .
The file with the specified < file index) (the index which was
returned when the OPENS was done on the file) will be closed.

4.1.2.3. CREATES (07) Create a file

CREATES (status)
·

name length (file index)
· . ·

name address
· . · .. .

access mode
· . ·

privacy modes
· . ·

29

NOS User Guide - System calls

The CREATES request acts identically to the OPENS request, except
that the named file will be created if it does not already exist.
If the file does already exist, all storage assigned to it will be
released. If the file does not already exist, the <privacy modes)
field will be used to set the privacy mode bits for the file. If
the <privacy modes> field is zero, the default privacy modes for
the current user will be used.

If the file privacy is to be specified by the < privacy modes>
field, rather than using the default for the user, the field
should contain the desired permissions for. the file, computed as
the sum of one or more of the following permission bits:

0200
0100
0080
0040
0020
0010
0008
0004
0002
0001

Assume identity of owner when executed
Read by others
Write by others
Execute/Search by others
Read by group members
Write by group members
Execute/Search by group members
Read by self
Write by self
Execute/Search by self

These bits control the basic operations of reading, writing, and
executing (or searching for a directory file), independently for
the user himself (group and user number of file owner equal to
user's group and user number), members of his group (group number
equal, user number different), and others (group number unequal).
The privileges for each separate class of users are completely
distinct: it is possible, although not very useful, to create a
file which can be accessed only by users other than the user who
created the file. The "Assume identity" bit applies to files
which are executed as programs. When a file is executed which has
this bit set, the program will execute under the group and user
identity of the file owner rather than the identity of the user
who called the program. The GETIDS and SETIDS calls may be used
to determine and change this status. This feature is primarily
used by programs which selectively access restricted data for a
user. The program is granted access to a file which the user
cannot directly access, and is responsible for selecting and
delivering to the user data from this file relevant to the user.

Note that since G~ATES releases storage assigned to a previously
existing file, performing a CREATES on a contiguous file whose
space was previously assigned via ALLOCS will cause that space to
be released, and hence the file to revert to non-contiguous
allocation. As a result, programs which write into contiguous
files should be careful to open them with OPENS rather than
CREATES, which would cause release of the previously allocated

30

NOS User Guide - System calls

contiguous block.

4.1.2.4. DELETES (09) Delete a file

DELETE $ (status)
·

name length
· . .

name address
·

The address of the name of the file to be deleted is stored in the
(name address> field, and the length of the name is stored in the
(name length> field. The DELETE$ request will delete the name
from the file directory. If the name deleted is the last name
associated with a file, the space assigned to the file will be
returned to the pool of free space on the volume on which it
resides. If the file being deleted is a directory, the system
will check whether the directory contains any file names. If the
directory is void (contains only its self pointer "" and the
parent pointer " .. "), the deletion will be allowed. If the
directory contains any other names, the deletion will be rejected
with a status of 16, which signifies an operation which requires a
void file was not given one . The DELETES function may not, then,
be used to delete a directory until all names in the directory
have first been deleted using DELETES. If the file being deleted
via DELETES is open, the directory entry for the file will be
deleted, but if that directory entry is the last name for the
file, the space will not immediately be released. Rather, a "drop
flag" will be set, so that when the last open instance of the file
is closed the space assigned to the file will be released to free
space. Thus, a program is assured that once a DELETES is
completed it may immediately create a new file by that name, but
other open references to the file may continue to reference it.

4.1.2.5. LINK$ (08) Create link to file (alias)

31

NOS User Guide - System calls

LINK$ (status)
· . ..

new name length
· . ..

new name address
· . ..

. old name length
· . ..

old name address
· . ..

The LINKS request creates a new name which designates the same
file as an existing name. The address of the existing file name
is stored in <old name address) and its length is stored in <old
name length). The address of the new name is stored in < new name
address) and its length in < new name length). If the request
completes normally «(status» is zero), the new name will access
the same file as the old name. The request will be rejected with
a bad status if the old file name cannot be found, if the new file
name is already in use, or if an attempt is made to create a link
from one volume to another. In addition, nonprivileged users are
not allowed to create additional names for directory files. If
the <device/volume): specification is omitted on the new name, it
will be assumed to be the same as that used for the old name.
LINKS may not be used to create additional names for device files.

4.1.2.6. FDUPS (22) Duplicate file index

FDUPS (status)
· . ..

file index/(new index) · . ..
access mode · . ·

The FDUPS request allows opening a file index which accesses the
same file as a file index already OPENed by a program. The
original file index specified in the packet is replaced by the
newly assigned file index when the request is executed. Upon
return from the FDUPS request, either file index may be used to
access the file. Note that since the file address pointer is
associated with an open instance of a file and not the file
itself, accesses performed with one file index will not affect the
address pointer of the other. The <access mode) field is has the
same meaning as in the OPENS request, and may be used to control
whether reading and writing may be done through the duplicate

32

NOS User Guide - System calls

index regardless of the modes specified when the file was
initially opened.

4.1.2.7. FSTAT$ (12) Obtain file status

FSTAT$ (status)
· . ·

name length
· . ..

name address
· . ..

buffer address
· . ..

buffer length in bytes · . ..
(bytes transferred)

· . ..

The FSTATS request allows a program to read the file index table
entry for a file. The <name address> field should contain the
address of the file name, and the <name length> field should
contain the length of the file name in bytes. The <buffer
address> field must point to the first byte of the area in which
the file index table entry will be stored, and the (buffer length
in bytes> field specifies the length of that area. In the current
release of the system, file index table entries are 44 bytes long,
so if the entire entry is to be read, the buffer area should be
that long. If the buffer length specified is less than the length
of the entry, only the length requested will be transferred. In
any case, the «bytes transferred» field will contain the number
of bytes actually returned.

The format of the file index table entry returned by the FSTAT$
request is as follows:

33

NOS User Guide - System Calls

node number
· . ·

storage unit index
· . ..

file index table number · . ..
flag bits

·
reserved for future use ·

reference count
· . ..

size high
·

size low
· . ..

owner group
· . ..

owner user
·

creation date high
· . ·

creation date low
·

last write date high · . ,
last write date low ·
page map (8 words) ·

The < node number> field specifies the number of the node within
the resource sharing network to which the storage unit on which
the file resides is connected. The <storage unit index> field is
a code identifying the storage unit where the file resides. This
binary value is equal to the explicit storage unit name (such as
1:) which can be used when referencing the file. The (file index
table number> field will contain the unique code identifying the
file on the volume on which it is stored. Multiple names for a
file may be identified since they will always return the same
(node number>, <storage unit index>, and" <file index table nUmber>
values.

Flag bits are defined as follows (hex values):

8000
4000
3000

0000

File is allocated
Contiguous file
File type

Normal disc file

34

1000
2000
3000

0800
0200
0100
0080
0040
0020
0010
0008
0004
0002
0001

NOS User Guide - System Calls

Directory
Special character device
Special block device

Indirect page addressing flag
Assume identity of owner when executed
Read by others
Write by others
Execute/Search by others
Read by group members
Write by group members
Execute/Search by group members
Read by self
Write by self
Execute by self

The (reference count> field is equal to the number of names for
the file (the initial name is created by the CREATES request, and
other names can be added by the LINKS request; names can be
removed by the DELETES request). The < size high> and < size low>
fields specify the file length as a 32 bit integer. The size is
equal to the address of the highest byte ever written in the file
plus one. The size is set to zero by a CREATES request. Note
that the file size always refers to the logical file size, and not
the physical space assigned to the file. Due to the physical
granularity of space allocation, there may be more space (much
more in the case of contiguous files) allocated to a file than a
program has ever actually used. The < owner group> and < owner
user> specify the group and user numbers of the user who
originally created the file. These fields may be changed via the
CHOWNS request. The (creation date) field specifies the time and
date when the file was created, and the <last write date>
specifies the time and date when the file was last modified.
These dates are stored as 32 bit integers in the same format as
returned by the TIMES request. The < page map) cells contain the
information used to locate the physical storage assigned to the
file. If the file is contiguous, word 0 will be the number of the
first storage block assigned to the file and word 1 will be the
number of blocks assigned to the file. If the file is not
contiguous and the indirect page table bit in the flags word is
zero, the page table words contain the block numbers for the file
storage. If the indirect page table bit is nonzero, the page
table contains addresses of blocks which contain pointers to the
physical storage assigned to the file.

4.1 .2.8. 05~ATS (23) Obtain open file status

35

NOS User Guide - System Calls

OSTATS (status)
: ... :

file index
· . ·

(reserved for future use)
· . ·

buffer address
· . ·

buffer length in bytes · . ·
(bytes transferred)

: ... :
The OSTATS request allows a program to read the file index table
entry for a file previously opened by the program. This request
is exactly like the FSTATS request described above, and returns
identical in£ormation in the buffer, except that it takes the
<file index> of a file previously opened by the program rather
than the name of a file which need not be previously opened.
Refer to the description of the F5~ATS request for information on
the use of fields in the request packet and the meaning of
information returned.

OSTATS is primarily used in subroutines which are passed the index
of an open file, and need to determine information regarding the
file. By using OSTATS, they need not know the name of the file on
which they are working. Also, if the user has previously opened
the file, it is more efficient to use OSTAT$, since it does not
have to look up the file name again as FSTATS would be forced to
do.

4.1.2.9. MKDIRS (OA) Make file into directory

MKDIR$ (status) · . ·
name length · . ·

name address · . ·
The MKDIRS request converts an empty file (normally just created
With the CREATES request) into an empty directory. The file is
marked as a directory, and the self pointer (.) and parent
directory pointer (..) files are created. The (name address)
field specifies the address of the £ile name to be converted, and
the <name length) field specifies the length of the file name

36

NOS User Guide - System Calls

string in bytes. The MKDIRS request will be rejected if the named
file cannot be found, is not empty, is not a normal disc file, or
is currently assigned by a program.

4.1.2.10. ALLOCS (13) Allocate contiguous file

ALLOCS (status)
· . ·

file index
· . ..

length required (upper 16 bits)
·

length required (lower 16 bits)
· . ..

The ALLOC$ request attempts to allocate contiguous space for a
file. Any space previously allocated to the file, whether
contiguous or not, will be released. The (file index) must be a
file currently open for writing, and the (length required) fields
must contain the number of bytes to be allocated as a 32 bit
integer. If there is insufficient contiguous space to satisfy the
request, the request will be rejected with a bad status and no
space will be allocated.

4.1.2.11. ASDIRS (1 A) Assume default directory

ASDIRS (status) · . ..
name length ·

name address ·

The ASDIRS request sets the assumed directory volume and file for
a user. The address of the name of the file to be assumed should
be stored in (name address> and its length in bytes in (name
length). If the request succeeds that volume and directory file
will be assumed on all subsequent file operations taking a file
name when no volume and/or leading slash in the file name is
specified. The file name used with ASDIRS must specify a file,
not just a device or volume. If the root directory on a volume is
to be assumed, the self name It It of that directory must be
specified.

37

NOS User Guide - System Calls

If <name length) is zero, the current assumed directory (if any)
will be dropped. All files referenced by the user subsequent to
such a call must contain an explicit volume and file name
specification beginning with the root directory on the volume
until another default directory is specified with ASSUME$.

4.1.2.12. CHACCS (18) Change access/privacy modes

CHACCS (status)
· . ·

name length
· . ·

name address
· . ·

new privacy modes
· . · .. .

The CHACCS request changes the privacy modes of a file. The
address of the file name is stored in the < name address) field and
the length of the name in bytes is stored in the < name length>
field. The new mode bits are placed in the <new privacy modes)
field. See the discussion of privacy mode bits in the description
of the CREATES request for the meaning of the various bits. Only
the owner of a file or a privileged user is permitted to change
the privacy modes of a file.

4.1.2.13. CHOWNS (19) Change file ownership

CHOWN$ (status) · . ·
name length

: ... :
name address · . ·

new owner group · . ·
new owner user · . ·

The CHOWNS request, which may be made only by privileged users,
allows the ownership of a file to be changed. The <name address>
and < name length) specify the address and length of the file name
to be changed. The <new owner group) and <new owner user> specify
the group and user numbers for the file's new owner. Note that

38

NOS User Guide - System calls

since the ownership of a f1le 1s a property of a file and not of
its (possibly multiple) names, changing the ownership of a file
may result in users who have links to it in their directories not
being able to assign (or delete) the file.

4.1.3. Input/Output

The Input/Output requests control transfer of data to and from
files (including device files).

4.1.3.1. READS (OB) Read from a file

READS (status)
·

file index
· . ..

buffer address
· . ..

buffer length in bytes
· . ..

(bytes transferred)
· . ..

The next blOCK of informatit.)n from the file specified by < file
index> is read into the buffer starting at the address specified
by (buffer address>. The length of the block read is specified by
<buffer length in bytes). The actual length of the block read in
will be stored in «bytes transferred». When reading from a disc
file, the length read in will always equal the buffer length
except when the read is truncated due to encountering either the
end of the file or an I/O error. When reading from a device file,
such as the user terminal, each READS request will transfer a
logical record of information (one input line in the case of the
user terminal). Input from the terminal is always terminated by a
carriage return. The «status» field will be zero for normal
completion, 1 if no data was transferred because end of file was
encountered, and 2 if an unrecoverable I/O error occurred. Note
that the end of file status occurs only when no data is
transferred. A read that starts before the end of a file but is
truncated at the end of file will receive a normal status. This
condition can be tested for, if deSired, by comparing the «bytes
transferred» field with the <buffer length in bytes) field.

If a program is waiting for input from the user's terminal, and
the Control C key is pressed, and the user has requested

39

NOS User Guide - System calls

notification of that event via TRAPS, the «status» field in the
READS packet will be set to 22 and the «bytes transferred» will
be set to zero. This enables a program returning from the TRAPS
to determine that no data have actually been obtained by the
READS.

When reading from the user terminal, if the <buffer length in
bytes> field is zero, no data will be read, but the «status»
will be set to zero if data is available to be read and 1 if no
data has been entered and a normal READS from the terminal would
cause the program to wait for data to be entered. This speCial
request permits programs performing other continuous processing to
respond to input from the terminal without being forced to wait
until it is entered.

4.1.3.2. WRITES (OC) Write to a file

WRITES (status)
· . ·

file index
· . ·

buffer address · . ·
buffer length in bytes · . ·

(bytes transferred) · . ·
The information starting at <buffer address> with length < buffer
length in bytes> is written to the file with the specified <file
index>. The number of bytes actually written to the file will be
stored in the «bytes transferred» field. The «status» field
will be set as for the READS request described above. Writing
beyond the end of a normal file will cause automatic allocation of
space to the file. Attempting to write beyond the end of a
contiguous file will cause the write to be truncated. Note that
since the end of file status is set only if no data were
transferred, programs which write contiguous files should check
the «bytes transferred» field against the <buffer length in
bytes> field after each write and report an error if the two
fields differ.

40

NOS User Guide - System calls

4.1.3.3. SEEKS (OD) Set file address pOinter

SEEKS (status)
: ... :

seek base file index
· . ·

offset (upper 16 bits)
· . ·

offset (lower 1-6 bits)
· . ·

(new pointer (upper 16 bits»
· . ·

(new pointer (upper 16 bits»
· . ·

Files are normally processed sequentially. When a file is
initially opened or created, the file address pointer is set to
zero, which points at the first byte in the file. Each READS or
WRITES request made on the file will add the number of bytes
transferred by the request to the file address pointer, which will
result in the data from the file being read or written
sequentially. The SEEKS request allows the user to change the
file address pointer and thus access the data in the file in any
order. This is referred to as random access. Seeks can be either
relative or absolute, with the type specified by the contents of
the < seek base> field in the request packet. If < seek base> is
zero, the seek is absolute and the file address pointer is simply
set to the contents of the 32 bit < offset> field. If < seek base>
1s 1, the seek is relative to the current position in the file,
and the address pointer is set to the current value of the address
pointer plus the < offset) field. If < seek base> is 2, the seek is
relative to the end of the file, and the address pointer is set
equal to the current file length plus the <offset> field. Note
that the <offset> field may be either positive or negative (if
negative, it should be the normal two's complement
representation). At the completion of the SEEKS request, the
«new pointer» field in the packet will be filled with the
resulting file address pointer after the SEEKS. Note that the
pointer may be read by performing a seek with < seek base> equal to
1 and (offset> equal to zero.

4.1.3.4. IOCTLS (10) Set device file modes

41

NOS User Guide - System calls

·
IOCTLS (status) · . ·

string length file index · . ·
string address · . ·

The IOCTLS request allows programs to communicate mode information
to the device drivers which implement device files in the system.
The request causes the device driver for the open file associated
with < file index> to process the mode string whose start address
is specified by < string address) with length equal to < string
length). The action of the mode string depends on the device
driver which processes it.

If sent to the user terminal device file (an open instance of
CONS.DEV), only the first two bytes of the string are significant.
The first byte is unused (reserved for a feature not yet
implemented in the system). The second byte is the "raw mode"
control byte. If zero, the user terminal will operate in normal
buffered mode. In this mode the system assembles lines of text
from the terminal, providing all the local editing features
described earlier in this manual. A READS £'rom the terminal will
receive an entire line, and will not obtain the data until the
user presses the RETURN key on the terminal. If the "raw mode"
byte is set to 1, input from the terminal will be sent
character-by-character to the active program. Each READS will
return all characters typed since the last READS request. The
system will not echo input to the display, permitting programs to
echo whatever is desired. In raw mode, Control C is simply passed
to the program as a data character, hence it cannot be used to
interrupt a program that has turned on raw mode. Raw mode is
automatically terminated when a program exits and the operating
system prompt reappears.

4.1.3.5. SCRIPTS (20) Set file for standard input

SCRIPTS (status) · . ·
name length

· . ·
name address · . ·

The SCRIPTS request suspends the current source of standard input
(read from file index zero) and attaches it to the text file whose

42

NOS User Guide - System Calls

name starts at the address specified by < name address) with length
specified by < name length). Subsequent input requests from file
index zero will return lines from the text file (unless direct
mode input has been selected via IOCTLS, in which case single
characters will be returned). Note that the system will make the
text file behave exactly like the terminal: each READS will return
only one line, regardless of the length of the buffer supplied for
READS. In reading text files the system adheres to the convention
that lines are delimited by CR (carriage return) characters and
that the end of file is denoted by an EOT (end of transmission)
character.

When the end of the file is reached, input will revert to the
source in effect before the SCRIPTS request was issued. Note that
the user may "nest" SCRIPTS requests, up to a limit defined when
the system is generated. Since the system reads its commands from
file index zero, SCRIPTS may be used to cause the system to
execute commands from a file as well as to cause programs to read
£rom a £ile instead o£ the terminal.

4.1.3.6. SYNCS (15) Write out all changed data

SYNCS (status)
The Network Operating System automatically pages data from file
volumes through buffers in memory. This paging greatly improves
system throughput and enables the system to provide byte
addressable files regardless of the physical block size of the
devices on which the files are stored. This paging is totally
transparent to user programs, but for some maintenance functions
and special applications, it is desired to be able to force all
data being held in memory out to the disc (for example, if two
systems were communicating via a shared disc area, a system would
have to know that the data had been physically written to the disc
before it could tell the other system to read the data). The
SYNCS request will cause all changed data to be written out. When
control returns to the user program, all data written prior to the
SYNCS request will be up-to-date on storage. There is no need to
do SYNCSs in normal use of the system as the system performs
periodic SYNCSs to help protect file integrity.

43

--"'"'

NOS User Guide - System Calls

4.1.4. File and record locking

The FLOC~S request, described below, coordinates access to files
being shared by two or more programs running concurrently. The
request allows both locking of all access to a file, and locking
of individual records within the flle (accompllshed by a
comblnatlon of FLOCKS and file-dependent code in the user
program) .

4.1.4.1. FLOCKS (24) Lock/Unlock access to a file

FLOCKS (status)
· . ·

function file index · . ·
The FLOCKS request controls access to a file. Flles used with
FLOCKS must have been previously opened by the program. The (file
index> field deSignates the file on which FLOCKS is to operate.
The action FLOCKS takes depends on the contents of the (function>
field. Each <function> is described below.

Function 1: Lock file, wait if busy
If the file is not currently locked by any user, the file is
marked locked to the requestor and control is returned to the
requestor. If the file is locked, the requestor's program is
suspended and the lock request is queued. When the current
locker of the file, and all requestors who were previously
queued, have unlocked the file, the file will be marked locked
to the requestor and the program will be reactivated.

Function 2: Unlock file
If the file has been previously locked by the requestor, it
will be unlocked. All users waiting on a Function 4 request
will be reactivated. If one or more users are waiting to lock
the file with a Function 1 request, the first user in the queue
will be given the lock on the file. If the user had not
previously locked the file, a Function 2 request will result in
an error status 11 in the «status» fleld, and no action will
be taken.

Function 3: Lock, return status if busy
If the file is not locked at the time of the request, the lock
is set. If the file is locked, the user is not queued.
Instead, the «status» field in the packet is set to 19 (file
or device busy) and control is returned immediately to the

44

NOS User Guide - System calls

program. This request may be used instead of the Function 1
request when the program wishes to taKe some other action if
the lock is set rather than just waiting for it to be cleared.

Function 4: Unlock, wait for event
If the file is marked locked by this user, it is unlocked as
described for the Function 2 request. After unlocking the file
and activating users queued, the requestor is deactivated and
queued on the file. The user will be reactivated the next time
any user does an unlock (Function 2 or Function 4) on the file.
This request is used in conjunction with the algorithms
described below to implement locking of individual records in a
file. If the user had not previously locked the file, the
«status» field will be set to 11, and no action will be
taken.

Function 5: Privileged clear lock
This request is identical to the Function 2 request, except
that the requestor need not be the user who set the lock
originally. A program must be privileged to perform this
function; if executed by a nonprivileged program, status 11
will be returned in the «status» field and no action will be
taken. This function is provided to allow recovery when a
program locks a file and then aborts with the lock set, or when
improper program logic causes a "circular hold" condition. It
should never be necessary in normal operations.

The FLOCKS request provides file-wide locking simply through the
use of the Function 1 and Function 2 requests. A program wishing
to lock a file should do a Function 1 request, do whatever it
wishes to the file, then do a Function 2 request to unlock the
file. Any number of programs running concurrently are assured
that each has exclusive access to the file between its Function 1
and Function 2 requests.

For many applications, file-wide locking is enough. In some
cases, however, especially in complex database systems, it is
necessary to lock individual records or subsets of data within one
file. When this is necessary, FLOC~S Functions 1 and 4 may be
used in conjunction with special algorithms to achieve the desired
result. The user must design the database and decide where the
locks are to be placed. The actual locks are simply data items in
the file, which are read and written like any other data. To set
a lock within the file the following algorithm should be used.

Algorithm L (Set a lock within a file). A lock within the file is
set. If the lock is currently set, the program will wait until it
is released, then set it and resume execution.

L1 (Set file-wide lock.) Perform FLOCKS Function 1 on file.
L2 (Read lock from file.) Read record containing lock from

45

NOS User Guide - System calls

file.
L3 (Inspect lock.) Examine record lock item within record.

If it is a 0, go to step LS.
L4 (Clear file-wide lock, wait for event.) Perform FLOCKS

Function 4 on file. After return from request, go to step
L1.

L5 (Set record lock.) Set record lock item to 1.
L6 (Write record lock into file.) Write record containing

lock back to file.
L7 (Clear file-wide lock.) Perform FLOCKS function 2 on

file.

After performing this algorithm, t 'he lock on the record (or
section, etc.) of the file will be set, and other users of this
algorithm will be forced to wait until the lock is cleared by the
execution of the following algorithm.

Algorithm U (Unlock record). The lock in a record is cleared.
U1 (Set file-wide lock.) Perform FLOCKS Function 1 on file.
U2 (Read lock from file.) Read record containing lock from

U3
U4

us

file.
(Clear record lock.)
(Write record lock
lock back to file.

Set record lock item to O.
into file.) Write record containing

(Clear file-wide lock.)
file.

Perform FLOCKS function 2 on

These algorithms assume that all the record lock items in the file
have been initially set to zero. It should be clear from an
examination of the record lock and unlock algorithms that the
file-wide lock is set only momentarily when checking or changing
the record lock. Thus, two programs which lock different records
will not have to wait for one another, but programs wishing to
access the same record will be properly queued.

Since the record locks are simply data in the file, if a program
aborts while a record lock is set, other programs using Algorithm
L will wait forever, since the record lock will never be cleared.
Consequently, when implementing an on-line database system, it is
useful to have a privileged utility which can be used to clear
record locks. Obviously, this program should be used with great
care, ideally when all on-line work has been shut down.

Users planning to use record locks should be extremely careful
about locking more than one record at a time. If multiple records
are locked, and great care is not taken in the design of the
application, it is possible to get into a "circular hold"
condition, where neither program can continue. If, for example,
there are two locks in a file, Lock 1 and Lock 2, and two programs
try to set them in opposite order (that is, Program 1 sets Lock 1,

46

NOS User Guide - System calls

then Lock 27 and Program 2 sets Lock 2, then Lock 1) it is
possible to get into a circular hold where Program 1 has set Lock
1, Program 2 has set Lock 2, and both are waiting for each other's
lock to be cleared. Since both programs will only clear the locks
after setting both, there is no exit from this condition. The
literature on detecting and avoiding this problem is extenSive,
and this is not the place to discuss it, but a word to the wise
will hopefully be sufficient: don't set multiple locks at once
unless you know what you are doing.

The locking done by FLOC~S affects only other FLOCKS requests; it
does not prevent reads · and writes from being done on the file.
Hence, if FLOCKS is being used to protect access to a file, all
programs using the file must use FLOCKS. An FLOCKS lock may
remain set across a close and subsequent reopen of a file. If no
other users are waiting on the lock, the Function 2 request to
unlock the file will be rejected if the file has been closed and
reopened, but the program may, in this case, ignore the rejection
as the desired action (clearing the lock) has already been taken
anyway.

Setting and clearing file-wide locks with FLOCKS is an extremely
fast operation involving no I/O to the file or directory. Hence,
programs should freely set and clear the lock when required rather
than trying to minimise the number of locks and unlocks at the
cost of complicating the program. FLOCKS works only on normal
files stored on a storage unit; it may not be used on device
files. Since memory files are a true storage unit, FLOCKS may be
used on them without restriction.

4.1.5. Volume maintenance requests

These requests control the status of storage volumes and the
physical devices on which they are mounted.

4.1.5.1. MOUNTS (16) Mount volume on storage unit

47

NOS User Guide - System Calls

MOUNTS (status)
· . ·

name length
: ' ... :

name address
· . ·

access mode · . ·
The MOUNTS request causes a volume to be logically mounted, - that
is, made available for use through the system. The <name address>
field points to a string specifying the device and volume name
(which is described below), and <name length> specifies the length
of that string. The <access mode> field specifies restrictions on
the type of accesses which may be made to the volume during this
mount. The <access mode> field is the sum of the desired modes
from the following table:

4
2
1

Reading is to be permitted
Writing is to be permitted
Execution of programs is to be permitted

The string used with MOUNTS has one of the three following
formats:

< device> : < volume)

This format requests the mounting of a specific volume on a
device. <device) is the device name (normally 1) 2, 3, etc.), and
< volume> is the name of the volume to be mounted. If this form of
the request is used, and the volume named in the request does not
agree with the name of the volume mounted on the device, the
request will be rejected with a status of 20. For example, to
mount the volume "PAYROLL" on disc drive number 3, the parameter
string would be "3:PAYROLL".

(device) :

This form of the MOUNTS request will mount whatever volume is
physically present on the device, but does require that the volume
be a properly-formatted file system volume. This request may be
used whenever volume verification is not required. Files on the
volume may be accessed by volume name after mounting, even though
the volume name was not given in the MOUNTS parameter string.

< device):*

This form of MOUNTS mounts a volume for "arbitrary format access".
It does not require that the volume be formatted for file system

48

NOS User Guide - System Calls

access, and does not allow access to any files which may be
present on the volume. Once mounted in this way, the volume may
be accessed only via the DISCS.DEV device file which allows direct
access to storage on the volume without going through the file
system. This feature is normally used for initial formatting of
volumes, and to read and write volumes in other formats to be used
on other computer systems. If the volume mounted for arbitrary
access is a file system volume, the MOUNTS will be rejected unless
the requestor is privileged. ~~is restriction prevents
unauthorised destruction of system files through arbitrary access
to them.

4.1.5.2. DMOUNTS (17) Dismount storage volume

DMOUNTS (status)
· -

name length
· . ·

name address · . ..

The DMOUNTS request dismounts a volume from the storage unit on
which it has been mounted. The < name address) specifies the
address of a string of length <name length) which is of the form:

< device/volume):

Note that either the device name or volume name may be speCified,
and that the name must be followed by a colon. A volume may be
dismounted only when no files on it are currently open. If a
DMOUNTS is attempted while files are open on the volume, the
request will be rejected with a status of 19.

4.1 .5.3. V~~ATS (1F) Obtain unit/volume status

49

NOS User Guide - System Galls

VSTATS (status)
· . · .. . ,

name length · . ·
name address · . ·

buffer address
·

buffer length in bytes · . ·
(bytes transferred) · . ·

The VSTATS request allows the user to determine the status of a
storage unit and the volume mounted on it (if any). The <name
address> specifies the address of a file name, with length
speci£1ed by < name length>. The information returned is for the
unit and/or volume designated by that f1le name. If the file name
contains an explicit device name (such as "1:"), or an explicit
volume name (such as "SYSVOL:"), it need not contain a file name
portion, and the device or volume named w1ll be used. If the name
does not contain an explicit device or volume, information will be
returned about the volume on which the user's default directory
resides.

The information returned will be stored in a buffer starting at
the address specified by < buffer addl.·ess>. No more information
will be stored than the buffer length specified by < buffer length
in bytes>. The actual length returned will be stored in the
«bytes transferred» field of the packet.

The format of the information stored in the user's buffer is as
follows:

50

NOS User Guide - System Calls

node number
· . ·

storage unit index
· . ..

block length
· . ..

allocation table address
· . ..

allocation table length
· . ..

file index table address
· . ..

file index table length
· . ..

free blocks available
· . ..

largest contiguous area
· . ..

reserved for future use
: .. :

number of blocks
· . · .. .

default block length
· . • co .. e

default block count
· . • .. II

storage unit status · . ·
reference count

· . · .. .
access bits

· . • .. II, •

reserved for future use (10 bytes)

· . · .. .
current volume name (14 bytes)

· . · .. ., ..

The <node number) field specifies the node number in the resource
sharing network which supports the storage unit selected. The
<storage unit index) field is the integer code for the storage
unit (1, 2, etc.). The <storage unit status) field will be zero
if the unit is idle (no volume mounted), one if a normal file
system volume is mounted, and two if an arbitrary format volume is
mounted (asterisk specified as volume name).

The <block length) field specifies the length of allocation blocks
on the device, in bytes, and (number of blocks) specifies the

51

NOS User Guide - System Calls

number of such bloCKS provided on the device (or volume). The
(default block length> and (de£ault bloCK count> fields specify
the size in bytes and number, respectively, of blocks assumed to
be present when a volume is prepared for access on this storage
unit (PREPS) and no explicit specifications are given for these
values in the PREPS request. (reference count> is the number of
files currently open on the storage unit, and <access bits> are
the modes of access permitted to the unit, as specified in the
MOUNTS request packet.

The following fields will be returned only if the storage unit
currently has a valid file system format volume mounted «storage
unit status> field equal to one). The (allocation table address)
field specifies the start block nlunber of the allocation bit
table, and <allocation table length> specifies the length of that
table in terms of blocks of length specified by (block length>.
<file index table address) specifies the start block number of the
file index table, and <file index table length) specifies the
length of that table in blocks. The <current volume name> field
is the 14 character name of the volume currently mounted on the
storage unit. The number of currently unallocated blocks
available for assignment to files created on the volume is given
in the field (free blocks available>, and the largest contiguous
unallocated area is specified, in blocks, by the field <largest
contiguous area>.

4.1.5.4. PREPS (21) Write directory on volume

PREPS (status) · . ·
name length surface test · . ·

name address · . ·
block length · . · .. .
block count

: ... :
The PREPS request creates an empty file system on a volume,
optionally performing a complete surface test and removing any bad
blocks from eligibility for allocation. PREPS may be performed
only by a program executing under group number 0 and user number
666. Any other user attempting to perform a PREPS will receive a
protection reject status. The storage unit containing the volume
to be PREPed is specified by the string whose address is given by
(name address> and length by <name length>. The string must

52

NOS User Guide - System calls

contain an explicit storage unit name (such as "1 :"). That unit
must contain a volume mounted for arbitrary access (VOlUme name of
n*n in the MOUNT operation).

The (block length) field in the packet specifies the block size in
bytes to be used in allocating space on the volume, and (block
count) specifies the number of such blocks present on the unit.
If one or both of these fields are zero, the default values
configured for the storage unit will be used. Note that the
<block length> and (block count) specified must be compatible with
the hardware driver for the storage unit.

If the < surface test) field contains 1, all blocks on the unit
will be written, and any which cannot be read back successfully
will be removed from the list of blocks available for allocation
to user files. If (surface test) is 0, this will not be done, and
all storage blocks will be assumed to be good. The complete
surface test may take a large amount of time to complete.

4.1.5.5. SBOOTS (14) Set boot file

SBOOT$ (status)
· . ·

name length
· . ·

name address · . ·
The file from which the operating system is loaded when the system
is initially brought up is referred to as the Itboot file" (which
refers to the "bootstrap" process used to load the system). The
boot file must be a contiguous, executable file. (This is the
only case where a contiguous file is required by the system.)
When a volume is initially prepared for use with the system, it is
marked as containing no boot file. Which file is the boot file
may be set by the SBOOTS request. The < name address> field points
to the string containing the file name, whose length is specified
by < name length). If the file specified is not a contiguous file,
the request will rejected with a status of 14. The SBOOTS request
may be made only by privileged users.

4.1.6. System environment requests

The environment requests allow specification and retrieval of
information regarding the environment in which the system exists .

53

NOS User Guide - System Calls

While these requests are always provided in the system, the
validity of the information they return depends upon the presence
of certain hardware and support software which may not be provided
in all configurations which support the Network Operating System.

4.1.6.1. TIMES (1D) Return current time

TIMES (status)
· . ·

(time (upper 16 bits»
· . .. III

(time (lower 16 bits»
· . ..

The «time» fields in the packet will be filled with the current
date and time value. The system represents date and time as a 32
bit unsigned integer representing the number of seconds elapsed
since 00:00 GMT January 1, 1950. For compatibility in distributed
networks which span time zones, system time is normally maintained
in Greenwich Mean Time. System maintenance personnel may change
this standard, so you should check with with system management
first. The format used for time allows resolution of times to the
second for all dates from 1950 to 2086.

4.1.6.2. STIMES (1E) Set system time

STIMES (status)
· . ..

time (upper 16 bits)
· . ..

time (lower 16 bits)
· . ..

If the caller is privileged, the 32 bit <time> will be used to set
the system time and date clock. The
field should be in the same format
TIMES request (see above). STIMES
callers will be rejected.

54

value stored in the <time)
as the system returns for the
requests from nonprivileged

NOS User Guide - System Calls

4.1.7. System call error codes

When a system call (JSYS) completes normally, the «status» field
in the request packet will be set to zero. When an error occurs,
the «status» field is set to a numeric code indicating the
error. The error numbers are common to all requests in that a
given code has only one meaning regardless of which request
returned it. The error codes generated by each request are
discussed in the description of the request, and are summarised
below.

Code

o
1
2
3
4
5
6
7
8
9

10

1 1

12
13
14
15

16
17

18
19
20
21
22
23
24

Meaning

Request completed normally
End of file on IIO request
Unrecoverable IIO error during request
File not found in directory
Bad file index
Bad file name syntax
Bad subfunction on request
File not executable
Too many concurrently open files
Memory INODE table full. (The combination
of user and system files open is too large.)
File path name specifies a non-directory as
a name other than the last in the path.
This request was rejected because completing
it would violate system security.
Storage exhausted on unit
Maximum files already allocated on volume
Improper file type for requested function
Operation would result in two names for
directory file
File must be void for this function
Attempt to create link from one volume to
another
File already exists
File I device busy
Wrong volume mounted on device
Invalid volume / not file system format
SCRIPTS files too deeply nested
Control C aborted JSYS
Too many processes active to create new one

55

NOS User Guide - Program Environment

4.2. Program execution environment

When a program is given control by the Network Operating System,
certain information is set up which it may retrieve by making
various system calls. This section describes the execution
environment of a program and how a program may determine this
information at execution time.

4.2.1. Memory allocation

The standard starting address of programs run under the system is
100 hexadecimal . Programs generated by the Linker will normally
be started at this address. ~le area below 100 hexadecimal is
reserved for the exclusive use of the Network Operating System and
must not be modi fied by programs. The area of memory from the end
of the user program to the end of the user space is available for
use by the program (for example, as a buffer pool). The starting
address and length of this area can be determined by use of the
MEM$ system call.

4.2.2. Initial workspace

When a program is given control after being loaded by the system,
it will be given an initial set of workspace registers. This set
of registers is located in an area of memory configured when the
system is generated, and should be used by the user program. The
user program is free to switch to other register workspaces at
will with the LWPI and BLWP instructions, but use of the initial
workspace allows the program to automatically adapt to the
presence of a fast workspace memory area if one is available on
the machine on ·which the program is executed.

4 . 2.3. Program parameter string

The command line used to invoke a program may be read by a program
by using the pseudo device file "PARAM.DEV". This file may be
opened like any other file. When a READS request is issued to the
file, it will return the text of the command line used to call the
current program, terminated by a carriage return. The «bytes
transferred» field in the READS packet will be set to the length
of the command (including the terminating carriage return). Note
that the Network Operating System returns the entire command line,
while the Disc Executive returns only the portion of the command

56

NOS User Guide - Program Environment

following the program name. This change has been made as a result
of user requests to be able to retrieve the name of the current
program. Existing programs may be easily converted to run under
either system by simply ignoring characters in the string returned
from PARAM.DEV until a space is found (under the Disc Executive,
the PARAM.DEV string will always start with a space). The
parameter string may be read any number of times. The data
returned will always be identical.

4.2.4. Program parameter table

When the system loads a program, it will scan the command line
used to invoke the program and build a parameter table which is
stored following the program in memory. When the program receives
control, register R1 in the initial workspace will contain the
address of this parameter table. The first word of the parameter
table is the number of parameter fields found on the command line
(including the name of the program as the first field). Hence the
table begins:

number of parameter fields · . ·

Immediately following this word are one or more parameter pointer
entries. Each parameter pointer entry has the format:

delimiter length
· . ·

text pointer · . ·
where < delimiter) is the ASCII code for the delimiter that ended
this parameter field, <length) is the length of the text of the
field in characters, and <text pointer) is the address of the text
for the field. The text of the field stored starting at the
address in <text pointer) will be translated to upper case, will
start on a word boundary, and will always be followed by a NUL
(zero code) for those who do not like to count characters. The
following characters serve to delimit fields:

, = () space

Leading spaces before the next field will be ignored. If two
field delimiter characters occur in a row, a zero length field
will occur. The delimiter character for the last field will be
zero.

57

---....

NOS User Guide - Program Environment

To illustrate the format of the program parameter table, the
following is the assembly language code that would generate the
same parameter string as the system would for the command:

FARBLE widget.cob=ZONK.uLc(2 1 19),print.dev

data 7 number of fields

byte " ",6 field 1
data f1

byte "=",10 field 2
data f2

byte "("18 field 3
data f3

byte ","1 1 field 4
data f4

byte ")",2 field 5
data f5

byte ",",0 field 6
data 0

byte 0 19 field 7
data f7

.
f1 text "FARBLE"

byte 0
even

f2 text "WIDGET.COB"
byte 0
even

f3 text "Z0NK.ULC"
byte 0
even

f4 text "2"
byte 0
even

f5 text "19"
byte 0
even

f7 text "PRINT.DEV"
byte 0
even

The program parameter table will be stored immediately following
the end of the program, and will be included in the program length

58

NOS User Guide - Program Environment

by the system. The MEMS request will return the first free byte
following the parameter table. Programs are free to use the
parameter table area for scratch space. The address passed in Rl
may be used as the first free byte address in that case.

59

NOS User Guide - System Subroutines

4.3. System subroutines

The Network Operating System makes a set of generally useful
subroutines available to programs running under its control.
These subroutines are used within the system itself, and are
provided to encourage programs to use a common set of functions
for the services they provide. The subroutines are called via a
system subroutine entry vector in low memory_ Each location in
the vector contains a jump to the actual subroutine entry point.
The subroutines should always be called through the entry vector
to allow them to be moved within the system from release to
release.

The following table lists the entry addresses of the system
subroutines. Each entry gives the entry address in hexadecimal,
the mnemonic for the entry name, and a brief description of the
function provided. Refer to the descriptions of the actual
subroutines below for full information on how each should be
called.

The mnemonics for the system subroutine entries are defined in a
file provided by Marinchip Systems on the standard system disc.
This file may be included in an assembly with the statement:

COpy

Entry

080
084
088
OE8

008
OOC
OEO
OE4

08C
090
094
098
09C
OAO
OA4
OA8
OAC
OCO
OC4

"1 :SOURCE/SYSUBS"

Mnemonic Description

BGET
BGETA
BREL
BEXP

INSERT
PUSH
REMOVE
INITQ

EDITS
EDITXS
EDITRS
ECHARS
ESKIPS
ECOLS
ECOLNS
ECOPYS
EMSGS
EMSGRS
EMSG1 S

Allocate buffer
Allocate buffer with error return
Release buffer
Expand buffer pool

Place buffer at end of queue
Place buffer at head of queue
Remove buffer from head of queue
Initialise queue links

Initialise output editor
Terminate output editor
Re-enter output editor
Edit a character
Skip columns
Tab to specific column
Retrieve current column
Copy text
Copy until stop character
Continue copying after stop char
Copy till stop, don't save location

60

NOS User Guide - System Subroutines

acs
oce
ODO
OD4

EHEXFS
EHEXVS
EDECFS
EDECVS

Edit fixed length hexadecimal
Edit variable length hexadecimal
Edit fixed length decimal
Edit variable length decimal

The subroutines provided by
categories as listed above:
list maintenance, and output
described below.

the system are in three major
dynamic memory allocation, linked

editing. Each package will be

4.3.1. Calling sequence conventions

All system subroutines destroy only the registers in which results
are returned, and register R11 if they are called with a BL
instruction. All registers in which parameters are passed, and
all registers not mentioned in the description of the subroutine
may be assumed to be preserved across a calIon that subroutine.

4.3.2. Output editing package

The system provides a comprehensive set of subroutines that may be
used to construct messages to be read by users or placed in files.
The package provides most commonly used editing functions and
eliminates the duplication of effort in recoding such routines in
every program written. The package is completely table-driven,
and may be used to compose multiple independent messages
concurrently.

4.3.2.1. Edit mode

A program wishing to use the output editing package must supply a
packet containing information about the area to be edited into.
The packet is 32 bytes in length. The single byte at offset 14 in
the packet is the message delimiter character to be used by EMSG$,
EMSGRS, and EMSG1S (see below). The word at offset 18 in the
packet is the address of the buffer where the edited output is to
be placed. The length of the output buffer is placed in the word
at offset 20. The rest of the packet is used by the editing
routines for temporary storage, and is all the storage used by the
editor: the editing package is totally reentrant . Once the
packet has been defined, the program must enter edit mode.

61

NOS User Guide - System Subroutines

4.3.2.1.1. EDIT $ - Enter edit mode

LI RO,<packet>
BL EDIT$
<return> R12 set to packet

When called, EDIT$ initialises the packet from the information
supplied by the user, blank fills the output buffer, and sets the
column pointer to the first character in the output buffer. The
original contents of R12 is saved in the packet, and R12 is set to
point to the packet. As long as the program is calling the
editing routines, R12 must be left pointing to the packet.

4.3.2.1.2. EDITX$ - Terminate edit mode

BL EDITX$
<return> RO = packet, R12 restored

The EDITX$ call terminates edit mode. Upon return, R12 will be
restored to its contents at the time EDIT$ was originally called.
The address of the packet will be returned in RO. After
terminating edit mode with EDITX$, the output buffer may be used
in any manner desired. A subsequent call to EDIT$ will
reinitialise the buffer. If deSired, the user may terminate edit
mode with EDITX$, do some other processing, then re-enter edit
mode with EDITR$ (see below) and pick up right where he left off.

4.3.2.1.3. EDITR$ - Re-enter edit mode

LI RO,<packet>
BL EDITR$
(return> R12 = packet

The EDITRS request re-enters edit mode with a packet that has
previously been left with EDITX$. The output buffer is not
blanked, and the column pointer is left wherever it was at the
time EDITX$ was called. Note that a packet used with EDITR$ must,
at some time, have been initially set up by EDIT$: it is not
possible to use EDITR$ for an initial entry to edit mode.

62

NOS User Guide - System Subroutines

4.3.2.2. The column pointer

All editing done by the editing package is performed at a location
defined by the "column pointer ll

• Characters in the output buffer
are numbered from zero to the number of characters in the buffer
minus 1. When the package is initialised, the column pointer is
set to zero, and hence points to the first character in the
buffer. All of the editing subroutines store characters into the
output buffer starting at the current column pointer, and advance
the column pointer as they store. In addition, several routines
manipulate the column pointer alone without modifying the
information in the output buffer.

4.3.2.2.1. ESKIPS - Position column pointer relative

LI RO,<count>
BL ESKIPS
< return>

The <count> in RO is added to the current column position.
<count> can be either positive or negative, so the pointer can be
either advanced or backed up over information previously stored.
Note that ESKIPS does not blank fill the columns skipped: if
information has previously been edited into them, it will be
preserved.

4.3.2.2.2. ECOLS

LI
BL
< return>

- Position column pointer absolute

RO,<column>
ECOL$

The column pointer will be set so that < column> will be the next
character into which information is stored. Setting <column> to
zero will return to the start of the output buffer.

4.3.2.2.3. ECOLNS - Retrieve current column number

BL ECOLNS
< return> RO = column

Upon return from ECOLN$, user register RO will contain the column
number of the column pointer . This call is commonly used to

63

- - ---- ---- - --- - - -----

NOS User Guide - System Subroutines

determine the length of a line ,just composed With the editing
routines.

4.3.2.3. Character editing

The character editing entries allow either single ASCII characters
or strings of characters to be placed in the output buffer. These
routines advance the column pointer as characters are stored.

4.3.2.3.1. ECHARS

LI
BL
< return>

- Store single character

RO,(character>
ECHAR$

The single ASCII character right-justified in RO is stored in the
output buffer at the current column position. The column pointer
is advanced one character.

4.3.2.3.2. ECOPYS

LI
LI
BL
(return>

- Copy character string

RO,(string start>
Rl ,(length)
ECOPY$

The string of characters starting at the address (string start>
with length (length> is copied to the output buffer. The column
pointer is advanced by the number of characters stored. The
(string start> address need not be aligned on a word boundary.

4.3.2.3.3. EMSG1S

LI
BL
(return>

- Copy string to stop character

RO,(string start>
EMSG1S

The string starting at <string start> is copied to the output
buffer character by character until the character supplied in byte
14 of the packet passed to EDITS is found. This request allows a
string to be specified in a manner more convenient and compact
than by counting the characters in the string and using ECOPY$.

64

NOS User Guide - System Subroutines

4.3.2.4. Message editing

Most messages generated by programs consist of fixed information
with variable information inserted by the program. The message
editing entries allow easy composition of such messages.

4.3.2.4.1. EMSGS

LI
BL
<return>

- Start message editing

RO,<message address>
EMSGS

The message starting at <message address> will be copied into the
output buffer character by character until a stop character equal
to the character in byte 14 of the packet passed to EDITS is
found. The address of the character following the stop character
will be saved in the packet. The column pointer is advanced once
for each character stored in the buffer.

4.3.2.4.2. EMSGRS - Continue message editing

BL EMSGRS
<return>

EMSGRS works exactly like EMSGS, except the image copied starts at
the address saved by the last EMSGS call. EMSG~S copies to the
next stop character, then saves the address of the character
following the stop character. EMSGS and EMSGRS allow portions of
a message to be copied, pausing periodically to insert information
in the message using the other editing routines.

4.3.2.5. Numeric editing

The editing package includes entries to edit 16 bit numbers to
either hexadecimal or decimal. Both variable length and fixed
length editing is provided.

4.3.2.5.1. EDECVS

LI
BL

- Variable length decimal edit

RO,< value>
EDECVS

65

NOS User Guide - System Subroutines

(return)

The value in RO will be edited as a decimal integer. If the sign
bit is set, a minus sign will be edited before the number. EDECV$
edits only the number of characters required to hold the number
edited to decimal: for example, the number 1 would occupy one
character, 234 would require three, and -16255 would require six.
The column pointer will be left set after the last digit edited.

4.3.2.5.2. EDECTS

LI
LI
BL
(return)

- Fixed length decimal edit

RO ,< value)
R1 ,< length)
EDECF$

The value in RO is edited right-justified in a field whose width
is specified by R1. The column pointer is left after the last
digit edited. If the number supplied in RO requires more
characters to edit than the field size contains, it will overflow
the field to the right. Characters in the field into which digits
are not edited will be unchanged: hence it is possible to edit
with leading zeroes or check protection by pre-editing the desired
fill into the field, backing up with ESKIP$ or ECOL$, then
overlaying the number in the field with EDECF$.

4.3.2.5.3. EHEXVS - Variable length hexadecimal edit

LI RO,<value)
BL EHEXV$
(return)

The value passed in RO is edited to hexadecimal as an unsigned 16
bit integer. If the value in RO is larger than 9, a leading zero
will be edited, following the system convention that a leading
zero signifies hexadecimal. The column pointer will be left after
the last digit edited.

4.3.2.5.4. EHEXFS

LI
LI
BL
< return)

- Fixed length hexadecimal edit

RO ,(value)
Rl,(length)
EHEXF$

66

NOS User Guide - System Subroutines

The value passed in RO is edited right-justified in a field with
length passed in R1. All characters in the field before the first
nonzero digit of the edited number will be filled by zeroes. The
column pointer will be left immediately following the last digit
edited. If the value is too large to fit in the field size
supplied, the high-order digits will be truncated. This means,
for example, that the low byte of RO may be edited simply by
supplying a count of 2 in R1 .

4.3.2.6. Sample use of the editing package

The following program fragment uses the editing routines to build
an error message as might be generated by a compiler. Note how
the various routines are used to insert specific information into
the "canned" message text.

EPKT

OUTBUF
.
ERRMSG

LI
BL
LI
BL
MOV
BL
BL
MOV
LI
BL
BL
BL
MOV
BL

.
BSS
BYTE
BSS
DATA
BSS

BSS

TEXT

RO,EPKT
EDITS
RO,ERRMSG
EMSGS
LINENO,RO
EDECVS
EMSGRS
BADVAL,RO
R1 ,4
EHEXFS
EMSGRS
ECOLNS
RO ,OUTLEN
EDITXS

14
' &' ,0
2
OUTBUF,80
10

80

'Error on line &.

67

Load editor packet address
Start up the editor
Load error message address
Copy message
Load line number of error
Edit it to decimal
Copy to value
Load the bad value
Load length to edit
Edit value to hexadecimal
Copy rest of message
Get number stored
Save output message length
Terminate the editor

Editor packet
Stop character and fill

Output buffer and length

Output buffer

Bad value &.&'

NOS User Guide - System Subroutines

4.3.3. Storage and linked list subroutines

The dynamic memory allocation and linked list subroutines share a
common workspace area and calling sequence conventions. As a
result, they will be discussed together here. In order to use

.these routines, the user must provide a workspace area and buffer
pool control storage. This area is formatted as follows in an
assembly program:

BHEAD

PWS

DATA

EQU
BSS
DATA
BSS

BHEAD,-l ,BHEAD,BHEAD Buffer pool head

$-16
4
BHEAD
10

Primitive work space tag
Space for Ra, R9
Storage head pointer
Space for R11 - R15

The various routines are entered via the BLWP instruction through
a set of context switch vectors supplied by the user. These
vectors reference the workspace defined above, and the entry point
to the proper subroutine name. The entry vectors are commonly
given the same name as the subroutine name, but followed by a
dollar sign. A definition for an entry vector for all the buffer
allocation and linked list routines is as follows:

IN SERT $
PUSHS
REMOVES
INITOS
BGET$
BGETA$
BREL$
BEXP$

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

PWS,INSERT
PWS,PUSH
PWS,REMOVE
PWS,INlTO
PWS,BGET
PWS,BGETA
PWS,BREL
PWS,BEXP

A workspace area and entry vector, formatted as given above, is
supplied by Marinchip Systems in the file "PRIMW$" on the standard
system diSC, and may be included in an assembly with the
statement:

COPY "1:S0URCE/PRIMW$"

4.3.3.1. Dynamic memory allocation routines

The dynamic memory allocation routines maintain a pool of free
space, allocating buffers from it, releasing them back to it, and
allowing space to be added to the pool at any time. The allocator
uses a free list chain tec~illique which allows buffers to be
allocated with the size the user requested, and does not limit the

68

NOS User Guide - System Subroutines

user to a potentially wasteful pt.,)wer of two size as do many "buddy
system" schemes. The overhead storage used to control the buffers
allocated amounts to only eight bytes per buffer. When space is
released and the adjacent space is an available buffer, it is
combined into one large area, so that fragmentation problemS are
minimised.

4.3.3.1.1. BEXPS

LI
LI
BLWP
<return>

- Add space to buffer pool

RO,<length of area to add>
R1 ,(address of area to add>
BEXP$

The buffer pool defined in the initial workspace for the
allocation routines is void: no free space is provided. Before
allocation may begin, the user must supply the raw pool of storage
from which buffers are to be allocated. This is done with the
BEXP$ call. The area passed is typically the area from the end of
the code portion of the program to the end of system memory, hence
all free memory is automatically available for buffers. RO should
contain the length of the area in bytes, and R1 should point to
the first byte in the area to be added to the buffer pool:
neither need be even. BEXP$ can be called at any time to add
additional storage to the buffer pool. For example, some programs
initially define their buffer pool with BEXP$, then after all
their initialisation is complete, release the area occupied by the
initialisation code itself into the buffer pool.

4.3.3.1 .2. ~~$

LI
BLWP
(return>

- Allocate a buffer: error if none

R1 ,(size in bytes>
BGET$

R1 = buffer allocated

The BGET$ entry will allocate a buf'fer of the requested size and .
return its address in R1. If there is insufficient space to
allocate a buffer of the requested size, the program will be
terminated with an error code of 010 . Programs which wish to
handle the out of buffers Situation themselves should use the
BGETA$ request, described below. Note that buffers allocated by
BGET$ will always start on a word boundary .

69

NOS User Guide - System Subroutines

4.3.3.1.3. BGETAS - Allocate a buffer: return if none

LI
BLWP
DATA
<return>

R1 ,<size in bytes>
BGETAS
<insufficient space>

R1 = buffer allocated

A buffer will be allocated with the size requested in R1 and its
address will be returned in R1. If insufficient storage remains
to allocate a buffer of the requested size, the routine will
return at the address specified for <insufficient space). Buffers
allocated by BGETAS will always start on a word boundary.

4.3.3.1.4. BRELS

LI
BLWP
<return>

- Release buffer

R1 ,<buffer address>
BRELS

a buffer allocated by BGETS or BGETAS to
The address passed in R1 on the call to
previously returned by BGETS or BGETA$.
buffer pool to it, use the BEXP$

The BRELS entry returns
the available space pool.
BRELS must be an address
To add storage outside the
request, documented above.

4 . 3.3 . 1.5. Buffer allocation errors

The buffer allocation routines will terminate the requesting
program if certain errors are detected. The error code used to
terminate the program indicates which error was detected. The
following are the error codes generated by the buffer allocation
routines:

010 No space for buffer on BGETS. This error
causes an abnormal return to the program if
BGETA$ is used instead of BGET$.

011 Attempt to release unallocated buffer via
BRELS. Check address passed to BREL$.

012 Backpointer in next buffer was bad. This will
result if the program using the buffer stored
off the end of the buffer, and may also result
if a bad address if passed to BREL$.

70

NOS User Guide - System Subroutines

4.3.3.2. Linked list routines

The following subroutines manipulate doubly linked lists of
buffers. Each list is defined by its "list head", which is a two
word (four byte) block of storage arranged as follows:

back link
· . · .. .

forward link
· . · .. .

The back link points to the last buffer on the queue, and the
forward link points to the first buffer on the queue. If there is
only one buffer on the queue, the forward and back links will both
point to that buffer. If the queue is empty, both links will
point to the address of the queue head itself. Buffers to be
placed on the queue must have a two word area at the start
reserved for queue links. The link area at the start of the
buffer will be used for back , and forward links exactly like those
in the queue head. Storage after the link area may contain
anything the user desires, and is in no way examined or
manipulated by the queue routines.

4.3.3.2.1. INITn$

LI
BLWP
< return>

- Initialise queue links

R9 ,< queue>
INITn$

The links in the two word area wr~se address is passed in R9 will
both be set to point to the address in R9. This initialises an
area of storage as an empty queue. This can also be easily done
by user code, and is provided only as a convenience and to
encourage dynamic creation of queue heads.

4.3.3.2.2. INSERTS - Insert buffer at queue end

LI
LI
BLWP
< return>

R8 ,< buffer>
R9 ,< queue>
INSERTS

TI1e buffer whose address is passed in R8 is chained at the end of
the queue whose head address is passed in R9. Only the links in

71

NOS User Guide - System Subroutines

the first two words of the buffer pointed to by R8 will be
changed.

4.3.3.2.3. PUSHS

LI
LI
BLWP
<return>

- Insert buffer at queue start

R8 ,< buffer)
R9,<queue)
PUSHS

This entry is identical to the INSERTS entry described above, but
the buffer is placed at the start of the queue instead of the end.
A buffer placed on a queue with PUSHS will always be the first to
be removed by a subsequent call on REMOVES.

4.3.3.2.4 . REMOVES - Remove next buffer from queue

LI
BLWP
< return)

R9,< queue)
REMOVES

R8 = buffer

The first buffer on the queue will be removed from the queue and
its address will be returned to the user in R8. The address
returned will be the address of the first link word in the buffer,
which ' is the same address passed to INSERTS or PUSHS when the
buffer was placed on the queue. If the queue was empty, R8 will
contain the address of the queue head itself upon return. This
allows the empty condition to be tested simply by comparing the
address returned in R8 with the queue address still in R9. Hence,
a remove with empty test would be coded as follows:

LI
BLWP
C
JEQ

R9,MYQUEUE
REMOVES
R8,R9
EMPTY

72

Load queue address
Remove next buffer
Was queue empty ?
Yes. Don I t do anything

NOS User Guide - Optional Features

s. Optional system features

Some of the capabilities of the Network Operating System depend on
the presence of certain hardware or software components whose
expense or complexity are not desirable in all configurations of
the system. This section describes those features of the system
which may be configured in a system or not be provided at the
discretion of the person who generates the system. Obviously, it
would be wise to discuss the configuration with that person before
undertaking to use any of the features described herein. Note
also that programs which use these features will not run on all
configurations of the Network Operating System and thus are unwise
to include in programs which are intended for wide distribution.

73

NOS User Guide - Optional Features

5.1. Printer driver

Trle system allows configuration of any number of printers. These
printers may be accessed either directly through device files
(discussed in this section) or by queueing files to an offline
printer driver (discussed in a later section). Printer device
files used for direct access to the printer are usually named:

PRINT.DEV
PRINT2.DEV
PRINT3.DEV

For the first one
For the second one
... et cetera

The names given to printers are defined when the system is
generated, so consult the person responsible for system generation
at your installation for details of the configuration you are
using.

5.1.1. Opening the printer

Before a printer may be used by a program, it must be opened via
the OPENS request. This request will return a busy status if the
printer is in use by another user or by the offline print driver.
Otherwise, the printer will be assigned to the user.

5.1.2. Output to the printer

Output is sent to a printer with the WRITES request, specifying
the file index returned by the OPENS for the printer device file.
There is no restriction on the length of the output buffer, which
may contain as many lines of output (delimited by carriage
returns) for the printer as desired. Line feeds may be used to
sKip blank lines, and a form feed character will cause the paper
to be ejected to the next page. These characters will work even
if the printer does not recognise them, since the driver will
expand these characters to the sequences required by the printer
to accomplish the desired function, if necessary.

5.1.3. Closing the printer

When a printer file is closed via C~SE$) the printer will skip to
the top of the next page and the printer will be released from the
requesting program and made available to others. If a program
neglects to close the printer before terminating, the system will

74

NOS User Guide - Optional Features

automatically release the printel' when the program finally exits.

75

NOS User Guide - Optional Features

5.2. Offline file printing

In addition to direct access to printers through their device file
names (discussed in the preceding section), the system also allows
printers to be used to print files from storage volumes in an
offline or background mode. Whether this feature is provided
depends on the system configuration, and all printers need not be
provided with this method of access. This facility is frequently
referred to as a "print spooler", in which the word "spool" is an
acronym for Simultaneous Peripheral Operation On Line.

Offline printer access is handled through the system's device file
mechanism. Just as there is a device file associated with the
printer for direct access, there may be a device file configured
for offline access. While this device file may have any name at
all, Marinchip Systems recommends that the name be the same name
given to the corresponding printer device file with the ".DEV"
replaced by It.OFF". Hence the offline access file names in a
system might be:

PRINT.OFF
PRINT2.0FF
PRINT3.0FF

For the first printer
For the second one
... and so on

These device files are used in a very different manner than the
device files aSSOCiated directly with the printer. While one
sends DATA to a printer directly, one sends FILE NAMES to its
offline access file. These file names are queued and the data in
the files are printed on the printer.

5.2.1. Opening the offline access file

The offline access file for a printer is opened like any other
device file. The file index returned in the OPENS packet is used
to later send information to the file.

5.2.2. Output to the offline access file

Output to the offline access file conSists of lines, where each
line names a file to be printed on the printer associated with the
offline access file. Each line is terminated by a carriage
return, and the format of information in each line is:

»file name
or ##fi1e name

76

NOS User Guide - Optional Features

Lines which do not begin with either the two character sentinel
n»n or "##n will be ignored. The file name fOllowing the
sentinel may be any non-device file name. The file name is looked
up in the context of the user's working directory at the time the
line is written to the offline printer file. If the file name is
preceded by the sentinel tt»n, the file will be printed on the
printer and when completed no special action will be taken. If
the sentinel n##" is used, the file will be deleted after
completion of printing. If the permissions on the file named
would deny the user permission to read the file, it will not be
printed, and if those permissions would not allow the user to
delete the file himself, it will not be deleted after printing.

Any number o£ lines requesting file printing may be sent with one
WRITES to the offline print file. TI~ere is a limit on the number
of files which may be queued to a printer. If this limit is
exceeded, a busy status will be returned for all writes to the
offline printer file until the printer completes a file and
reduces the queue length by so dOing.

5.2.3. Closing the offline printer file

After sending file names to the of'fline printer file, the user may
close it via CLOSES. If this is not done, the system will
automatically close the file when the user program terminates.

5.2.4. Offline and direct print contention

Files may be queued to a printer via the offline file at any time
(except if the queue length is at its maximum limit). If the
printer is in use by a user tl~ough the direct access device file,
the offline print driver will wait until the user relinquishes
control. The offline driver will then assign the printer to
1tself. While it is using the printer, users who try to access
the direct device file will receive a busy status. Between files,
the offline driver will release the printer for a brief interval
to give user programs a chance to assign the printer directly.
When all files have been printed, the offline driver will release
the printer until more work is queued for it.

77

NOS User Guide - Optional Features

5.3 . Background batch capability

Normally there is a one to one relationship between terminals used
to access the system and user spaces in which programs are run
from those terminals. If the background batch feature is
configured, additional user spaces lnay be configured which are not
associated with any terminal. These user spaces can be allocated
for the use of programs running in other user spaces through the
device file mechanism, and used to run other work concurrent with
work done from the terminal.

Background batch is normally used in two ways. First, it can be
used to start up a lengthy stream of work which can be done
without interaction while the user continues to use his terminal
normally. Second, it may be used by a program to call other
programs as subroutines, interacting with them exactly as a user
would from a terminal.

5.3.1. Batch space nomenclature

The background batch feature is implemented through the system's
device file mechanism, and consequently, there is a device file
name associated with each background batch space. The names given
are up to the person who generates the system, but the names
recommended by Marinchip Systems are:

BATCH.OEV
BATCH2.DEV
BATCH3.DEV

For the first one
For the second one
... and so on

5.3.2. Opening a batch space

When an OPENS is executed fol,' a background batch space, the system
will first check if that space is already in use. If so, the open
will be rejected with a busy status (even if the space was opened
by the program now trying to "re-open" it). If the space is idle,
it will be marked assigned to the requesting program, and the
group and user IO will be set to those of the requestor. The
batch space will also be given the same working directory as the
user who opens it, so that commands executed in that space will be
interpreted the same as commands performed by the requesting user
from the terminal .

78

NOS User Guide - Optional Features

5.3.3. Output to a batch space

When a WRITES request is used to write data to a batch space, that
data is queued as input to the space, just like input from a
terminal is queued to a normal interactive user space. Since all
batch user spaces start in system command mode, the first line
written to a space is normally a command to be executed . The
system allows the program operating the space to get ahead of the
program executing in the space, but if more than a limited number
of · WRITES requests are made without having the data read by the
batch space, the writing program will be· deactivated until the
batch space catches up.

A program interrupt identical to typing a Control C on a terminal
may be sent to a batch space by writing a single character with
deCimal value 3 (which is ETX, or Control C) to the batch space
with WRITES. Note that like a Control C from a terminal, this
causes all queued input and output to be discarded.

5.3.4. Input from a batch space

When the file index of a batch space file is used with READS,
output from the program in the batch space is returned to the ·-..,.
program controlling the batch space. Each read request returns
one line of output from the program in the batch space. The batch
space is allowed to get ahead of the controlling program, but
after a limit is reached, it will be deactivated until the queued
lines are read by the controlling program.

If a READS is done on a batch space and no output is available,
the program doing the READS will wait until output becomes
available, except if the program in the batch space is waiting for
input. If so, the READS will receive an EOF status (1), which
informs the controlling program that output must be sent to the
batch space before any more results will be created to read.

5.3.5. Closing a batch space

When a CLOSES is done on a batch space device file, any program
currently active in the space will be terminated, and any files
open will be closed. The assumed directory will be dropped, and
the space will be deassigned from the user who opened it and made
available to other users.

79

NOS User Guide - Utility Programs

6. System utility programs

The Network Operating System supports a wide variety of software
packages, including compilers, assemblers, debug packages, and
utilities. This section of the manual will describe all of the
standard programs which are called by co~nands from the user
terminal. For many commands, this documentation is complete. For
complex software packages such as the assembler or Pascal
compiler, a brief command description is included and the user is
referred to the appropriate manual for further information.

These programs are supplied as files in the directory:

BIN

on the system volume. Additional utility programs may be added by
the user simply by adding them to this directory.

80

NOS User Guide - Utility Programs

6.1. ACCESS - Set file privacy modes

The ACCESS command is used to specify the access permissions for a
file. ACCESS may also be used to cause the execution of a program
to assume the group and user identity of the owner of the file
containing the program. The format of the command is:

ACCESS <file>([*]<modes», ...

where <file) is the name of the file to be changed. If an
asterisk appears inside the parentheses, then the assume group and
user mode will be set. The <modes> are specified as:

< global)-< group>-<owner)

where < global> are the . permissions for users with a different
group than the owner of the file, <group> are permissions for
users other than the file owner with the same group number, and
<owner> are the permissions for the owner of the file. The
permissions are formed from zero or more of the following letters:

Read permitted R
S
W
X

Search (directory lookup) permitted
Write permitted
Execution permitted

The X and S modes
permitted for a
normal data file.

are identical:
directory file

the
and

same mode means search
execution permitted for a

For example, to change the file TE&~C~BOL so that all users
can execute it, members of the owner's group can read or execute
it, and the owner can read, write, and execute it, one would use:

ACC~SS TESTVER/COBOL(X-RX-RWX)

Only the owner of a file or a privileged user may change the file
access modes using ACCESS.

81

-~

NOS User Guide - Utility Programs

6.2. ALIAS - Create alternate name for file

The ALIAS command creates an alias for a file, that is, a new name
which refers to the same file as an existing file name. The
command used is:

ALIAS <new name>=<old name>, ...

where < new name> is the new name to
the name of the existing file.
must refer to the same volume, and
exist. The ALIAS command will not

82

be created and <old name> is
Both < old name> and < new name >
< new name> may not already

affect <old name>.

NOS User Guide - Utility Programs

6.3. ASM - Assembler

The Marinchip Assembler is an expression-oriented relocatable
assembler for the Marinchip 9900 computer . It accepts a source
syntax largely compatible with the Texas Instruments 9900
assembler, and produces relocatable code completely compatible
with that used by Texas Instruments.

6.3.1. Calling the assembler

The assembler is called with a command of the form:

ASM (reloc>=(source>[,(listing)]

where < source> is the name of the file containing the source
program to be assembled, <reloc> is the name of the file in which
the relocatable output of the assembler is to be stored, and
(listing) is the optional file where the assembly listing is to be
written. If no (listing) file is specified, no listing will be
generated, but lines with assembly errors will still be listed on
the user terminal. If the assembly listing is sent to a disc or
device file other than the terminal, lines with errors will still
be logged on the terminal.

6.3.2. For more information

Refer to the manual "Marinchip 9900 Assembler User Guide" for
complete information on writing assembly language programs and
using the assembler.

83

.-.....

NOS User Guide - Utility Programs

6.4. ASSUME - Set assumed volume and directory file

The ASSUME conunand allows specif"ication of the default volume and
directory for user file references. The command is:

ASSUME < file>
or ASSUME < volume/device>:
or ASSUME

where (file) is the name of the directory to be assumed (the
specification may contain an ~(plicit volume or device name, as in
any file name). The named <file) must be a directory. Following
the ASSUME command, any file name used by the user which does not
contain an explicit volume or device name will be assumed to refer
to the volume of the assumed directory file, and any file name
referenced on that volume which does not start with a leading
slash (/) will be assumed to reside in the assumed directory file.
If simply a vOlume or device name is specified, the root directory
on that volume or device will be assumed. If no specification is
given, the current assumed directory will be dropped and no new
directory will be assumed. All file references made subsequently
must be completely explicit including the volume name and the
complete file name starting at the root directory on the volume,
until another directory is ASSUMEd.

84

NOS User Guide - Utility Programs

6.5. BASIC - BASIC interpreter

Marinchip BASIC is a comprehensive implementation of the BASIC
language, with extensions for string processing, file access, and
interface to hardware devices. BASIC precompiles the program to
speed execution speed, and automatically operates in integer or
floating point mode as required by the program. Marinchip BASIC
provides immediate execution of statements, a symbolic statement
trace, and the ability to pause execution, modify a program, and
resume it. These features greatly ease the debugging of complex
programs.

The BASIC present in a given system may be either the standard
Marinchip BASIC, or Extended Commercial BASIC, an optional
software package which also provides 16 digit decimal accuracy for
numbers, random access files, CHAIN between programs with common
variables, and the ability to save precompiled code files and
execute the under a special runtime system simply by typing the
file name. Consult the person responsible for software
maintenance at your installation to determine which BASIC is
available on the machine you use.

6.5.1. Calling BASIC

BASIC is called by simply typing its name:

BASIC

When loaded, it will issue a command prompt ")",
command. The user can either enter a program, load a
written program, or use BASIC as a desk calculator
BASIC statements without line numbers.

6.5.2. For more information

and await a
previously

by entering

Refer to the manual ttMarinchip 9900 BASIC User Guide" for complete
documentation of the BASIC language and the Marinchip
implementation.

85

NOS User Guide - Utility Programs

6.6. BeOPY - Binary file copy

BeOPY performs a binary (transparent) copy between two files. It
permits data to be transferred regardless of its content, and thus
allows creation of an exact copy of the input. BCOPY is invoked
by a command of the form:

BCOPY (output>=(input>,(number>

(output) is the name of the output file and (input> is the name of
the input file. BCOPY will copy the data from the input file to
the output file. If the optional (number) specification is
supplied, the copy will be terminated after (number> blOCKS of 128
bytes have been copied. If (number) (and the preceding comma) are
omitted, the copy will continue until either the end of the input
file, the end of the output file~ or an IIO error occurs. BCOPY
will always print the number of blocks copied, and will indicate
the reason for termination of the copy, uniess the reason was the
satisfaction of a <number> specification.

6.6.1. Examples of use

To copy a file PROG1 into a .f'ile called BKPG1, BeOPY would be used
as follows:

BeOPY BKPG1=PROG1

To copy the first 10 blocks of the file SAVFIL into the file
MYPROG, one would use:

BCOPY MYPROG=SAVFIL,10

6.6.2. Copying contiguous files

If the <output) file specified already eXists, and is a contiguous
file, BCOPY will not re-create the file as it would if the file
were not contiguous. This allows one to BeOPY into a contiguous
file without causing the contiguous space to be released, and
hence the file made non-contiguous. If the file being copied into
the contiguous output file is larger than the contiguous space
allocated, an error message will result. The file must be
re-allocated larger before BCOPY will be able to copy the data
into it.

86

NOS User Guide - Utility Programs

6.6.3. Messages

Error: Specify <ofile>=<ifile>,<number>
This message is given when the parameters to BCOPY are
bad or omitted.

<number> blocks copied.
This message will appear at the end of the copy to
indicate the number of (128 byte) blocks copied.

Copy terminated by end of input file.
This message is issued when the end of the input file is
reached. Note that this message will appear when the
input and output files are the same size.

Copy terminated by error reading input file.
The operating system has returned an error status on a
read of the input file.

Copy terminated by end of output file.
This message is issued when the end of the output file is
reached and information remains to be copied from the
input file. The user should be careful that no valid
information was lost in the truncation.

Copy terminated by error writing output file.
The operating system has returned a nonrecoverable error
writing a block to the output file.

File <filename> does not exist.
Either the input file name could not be found in the
directory, or the output file name could not be created.

87

NOS User Guide - Utility Programs

6.7. BOOTFILE - Set system load file

The BOOTFILE command allow selection of the file from which the
Network Operating System is loaded when the system is initialised.

BOOTFILE < file)

The BOOTFILE command will mark the designated < file> as the boot
file on the volume on which it resides. If that volume is then
placed in the system load device and the system boot procedure
followed) the system will be loaded from that file. The <file>
named must be a contiguous file, as system loading is only
possible from contiguously stored files.

The BOOTFILE command may be used only by privileged users.

88

NOS User Guide - Utility Programs

6.8. BRAINS - BRAINSTORM diagnostic package

BRAINSTORM is a comprehensive processor and memory diagnostic
developed by Marinchip Systems for the Marinchip 9900 computer.
BRAINSTORM includes both confidence tests, which test the computer
under a simulated worst-case program situation, and diagnostic
tests, which aid in the isolation of specific problems and their
correction.

BRAINSTORM is supplied by Marinchip Systems with the Network
Operating System, and is normally available for use by all users.
Since it is extremely costly to run in terms of computer time, and
hence degrades performance in multi-user configurations, many
installations restrict the use of BRAINSTORM to special personnel.
Contact those responsible for system maintenance at your site to
determine any restrictions they may have imposed.

6.8.1. Running BRAINSTORM

BRAIN&~RM runs under any Marinchip operating system, and uses the
operating system for all of its 1/0. As a result, the diagnostic
need not be reconfigured when system peripherals change. The
package itself occupies the memory between 100 and 2000 hex, so
any area after 2000 is available for memory testing. BRAINSTORM
is invoked from operating system command mode simply by typing the
file name containing the program. In standard released systems,
this file is named "BRAINS". Following the file name is a
parameter that specifies the test to be run. The format of the
parameter is a single character test identifier, an equal Sign,
and a list of parameters specific to the test selected. The
available tests are as follows:

M
P

Memory diagnostic
Processor (CPU) diagnostic

6.8.1.1. Memory diagnostic

The memory diagnostic is invoked by the parameter string:

M=(start addr>,(bytes to test>,(passes>

where < start addr> is the first address to test, < bytes to test>
is the length of the area to be tested in bytes, and <passes> is
the number of times the test is to be run before automatically
terminating. The (start addr> and <bytes to test> specification

89

NOS User Guide - Utility Programs

will be rounded down to even word addresses if odd addresses are
specified. For example, assuming BRAINSTORM is in the standard
file name "BRAINS", and you wished to test 1000 hex bytes (4096
decimal) starting at address 6000 hex, and you wished the test to
iterate 50 times, the command typed in to the operating system
would be:

BRAINS M=6000,1000,50

Note that the first two parameters are automatically scanned as
hexadecimal, and the third is automatically scanned as decimal.

Bef'ore st,arting the test, the parameters will be confirmed by the
message:

Brainstorm now testing 6000 through 6FFF, 50 times.

If an error is detected, a two line error message will appear of
the form:

Error in memory test (test description>
Address (fail addr>: Expected (good>, received <bad>.

The (test description> is the number and name of the specific
subtest that failed (see below). ~le (fail addr> is the address
which failed. <bad> is what was read from the address, and <good>
is what was expected by the test.

At the end of each pass through the test, the message:

End pass < pass) .

will appear. If any errors occurred on this pass of the test, the
message:

< count> errors.

will be appended to the "End pass" message. If any errors have
occurred earlier in this execution of BRAINSTORM, whether on the
most recent pass or not, the message:

Total errors <count).

will appear at the end of the "End paSSIl message.

90

NOS User Guide - Utility Programs

6.8.1.1.1. Memory subtests

The following paragraphs describe the subtests performed by
BRAINSTORM. One pass through the memory test consists of running
each subtest once, in the order listed below.

6.8.1.1.1.1. 1A: Clear to zero

Each word in the test area is cleared to all zero bits, then
immediately read baCK and tested against zero. Failure to clear
is failure of this test.

6.8.1.1.1.2. 1B: Set to all ones

Each word in the test area is set to all one bits, then
immediately read baCK and tested against all ones. Failure of all
bits to set is considered a failure.

6.8.1.1.1.3. 2A: Sliding one bit

A pattern of a single one bit with all other bits zero is written
through each word in the test area. Each word is read back after
being written and tested against the pattern written. Failure to
compare is a failure of the test. After all words in the test
area have been completed, the pattern is shifted one bit right,
and the test is performed again. The test starts with the pattern
8000 hex and completes with 0001 hex.

6.8.1.1.1.4. 2B: Sliding zero bit

A pattern of a single zero bit with all other bits one is written
through each word in the test area. As each word is written, it
is immediately read baCK and tested against the pattern stored.
After all words have been tested, the pattern is shifted
circularly one bit right, and the test continued until all 16
possible patterns have been tested. The test starts with the
pattern 7FFF hex and ends with the pattern FFFE.

91

NOS User Guide - Utility Programs

6.S.1.1.1.S. 3: Address interference test

Trlis test is intended to detect shorted address lines and failing
address decode hardware in memories. Each word in the test area
is tested. To test a specific word, it is set to the hex pattern
1234. Then each address bit in the address of the word under test
is inverted. If the address generated by inverting the bit is
still within the test area, the pattern DEAD is stored in that
address. After all possible addresses within the test area
generated by inverting bits of the original address have been set
to the pattern DEAD, the original word is read back and tested.
If it has been changed from the original value of 1234, the
address interference test has failed. The test is repeated until
all words in the test area have been tested. This test is most
effective if run over the entire addressing range of a memory
component, as excluding even a small region will eliminate some
possibly defective address bits from the scrutiny of this subtest.
If this test fails, the problem is almost certainly a shorted
address lead or other decoding error that is mapping two different
addresses into the same memory cell. careful examination of the
error messages generated by this test should lead to the specific
failing component. (The output from the next subtest, Addressing
Validation, may also be useful).

6.S.1.1.1.6. 4: Addressing validation

The addressing validation test simply writes the address of each
location in the test area in the cell at that address. After all
locations have been so set, they are read back and tested to
contain their own address. This subtest detects addressing
failures more sUbtle than those detected by the Address
Interference test above.

6.S.1.1.1.7. 5: Byte addressing

This subtest writes an ascending value, modulo 256, into all bytes
in the test area. When all bytes have been set, the area is read
back byte by byte and tested against the expected value. Since
byte addressing is performed in the M9900 processor itself by
masking the 16 bit data, this is more of a processor test than a
memory test. It is included since it may detect particular memory
timing problems that only appear in the case of byte addressing.

92

NOS User Guide - Utility Programs

6.8.1.2. Processor diagnostic

The processor diagnostic is invoked by the parameter string:

P=(passes>

where (passes) is the number of times the test is to be repeated
before terminating. The diagnostic will test various internal
operations of the processor in each pass of the test, and type an
"End pass." message at the end, exactly like the Memory diagnostic
(see above). If a failure is detected, a message of the form:

Error in G~U test: (type) instruction failure.

will be typed, and that pass of the test will be immediately
terminated. (type) describes the subtest that failed. The
possible values of (type> are:

Basic shift/AND/OR
BLWP/RTWP/status register
ABS
Add
Add bytes
INC/DEC
SWPB
Multiply
Divide
Jump odd parity
SZC/SZCB
SOCB

These refer to the instruction whose failure most likely led to
the failure of the subtest. Since the entire arithmetic and
logical processor is integrated onto a single IC, a failure of the
CPU test generally indicates that the CPU chip must be replaced.
Bad memory, however, may often cause the CPU test to fail, so CPU
chip failure (a VERY rare occurrence) is indicated only when the
memory diagnostic runs without error and the CPU test fails.

93

NOS User Guide - Utility Programs

6.9. CONVERT - Convert Disc Executive files

The CONVERT utility is a program which reads discs written by the
Disc Executive (a simpler Marinchip operating system used in
smaller single user configurations) and copies files from them to
directories under the Network Operating System. CONVERT is
invoked with the command:

CONVERT <out directory>=<unit>l<selection>

where < out directory> is the name of the NOS directory file in
which the converted files are to be placed. If the current
assumed directory is to be the destination of the files, "."
should be specified. <unit> is the number of the disc drive on
which the Disc Executive disc has been previously mounted for
arbitrary access. The (selection> specification may either name a
single file name or designate a group of files by containing
selection characters. If a character of the < selection>
specification is n?n, files with any character in that position
will be processed . A specification of the form:

NAME. *
will choose all files with NAME before a period in a file name and
any text after the period, while specifiying:

*.TYP

chooses all files with any name and the text TYP after the period
in the name. To choose all files on a Disc Executive volume, any
of the following specifications may be used:

< unit >1
(unit>I????????????

or <unit>I*.*

Before a Disc Executive volume may be used with CONVERT, it must
first be mounted for arbitrary access. The following example
illustrates the use of CONVERT.

:MOUNT 2:*
:MAKEDIR DEXFILES

:CONVERT DEXFILES=2/PROG.*

:DISMOUNT 2:

94

Place Disc Executive disc
in drive 2.
Mount for arbitrary access
Create directory for files
to be converted.
Convert all files with name
PROG and any tyPe.
DISMOUNT Disc Exec disc.
Remove disc from drive.

. '

l
(

. • f

~. .
i ~(
~ .. 1

.""" .

(

.
. '~ ..

NOS User Guide - Utility Programs

6 . 1 0 . CREATE - Create file

The CREATE command allows creation of both normal and contiguous
files from the user terminal. ~le format of the command is:

CREATE (file>[« size»], . . .
or CRE <file>[«size»], ...

where <file) is the name of the file to be created, optionally
followed by a contiguous size specification in parentheses. If no
size is specified, a normal file will be created. No space is
assigned to a normal file upon creation, as the system will
allocate space to the file as it is written into. If a
contiguous file is to be created, the file name should be followed
by the size required in bytes. The size is specified as a decimal
number. For example, to allocate a contiguous file thirty million
bytes long, one might use:

CREATE LONGFlLE(30000000)

If insufficient contiguous space exists on the volume to allocate
the file, an error message will appear and no space will be
allocated to the file .

(Since most programs automatically create their output files, the
. ' :<J CREATE command is used primarily to allocate contiguous files.

95

NOS User Guide - Utility Programs

6.11. DELETE - Delete file

The DELETE command deletes a file from a directory. The format of
the command is:

DELETE (file), ...
or DEL (file), ...

where <file> is the name of the file to be deleted. If the name
deleted is the only name for a f1le, the space· assigned to the
f1le will be released to the free space pool on the volume.

96

NOS User Guide - Utility Programs

6 • 1 2 • DIRECT - List file directory

The DIRECT command lists file directory items. Either the item
for a specific data file, or all the items in a directory file may
be listed. The DIRECT command will follow nested directories to
their ultimate nesting limits. TI1e format of the command is :

DIRECT
DIRECT
DIRECT

or DIR

« options)]
«options)]<volume/device):
[< options)]< file)
etc.

The first form lists all files in the user's assumed directory.
The second form lists all files on the specified volume or device.
The third form lists the directory item for the named file, if a
data file. If a directory, it lists all files in the directory,
continuing until all files which may be reached through that
directory have been listed. When listing files, if a directory is
encountered, the name of the directory will be listed, then DIRECT
will indent the listing and list the contents of that directory.

The <options) field allows alternate presentation of the file
directory. If an asterisk (*) precedes the specification, the
time and date of creation and the last modification will be
printed for each file listed. If a plus sign (+) precedes the
specification, the directory will be printed on the printer
configured as PRINT. DEV , rather than on the user's terminal. If
both a plus sign and asterisk are used, they may be specified in
either order.

The information printed for each file is in the format:

name size owner permissions type

where "name" is the file name, "size" is the highest byte written
in the file plus one (expressed in multiples of 1024 ("K") if
larger than 32767), "owner" is the group and user number of the
file's owner (enclosed in <) if the system is to assume the
identity of the owner when the file is executed), "permissions"
are the file permission bits (see below), and "type" is an
optional message indicating various special file types.

The file permission bits are printed in the format:

< global)-< group)-<owner)

where <global) indicates the operations permitted to users with a
different group number than the file's owner, <group) specifies
what members of the owner's group other than the owner may do, and

97

NOS User Guide - Utility Programs

<owner> indicate~ the operations permitted for the file owner.
The operations are indicated by the letters below:

R Reading allowed
S Search allowed (directories only)
W Writing allowed .
X Execution allowed

98

NOS User Guide - Utility Programs

6.13. DU - Disc utility

The Marinchip Disc utility provides the functions necessary to
test, format, dump, patch, and prepare floppy discs for use with
Marinchip operating systems. Two versions of the Disc Utility are
available. The standard version 7 supplied with the Network
Operating System release disc, uses the disc handler within the
Network Operating System. This allows the Disc Utility to be
smaller and usable on any system without special configuration,
but restricts its ability to perform 1/0 functions not available
through the system (such as formatting discs). Special versions
of the Disc Utility containing handlers for specific disc devices
can be ordered from Marinchip Systems. Contact your dealer or
Marinchip Systems for price and ordering information.

6.13.1. Using the disc utility

The Disc Utility is loaded and executed simply by typing its name,
DU, to the operating system. The Disc Utility will be loaded and
will prompt the user for a command with an asterisk (*). At this
time, any disc utility command may be typed. At the completion of
each command, the prompt will reappear. wr~n you have finished
with the disc utility, enter the command "END". It will exit to
the operating system.

6.13.1.1. Mounting discs for access

Discs to be manipulated by DU must first be mounted for arbitrary
access. This involves mounting the disc with a volume name of "*"
which enables the unformatted mode of access to the volume used by
DU. Normal system volumes cannot be accessed with DU. Refer to
the description of the MOUNT system command and the MOUNT $ system
call for more information.

6.13.1.2. Disc utility commands

All disc utility commands are one or two characters in length.
Any number of spaces may precede the command name, and at least
one space must follow the command name if any parameters follow.
In the following command descriptions, the parameters expected
will be enclosed in corner brackets. Trle format of the parameters
is as follows:

99

NOS User Guide - Utility Programs

<disc> This parameter is the disc number. Discs in the system
are numbered starting from one through the highest
numbered disc in the system.

(track) This parameter is the track number on the selected disc.

< sector)

Tracks are numbered from 0 to 76, for a total of 77
tracks on each disc.

This parameter
disc and track.
numbered from 1
errors is trying
sector zero!

is the sector number within the selected
Sectors, for some strange reason, are
to 26. One of the most common parameter
to reference sector zero. There is no

Wherever a specification of the form:

(disc) ,(track) ,(sector>

is used to identify a specific sector, the alternate construction:

< disc) . (block)

may be used. The < block) refers to the absolute sector number on
the disc, with the first sector considered as zero. This
alternate specification form can be useful when using the Disc
Utility on Network Operating System formatted discs, as the file
directory addresses sectors by block number, rather than track and
sector numbers.

6.13.1.2.1. A - Dump in ASCII

A (start byte),(word count>

The ASCII dump command dumps the contents of the sector buffer in
ASCII. If all parameters are omitted, the entire buffer will be
dumped. If a start byte is specified, the word containing that
byte will be dumped. If both a start byte and a length are
specified, the number of words requested will be dumped starting
with the selected byte. The sector buffer is read by the "R"
command and written by the "w" command, both described below.

6.13.1.2.2. CD - Copy disc

CD (disc) < disc>

This command copies the entire contents of the first disc to the

100

NOS User Guide - Utility Programs

second disc. It is a fast and effective way to back up the
contents of one disc on another. Any data previously stored on
the second disc will be destroyed. This command requires the user
to confirm that it is OK to wipe out the data on the second disc.
If the command:

CD 1 3

is typed, the question:

Really want to destroy data on disc 3?

will appear.
will begin.
ignored.

This must be answered "yes" before the operation
Any other answer will cause the command to be

6.13.1.2.3. CT - Copy track

CT (disc>,(track) (disc),(track)

This command copies an entire track from the first (disc),<track)
to the second. Note that the source and destination tracks may be
different.

6.13.1.2.4. D - Dump in hexadecimal

D < start byte), < word count)

The Dump command dumps the contents of the sector buffer in
hexadecimal. If all parameters are omitted, the entire buffer
will be dumped. If a start byte is specified, the word containing
that byte will be dumped. If both a start byte and a length are
specified, the number of words requested will be dumped starting
with the selected byte. The sectol' buffer is read by the "R"
command and written by the "W" command, both described below.

6.13.1.2.5. DI - Dismount volume

DI < disc)

The Dismount cOlnmand requests the operating system to dismount the
volume mounted on the specified < disc>. If the request is
rejected, the error code will be printed.

101

NOS User Guide - Utility Programs

6.13.1.2.6. END - End disc utility

END

The End command causes the Disc Utility to terminate.
will return to the operating system.

6.13.1.2.7. MO Mount volume

MO < disc>

Control

The Mount command requests the operating system to mount the
volume on the specified <disc> unit for arbitrary access. If the
system rejects the mount request, the error code will be printed.

6.13.1.2.8. N - Read and dump next sector

N

The sector following the last sector read by an R, RA, or RD
command is read and dumped. The sector is dumped in the format
last used to dump a sector. The N command is primarily used when
reading through a disc looking for some particular data. The
address of the sector being read will be printed before the sector
is dumped.

6.13.1.2.9. PA - Patch buffer

PA <start byte>

This command allows the contents of the sector buffer to be
patched. If < start byte> is omitted, zero is assumed. The
command will display the current offset and the contents of the
word at that offset. If a carriage return is typed, the next word
will be displayed. If a number is entered, it will replace the
word at the current location. An up-arrow (A) will cause the
previous word to be displayed, and a right corner bracket (»
followed by a number will set the offset to that byte address.
Numbers entered for this command will be assumed decimal unless a
leading zero appears before the number, in which case hexadecimal
will be assumed. Entering an at sign (@) will stop the Patch
command and return the user to normal command level.

102

NOS User Guide - Utility Programs

6.13.1.2.10. R - Read into buffer

R (disc) ,(tracK) ,(sector)

This command reads the selected sector into the sector buffer.
once read in, the data may be dumped by the "0" command, patched
by the "PA" command, and written back out by the "W" command.

6.13.1.2.11. RA - Read and dump in ASCII

RA (disc), (track) ,(sector)

This command reads the selected sector into the sector buffer and
then dumps it in ASCII. The action of this command is identical
to an "R" command followed by a "A" command.

6.13.1.2.12. RD - Read and dump in hexadecimal

RD (disc) ,< track),(sector)

This command reads the selected sector into the sector buffer and .~
then dumps it in hexadecimal. The action of this command is
identical to an "R" command followed by a "D" command.

6.13.1.2.13. VD - Validate disc

VD < disc>

This command reads every sector on the selected disc. If any
errors occur, they will be logged and the command will continue.
This command is intended for incoming inspection of new discs and
periodic checking to make sure that no bad sectors are lurking on
a disc. .

6.13.1.2.14. VT - Validate tracK

VT (disc),(track)

This command is identical to the Validate Disc command described
above, but only one selected track is validated.

103

NOS User Guide - Utility Programs

6.13.1.2.15. W - Write

W < disc) ,< track) ,(sector)

The data in the sector buffer are written out to the selected
sector.

6.13.1.2.16. we - Write back

we
The data in the sector buffer are written back to the sector from
which they were originally read with the R, RA, RD, or N command.
The we command may be used only if no intervening command which
reads into the sector buffer has been used since the sector was
originally read. The we command is normally used to write back
data read in with the R command, then patched via the PA command.

104

NOS User Guide - Utility Programs

6.14 . EDIT - Text editor

The Marinchip Text Editor (EDIT) is a line-oriented context editor
based on the Project MAC editor originally developed at MIT. The
editor offers powerful interactive editing taking full advantage
of the full-duplex terminal support and instantaneous response
offered by the Network Operating System. The editor uses the file
system to automatically page files larger than memory to disc to
allow files much larger than system memory to be edited without
explicit user effort.

6.14.1 . Calling the editor

The most general form of calIon the editor is:

EDIT (output file)=(input file>

Either or both of these file names may be omitted, with results
illustrated by the examples given below.

EDIT MYFILE

EDIT NEW:

EDIT =LISTNG

EDIT NEW=OLD

EDIT

6.14.2. Using the editor

Reads in MYFILE, and stores
output back in MYFILE.

Creates file NEW from text
entered from the terminal.

Reads in file LISTNG to be
examined, but not updated.

Reads in file OLD, stores
updated output in file NEW.

Gives user complete
over input and
handling via
commands.

control
output
editor

A description of editor commands is beyond the scope of this
manual. The user is referred to the user guide for the editor
(see reference below) for a description of the editor commands.

105

..-.......

NOS User Guide - Utility Programs

6.14.3. Temporary files

If the file being edited is larger than user memory, the editor
will create the files "TEMP1S" and "TE.MP2S" in the user's current
directory to page the data. Both of these files must be large
enough to hold the file being edited. If these files cannot be
created, or free space on the volume holding the user's directory
is exhausted, the message, ttBuffer impasse. n

, Will be issued, and
additions to the file being edited will not be permitted. The
user may direct the editor's temporary file usage to other files
by creating ALIAS names of TEMP1S and TEMP2S in his working
directory before calling the editor.

6.14.4. For more information

Refer to the manual "Marinchip 9900 Text Editor User Guide" for
descriptions of editor commands, and further information about how
to call and use the editor.

106

NOS User Guide - Utility Programs

6.15. ERROR? - Edit message for error code

When an error occurs during the process of loading a program or
executing a system command, the system will print an error message
with a numeric code indicating the type of error. These codes are
described in the section "System call · error codes" earlier in this
manual, but it is often inconvenient to have to refer to the
manual when an error occurs. The command:

ERROR? (code>

where (code) is the decimal error code will print a description of
the error.

Various other system programs print the same error numbers when
they encounter an error, and ERROR? may be used to determine the
meaning of those errors as well.

107

NOS User Guide - Utility Programs

6.16. FDIAG - File diagnostic

FDIAG is a program which tests I/O on a disc file, and by
implication tests the disc storage that underlies the file and the
operating system's file handling software. The program is invoked
by a command of the form:

FDIAG < file name >

where < file name> is the file to be tested. THIS FILE WILL BE
OVERWRITTEN, DESTROYING ANY DATA PREVIOUSLY IN THE FILE. The user
can test a specific disc unit or area by placing a file there,
then calling the file diagnostic specifying that file. FDIAG is
intended to be run only on contiguous files, as otherwise it would
fill the entire volume with data, then error when all space on the
volume was exhausted.

6.16.1. File diagnostic operation

The file diagnostic operates by writing unique patterns in
successive blocks (128 bytes) of the file until the end of file is
reached. Then, the file is reset to the beginning with the SEEKS
request and the file is read back. The data in each block is
validated for internal conSistency, and then checked to make sure
that the sector read was the expected sector. The test continues
until the end of file is reached. If the test finds no errors,
nothing will be printed.

6.16.2. Error messages

Cannot open named file.
The file named on the FDIAG command could not be found in
the file directory.

Write error on block <number>.
The operating system returned
write of the specified block.
terminates.

Seek error.

an error status on the
The file diagnostic

The operating system rettrrned an error status on the
SEEKS request to reset the file to the beginning. This
indicates a software error in the operating system or the
file diagnostic itself.

108

NOS User Guide - Utility Programs

Read error on bloCK <number).
The operating system returned an error status on the read
bacK of the specified bloCK. The diagnostic continues
with the next bloCK.

Bad data for block < number) . First bad byte is < number> .
(Expected value: < number»

There was a data error in the block that was not detected
by the operating system's disc handler. The diagnostic
detected the error by internal redundancy in the bloCK.
The failing bloCK number, first bad byte, and the
expected value are printed on the error message, then the
block is dumped in hexadecimal. Ttle test continues with
the next block.

Wrong block read. Expected: <number), received: <number>
The block read was internally consistent, but is not the
block that was written at the address that was read back.
This error indicates an addressing problem in either the
disc hardware or the operating system's file handler.

109

NOS User Guide - Utility Programs

6.17. LINK - Linker

The Marinchip Linker is used to build an executable program from
the relocatable code produced by the Assembler or the high-level
language compilers. The Linker is controlled by simple commands
entered from the user's terminal, and accepts its input and places
its output in normal operating system files. The Linker generates
straightforward English error messages for all abnormal events
that occur during the process of linking. The Linker uses a
virtual memory paging technique to allow itself to build programs
larger than the memory available to the Linker as a work area. In
fact, the Linker can produce programs larger than the memory
available on the machine on which it is being run. This can be
useful as programs for other users with larger memories can be
generated on a minimal machine.

6.17.1. Linking a program

The linker may be used in two lnodes: normal mode, where commands
are entered from the keyboard and the linking process is performed
in an interactive mode, and shorthand mode, where all the linking
information is entered on the line that invokes the linker.

6.17.1.1. Shorthand linking

In shorthand mode, the linker is called by typing the statement:

LINK (out)=(@](in1),[@](in2), ...

to the operating system when at command level. "LINK" is the name
of the linker, (out) is the name of the executable file to be
created, and (inl), (in2), etc., are the names of the relocatable
files that are to make up the executable program. If the name of
an input file is preceded by an at sign (@), it is assumed to be a
text file containing Linker commands (see below for descriptions
of commands), rather than a relocatable file. If the input files
named satisfy all external references, the executable file will be
created and the linker will terminate normally. If undefined
symbols remain, they will be listed, and the linker will enter
normal interactive mode (see below) to allow the user to load
files which define the undefined symbols.

For example, to create an executable program called "OBJ" from
relocatable files named "MAIN", "CSUB1", "CSUB2", and "CSUB3", the
following command would be used:

110

NOS User Guide - Utility Programs

LINK OBJ=MAIN,CSUBl ,CSUB2,CSUB3

6.17.1.2. Normal interactive linking

The Linker is called from the command mode of the operating system
by simply typing its name, LINK. ~le operating system will load
the Linker and execute it. When the Linker receives control, it
will prompt the user for a command with a sharp sign (#).

6.17.1.2.1. Defining the output file

Once the Linker has been called, the user must specify in which
file the executable file is to be placed. The OUT command is used
to do this. The statement:

OUT < file name >

informs the Linker that the executable program is to be placed in
the file < file name>. Only one OUT statement may be used in any
calIon the Linker.

6.17.1.2.2. Specifying the program base

Normally the Linker
address 0100, the
programs. The user
BASE command before

BASE <address>

will create an executable program starting at
standard system starting address for user

can override this assumption by supplying a
the first input file is named. The statement:

will cause the executable program to be built starting at the
specified hexadecimal <address> (that is, relocatable code will be
loaded starting at that address). This feature is primarily of
use when generating the operating system, or when writing programs
intended to concurrently reside in memory. Normal user programs
need not specify a BASE statement. The specified base address
should be a multiple of 256 bytes (0100 hex). If the address
supplied is not a multiple of 256, it will be rounded down to the
preceding 256 byte boundary.

111

.~

NOS User Guide - Utility Programs

6.17.1.2.3. Naming the input file(s)

Once the output file has been specified, the user should specify
all the programs that are to be linked together to make up the
executable program. This will always include the main program
created by the Assembler or compiler, and will frequently include
other separately assembled or compiled subprograms, or programs
from the system library. The files containing the relocatable
object code for these programs should be named on one or more IN
commands. The statement:

IN < file name>,< file name>, ...

will link the named files into the executable program. one or
more <file name>s may be specified on the IN statement, and any
number of IN statements may be used.

The references between separately compiled programs are made by
means of external and entry symbols. These symbols are identified
by six character names in both the program defining them and any
programs referencing them. As programs are built into the final
executable program, the Linker matches up these symbols and
resolves the references to them. If after the execution of an IN
statement there are references still undefined, the Linker will
prompt the user for the next command with a minus sign (-) instead
of the normal sharp sign (#). The user can then, if desired, list
the still-undefined symbols by using the REF command (see below).
If the main program is IN'd first, the linking process is complete
when the - prompt goes away, since all references will have been
satisfied.

The IN statement may also be used to cause the Linker to process a
set of commands stored in a file. If a file name on an IN command
is preceded by an at sign (@), then the commands from that file
will be read and processed as if they were entered directly from
the keyboard. Any Linker command may be used in a command file,
and command files may be nested limited only by the system's
restriction on concurrently open files and the amount of available
memory. For example, if the file NEWPROG.LNK contains the
commands to link a program, it would be invoked by:

IN @NEWPROG. LNK

6.17.1.2.4. Table of contents files

The LOCATE command (which may abbreviat.ed to LOC) specifies a file
containing a table of contents of a library of subprograms. The

112

NOS User Guide - Utility Programs

statement:

LOC (file name>,(file name>, ...

identifies each of the (file name>s as a table of contents file.

Each table of contents file is a text file containing one or more
lines. Each line identifies a separately assembled or compiled
subprogram file and names the external symbols defined in that
subprogram. A table of contents statement is of the form:

<subprogram file name> (symbol>,(symbol>, ...

where (subprogram file name> is the file name of the relocatable
file exactly as it would be used on an IN statement to include it
in the link, and the (symbol)s are the external symbols defined in
that subprogram.

When the linker reaches the end of a link (indicated by the END
statement, see below), if there are any undefined external
references, it will search the table of contents file entries in
the order they were specified on the LOC statements, and attempt
to resolve the undefined symbols. If the inclusion of a file
based on its appearance in a LOC list results in the appearance of
a new undefined symbol, the LOC list will be searched again in an
attempt to resolve it. This process will continue until either
all external symbols have been resolved, or a search of the LOC
list fails to resolve any outstanding symbols, in Which case the
Linker will abandon the search.

When performing an interactive link, it is frequently desired to
see if the LOC files specified will resolve the undefined symbols
outstanding at some point in the link. The FETCH command, which
is simply the statement:

FETCH

will cause the LOC list search to be performed exactly as it is
done at the end of the link, but the Linker will not terminate at
the end of the FETCH.

6.17.1.2.5. Listing the memory map

At the end of the linking process, the memory map may be listed by
entering the statement:

MAP [+[(title>]]

113

NOS User Guide - Utility Programs

This will type one line f'or each program loaded. The program
name, defined via the lDT assembly directive, or by a
specification in the compilation, will be listed followed by the
address at which that program starts and the last address occupied
by that program . This MAP is useful in program debugging, since
it permits turning absolute addresses in the linked program back
into relative addresses in the programs that made it up.

If nothing follows the MAP command, the memory map will be typed
on the user's terminal. If a plus sign (+) follows the MAP
command, the , map will be printed on the standard printer,
PRINT.DEV. If the plus sign is used, it may be followed by a
title to be printed on the printer before the memory map is
listed.

6.17.1.2.6. Closing out the program

After all the files that make up the program have been loaded by
naming them on IN commands, all that remains is to tell the Linker
to write the executable program into the output file. This is
done by the statement:

END

If there are any unresolved external symbols at the time the END
statement is entered, they will be listed following the warning
message "Undefined symbols:". The presence of undefined symbols
will not prevent the output program from being generated, but will
cause it to error if any of the symbols are referenced during
execution. After the Linker has written the executable program to
the output file, it will exit to the operating system.

6.17.1.3. Comments

Comments may be included in the input to the Linker as lines which
contain a period in column 1. Such lines are ignored by the
Linker, but are useful to identify files used with the "@" feature
on the IN command.

6.17.1.4. Executing the program

Programs generated by the Linker may be executed simply by typing
the name of the file containing them to the operating system when
it expects a command. The file containing the user program will

114

NOS User Guide - Utility Programs

be loaded and executed.

6.17.1.5. If there are undefined symbols

If you have named all the files that make up your program on IN
statements and are still getting the "-" prompt that indicates the
Linker still has undefined symbols, the command:

REF

may be used to list them. The format of the listing will .be one
line for each symbol containing the text:

< symbol> of < program)

where < symbol) is the undefined symbol name and < program) is the
name of the program that referenced it. Note that a symbol may
appear in more than one message if it is referenced by more than
one program.

6.17.2. Sample Linker use

The following presents an annotated example of using the Linker to
construct a program. Let us suppose the user's main program
object code has been put in the file MAIN by a compiler, and that
subprograms SUB1, SUB2, and SUB3 are used by the program in MAIN.
The object code for these three subroutines are in the files
CSUB1, CSUB2, and CSUB3 respectively.

: LINK

#OUT OBJ

#IN MAIN

-IN CSUBl

-REF

115

TIle user loads the linker
from the operating system
conunand level.
The Linker prompts the user
with a sharp Sign, and the
user names the output file
OBJ to hold the generated
program.
The prompt
the user
command to
program.
The user

reappears, and
uses the IN

name the main

gets the "_II
prompt indicating that more
files are needed. The file
CSUB1 is named.
The user decides to list

NOS User Guide - Utility Programs

undefineds.
SUB2 of MAIN
SUB3 of MAIN
SUB3 of SUB 1

The Linker lists them

Note that SUBl also
references SUB3.

-IN CSUB2,CSUB3 The user names the rest of
the requlred flles.

#MAP

MAIN
SUB1
SUB2
SUB3
lEND

:OBJ

0100-02CD
02CE-030B
030C-03FB
03FC-0511

The llnker ls happy and
returns to the sharp slgn.
The user requests a memory
map.
The map ls typed out

The user asks to end
linking
And calls hls program

Enter the first data point: The user's program is in
control

6.17.3. Linker error messages

The following error messages can be generated by the Linker; each
is explained. When there is a CO~DOn user error that causes this
error, it will be mentioned.

Bad character "<char)" as item type.

The character < char> was found in the object code file
and is not valid. This normally occurs when the file you
mention on an IN statement is not an object file created
by the Assembler or a compiler.

Bad character in number field.

A bad character was found in a numeric field of object
code. Suspect clobbered object code file or trying to
load non-object code.

Input file IIO error.

Error reading file on IN statement. Was it properly
created by the Assembler or compiler? This can also
result from a disc hardware error.

Duplicate starting address in program < prog > ignored.

116

NOS User Guide - Utility Programs

The program < Pl'09>, which was just named on an IN
statement is a main program with a starting address, but
another main program has already been loaded. The first
starting address will be used for the program being
linked.

Duplicate definition of < symbol> ignored in < prog >.

The program < prog> defines
symbol has already been
previously named in an
definition is ignored.

symbol <symbol>, but this
defined in another program

IN ·statement. The second

Absolute origin of < addr > in < prog> is below base of < base>:
ignored.

The program < prog> contains absolute load information
which attempts to load below the Linker's standard load
base. This most often results from misuse of the AORG
directive in Assembly programs.

Checksum error.

The program being loaded has a checksum error in the
object code. Has it been modified?

Checksum missing from record.

The program being loaded lacks a checksum on a record.
Has it been modified?

End-of-record sentinel missing.

The program being loaded has a malformed record. Has it
been modified?

Internal error: origin below load base.

If you have a program that causes this error, Marinchip
Systems would like very much to see it.

Error swapping out page.
Error swapping in page.

These messages are caused either because the file named
on the OUT statement was too small to hold the program
being linked, or by a hardware error on the output file.

Bad input file specification.

117

NOS User Guide - Utility Programs

. The file named on the IN statement does not exist, or the
file name is not well formed.

Bad output file spec,ification.

The file named on the OUT statement cannot be created, or
the file name is not well formed.

Output file already specified.

An OUT statement was entered, but an output file was
already defined by a previous OUT statement. The second
OUT statement is ignored.

No output file specified.

An IN statement h .. '\s been entered, but no OUT statement
has been entered yet. The IN statement is ignored.

cannot open entry table. Processing continues.
The LOC specified (file name> cannot be found.

Entry table file input error.

The LOC specified (file name) could not be read in.

Insufficient table space.

The LOC-generated cross reference list of symbols and the
files in which they were defined overflowed available
memory space. Use a shorter list, or IN the required
files explicitly instead of using LOC.

118

NOS User Guide - Utility Programs

6.18. LOGIN - Log on to system

The LOGIN command is automatically activated by the system
whenever a new terminal connects. LOGIN requests identification
from the user, and only allows access to the system if the user
name and password are correct. If desired, LOGIN will
automatically assume the default directory for the user, and
activate a standard program. LOGIN may be called explicitly by a
user to sign off and sign on under a new user name.

6.18.1. Using LOGIN

~len LOGIN is run (whether automatically by the system or
explicitly called by the user), it will prompt the user with:

Enter user name:

Trle user should respond with his user name, which is a string of
from one to fourteen characters. ~le case of these characters is
insignificant. LOGIN will search the database of users known to
the system, and if the user name is found, respond with:

Enter password:

The user must then enter the correct password for the user name.
Passwords, like user names, are from one to fourteen characters in
length, and are matched regardless of case. The password will not
be echoed to the user terminal when it is entered. Since the user
cannot see what is being typed, none of the local editing keys
Will work while the password is being entered. Pressing any of
the local editing keys will result in the "Enter password:" prompt
being retyped and all password characters typed up to that point
being discarded.

If the password is correct, the user will be logged onto the
system and a message will be displayed confirming the log on and
giving the user's group and user number. If the password is
incorrect, a message to this effect will be printed and the
password prompt will be repeated. Trle entire login attempt may be
restarted at any time by pressing Control C, which will get the
user back the the "Enter user name:" prompt .

119

NOS User Guide - Utility Programs

6.18.2. User database file maintenance

The following information describes the format of the user
database file. This information is relevant only to those who
maintain this file. General users of the system need not bother
With these details.

The user database is read from the file:

1 :UTIL/USERDATABASE

This file is created with reading and writing only by owner, under
group and user zero. Such a file can be read and written only by
privileged users and programs. LOGIN is a privileged program, and
thus is able to access the database. System maintenance personnel
may update the user database by signing on with a privileged user
name.

The user database is a standard text file, consisting of one or
more lines. Each line describes a user name. The format of these
lines is:

< username> < password> < parameters>

The <username> and <password> fields are both fixed-format 14
characters fields, and must be in UPPER CASE. The <username> and
<password> are simply the values to be typed in by the user to log
in. The <parameters> field is a free format field starting in
column 29 of the line, and has the format:

< group> ,< user> ,< pri vacy> [,< defdir > [,< initprog >]]

where <group> is the group number for the user name, <user> is the
user number, and < privacy> is the privacy bit settings to be used
on a CREATES JSYS when the < pr i vacy modes> field in the JSYS
packet is zero. <group>, <user>, and <privacy> are all numeric
values, and follow the normal system convention that a leading
zero denotes a hexadecimal value.

The optional <defdir> field is the name of the user's working
directory file. If this field is specified, LOGIN will do an
ASDIRS function on the name specified in that field. If the
optional <initprog> field is present, LOGIN will execute the
command in that field upon completing the log in process, rather
than returning the user to system co~nand mode. Use of this
feature permits users to be "locked in" to certain application
programs. It is possible to specify an <initprog> without
specifying a <defdir> by preceding the <initprog> field by two
commas.

120

NOS User Guide - Utility Programs

To 1llustrate the format of the user database, consider the
following user file entries:

SYSMAINT
BUSTER
ACCOUNTING

DUCK
927KDT
MONEY

0,0,02F
112,278,7,UVOL:UFILES/BUSTER
201 ,1904,02F,1 : ACC,EDIT ACCDB

The f"irst line is an entl.·y f"or a user with name "SYSMAINT". The
password for this user is "DUCK", and this user runs on group 0,
user 0, which is the privileged user number. The specification of
02F sets the default privacy for that user. (Refer to the
d1scussion of privacy bits in the description of the CREATES
system call for an explanation of this value.)

The second line in the
"BUSTER" has a password
278, default privacy of
UVOL:UFILES/BUSTER.

file is a typical user entry. User
of "927KDT", group number 112, user number
7, and working directory

The third line illustrates an "application" user. This user will
automatically have the command:

EDIT ACCDB

executed when the log in process is complete.

121

NOS User Guide - Utility Programs

6.19. MAKEDIR - Make directory file

The MAKEDIR command creates a directory file, or can be used to
turn an empty data file into a directory file. The format of the
command is:

MAKEDIR <file), ...

where <file> is the name of the directory to be created.

When using MAKEDIR as a privileged user to create initial
directories for new users, be sure to use OWNER to change the
ownership of each newly created directory to the group and user
numbers to be assigned to the new user. Failure to do this will
result in the user being unable to assign his own directory, since
it will have been created by the privileged user and carry the
privileged user's group and user numbers.

122

NOS User Guide - Utility Programs

6.20. MCOPY - Multiple File Copy Utility

The MC~PY utility is designed to copy multiple disc files from one
NOS directory to another. ~le output files are made as much as
possible like the input files: access bits are the same; the
output is a contiguous file if the input is; ownership is the same
(if the utility is executed by a privileged user). If one input
file is an alias of another, the output will be aliased files
rather than separate copies.

Here are some of the operations that MCOPY can perform:

Copy all the files from one
including directories, the files

directory
in those

to another,
directories,

and so on.
Copy all the
special case
Copy all the
with .REL

files from one disc to another (just
of the above).
files with names that begin with A and

a

end

Copy all the data files but none
appear in a given directory.

of the directories that

6.20.1. Using MCOPY

The program is in the file BIN on the NOS release disc and is
invoked simply by typing its name with the specifications for the
files to be copied. The simplest (and usual) way of using it is
as follows:

MCOPY <output directory)=(input directory)/(mask)

The <mask> selects the filenames to be copied, according to the
rules given below. In particular, if it is nUll, everything will
be copied. Notice the difference between the two following
examples, which illustrate one of the easiest ways of going
astray:

MCOPY 2:=1 :UFILES/JOE-SMUDLEY
MCOPY 2:=1 :UFILES/JOE-SMUDLEYI

The first will copy file JOE-SMUDLEY from directory 1 :UFILES to
the root directory of unit 2. ~le second will copy all files from
directory 1 :UFILES/JOE-SMUDLEY to the root directory of unit 2.

The directory names given in a call on MCOPY can use the full
generality of NOS file names, using the assumed directory or fully

123

NOS User Guide - Utility Programs

qualified file names. For instance, output can be put in the
assumed directory by leaving the <output directory> blank:

MCOPY =1 :UFILES/JOE-SMUDLEYI

6.20.2. File selection masks

The file selection mask can name a specific file, as above, or use
. special characters to select a whole class of files. The special
characters are similar but not identical to those used by the DIR
and DEL directives in the Disc Executive system:

* Matches zero or more characters, up to the next period or the
end of the name.

? Matches anyone character except period.
Matches a period or the end of the name.

Tne special treatment of periods is based on the normal use of
period to indicate a file type, such as .REL, .ASM, etc. If the
rules seem tricky, some examples should make them clear:

.

*
AB*.*

A?*

Matches any name, provided it does not have two periods;
e.g., A, A.REL, SYZYGY.LONG
Matches any name which does not contain a period; e.g.,
A, ABRACADABRA, Z234567890123
Matches any name beginning with AB; e.g., AB,
ABACUS.SIM, ABRACADABRA
Matches any two-letter name beginning with A, with any
file type; e.g., AB, AB.REL, AS.BAS -- but not ABC or
ABACUS.SIM
Matches any name with a file type of at least one
character; e.g., PROGRAM. BAS , XYZ.Q

If the <input directory> contains directories, the MCOPY program
will copy them and all files that they contain, down to any level.
Thus,

MCOPY 2:=1:

when executed by a privileged user will make an exact copy of disc
1. However, it is possible to select directories as well as data
files by means of a mask: instead of using < mask> one uses
<directory mask>\<data mask> as in

MCOPY 2:A=1:UFILES/A**.REL

which would copy only directories beginning with A and data files
ending with .REL. The normal use of this feature is to suppress

124

NOS User Guide - Utility Programs

copying of directories by giving an impossible <directory mask):

MOOPY 2:A=1 :UFILES/JOE-SMUDLEY/!*.BAS

6.20.3. Multiple specifications

A calIon MCOPY can have several specifications separated by
commas:

Usually the only difference between this call and two separate
calls on MCOPY is that it avoids loading the program two times.
However, there is one subtle difference: MC~PY remembers all the
files that it has copied, and uses aliases wherever it is
appropriate. In the example above, suppose that 1 :A/X.REL is an
alias of 1 :B/Y.RELi then 2:RELOC/X.REL will be an alias of
2:RELOC/Y.REL. If MCOPY had been called two separate times,
2:RELOC/X.REL and "2:RELOC/Y.REL would have been separate copies of
the same file.

The example shows two copies into the same directory, but there is
no restriction on the directories or units used in multiple
specifications.

6.20.4. Error messages

There are two types of error message from MCOPY.

Error. Use:
MCOPY (out directory)=(in directory)/(mask), . .

This message appears when there is a syntax error in the call to
MCOPY. This could result from multiple specifications separated by
something other than commas, no specifications at all, or a badly
formed (input)/(mask).

Unable to (do something to) file (name). Status = <number).

This message results from the failure of some operation necessary
for the copying of a file. The (number) is the status which was
returned by NOS. Typical errors are protection violations,
non-eXistence of (input directory), and running out of room on the
output disc. After such an error, MCOPY will continue trying to
copy files.

125

- - - ------------

NOS User Guide - Utility Programs

6.21. OWNER - Change file ownership

The OWNER command allows a privileged user to change the ownership
of an existing file. The format of the command is:

OWNER <file>«group>,<user», ...

where <file> is the name of the file to be changed, <group> is the
new group number, and <user> is the new user number.

126

NOS User Guide - Utility Programs

6.22. PASCAL - Sequential Pascal compiler

Marinchip Pascal is based on the Sequential Pascal compiler
developed by Per Brinch Hansen for the PDP 11/45 at Galtech.
Marinchip Systems has converted the compiler to run on the M9900
CPU and has interfaced it to use the IIO facilities of the Network
Operating System, permitting it to interchange files with all
other Marinchip software.

6.22.1. Calling the compiler

The Pascal compiler is called with a command of the form:

PASCAL« source) ,< listing) ,< object) [,< temp1) ,< temp2 >])

where < source) is the Pascal source program to be compiled,
<listing> is the disc or device file where the compiler listing is
to be sent, and <object> is the file in which the object code
generated by the compiler is to be stored. The < temp1 > and
<temp2> specifications are optional, and may be used to direct the
compiler temporary files to nonstandard file names. See the
section "Temporary files" below for more information on these
specifications.

6.22.2. Executing the program

An <object> file produced by the compiler is executed simply by
typing its name. No linking process is required.

6.22.3. Temporary files

The Pascal compiler uses two temporary files to hold intermediate
output generated during compilation of a program. The compiler
will normally use two files named TEMP1$ and TEMP2$, which it
expects to find in the user's current working directory. If other
files are to be used, they may be specified via the <temp1 > and
<temp2> optional specifications when the compiler is called.

127

NOS User Guide - Utility Programs

6.22.4. For more information

See the manual "Marinchip 9900 Pascal User Guide 11 for more
information on the Pascal compiler.

128

NOS User Guide - Utility Programs

6.23. PREP - Write initial file directory

The PREP command is used by privileged users to create empty file
directories on blank volumes, or on volumes which are to be
reused. The format of the command is:

PREP [*]< device>:< volume> [« size) ,< count»] , ...

where <device> is the explicit storage unit device name (such as
"1 "), and <volume> is the volume name to be used on the volume
being PREPed. If specified, <size) is the size of data blocks on
the volume in bytes, and < count> is the number of such blocks
present on the volume. If (size) and <count) are omitted, the
default values for the storage unit will be used. Normally, PREP
will perform a complete surface test of the volume, and remove any
bad blocks from eligibility for allocation to user files. If a
leading asteriSK is specified before the (device) name, this test
will be omitted, and all blocks will be assumed to be good.

PREP may only be performed by users running under group number 0
and user number 666, and may be done only on volumes mounted on
storage units for arbitrary access ("*" as volume name).

129

NOS User Guide - Utility Programs

6.24. SCRIPT - Execute commands from file

The SCRIPT command lets the user cause the system to execute
commands from a file instead of requiring that each command be
entered on the user terminal. The format of the command is:

SCRIPT < file>

where <file> is the name of the text file containing the commands
to be executed. If the file executes a program which normally
reads its input from the terminal, that program will read from the
<file> specified on the SCRIPT command. Thus, the user may
prepare an entire file containing work for the system to do, start
it up, and let the system execute the script without intervention
from the user. S1nce the < file) specified may be generated by a
program, this allows user programs to generate sequences of work
to be done by the system.

A SCRIPT command may appear within a script. The maximum nesting
permitted is specified when the system is generated. Note that
the maximum applies to the sum of currently effective SCRIPT and
user program generated SCRIPTS requests. (The SCRIPT command
actually works simply by submitting a SCRIPTS request, so there is
actually only one limit.)

130

NOS User Guide - Utility Programs

6.25. TCOPY - Text file copy utility

The Text Copy Utility is a very simple utility program provided by
Marinchip Systems for the 9900 computer system. Its usefulness
transcends its simple function of moving a text file from one
location to another because of the generality of the file system
that underlies the program. Since all per1pheral devices are
treated as files by the Marinchip operating systems, the Text Copy
Utility can be used for functions as diverse as the following:

Copying a disc file from one disc to another.
Concatenating several files into one large file.
Listing a disc file on the terminal.
Making a hard copy of a listing stored on disc .

... and of course all tt~ obvious permutations and combinations
that the above immediately suggest.

6.25.1. USing TCOPY

The Text Copy Utility is invoked simply by typing the name of the
file that contains it to the operating system when the operating
system prompt appears. The utility is stored in the file TCOPY on
a standard Marinchip system disc. Following the name of the
utility program, the destination file is specified, followed by an
equal Sign, and one or more source file names separated by commas:

TCOPY (ofile)=(ifile),(ifile), ...

The (ofile) and (ifile) specifications may be fully general file
names, as described in the manual for the operating system being
used, and may be either device files or disc files.

The action of the command will be to copy the input files into the
output file, from left to right as specified on the command. The
result will be an output file consisting of all the lines in the
input files concatenated. Of course, if only one input file is
specified, the output file will be an identical copy of the input
file.

6.25.1.1. Examples of use

To list the contents of the file MYPROG on the terminal:

TCOPY CONS.DEV=MYPROG

131

NOS User Guide - Utility Programs

To concatenate the files PROG1) SUB1, and SUB2 into the file
BIGGIE:

TCOPY BIGGIE=PROG1 ,SUB1 ,SUB2

To send the file USRDOC to the printer:

TCOPY PRINT.DEV=USRDOC

To read a paper tape into the file STUFF:

TOOPY STUFF=PTR.DEV

6.25.1.2. Error messages

The following are a list of error messages that may be generated
by the Text Copy Utility and their causes:

Error: Specify (ofile>=(ifile>,(ifile>,<ifile>, ...

This message appears whenever a syntax error is detected in the
specifications. Probably one of the file names is badly formed,
or a delimiter between file names is incorrect.

Error reading file <ifile>.

An I/O error was encountered reading from the named input file.
The output file is closed, and any files following the named files
are ignored.

Error writing output file.

An I/O error was encountered writing the output file. The Utility
immediately terminates.

File (file> does not exist.

The named
the command
is closed,
ignored.

file could not be opened. If this is the output file,
is totally ignored. If an input file, the output file
and any input files following the named file are

132

NOS User Guide - Utility Programs

6.26. TIME - Set I Display system time

Trle TIME program may be used by any user to display the current
date and time, and by privileged users to set the system time . To
display the time, the command is simply:

TIME

To set the time, the program should be called as follows:

TIME YYYY/MM/DD HH:MM:SS

where YYYY is the current year, MM is the current month (1 to 12),
and day is the current day (1 to 31). HH, MM, and SS are the
hours, minutes, and seconds, respectively of the Greenwich Mean
Time to which the clock is to be set. wr~n the command is
entered, the caller will be prompted with a message which informs
him to respond when the time entered is correct. The time entered
on the TIME command is normally a minute or so ahead of the
current time. After the command is entered and the prompt is
displayed, the caller should wait until the exact time is reached,
then respond to the prompt, which will set the clock very
accurately.

133

NOS User Guide - Utility Programs

6.27. VSTAT - Print volume status

The VSTAT command prints the
volume which is mounted on
all units configured in the
called as follows:

VSTAT (unit):, .. .
or VSTAT <volume):, .. .
or VSTAT

status of a storage unit and the
it. Either the status of one unit or
system can be printed. VSTAT is

If no specifications are given on the V&TAT command, the status of
all configured units will be printed. If a file system volume is
mounted on a unit, the status may be requested by volume name. In
any case, the unit number can be specified.

VSTAT will print the unit number, followed by a status description
which depends upon the unit status. If no volume is mounted, the
unit will be said to be idle. If a volume is mounted for
arbitrary access (asterisk as volume name), a message will be
printed to that effect. If a normal file system volume is
mounted, its volume name will be printed and the amount of free
space and the largest contiguous block in bytes will be printed.
The free space and largest block will be printed to the byte if
less than 32768 and in units of 1024 bytes (1 "K") if larger.

134

NOS User Guide - Utility Programs

6.28. WORD - Word processor

The Marinchip Word Processor (WORD) is a powerful yet easy to use
text formatting language. It contains a set of basic commands
sufficient for most text formatting applications, and provides a
comprehensive string and macro facility so that the basiC language
may be extended by the user for more complex formatting tasks.
Facilities built into WORD include:

Right justification, centering
Automatic reformatting for different output devices
Multiple column output
Automatic assignment of page and section numbers
Automatic generation of Table of Contents

6.28.1. Using WORD

The input f'ile for WORD is prepal'ed using the Text Editor, then
WORD is called to format the text:

WORD <output file)=(input file>

where < input file) is the file containg the text to be formatted,
and <output file) is the disc or device file where the formatted
text will be placed.

6.28.2. For more information

Refer to the manual "Marinchip 9900 Word Processor User Guide" for
information on how to prepare text for WORD, and further
information on how WORD is used.

135

NOS User Guide - Library Subroutines

7. System library subroutines

The system disc supplied by Marinchip Systems contains a number of
relocatable subroutines intended for use in user programs. These
routines are described by the sections below. The sections are
listed by the name of the file containing the subroutine on the
system disc. The entry points and ca'iling sequence for each
routine are discussed in the description of the file.

The system relocatable library consists of files stored in the
directory:

RELOC

on the system volume. Hence, to include the relocatable file
TRACE.REL in a program, the following LINK command would be used:

IN 1: RELOC/TRACE . REL

136

NOS User Guide - Library Subroutines

7.1. DFLOAT.REL - Double precision floating

Entry points: FPD$, FPDR$

The double precision floating point routines emulate IBM
System/370 double precision floating point operations. Double
prec~s~on numbers are 64 hits in length (8 bytes), with a Sign, 7
bit hexadecimal exponent, and 56 bits of mantissa. Double
precision arithmetic provides approximately 16 decimal digits of
accuracy.

All communication with the double preclslon floating point
subroutines is through a request packet with the following format:

operation code
· . ·

source operand address
· . ·

destination operand address
· . ·

The < operation code> field contains a code for the floating point
operation to be performed. The codes are defined below, and the
mnemonics used are defined in the file:

1 :SOURCE/JSYSS

which also defines the system call codes.

Mnemonic

AE$
SE$
ME$
DE$
CE$

Code

1
2
3
4
5

Meaning

Add
Subtract
Multiply
Divide
Compare

(dest=dest+source)
(dest=dest-source)
(dest=dest*source)
(dest=dest/source)
(source:dest)

The <source operand address> field specifies the address where the
8 byte source operand number starts, and the < destination operand
address> field specifies the start address for the 8 byte
destination operand number.

Two different calling sequences are available for the double
precision floating point package. The first version uses a statiC
packet address following the call, as follows:

BLWP
DATA

FPDS
< packet address>

137

NOS User Guide - Library Subroutines

<return>

This calling sequence has the advantage that no user workspace
registers are required to be preloaded before the call, and no
registers are changed by the call, but is unsuitable for reentrant
calls with dynamically allocated packets, as the packet address
would have to be stored into the program. For such "dynamic
packet" applications, the call:

LI
BLWP
< return>

RO,(packet address>
FPDRS

may be used. This call is identical to FPDS except that the
packet address is taken from user workspace register RO instead of
the word following the call instruction, and return is made
immediately after the call instruction.

The arithmetic calls, AES, SES, MES, and DE$, do not affect the
condition bits unless an error occurs during their execution. A
divide fault or exponent overflow will set the destination operand
to the largest possible number (with the sign of the result) and
will set the overflow status bit. An exponent underflow will
clear the destination to zero, and will set the equal and overflow
status bits .

The comparison call, CE$, will set the condition bits based on the
relation between the source and destination operands. If the
source and destination are equal, the equal status bit will be
set. If the source is greater, the arit~~tic and logical greater
than bits will be set. If the source is less, no bits will be
set. Note that the comparison done by CE$ is always a signed
comparison, but sets the arithmetic and logical status bits the
same. This is done so that the more flexible logical status test
instructions (JHE, JL, etc.) may be used to test the result of a
floating point comparison, as well as the arithmetic test
instructions (JGT, JLT).

138

NOS User Guide - Library Subroutines

7.2. FLOAT.REL - Single precision floating

Entry points: FPSS, FPSRS

The single precision £loating point routines emulate IBM
System/370 single prec~s~on £loating point operations. Single
precision numbers are 32 bits in length (4 bytes), with a sign, 7
bit hexadecimal exponent, and 24 bits of mantissa. Single
precision arithmetic provides between 6 and 7 decimal digits of
accuracy.

All communication with the single precision floating point
subroutines is through a request packet with the following format:

operation code
· . · ,. ,.

source operand address
·

destination operand address
· . ..

The (operation code) field contains a code for the floating point
operation to be performed. The codes are de£ined below, and the
mnemonics used are defined in the file:

1:S0URCE/JSYSS

which also defines the system call codes.

Mnemonic

AE$
SES
ME$
DES
CE$

Code

1
2
3
4
5

Meaning

Add
Subtract
Multiply
Divide
Compare

(dest=dest+source)
(dest=dest-source)
(dest=dest*source)
(dest=dest/source)
(source:dest)

The (source operand address) field specifies the address where the
4 byte source operand number starts, and the < destination operand
address) field specifies the start address for the 4 byte
destination operand number.

Two different calling sequences are available for the single
precision floating point package. The first version uses a statiC
packet pointer following the call, as follows:

BLWP
DATA

FPS$
(packet address)

139
.-...,

NOS User Guide - Library Subroutines

(return>

This calling sequence ~~s the advantage that no user workspace
registers are required to be preloaded before the call, and no
registers are changed by the call, but is unsuitable for reentrant
calls with dynamically allocated packets, as the packet address
would have to be stored into the program. For such "dynamic
packet" applications, the call:

LI
BLWP
(return>

RO,(packet address>
FPSR$

may be used. This call is identical to FPSS except that the
packet address is taken from user workspace register RO instead of
the word following the call instruction, and return is made
immediately after the call instruction.

The arithmetic calls, AE$, SE$, ME$, and DE$, set the condition
bits based on the arithmetic and logical magnitude of the result
of the operation, based on the normal definitions of these bits
(note that this is different from the action of the double
precision package, which does not set the condition bits for
arithmetic calls). A divide fault or exponent overflow will set
the destination operand to the largest possible number (with the
sign of the result) and will set the overflow status bit. An
exponent underflow will clear the destination to zero, and will
set the equal and overflow status bits.

The comparison call, CE$, will set the condition bits based on the
relation between the source and destination operands. If the
source and destination are equal, the equal status bit will be
set. If the source is greater, the arithmetic and logical greater
than bits will be set. If the source is less, no bits will be
set. Note that the comparison done by CES is always a signed
comparison, but sets the arithmetic and logical status bits the
same. This is done so that the more flexible logical status test
instructions (JHE, JL, etc.) may be used to test the result of a
floating point comparison, as well as the arithmetic test
instructions (JGT, JLT).

140

NOS User Guide - Library Subroutines

7.3. TEXTIN.REL - Read text input file

Entry points: TEXTIO, TEXTIN

This routine is a
text files and
All communication
following format:

READS

general subroutine which reads system standard
returns individual lines to the calling program.
with the subroutine is through a packet with the

·
file index

· . ..
I/O buffer address

·
I/O buffer length

· . ..

* · . ..
line buffer address

· . ..
line buffer length

· . ..
(length returned to user) · . .. e ... G

(total line length) · . . .
* · . ·

The packet must be initialised with the READS function code, the
<file index) of the file to be read, the address of an I/O buffer
to be used to read the file <I/O buffer address), and its length
<I/O buffer length). The longer the I/O buffer, the more
efficient the access to the file will be. If the program is to
run under the Disc Executive, the I/O buffer must be a multiple of
128 bytes. There are no restrictions under the Network Operating
System. Once the above fields have been set up, the text input
routine is initialised by the call:

LI R1,<packet)
BL TEXTIO
(return)

where <packet) is the address of the above packet and <return) is
the return point following the call .

To read a line from the file, store the address of the buffer

141

NOS User Guide - Library Subroutines

where the line is to be read into <line buffer address), and set
the length of the line buffer into <line buffer length), then use
the call:

LI
BL
DATA
DATA
<return>

R1,<packet)
TEXTIN
<1/0 error>
<end of file>

If an 110 error or end of file is encountered, TEXTIN will jump to
the respective address specified following the call. If the line
is read normally, control will return following the two DATA
words. The «length returned to user» field will be filled with
the length of the line stored in the user buffer. This value may
be shorter than the user buffer, but will never be longer. The
line stored in the buffer consists of just the text; the trailing
carriage return is not stored. The «total line length» field is
filled with the total length of the line just read, and will
differ from the «length returned to user» only when the line was
truncated to fit into the user buffer.

The TEXTIN routine is automatically closed out when the end of
file is encountered. No special close call is required.

TEXTIN is completely reentrant, and may be used to read any number
of text files concurrently (using one packet for each file, of
course).

The fields in the packet labeled with an asterisk (*) are used by
the TEXTIN routine for its own local storage. They must be
provided in the packet, but need not be initialised nor examined
by the user.

142

NOS User Guide - Library Subroutines

7 • 4 • TEXTOUT . REL - Write text output file

Entry points: TEXTOO, TEXTOUT, TEXTOC

The TEXTOUT subroutine creates a system standard text file from
lines generated by the calling program. All communication between
the caller and TEXTOUT is through a packet with the following
format:

WRITES
· . ·

file index
: .. :

I/O buffer address
· . ·

I/O buffer length
· . ·

* · . ·
line buffer address

· . ·
line buffer length

· . ·
* · . · .. .

In order to use TEXTOUT to generate a text file, the user must set
up the packet with the WRITES function code, the <file index> of
the file to be written, and the address < I/O buffer address> and
length < I/O buffer length> of the buffer to be used to hold data
to be sent to the file. For programs which are to run under the
Disc Executive, the I/O buffer must be a multiple of 128 bytes.
The Network Operating System imposes no restriction on the length
of the buffer, although under both systems the efficiency
1ncreases as the buffer is made larger. Once the packet has been
initialised with the above values, the following call is made to
open the text output routine:

LI R1,(packet>
BL TEXTOO
<return>

where <packet> is the address of the packet, and <return> is the
return point to the calling program. To write an output line to
the file, the starting address of the line should be stored into
<line buffer address> and the length of the line stored into (line
buffer length>, then the following call made:

143

• •

NOS User Guide - Library Subroutines

LI
BL
DATA
<return>

R1,<packet>
TEXTOUT
<I/O error>

The data word following call specifies the address where TEXTOUT
will jump if an IIO error occurs while writing the file. If the
output is completed normally, TEXTOUT will return following that
data word.

When all lines have been written to the file, text output must be
closed with the call:

LI
BL
DATA
<return>

R1,(packet>
~
<I/O error>

This call is essential, as it places the end of file mark at the
end of the text file, and causes the last block of data to be
written to the file.

The TEXTOUT routine is fully reentrant and may be used to write
concurrently to as many files as desired (of course, one packet is
used for each file).

The fields in the packet labeled with an asterisk (*) are used by
TEXTOUT for local storage. They must be provided in the packet,
but need not be initialised or examined by the user .

144

NOS User Guide - Library Subroutines

7.5. TRACE.REL - Instruction trace

Entry points: TONS, TOFFS

The instruction trace package in TRAC~.REL is a powerful tool for
debugging assembly language programs. The trace is activated by
the call:

BLWP TON$

Following the call, each instruction executed will be printed in
assembly language format on the user terminal. Register and
memory operands referenced or changed by the instruction will be
edited. Conditional jump instructions will be flagged with an
asterisk (*) if they actually jumped. System calls (JSYS) will be
printed as if they were a single instruction (that is, the trace
package will not attempt to trace into the system). The trace
package will not trace itself.

The trace may be turned off by executing the call:

BLWP TOFFS

Following return from this call, the machine will be "native

tfI

mode", and will execute instructions normally. ~

Neither TON$ nor TOFF$ change the contents of any workspace
registers or the condition code, so they may be inserted anywhere
in a program.

The trace package executes instructions interpretively, so it is
capable of tracing code in ROM as well as in read/write memory.
Obviously, when a program is executed under the trace it executes
tens of thousands of times slower than when being executed
directly by the machine, so code which has to meet external timing
constraints may not be able to be debugged using the trace. For
most code, though, the trace should immediately show where a
program is going wrong.

145

..

