
There is no warranty of merchantability nor any warranty
of fitness for a particu!ar purpose nor any other warranty,
either expressed or imp!ied, a’s to the accuracy of the
enclosed m~=:crials or a~ Io ~helr ,~.ui~::~::.j!it’/ for ~ny

".-~--, "p~rficu~ar pur~.~o~e. ~-.re: n~ I T~ ~hone
Laaorator es 8ssumg$ no rO, p::::nS,-,,.:~:y ~or their use by the
recipient. Furln=,, [: ’ La:::.c:,:e?o:,os ~:’urnes no ob~ja~tjon
~o furnish 6ny a~o,~,,..n~e at ~ny k:nd v,,hetsoever, or to
furnish any additional jnformstjcn or documenta’tjon.

UNIX PROGRAMMER’S MANUAL

F~ifth ~

K. Thompson

D. M. Ritchie

June, 1974

Copyright:.©d972, 1973, 1974
Bell Telephone:Laboratories, Incorporated

Copyright © 1972, 1973, 1974
Bell Telephone Laboratories, Incorporated

This manual was set by a Graphic Systems photo-
typesetter driven by the troff formatting program
operating under the UNIX system. The text of the
manual was prepared using the ed text editor.

.

PREFACE
to the Fifth Edition

The number of UNIX installations is now above 50, and many more are expected. None of these
has exactly the same complement of hardware or software. Therefore, at any particular installa-
tion, it is quite possible that this manual will give inappropriate information.

The authors are grateful to L. L. Cherry, L. A. Dimino, R. C. Haight, S. C. Johnson, B. W. Ker-
nighan, M. E. Lesk, and E. N. Pinson for their contributions to the system software, and to L. E.
McMahon for software and for his contributions to this manual. We are particularly appreciative
of the invaluable technical, editorial, and administrative efforts of J. F. Ossanna, M. D. Mcllroy,
and R. Morris. They all contributed greatly to the stock of UNIX software and to this manual.
Their inventiveness, thoughtful criticism, and ungrudging support increased immeasurably not
only whatever success the UNIX system enjoys, but also our own enjoyment in its creation.

INTRODUCTION TO THIS MANUAL

This manual gives descriptions of the publicly available features of UNIX. It provides neither a
general overview (see "The UNIX Time-sharing System" for that) nor details of the implementa-
tion of the system (which remain to be disclosed).

Within the area it surveys, this manual attempts to be as complete and timely as possible. A
conscious decision was made to describe each program in exactly the state it was in at the time
its manual section was prepared. In particular, the desire to describe something as it should be,
not as it is, was resisted. Inevitably, this means that many sections will soon be out of date.

This manual is divided intoeight sections:

I. Commands
II. System calls
III. Subroutines
IV. Special files
V. File formats
VI. User-maintained programs
VII. Miscellaneous
VIII. Maintenance

Commands are programs intended to be invoked directly by the user, in contradistinction to
subroutines, which are intended to be called by the user’s programs. Commands generally reside
in directory Ibin (for binary programs). This directory is searched automatically by the command
line interpreter. Some programs also reside in lusrlbin, to save space in Ibin. Some programs
classified as commands are located elsewhere; this fact is indicated in the appropriate sections.

System calls are entries into the UNIX supervisor. In assembly language, they are coded with the
use of the opcode sys, a synonym for the trap instruction. In this edition, the C language inter-
face routines to the system calls have been incorporated in section II.

A small assortment of subroutines is available; they are described in section III. The binary
form of most of them is kept in the system library Iiiblliba.a. The subroutines available from C
and from Fortran are also included; they reside in Iiibllibc.a and Ilibllibf.a respectively.

The "special files section IV discusses the characteristics of each system "file" which actually
refers to an I/O device. The names in this section refer to the DEC device names for the
hardware, instead of the names of the special files themselves.

The file formats section V documents the structure of particular kinds of files; for example, the
form of ttie output of the loader and assembler is given. Excluded are files used by only one
command, for example the assembler’s intermediate files.

User-maintained programs (section VI) are not considered part of the UNIX system, and the prin-
cipal reason for listing them is to indicate their existence without necessarily giving a complete
description. The author should be consulted for information.

The miscellaneous section (VII) gathers odds and ends.

Section VIII discusses commands which are not intended for use by the ordinary user, in some
cases because they disclose information in which he is presumably not interested, and in others
because they perform privileged functions.

Each section consists of a number of independent entries of a page or so each. The name of the
entry is in the upper corners of its pages, its preparation date in the upper middle. Entries
within each- secti6n are aiphabedzed. The page numbers of each entry start at 1~ (The earlier

hope for frequent, partial updates of the manual is clearly in vain, but in any event it is not
feasible to maintain consecutive page numbering in a document like this.)

All entries are based on a common format, not all of whose subsections will always appear.

The name section repeats the entry name and gives a very short description of its pur-
pose.

The synopsis summarizes the use of the program being described. A few conventions are
used, particularly in the Commands section: - -

Boldface words are considered literals, and are typed just as they appear.

Square brackets ([]) around an argument indicate that the argument is optional.
When an argument is given as "name", it always refers to a file name.

Ellipses "..." are used to show that the previous argument-prototype may be re-
peated.

A final convention is used by the commands themselves. An argument begin-
ning with a minus sign "--" is often taken to mean some sort of flag argument
even it" it appears in a position where a file name could appear. Therefore, it is
unwise to have files whose names begin with "--"

The description Section discusses in detail the subject at hand.

The files section gives the names of files which are built into the program.

A see also section gives pointers to related information.

A diagnostics section discusses the diagnostic indications which may be produced. Mes-
sages which are intended to be self-explanatory are not listed.

The bugs section gives known bugs and sometimes deficiencies. Occasionally also the
suggested fix is described.

At the beginning of this document is a table of contents, organized by section and alphabetically
within each section. There is also a permuted index derived from the table of contents. Within
each index entry, the title of the writeup to which it refers is followed by the appropriate section
number in parentheses. This fact is important because there is considerable name duplication
among the sections, arising principally from commands which exist only to exercise a particular
system call.

This manual was prepared using the UNIX text editor ed and the formatting program troff.

).

iii

HOW TO GET STARTED

This section provides the basic information you need to get started on UNIX: how to log in and
log out, how to communicate through your terminal, and how to run a program.

Logging in. You must call UNIX from ~in appropriate terminal. UNIX supports ASCII terminals
typified by the TTY 37, the GE Terminet 300, the Memorex 1240, and various graphical termi-
nals. You must also have a valid ~er name, which may be obtained, together with the tele-
phone number, from the system administrators. The same telephone number serves terminals
operating at all the standard speeds. After a data connection is established, the login procedure
depends on what kind of terminal you are using.

300-baud terminals: Siach terminals include the GE Terminet 300, most display termi-
nals, Execuport, TI, and certain Anderson-Jacobson terminals. These terminals generally
have a speed switch which should be set at "300" (or "30" for 30 characters per second)
and a half/full duplex switch which should be set at full-duplex. (Note that this switch
will often have to be changed since many other systems require half-duplex). When a
connection .is established., the system types "iogin:"; you type your user name, followed
by the "return" key. If you have a password, the system asks for it and turns off the
printer on the terminal so the password will not appear. After you have logged in, the
"return", "new line", or "linefeed" keys will give exactly the same results.

TTY 37 terminal: When you have established a data corlnection, the system types out a
few garbage characters (the "iogin:" message at the wrong speed). Depress the "break"
(or "interrupt") key; this is a speed-independent signal to UNIX that a 150-baud terminal
is in use. The system then will type "login:," this time at the correct speed; you respond
with your user name. From the TTY 37 terminal, and any other which has the "new-
line" function (combined carriage return and linefeed), terminate each line you type with
the "new-line" key (not the "return" key).

For all these terminals, it is important that you type your name in lower-case if possible; if you
type upper-case letters, UNIX will assume that your terminal cannot generate lower-case letters
and will translate all subsequent upper-case letters to lower case. "~

The evidence that you have successfully logged in is that the Shell program will type a "%" to
you. (The Shell is described below under "How to run a program.").

For more information, consult getty (VIII), which discusses the login sequence in more detail,
and tty (IV), which discusses typewriter I/O.

Logging out. There are three ways to log out:

You can simply hang up the phone.

You can log out by typing an end-of-file indication (EOT character, control "d") to the
Shell. The Shell will terminate and the "login: " message will appear again.

You can also log in directly as another user by giving a login command (I).

How to communicate through your terminal When you type to UNIX, a gnome deep in the system
is gathering your characters and saving them in a secret place. The characters will not be given
to a program until you type a return (or new-line), as described above in Logging in.

UNIX typewriter I/O is full-duplex. It has full read-ahead, which means that you can type at any
time, even while a program is typing at you. Of course, if you type during output, the output
will have the input characters interspersed. However, whatever you type will be saved up and
interpreted in correct sequence. There is a limit to the amount of read-ahead, but it is generous
and not likely to be exceeded unless the system is-in trouble. When th~ read-ahead limit is ex-
ceeded, the system throws away all the saved characters.

iv

On a typewriter input line, the character "@" kills all the characters typed before it, so typing
mistakes can be repaired on a single line. Also, the character "#" erases the last character typed.
Successive uses of "#" erase characters back to, but:not beyond, the beginning of the line. "@"
and "#" can be transmitted to a program by preceding them with "\". (So, to erase "\", you
need two "#"s).

The ASCII "delete" (a.k.a. "rubout") character is not passed to programs but instead generates an
interrupt signal. This signal generally causes whatever program you are running to terminate. It_
is typically used to stop a long prin’tout that you don’t want. However, programs can arrange ei-
ther to ignore this signal altogether, or to be notified when it happens (instead of being terminat-
ed). The editor, for example, catches interrupts and stops what it is doing, instead of terminat-
ing, so that an interrupt.can be used to halt an editor printout without losing the file being edit-
ed.

The quit signal is generated by typing the ASCII FS character. It not only causes a running pro-
gram to terminate but also generates a file with the core image of the terminated process. Quit is
useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent about whether you have
a terminal with the new-line function or whether it must be simulated with carriage-return and
line-feed. In the latter case, all input carriage returns are turned to new-line characters (the stan-
dard line delimiter) and both a carriage return and a line feed are echoed to the terminal. If you
get into the wrong mode, the stty command (i) will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have them turned into spaces during output, and echoed as spaces
during input. The system assumes that tabs are set every eight columns. Again, the stty com-
mand (I) will set or reset this mode. Also, there is a file which, if printed on "r’rY 37 or TermiNet
300 terminals, will set the tab stops correctly (tabs (VII)).

Section tty (IV) discusses typewriter I/O more fully. Section kl (IV) discusses the console type-
writer.
How to run a program; The Shell. When you have successfully logged into UNIX, a program called
the Shell is listening to your terminal. The Shell reads typed-in lines, splits them up into a com-
mand name and arguments, and executes the command. A command is simply an executable
program. The Shell looks first in your current directory (see next section) for a program With the
given name, and if none is there, then in a system directory. There is nothing special about
system-provided commands except, that they are kept in a directory where the Shell can find
them.

The command name is always the first word on an input line; it and its arguments are separated
from one another by spaces.

When a program terminates, the Shell will ordinarily regain control and type a "%" at you to in-
dicate that it is ready for another command.

The Shell has many other capabilities, which are described in detail in section sh(I).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he also created a directory for you (ordinarily with
the same name as your user name). When you log in, any file name you type is by default in
this directory. Since you are the owner of this directory, you have full permissions to read,
write, alter, or destroy its contents. Permissions to have your will with other directories and files
will have been granted or denied to you by their owners. As a matter of observed fact,-few UNIX.
users protect their files from destruction, let alone perusal, by other users.

To change the current directory (but not the set of permissions you were endowed with at login)
use chdir (I).

lJath names. To refer to files not in the current directory, you must use a path name. Full path
names begin with "/", the name of the root directory of the whole file system. After the slash
comes the name of each directory containing the next sub-directory (followed by a "/’9 until
finally the file name is reached. E.g.: lusrllemlf!lex refers to the file filex in the directory lem;
lem is itself a subdirectory of usr; usr springs directly from the root directory.

If your current directory has subdirectories, the path names of files therein begin with the name
of the subdirectory (no prefixed "/").

Without important exception, a path name may be used anywhere a file name is required.

Important commands which modify the contents of files are cp (I), my (I), and rm (I), which
respectively copy, move (i.e. rename) and remove files. To find out the status of files or direc-
tories, use is (I). See mkdir (I) for making directories; rmdir (I) for destroying them.

For a fuller discussion of the file system, see "The UNIX Time-Sharing System," by the present
authors, to appear in the Communications of the ACM; a version is also available from the same
source as this manual. It may also be useful to glance through section II of this manual, which
discusses system calls, even if you don’t intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use ed (I). The three
principal languages in UNIX are assembly language (see as (I)), Fortran (see fc (I)), and C (see cc (I)).
After the program text has been entered through the editor and written on a file, you can give
the file to the appropriate language processor as an argument. The output of the language proces-
sor will be left on a file in the current directory named "a.out". (If the output is precious, use mv
to move it to a less exposed name soon.) If you wrote in assembly language, you will probably
need to load the program with library subroutines; see/d (I). The other two language processors
call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the Shell in response to the "%" prompt.

The next command you will need is db (I). As a debugger, db is better than average for
assembly-language programs, marginally useful for C programs (when completed, cdb a) will be a
boon), and virtually useless for Fortran.

Your programs can receive arguments from the command line just as system programs do. See
exec (II).
Text processing. Almost all text is entered through the editor. The commands most often used
to write text on a terminal are: cat, pr, ruff, nroff, and troff, all in section I.

The cat command simply dumps ASCII text on the terminal, with no processing at all. The pr
command paginates the text, supplies headings, and has a facility for multi-column output. Troff
and nroffare elaborate text formatting programs, and require careful forethought in entering both
the text and the formatting commands into the input file. Troff drives a Graphic Systems
phototypesetter; it was used to produce this manual. Nroffproduces output on a typewriter ter-
minal. Ruff(I) is a somewhat less elaborate text formatting program, and requires somewhat less
forethought.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to use
them, it would be well to learn something about them, because someone else may aim them at
you.

To communicate with another user currently logged in, write (I) is used; mail (I) will leave a mes-
sage whose presence will be announced to another user when he next logs in. The write-ups in
the manual also suggest how to respond to the two commands if~ou are a target.

When you log in, a ~messag~f-the-day may greet you before the first "%"i

vi

TABLE OF CONTENTS

I. COMMANDS

cdb
chdir
chmod
chown
cmp
comm
cp
cref
date
db
dc
dd
diff
dsw
du
echo

eqn
exit
fc
fed
find
form
goto
prep

................. archive and library maintainer

.......................... assembler

..................... concatenate and print

.......................... C compiler

.......................... C debugger
change working directory

....................... change mode

...................... change owner
¯ compare two files
................ print lines common to two files

............................ copy
.................. make cross reference listing
..................... print and set the date
............................ debug
: ¯ ¯ ¯ desk calculator
.................... convert and copy a file
.................... differential file comparator
...................... delete interactively
..................... summarize disk usage

...................... echo arguments
.......................... text editor

typeset mathematics
.................... terminate command file

........................ Fortran compiler
.................... edit form letter memory
........................... find files

.................... form letter generator

..................... command transfer

.................. search a file for a pattern
conditional command

kill terminate a process
ld link editor
in make a link
login sign onto UNIX
lpr spool for line printer
Is list contents of directory
mail send mail to another user
man run off section of UNIX manual
mesg permit or deny messages
mkdir make a directory
mv move or rename a file
neqn typeset mathematics on terminal
nice run a command at low priority
nm print name list
nohup run a command immune to hangups
nroff format text
od octal dump
opr off line print
passwd set login password
pfe print floatingeXception

vii

pr

prof
ps
pwd
r~w
rm
rmdir
roff
sh
shift
siz~
sleep
sort
sp~ll
split
strip
stty
sum
t~
tim~
tp

troll"

try
typo
uniq
wait
wc
who
writ~

........................... print file

...................... display profile data

........................ process status
working directory name

.......................... rewind tape
remove (unlink) files

...................... remove directory
.......................... format text

shell (command interpreter)
.................... adjust Shell arguments

...................... size ot an object file
............... suspend execution for an interval

sort or merge files
..................... find spelling errors
.................... split a file into pieces
.............. remove symbols and relocation bits

..................... set typewriter options
........................... sum file

pipe fitting
...................... time a command

............... manipulate DECtape and magtape
........................... transliterate

.......................... format text

..................... interface to MH-TSS

...................... get typewriter name
..................... find possible typos
................. report repeated lines in a file

.................. await completion of process
word count

.................... who is on the system

.................... write to another user

II. SYSTEM CALLS

intro
break
chdir
chmod
chown
close
treat
csw
dup
exec
exit
fork
fstat
getgid
getuid
gtty
indir
kill
link..
mknod

................. introduction to system calls

.................... change core allocation

.................. change working directory
.................... change mode of file

change owner
......................... close a file
...................... create a new file

..................... read console switches

................ duplicate an open file descriptor
........................ execute a file

....................... terminate process

...................... spawn new process
.................... get status of open file
................... get group identifications
.................... get user identifications

...................... get typewriter status
..................... indirect system call

.................... send signal to a process

........................... link to a file
.............. make a directory or a special file

VIII

mount mount file system
nice set program priority
olin open for reading or writing
pipe ~ . .~ create an interprocess channel
profil execution time profile
read read from file
seek move read/write pointer
setgid set process group ID
setuid , set process user ID. _
signal catch or ignore signals
sleep stop execution for interval
stat ¯ " get file status
stime -. -- set time
stty set mode of typewriter
sync update super-block
time get date and time
times get process times
umount dismount file system
unlink - . , ~ remove directory entry
wait wait for process to terminate
write write on a file

IlL SUBROUTINES

alloc core allocator
atan arc tangent function

¯ atof ASCII to floating
crypt password encoding
ctime convert date and time to ASCII
ecvt output convdrsion
exp exponential function
floor floor and ceiling functions
fptrap floating point interpreter
gamma log gamma function
getarg get command arguments from Fortran
getc buffered input
getchar read character
getpw get name from UID
hmul high-order product
hypot calculate hypotenuse
ierror catch Fortran errors
ldiv long division
locv long output conversion
log natural logarithm
monitor prepare execution profile
nargs argument count
nlist get entries from name list
perror system error messages
pow floating exponentiation
printf formatted print
putt buffered output
putchar write character
qsort quicker sort-
rand random number generator

ix

reset
setfil
sin
sqrt
ttyn
vt

.................... execute non-local goto

.................. specify Fortran file name
................... sine and cosine functions
.................... ¯ ~ . square root function
................ return name of current typewriter
...................... display (vt01) interface

IV. SPECIAL FILES

cat
de
dh
dn
dp
kl
lp

.................... phototypesetter interface

................ DC-11 communications interface

............... DH-11 communications multiplexer
DN-11 ACU interface

................. DP-11 201 data-phone interface
.............. KL-11 or DL-11 asynchronous interface
........................... line printer

mem

rf
rk

tc
tiu
tm
tty
vs
vt

........................ core memory
PC-11 paper tape reader/punch¯ o ¯ ¯ ¯ .o ¯ ~o ¯ ¯ o. ¯ ¯ ¯ ¯ ¯ ¯

RF11/RS11 fixed-head disk file
.................. RK-11/RK03 (or RK05) disk
................. RP-11/RP03 moving-head disk

...................... TC-11/TU56 DECtape
........................ Spider interface
................ TM-11/TU-10 magtape interface
.................. general typewriter interface
................... voice synthesizer interface
..................... 11/20 (vt01) interface

V. FILE FORMATS

a.out assembler and link editor output
ar archive (library) file format
core format of core image file
dir format of directories
dump incremental dump tape format
fs format of file system volume
mtab ; mounted file system table
passwd password file
speak.m voice synthesizer vocabulary
tp DEC/mag tape formats
ttys typewriter initialization data
utmp user information
wtmp user login history

VI. USER MAINTAINED PROGRAMS

apl APL interpreter
azel satellite predictions
bas basic
bj the game of black jack
eal print calendar
eatsim phototypesetter simulator
chess -~.++.~... -.... + the game of chess
col filter reverse line feeds

cubic three dimensional tic-tac-toe
factor discover prime factors of a number
graf draw graph on GSI terminal
gsi interpret funny characters on GSI terminal
hyphen find hyphenated words
ibm
m6
maze
moo
npr
plog
plot
ptx
sfs
sky
SIlO
speak
spline
trng
ttt
wump
yacc

............... submit off-line job to HO IBM 370

................ general purpose macroprocessor
generate a maze problem

....................... guessing game
................. print file on Spider line-printer

make a graph on the gsi terminal
......................... make a graph
........................ permuted index
..................... structured file scanner
...................... obtain ephemerides
....................... Snobol interpreter

.................... word to voice translator

.................. interpolate smooth curve
....................... compiler-compiler
..................... the game of tic-tac-toe

................ the game of hunt-tho-wumpus

................ yet another compiler-compiler

VII. MISCELLANEOUS

ascii map of ASCII character set
greek graphics for extended TTY-37 type-box
tabs set tab stops
tmheader TM cover sheet
vs voice synthesizer code

VIII. SYSTEM MAINTENANCE

20boot install new 11/20 system
ac login accounting
boot procedures UNIX star.tup
check
clri
df
dpd
dump
getty
glob
init
lpd
mkfs
mknod
mount
rnsh
reloc
restor

su
sync

................. file system consistency check
......................... clear i-node

disk free
...................... data phone daemon

................ incremental file system dump

..................... set typewriter mode
................. generate command arguments
.................. process control initialization
...................... line printer daemon

.................... construct a file system
..................... build special file
..................... mount file system

mini Shell
relocate object files

................ incremental file system restore
....................... Shell accounting
.................... become privileged user

................... update the super block

xi

umount
updat~

................... dismount file system

............. periodically update the super block

xii

PERMUTED INDEX

20boot(VIII) install new
vt(iV)

dp(IV) DP-11

ibm(VI) submit off-line job to He IBM
ac(VIII) login
sa(VIII) Shell

tin(iV) DN-11

shift(I)
break(iI) change core

alloc(iII) core

yacc(VI) yet
mail(i) send mail to

write~) write to

apl(VI)

atan(iII)
ar(l)

ar(V)
nargs(III)

getarg(III) get command
echo(I) echo

glob(VIII)generate command
shift(l) adjust Shell

ascii(VII) map of
atof(iII)

ctime(III) convert date and time to

a.out(V)
as(I)

kl(IV) KL-11 or DL-11
nice(I) run a command

wait(i)

bas(VI)

su(VIII)
strip(I) remove symbols and relocation

bj(VI) the game of
sync(VllI) update the super

update(VIII) periodically update the super

11/20 system
11/20 (vt01) interface
20i data-phone interface
20boot(Viii) install new 11/20 system
370
accounting
accounting
ACU interface
ac(VIII) iogin accounting
adjust Shell arguments
allocation
allocator
alloc(III) core allocator
another compiler-compiler
another user
artother user
a.out(V) assembler and link editor output
APL interpreter
apl(VI) APL interpreter
arc tangent function
archive and library maintainer
archive (library) file format
argument count
arguments from Fortran
arguments
arguments
arguments
ar(I) archive and library maintainer
ar(V) archive (library) file format
ASCII character set
ASCII to floating
ASCII
ascii(Vii) map of ASCII character set
as(i) assembler
assembler and link editor output
assembler
asynchronous interface
at low priority
atan(III) arc tangent function
atof(IIi) ASCII to floating
await completion of process
azel(VI) satellite predictions
basic
bas(vI) basic
become privileged user
bits
bj(vI) the game of black jack
black jack
block
block
boot procedures(Viii) UNIX startup,

Xlll

restor(Vlll) incremental
mtab(V) mounted

fs(V) format of
mkfs(Vlll) construct a

mount(iI) mount
mount(VIII) mount

umount(iI) dismount
umount(VIII) dismount

chmod(II) change mode of
close(II) close a

core(V) format of core image
creat(iI) create a new

dd(I) convert and copy a
exec(iI) execute a

exit(i) terminate command
fstat(iI) get status of open

link(iI) link to a
mknod(II) make a directory or a special

mknod(VllI)build Special
mv(I) move or rename a

passwd(V) password
pr(i) print

read(if) read from
r~V) RFII/RSII fixed-head disk

cmp(i) compare two
comm(i) print lines common to two

find(1) find
size(1) size of an object

reloc(VIII) relocate object
rrn(i) remove (unlink)

sort(i) sort or merge
sum(i) sum

uniq(i) report repeated lines in a
write(II) write on a

col(VI)
find(i)

hyphen(VI)
typo(I) ’
spell(i)

tee(I) pipe
rf(IV) RF11/RS11

pfeO) print
pow(III)

fptrap(III)
atof(III) ASCII to

floor(III)

file system restore
file system table
file system volume
file system
file system
file system
file system
file system
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
files
files
files
file
files
files
files
file
file
file
filter reverse line feeds
find files
find hyphenated words
find possible typos
find spelling errors
find(i) find files
fitting
fixed’head disk file
floating exception
floating exponentiation
floating point interpreter
floating
floor and ceiling functions
floor(ill) floor and ceiling functions
fork(II) spawn new process

form(i) form letter generator
fed(1) edit form letter memory

core(V) format of core image file
dir(V) format of directories
fs(V) format of file system volume

XVIll

sh(I) shell
goto(i)

if(I) conditional
time(I) time a

comm(i) print lines
dc(IV) DC-11

’dh(IV) OH-11
ditI(I) differential file

cmp(i)
cc(I) C

tmg(VI)
yacc(VI) yet another

fc(i) Fortran
wait(I) await

eat(I)
if(I)

check(VIII) file system
¯ csw(II) read

mkfs(VllI)
Is(I) list

init(VIII) process
ecvt(III) output

locv(III) long output
dd(i)

ctime(III)
dd(I) convert and

cp(i)
break(II) change

alloc(IlI)
core(V) format of

mere(iV)

sin(iII) sine and
nargs(iID argument

wc(1) word
tmheader(VII) TM

creat(II)
pipe(iI)

cref(I) make

ttyn(Ill) return name of
spline(Vl) interpolate smooth

dpd(Vlll) data phone
lpd(Vlll) line printer

dpd(VllI)
dp(IV) DP-11 201

prof(I) display profile

(command interpreter)
command transfer
command
command
comm(i) print lines common to two files
common to two files
communications interface
communications multiplexer
comparator
compare two. files
compiler
compiler-compiler
compiler-compiler
compiler
completion of process
concatenate and print
conditional command
consistency check
console switches
construct a file system
contents of directory
control initialization
conversion
conversion
convert and copy a file
convert date and time to ASCII
copy a file
copy
core allocation
core allocator
core image file
core memory
core(V) format of core image file
cosine functions
count
count
cover sheet
cp(I) copy
create a new file
create an interprocess channel
creat(II) create a new file
creffI) make cross reference listing
cross reference listing
crypt(III) password encoding
csw(II) read console switches
ctime(III) convert date and time to ASCII
cubic(VI) three dimensional tic-tac-toe
current typewriter
curve
daemon
daemon
data phone daemon
data-phone interface
data

xv

ttys(V) typewriter initialization
ctime(III) convert

time(II) get
date(I) print and set the

dc(IV)

db(1)
cdb(1) C

tp(V)
tp(1) manipulate

tc(IV) TC-11/TU56
dsw(I)

mesg(1) permit or
dup(II) duplicate an open file

dc)

dh(IV)

~lift(I)

cubic(VI) three
dir(V) format of

unlink(II) remove
pwd(I) working

mknod(II) make a
chdir(I) change working
chdir(II) change working

Is(I) list contents of
rnkdir(I) make a
rmdir(I) remove

factor(Vl)
rffIV) RF11/RS11 fixed-head

df(VIII)
du(I) summarize

rk(IV) RK-11/RK03 (or RK05)
rp(IV) RP-11/RP03 moving-head

umountflI)
umount(VIII)

pro~)
vt(III)

ldiv(III) long
kl(IV) KL-11 or

dn(IV)

dp(IV)

_ gr~’VI)

data
date and time to ASCII
date and time
date
date(I) print and set the date
db(I) debug
DC-11 communications interface
dc(I) desk calculator
dc(iV) DC-11 communications interface
dd(I) convert and copy a file
debug
debugger
DEC/mag tape formats
DECtape and magtape
DECtape
delete interactively
deny messages
descriptor
desk calculator
dr(VIII) disk free
DH-11 communications multiplexer
dh(IV) DH-11 communications multiplexer
differential file comparator
dill(I) differential file comparator
dimensional tic-tac-toe
directories
directory entry
directory name
directory or a special file
directory
directory
directory
directory
directory
dir(V) format of directories
discover prime factors of a number
disk file
disk free
disk usage
disk
disk
dismount file system
dismount file system
display profile data
display (vt01) interface
division
DL-11 asynchronous interface
DN-11 ACU interface
dn(IV) DN-Id ACU interface
DP-11 201 data-phone interface
dpd(Vlll) data phone daemon
dp(IV) DP-11 201 data-phone interface
tiraw graph onGSl terminal
dsw(1) delete interactively

xvi

dump(V) incremental
dump(VIII) incremental file system

od(i) octal

dup(iI)
echo(I)

fed(I)
a.out(V) assembler and link

ed(I) text
ld(I) link

crypt(III) password
nlist(III) get

unlink(II) remove directory
sky(VI) obtain

perror(iII) system
ierror(iII) catch Fortran

spell(I) find spelling
pfe(i) print floating

exec(II)
reset(liD

sleep(I) suspend
sleep(ID stop

monitor(Ill) prepare
profil(II)

exp(III)
pow(III) floating

greek(VII) graphics for
factor(VI) discover prime

col(VI) filter reverse line
diff(I) differential

dup(II) duplicate an open
grep(i) search a

ar(V) archive (library)
split(I) split a

setfil(III) specify Fortran
npr(VI) print

sfs(VI) structured
stat(II) get

check(VIII)
dump(VIII) incremental

du(I) summarize disk usage
dump tape format
dump
dump
dump(V) incremental dump tape format
dump(VIII) incremental file system dump
dup(II) duplicate an open file descriptor
duplicate an open file descriptor
echo arguments
echo(I) echo arguments
ecvt(III) output conversion
ed(I) text editor
edit form letter memory
editor output
editor
editor
encoding
entries from name list
entry
ephemerides
eqn(I) typeset mathematics
error messages
errors
errors
exception ~
exec(iI) execute a file
execute a file
execute non-local goto
execution for an interval
execution for interval
execution profile
execution time profile
exit(I) terminate command file
exit(II) terminate process
exp(iII) exponential function
exponential function
exponentiation
extended TTY-37 type-box
factors of a number
factor(VI) discover prime factors of a number
fc(i) Fortran compiler
fed(I) edit form letter memory
feeds
file comparator
file descriptor
file for a pattern
file format
file into pieces
file name
file on Spider line-printer
file scanner
file status
file system consistency check
file system dump

xvii

restor(VIII) incremental
mtab(V) mounted

fs(V) format of
mkfs(VIII) construct a

mount(if) mount
mount(VIII) mount

umount(ID dismount
umount(Vlll) dismount

chmod(II) change mode of
closeOI) close a

core(V) format of core image
creat(II) create a new

dd(I) convert and copy a
exec(ID execute a

exit(i) terminate command
fstat(II) get status of open

link(II) link to a
mknod(II) make a directory or a special

mknod(VIII) build special
my(I) move or rename a

passwd(V) password
pr(1) print

read(II) read from
rf(IV) RFll/R.Sll fixed-head disk

cmp(i) compare two
comm(I) print lines common to two

find(I) find
size(I) size of an object

reloc(VIII) relocate object
rm(i) remove (unlink)
sort(1) sort or merge

sum(i) sum
uniq(I) report repeated lines in a

write(ID write on a
col(VI)
find(1)

hyphen(VI)
typoO)
spell(I)

tee(I) pipe
rfflV) RFll/RSll

pfe(I) print
pow(III)

fptrap(III)
atof(III) ASCII to

floor(III)

form(i)
fed(1) edit
__ cor6V)

dir(V)
fs(V)

file system restore
file system table
file system volume
file system
file system
file system
file system
file system
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
file
files ¯

files
files
file
files
files
files
file
file
file
filter reverse line feeds
find files
find hyphenated words
find possible typos
find spelling errors
find(i) find files
fitting
fixed-head disk file
floating exception
floating exponentiation
floating point interpreter
floating
floor and ceiling functions
floor(Ill) floor and ceiling functions
fork(If) spawn new process
form letter generator
form letter memory
format of core image file
format of directories
format of file system volume

,,o
XVlll

nrolt[I)
rott[I)

troff(I)
ar(V) archive (library) file

dump(V) incremental dump tape
tp(V) DEC/mag tape

printf(III)

fc(i)
ierror(iII) catch

setfil(III) specify
getarg(III) get command arguments from

df(VIII) disk
read(II) read.

getarg(III) get command arguments
nlist(iII) get entries
getpw(llI.) get name

atan(III) arc tangent
exp(III) exponential

gamma(Ill) log gamma
floor(Ill) floor and ceiling

sqrt(III) square root
sin(Ill) sine and cosine

gsi(VI) interpret
¯ bj(VI) the

chess(VI) the
wump(VI) the

ttt(VI) the
¯ moo(VI) guessing

gamma(Ill) log

m6(VI)
tty(IV)

-maze(VI)
glob(VIII)

form(I) form letter
rand(III) random number

getarg(III)
time(II)
nlist(III)

stat(II)
getgid(II)

getpw(III)
times(II)
fstat(II)

try(I)
gtty(II)

getuid(II)

format text
format text
format text
format
format
formats
formatted print
form(I) form letter generator
Fortran cOmpiler . .
Fortran errors
Fortran file name
Fortran
fptrap(III) floating point interpreter
free
from file
from Fortran
from name list
from UID
fstat(II) get status of open file
fs(V) format of file system volume
function
function
function
functions
function
functions
funny characters on GSI terminal
game of black jack
game of chess
game of hunt-the-wumpus
game of tic-tac-toe
game
gamma function
gamma(Ill) log gamma function
general purpose macroprocessor
general typewriter interface
generate a maze problem
generate command arguments
generator
generator
get command arguments from Fortran
get date and time
get entries from name list
get file status
get group identifications
get name from UID
get process times
get status of open file
get typewriter name
get typewriter status
get user identifications
getarg(III) get command arguments from Fortran
getchar(III) read character
getc(Ill) buffered input

xix

reset(III) execute non-local

graf(VI) draw
plog(VD make a

greek(VII)
plot(VD make a

getgid(II) get
setgid(II) set process

graf(VI) draw graph on
gsi(VI) interpret funny characters on

plog(vD make a graph on the

moo(VI)
nohup(1) run a command immune to

hmul(III)
wtmp(V) user login

ibm(VI) submit off-line job to
wump(VI) the game of

hyphen(vI) find

hypot(III) calculate

ibm(vI) submit off-line job to HO

getgid(II) get group
getuid(II) get user

setgid(II) set process group
setuid(II) set process user

signal(II) catch or
core(V) format of core

nohup(I) run a command
uniq(I) report repeated lines

dump(V)
dump(viii)
restor(VIII)

ptx(VI) permuted
indir(II)

utmp(V) user
ttys(V) typewriter

init(vIlI) process control

getgid(ll) get group identifications
getpw(lll) get name from UID
getty(VIII), set typewriter mode
getuid(II) get user identifications
glob(VllI) generate command arguments
goto(1) command transfer
goto
gratWl) draw graph on GSI terminal
graph on GSI terminal
graph on the gsi terminal
graphics for-extended TTY-37 type-box
graph
greek(VII) graphics for extended TI’Y-37 type-box
grep(1) search a file for a pattern
group identifications
group ID
GSI terminal
GSI terminal
gsi terminal
gsi(VI) interpret funny characters on GSI terminal
gtty(ll) get typewriter status
guessing game
hangups
high-order product
history
hmul(IIl) high-order product
HO IBM 370
hunt-the-wumpus
hyphenated words
hyphen(VI) find hyphenated words
hypotenuse
hypot(llI) calculate hypotenuse
IBM 370
ibm(VI) submit off-line job to HO IBM 370
identifications
identifications
ID
ID
ierror(III) catch Fortran ei’rors
if(I) conditional command
tgnore signals
~mage file
tmmune to hangups
tn a file
mcremental dump tape format
incremental file system dump
incremental file system restore
index t

indirect system call
indir(ll) indirect system call
information
initialization data
initialization
init(vlll) process control initialization

xx

clri(VIIl) clear
getc(iII) buffered

20boot(VIII)
dsw(I) delete

ts~)
cat(iV) phot6typesetter

de(IV) DC-11 communications
dn(IV~) DN-11 ACU

d0(IV) DP-11 201 data-phone
kl(iV) KL-11 or DL-11 asynchronous

tiu(IV) Spider
tm(iV) TM-11/TU-10 magtape

tty(IV) general typewriter
vs(iV) voice synthesizer

vt(III) display (vt01)
vt(IV) 11/20 (vt01)

spline(VD
gsi(VI)

apl(VI) APL
fptrap(III) floating point

sh(I) shell (command
sno(Vl) Snobol

pipeOI) create an
sleep(i) suspend execution for an

sleep(II) stop execution for
split(i) split a file

intro(II)

bj(Vl) the game of black
ibm(Vl) submit off-line

kl(iV)

form(i) form
fed(i) edit form

affV) archive
ar(l) archive and

col(Vl) filter reverse
lpd(VIII)

lp(iV)
lpr(I) spool for

opt(I) off"
npr(VI) print file on Spider

comm(I) print
uniq(I) report repeated
a.out(V) assembler and

Id(i)
link(iI)

In(i) make a
Is(1)

i-node
input
install new 11/20 system
interactively
interface to MH-TSS
interface
interface
interface . _
interface
interface
interface
interface
interface
interface
interface
interface
interpolate smooth curve
interpret funny characters on GSI terminal
interpreter
interpreter
interpreter)
interpreter
interprocess channel
interval
interval
into pieces
introduction to system calls
intro(iI) introduction to system calls
jack
job to HO IBM 370
kill(i) terminate a process
kill(II) send signal to a process
KL-11 or DL-11 asynchronous interface
kl(IV) KL-11 or DL-11 asynchronous interface
id(I) link editor
ldiv(III) long division
letter generator
letter memory
(library) file format
library maintainer
line feeds
line printer daemon
line printer
line printer
line print
line-printer
lines common to two files
lines in a file
link editor output
link editor
link to a file
link(II) link to a file
link
list.contents of directory

xxi

eref(1) make cross reference
nlist(lll) get entries from name

nm(i) print name

gamma(ill)
log(Ill) natural

ac(VIII)
wtmp(V) user
passwd(l) set

ldiv(III)
locv(III)

nice(I) run a command at

m6(Vl) general purpose
tm(iV) TM-11/TU-10

tp(I) manipulate DECtape and
mail(I) send

ar(I) archive and library
rnknod(iI)

mkdir(I)
plog(VD
plot(VI)

In(I)
cref(1)

tp(I)
man(i) run off section of UNIX

ascii(VII)
neqnfl) typeset
eqn(I) typeset

maze(VI) generate a

fed(i) edit form letter
mem(IV) core
sort(i) sort or

mesg(I) permit or deny
perror(IID system error

tss(l) interface to
msh(VIID

chmod(II) change

listing
list
list ,:
In(1) make a link
locv(lll) long output conversion
log gamma function
logarithm
log(ill) natural logarithm
login accounting
login history
login password
login(I) sign onto UNIX
long division
long output conversion
low priority
lpd(Vlll) line printer daemon
lp(IV) line printer
lpr(I) spool for line printer
Is(i) list contents of directory
m6(VI)general purpose macroprocessor
macroprocessor
magtape interface
magtape
mail to another user
mail(I) send mail to another user
maintainer
make a directory or a special file
make a directory
make a graph on the gsi terminal
make a graph
make a link
make cross reference listing
man(I) run off section of UNIX manual
manipulate DECtape and magtape
manual
map of ASCII character set
mathematics on terminal
mathematics
maze problem
maze(VI) generate a maze problem
mere(IV) core memory
memory
memory
merge files
mesg(I) permit or deny messages
messages
messages
MH-TSS ,
mini Shell
rnkdir(i) make a directory
rnkfs(VllI) construct a file system
mknod(iI) make a directory or a special.file
mknod(VIII) build special file
mode of file

xxii

stty(II) set
chmod(i) change

getty(VIII) set typewriter

mount(iI)
mount(VIII)

mtab(V)

my(I)
seek(II)

r̄p(IV) RP-11/RP03

dh(IV) DH-11 communications

getpw(llI) get
" nlist(iII) get entries from

nm(i) print
ttyn(iII) return

pwd(i) working directory
setfil(III) specify Fortran file

tty(i) get typewriter

log(Ill)

20boot(VIII) install
creat(II) create a

fork(iI) spawn

reset(liD execute

rand(III) random
factor(Vl) discover prime factors of a

size(I) size of an
reloc(VllI) relocate

sky(VI)
od(1)

opr(I)
man(I) run

ibm(VI) submit
login(I) sign

dup(II) duplicate an
fstat(II) get status of

open(II)

name
name
name
name
name
name
name

mode of typewriter
mode
mode
monitor(liD prepare execution profile
moo(VI) guessing game
mount file system
mount file system
mounted file system table
mount(II) mount file system
mount(VIII) mount file system
move or rename a file
move read/write pointer
moving-head disk
msh(VIII) mini Shell
mtab(V) mounted file system table.
multiplexer
mv(I) move or rename a file

from UID
list
list
of current typewriter

nargs(IID argument count
natural logarithm
neqn(I) typeset mathematics on terminal
new 11/20 system
new file
new process
nice(i) run a command at low priority
nice(II) set program priority
nlist(III) get entries from name list
nm(I) print name list
nohup(I) run a command immune to hangups
non-local goto
npr(VI) print file on Spider line-printer
nroff(I) format text
number generator
number
object file
object files
obtain ephemerides
octal dump
od(I) octal dump
off line print
off section of UNIX manual
off-line job to HO IBM 370
onto UNIX
open file descriptor
open file
open for reading or writing
open(II) open for reading or writing
opr(I) off line print

xxiii

stty(I) set typewriter
rk(IV) RK-11/RK03

ecvt(iID
locv(iII) long

a.out(V) assembler and link editor
putc(III) buffered
chown(I) change
chown(II) change

pc(IV) PC-11

crypt(iII)
passwd(V)

passwd(D set login
grep(I) search a file for a

pc(IV)

update(VIII)
mesg(i)
ptx(Vl)

dpd(VIID data
cat(IV)

catsim(VI)
split(1) split a file into

tee~)

fptrap(III) floating
seek(II) move read/write

typo(I) find

azel(VI) satellite
monitor(liD

factor(VI) discover
date(I)
cal(VI)
npr(VI)

pr(I)
pfe(I)

comm(I)
nm(l)

cat(I) concatenate and
lpd(VIII) line

lp(IV) line
lpr(I) spool for line

oprfl) off line
printf(III) formatted

ni~) run a comi’hand atiow
nice(II) set program

options
(or RK05) disk
output conversion
output conversion
output
output
owner
owner
paper tape reader/punch
passwd(I) set login password
passwd(V) password file
password encoding
password file
password
pattern
PC-11 paper tape reader/punch
pc(iV) PC-11 paper tape reader/punch
periodically update the super block
permit or deny messages
permuted index
perror(IlI) system error messages
pfe(i) print floating exception
phone daemon
phototypesetter interface
phototypesetter simulator
pieces
pipe fitting
pipe(II) create an interprocess channel
plog(VI) make a graph on the gsi terminal
plot(VI) make a graph
point interpreter
pointer
possible typos
pow(III) floating exponentiation
predictions
prepare execution profile
pr~) print file
prime factors of a number
print and set the date
print calendar
print file on Spider line-printer
print file
print floating exception
print lines common to two files
print name list
print
printer daemon
printer
printer
printf(III) formatted print
print
print
priority
priority

xxiv

su(VIlI) become
maze(VI) generate a maze

boot
init(VIII)

setgid(II) set
ps(I)

times(II) get
wait(iI) wait for

’ setuid(II) set
exit(II) terminate

fork(lI) spawn new
kill(I) terminate a

kili(II) send signal to a
wait(I) await completion of

hmul(iII) high-order

prof(I) display
mon!tor(III) prepare execution

profil(II) execution time

nice(II) set

m6(VI) general

qsort(III)

rand(III)
getchar(III)

csw(II)
read(II)

pc(IV) PC-11 paper tape

open(II) open for
seek(II) move

cref(I) make cross
reloc(VIII)

strip(I) remove symbols and

unlink(II)
rmdir(I)
strip(I)

rm(I)
mv(i) move or
uniq(I) report

uniq(I)

restor(VIII) incremental file system

- ttyn(iII)-
col(VI) filter

privileged user
problem
pr, ocedures(VIII) UNIX startup
process control initialization
process group ID
process status
process times
process to terminate
process user ID
process
process
process
process
process
product
prof(i) display profile data
profile data
profile
profile
profii(II) execution time profile
program priority
ps(I) process status
ptx(Vl) permuted index
purpose macroprocessor
putchar(III) write character
putc(llI) buffered output
pwd(l) working directory name
qsort(III) quicker sort
quicker sort
rand(Ill) random number generator
random number generator
read character
read console switches
read from file
reader/punch
read(iI) read from file
reading or writing
read/write pointer
reference listing
relocate object files
relocation bits
reloc(VIII) relocate object files
remove directory entry
remove directory
remove symbols and relocation bits
remove (unlink) files
rename a file
repeated lines in a file
report repeated lines in a file
reset(Ill) execute non-local goto
restore
restor(VIIl) incremental file system restore
return name of current typewriter
reverse line feeds

xxv

rew(1)
if(IV)

rk(IV) RK-i 1/RK03 (or
rk(IV)

sqrt(III) square
rp(IV)

nice(I)
nohup(l)

man(I)
azel(VI)

sfs(VI) structured file
grep(l)

man(1) run off

mail(i)
kill(iI)

passwd(i)
stty(II)

setgid(iI)
setuid(II)

nicegl)
tabs(VII)

date(I) print and
stime(II)

getty(VIID
stty(I)

ascii(VII) map of ASCII character

tmheader(VII) TM cover
sa(VIII)

shift(I) adjust
sh(1)

msh(VIII) mini

login(l)
kill(II) send

signal(R) catch or ignore
catsim(Vl) phototypesetter

sin(ill)-

size(l)

rew(I) rewind tape
rewind tape
RF11/RSI 1 fixed-head disk file
rfflV) RFll/RSll fixed-head disk file
RK05) disk
RK-11/RK03 (or RK05) disk
rk(iV) RK-11/RK03 (or. RK05) disk
rmdir(i) remove directory
rm(I) remove (unlink) files
roft~l) format text
root function
RP-11/RP03 moving-head disk
rp(IV) RP-11/RP03 moving-head disk
run a command at low priority
run a command immune to hangups
run off section of UNIX manual
satellite predictions
sa(VIlI) Shell accounting
scanner
search a file for a pattern
section of UNIX manual
seek(II) move read/write pointer
send mail to another user
send signal to a process
set login password
set mode of typewriter
set process group ID
set process user ID
set program priority
set tab stops
set the date
set time
set typewriter mode
set typewriter options
set
setfil(III) specify Fortran file name
setgid(II) set process group ID
setuid(II) set process user. ID
sfs(Vl) structured file scanner
sheet
Shell accounting
Shell arguments
shell (command interpreter)
Shell
sh(I) shell (command interpreter)
shift(i) adjust Shell arguments
sign onto UNIX
signa’ "o a process
signal(II) catch or ignore signals
signals
simulator
sine-and cosine functions
sin(Ill) sine and cosine functions
size of an object file

xxvi

spline(VI) interpolate
sno(VI)

sort(l)

qsOrt(iII) quicker
forl6II)

mknod(II) make a directory or a
mknod(VIII) build

setfil(I,’~

spell(I) find
tiu(IV)

npr(Vl) print file on

split(I)

lpr(I)

sqrt(III)
boot procedures(VIII) UNIX

fstat(iI) get
gtty(II) get typewriter

ps(I) process
stat(II) get file

sleep(iI)
tabs(Vii) set tab

sfs(VI)

ibm(VI)
sum(I)

du(I)
sync(VIII) update the

update(VIII) periodically update the
sync(II) update

sleep(I)

csw(II) read console
strip(I) remove

vs(VlI) voice
vs(IV)voice

size(I) size of an object file
sky(VI) obtain ephemerides
sleep(I) suspend execution for an interval
sleep(II) stop execution for interval
smooth curve
Snobol interpreter
sno(VI) Snobol interpreter
sort or merge files
sort(I) sort or merge files
sort
spawn new process
speak.m(V) voice synthesizer vocabulary
speak(VI) word to voice translator
special file
special file
specify Fortran file name
spell(I) find spelling errors
spelling errors
Spider interface
Spider line-printer
spline(VI) interpolate smooth curve
split a file into pieces
split(I) split a file into pieces
spool for line printer
sqrt(III) square root function
square root function
startup
stat(II) get file status
status of open file
status
status
status
stime(II) set time
stop execution for interval
stops
strip(I) remove symbols and relocation bits
structured file scanner ¯

stty(I) set typewriter options
stty(II) set mode of typewriter
submit off-line job to HO IBM 370
sum file
sum(i) sum file
summarize disk usage
super block
super block
super-block
suspend execution for an interval
su(VIII) become privileged user
switches
symbols and relocation bits
sync(iI) update super-block
sync(VllI) update the super block
synthesizer code
synthesizer interface

x×vii

speak.m(V) voice
indir(II) indirect

intro(II)introduction to
check(VIII) file

dump(VIII) incremental file
perrorflID

restor(VIII) incremental file
mtab(V) mounted file

fs(V) format of file
20boot(VIII) install new 11120

mkfs(VIII) construct a file
mount(II) mount file

mount(VIID mount file
umount(II) dismount file

umount(VIII) dismount file
whoO) who is on the

tabs(VII) set
mtab(V) mounted file system

atan(IID arc
dump(V) incremental dump

tp(V) DEC/mag
pc(IV) PC-11 paper

rew(I) rewind
to(IV)

graf(VI) draw graph on GSI
gsi(VI) interpret funny characters on GSI

neqn(I) typeset mathematics on
plog(VI) make a graph on the gsi

kill(I)
exit(I)
exit(II)

wait(II) wait for process to
cA(I)

nrofl~I) format.
roff(I) format
trofl~I) format

cubie(VI)
cubic(VI) three dimensional

ttt(VI) the game of
"time(I)

profil(II) execution
ctime(III) convert date and

stime(iI) set
times(ll) get process
time(II) get date and

tmheader(VII)
tm(IV)

synthesizer vocabulary
system call
system calls
system consistency check
system dump
system error messages
system restore
system table
system volume
system
system
system
system
system
system
system
tab stops
table
tabs(Vii) set tab stops
tangent function
tape format
tape formats
tape reader/punch
tape
TC-1 lfl’U56 DECtape
tc(IV) TC-11/TU56 DECtape
tee(i) pipe fitting
terminal
terminal
terminal
terminal
terminate a process
terminate command file
terminate process
terminate
text editor
text
text
text
three dimensional tic-tac-toe
tic-tac-toe
tic-tac-toe
time a command
time profile
time to ASCII
time(I) time a command
time(II) get date and time
times(II) get i~rocess times
time
times
time
flu(IV) Spider interface
TM cover sheet -~
TM-11ffU-10 magtape interface

XXVIII

.

goto(I) command
speak(Vl) word to voice

trO)

greek(VII) graphics for extended

crop(1) compare
comm(1) print lines common to

greek(VII) graphics for extended TTY-37
neqn(1)

eqn(1)
ttys(V)

try(IV) general
getty(VIII) set

tty(1) get
stty(I) set

gtty(II) get
stty(II) set mode of

ttyn(III) return name of current

typo(i) find possible
getpw(III) get name from

man(i) run off section of
boot procedures(VIII)

login(I) sign onto
rm(I) remove

sync(II)
sync(VIII)

update(VIII) periodically

du(I) summarize disk
getuid(II) get

setuid(II) set process
utmp(V)
wtmp(V)

mail(1) send mail to another
su(VIII) become privileged

write(I) write to another

tmg(Vl) compiler-compiler
tmheader(VII) TM cover sheet
tm(iV) TM-11/TU-10 magtape interface
tp(I) manipulate DECtape and magtape
tp(V) DEC/mag tape formats
transfer
translator
transliterate
tr(I) transliterate
troff(I) format text
tss(i) interface to MH-TSS
ttt(VI) the game of tic-tac-toe
TTY-37 type-box
tty(I) get typewriter name
tty(iV) general typewriter interface
ttyn(III) return name of current typewriter
ttys(V) typewriter initialization data
two files
two files
type-box
typeset mathematics on terminal
typeset mathematics
typewriter initialization data
typewriter interface
typewriter mode
typewriter name
typewriter options
typewriter status
typewriter
typewriter
typo(I) find possible typos
typos
UID
umount(ID dismount file system
umount(VIII) dismount file system
uniq(I) report repeated lines in a file
UNIX manual
UNIX startup
UNIX
(unlink) files
unlink(II) remove directory entry
update super-block
update the super block
update the super block
update(VIII) periodically update the super block
usage
user identifications
user ID
user information
user login history
user
user
user
utmp(V) user information

xxix

speak.m(V) voice synthesizer
vs(VIl)
vs~V)

speak.m(V)
speak(VI) word to

fs(V) format of file system

vt(lII) display
vt(IV) 11/20

wait(II)

who(i)

we(i)
speak(VI)

hyphen(Vl) find hyphenated
pwd(I)

chdir(I) change
chdir(ID change

putchar(III)
write(ID
write~)

open(II) open for reading or

yacc(VI)

vocabulary
voice synthesizer code
voice synthesizer interface
voice synthesizer vocabulary
voice translator
volume
vs(iV) voice synthesizer interface
vs(VIl) voice synthesizer code
(vtO1) interface
(vtO1) interface
vt(lll) display (vtO1) interface
vt(IV) 11/20 (vtO1) interface
wait for process to terminate
wait(I) await completion of process
wait(II) wait for process to terminate
we(I) word count
who is on the system
who(I) who is on the system
word count
word to voice translator
words
working directory name
working directory
working directory
write character ¯
write on a file
write to another user
write(I) write to another user
write(II) write on a file
writing
wtmp(V) user login history
wump(Vl) the game of hunt-t.he-wumpus
yacc(VI) yet another compiler-compiler
yet another compiler-compiler

xxx

AR (1) 3115/72 AR (I)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key afile name ...

DESCRIPTION
Ar maintains groups of files combined into a single archive file. Its main use is to create and. .uP"
date library files as used by the ~loader. It can be used, though, for any similar purpose.
Key is one character from the set drtux, optionally concatenated with v. Afile is the archive file.
The names are constituent files in the archive file. The meanings of the key characters are:

d means delete the named files from the archive file.
r means replace the named files in the archive file. If the archive file does not exist, r will cr.eate
it. If the named files are not in the archive file, they are appended.
t prints a table of contents of the archive file. If no names are given, all files in the archive are
tabled. If names are given, only those files are tabled.
u is similar tO r except that only those files that have been modified are replaced. If no names
are given, all files in the archive that have been modified will be replaced by the modified ver-
sion.
x will extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file.
v means verbose. Under the verbose option, ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. The following abbreviations are
used:

e copy
a append
d delete
r replace
x extract

/tmp/vtm? temporary

SEE ALSO
ld (I), archive (V)

BUGS
Option tv should be implemented as a table with more information.
There should be a way to specify the placement of a new file in an archive. Currently, it is
placed at the end.
Since ar has not been rewritten to deal properly with the new file system modes, extracted files
have mode 666.
For the same reason, names are only maintained to 8 characters.

-1-

AS(I) 1/15/73 AS(I)

NAME
as - assembler

SYNOPSIS
as [-] name ...

DESCRIPTION
As assembles the concatenation of the .named files. If the optional first argument - is used, all
undefined symbols in the assembly are treated as global. ~
The output of the assembly is left on the file a.out. It is executable if no errors occurred during
the assembly, and if there were no unresolved external references.

/etc/as2 pass 2 of the assembler
/tmp/atm[1-4]? temporary
a.out object

SEE ALSO
ld(l), nm(I), db(l), a.out(V), ’UNIX Assembler Manual’. -

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed and assembly
ceases. When syntactic or semantic errors occur, a single-character diagnostic is typed out to-
gether with the line number and the file name in which it occurred. Errors in pass 1 cause can-
cellation of pass 2. The possible errors are:

)
1

B
E
F
G
I
M
O
P
R
U
X

Parentheses error
Parentheses error
String not terminated properly
Indirection used illegally
Illegal assignment to ’.’
Error in address
Branch instruction is odd or too remote
Error in expression
Error in local (’f’ or ’b’) type symbol
Garbage (unknown) character
End of file inside an if
Multiply defined symbol as label
Word quantity assembled at odd address
’.’ different in pass 1 and 2
Relocation error
Undefined symbol
Syntax error

BUGS
Symbol table overflow is not checked, x errors can cause incorrect line numbers in following di-
agnostics.

-1-

CAT (I) 1/15/73 CAT (I)

NAME
cat - concatenate and print

SYNOPSIS
eat file .,.

DESCRIPTION
Cat reads each file in sequence ’and writes it on the standard output. Thus:

eat file
is about the easiest way .to print a file. Also:.

cat filel file2)file3
is about the easiest way to concatenate files.

If no input file is given cat reads from the standard input file.
If the argument - is encountered, cat reads from the standard input file.

SEE ALSO
pr(I), co(I)

DIAGNOSTICS
none; if a file cannot be found it is ignored.

BUGS
eat x y)x and eat x y)y cause strange results.

-1-

¢¢(I) ~11~/74 C¢(I)

NAME
cc -- C compiler

SYNOPSIS
cc [--c][-p 1[-O][--S][-P] file...

DESCRIPTION
Cc is the UNIX C compiler. It accepts three types of arguments:
Arguments whose names end with ’.c’ are taken to be C source programs; they are compiled, and
each object program is left on the file whose name is that of the source with ’.o’ substituted for
’.c’. The ’.o’ file is normally deleted, however, if a single C program is compiled and loaded all at
one go.
The following flags are interpreted by cc. See ld (I) for load-time flags.

-p

-p

Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.
Arrange for the compiler to produce code which counts the number of times each routine
is called; also, if loading takes place, replace the standard startup routine by one which au-
tomatically calls the monitor subroutine (III) at the start and arranges to write out a mon.out
file at normal termination of execution of the object program. An execution profile can
then be generated by use of prof(l).
Invoke the experimental object-code optimizer.
Compile the named C programs, and leave the assembler-language output on correspond-
ing files suttixed ’.s’.
Run only the macro preprocessor on the named C programs, and leave the output on
corresponding files sultixed ’.i’.

Other arguments are taken to be either loader flag arguments, or C-compatible object programs,
typically produced by an earlier cc run, or perhaps libraries of C-compatible routines. These pro-
grams, together with the results of any compilations specified, are loaded (in the order given) to
produce an executable program with name a.out.

file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/c[01] compiler
/lib/c2 optional optimizer
/lib/crt0.o runtime startoff
/lib/mcrt0.o runtime startoff for monitoring.
/lib/libc.a builtin functions, etc.
/lib/liba.a system library

SEE ALSO
"Programming in C-- a tutorial," C Reference Manual, monitor (II!), prof (I), cdb (I), ld (I).

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader. Of these, the most mystifying are from the assem-
bler, in particular "m," which means a multiply-defined extel’nal symbol (function or data).

BUGS

-I-

CDB (I) 8/15/73 CDB (I)

NAME
cdb - C debugger

SE~IOPSIS
edb [core [a.out]]

DESCRIPTION
Cdb is a debugger for use with C programs. The first argument is a core-image file; if not given,
"core" is used. The second ,argument is the object program (containing a symbol table); if not
given "a.out" is used. An acceptable core and object file must both be present.
Commands to cdb consist of an address followed by a single command character. If no address
is given the last-print.ed address is used. An address may be followed by a comma and a
number, in which case the command applies to the appropriate number of successive addresses.
Addresses are expressions composed of names, decimal numbers, and octal numbers (which be-
gin with "0") and separated by "-t-" and "--". Evaluation proceeds left-to-right. The construction
"name[expression]" assumes that name is a pointer to an integer and is equivalent to the contents
of the named cell plus twice the expression.

The command characters are:
/ print the addressed words in octal.

¯

print the value of the addressed expression°
print the addressed bytes as characters.

take the address as a pointer to a sequence of characters, and print the characters up to a
null byte.

If there is any symbol which has the same value as the address, print the symbol’s name.
print a stack trace of the terminated program. The calls are listed in the order rriade; .the ac-
tual arguments to each routine are given in octal.

SEE ALSO
cc (I), db (I), C Reference Manual

BUGS
It’s still very feeble, even compared with db (I). The stack trace is also pretty vulnerable to corr-
uption, and often doesn’t work.

-1-

¯

CHDIR (I) 5/15/74 CHDIR (I)

NAME
chdir - change working directory

SYNOPSIS
chdir directory

DESCRIPTION
Directory becomes the new working directory. The process must have execute (search) permis-
sion in directory.
Because a new process is created to execute each command, chdir would be ineffective if it were
written as a normal command. It is therefore recognized and executed by the Shell.

SEE ALSO
sh(I)

BUGS

-I-

CHMOD (I) 5/15/74 CHMOD (I)

NAME
chmod -- change mode

SYNOPSIS
chmod octal file ...

D~RIPTION , -
The octal mode replaces the mode of each of the files. The mode is constructed from the OR of
the following modes:

4000 set user ID on execution
2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of°a file (or the super-user) may change its mode.

SEE ALSO
Is(I)

BUGS

-1-

CHOWN (I) 3/15/72 CHOWN (I)

NAME
chown - change owner

SYNOPSIS
chown owner file ...

DESCRIPTION
Owner becomes the new owner of the files. The owner may be either a decimal UID or a login
name found in the password file.
Only the owner of a file (or the super-user) is allowed to change the owner. Unless it is done by
the super-user, the set-user-ID permission bit is turned off as the owner of a file is changed.

FILES
/etc/passwd

BUGS

-I-

CMP (I) 5/15/74 CMP (I)

NAME
cmp - compare two files

SYNOPSIS
cmp filel file2

DESCRIPTION
The two files are compared, for identical contents. Discrepancies are noted by giving the offset
and the differing words, all in octal.

SEE ALSO
diff (I), comm (1)¯

BUGS
If the shorter of the two files is of odd length, cmp acts as if a null byte had been appended to it.
The offset is only a single-precision number.

-1-

COMM (l) 5/15/74 COMM (!)

NAME
comm - pri~~t lines commo~’~ to two files

SYNOPSIS¯
comm [-- [123]] filel file2

DESCRIPTION
Comm reads .filel a~~d .file2 which should be i~~ sort, a)ad produces a three colurn~a output: li~aes
only in filel; lines o~~ly in .lile2; and lines i~~ both files.

The output is writte~a on the standard output.

Flags 1, 2, or 3 suppress prir~ti~ag of the correspo~~di~~g colurn~’~. Thus comm --12 pri~~ts ot’~ly the
lines commota to the two files; comm --23 pri~ats only li~~es in the first file but ~aot in the seco~~d;
comm --123 is a no-op.

SEE ALSO
cmp (I), diff (1)

BUGS

-I-

CP(I) 5/15/74 CP(I)

NAME
cp -- copy

SYNOPSIS
cp [--t] file l file2

DE.~RIPTION
The first file is copied onto ~he second. The mode and owner of the target file are preset:ted if it
already existed; the mode of the source file is used otherwise.
If file2 is a directory, then the target file is a file in that directory with the file-name of file1.
No one is quite sure what the flag -t does.

SEE ALSO
cat (I), pr (I), mv (I)

BUGS
Copying a file onto itself destroys its contents.

-1-

CREF (I) 2/5/73 CREF (I)

NAME
cref -- make cross reference listing

SYNOPSIS
cref [--acilostux123] name ...

DESCRIPTION
Cref makes a cross reference listing of program files in assembler or C format. The files named
as arguments in the command line are searched for symbols in the appropriate syntax.
The output report is in four columns:

(1) (2) (3) (4)
symbol file see text as it appears in file

below

Cre.l" uses either an ignore file or an only file. If the --i option is given, it will take the next avail-
able argument to be an ignore file name; if the --o option is given, the next available argument
will be taken as an only file name. Ignore and only files should be lists of symbols separated by
new lines. If an ignore file is given, all the symbols in that file will be ignored in columns (1) and
(3) of the output. If an only file is given, only symbols appearing in that file will appear in
column (1). Only one of the options --i or -o may be used. The default setting is --i. Assem-
bler predefined symbols or C keywords are ignored.
The --s option causes current symbols to be put in column 3. In the assembler, the current sym-
bol is the most recent name symbol; in C, the current function name. The -! option causes the
line number within the file to be put in column 3.
The --! option causes the next available argument to be used as the "name of the intermediate
temporary file (instead of/trnp/crt??). The file is created and is not removed at the end of the
process.
Options:

assembler format (default)
C format input
use ignore file (see above)
put line number in col. 3 (instead of current symbol)
use only file (see above)
current symbol in col. 3 (default)
user supplied temporary file
print only symbols that occur exactly once
print or~ly C external symbols
sort output on column 1 (default)
sort output on column 2
sort output on column 3

FILES
/tmp/crt?? temporaries
/usr/lib/aign default assembler &nore file
/usr/lib/cign default C ignore file
/usr/bin/crpostpost processor
/usr/bin/upostpost processor for--u optior~
/bin/sort used to sort temporaries. .

SEE ALSO
as (I), cc(!)

BUGS

-1-

DATE (I) 11/1/73 DATE (I)

NAME
date - print and set the date

SYNOPSIS
date [mmddhhmm[yy]]

DESCRIPTION
If no argument is given, the current date is printed to the second. If an argument is given, the
current date is set. The first rnm is the month number; dd is the day number in the month; hh is
the hour number (24 hour system~, the second mm is the minute number; yy is the last 2 digits of
the year number and is optional. For example:

date 10080045
sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The
system operates in GMT. Date takes care of the conversion to and from local standard and day~
light time.

DIAGNOSTICS
’bad conversion" if the argument is syntactically incorrect.

BUGS

-1-

DB(I) 8/20/73 DB(1)

NAME
db - debug

SYNOPSIS
db [core [namelist]][--]

DESCRIPTION
Unlike many debugging packages (including DEC’s ODT, on which db is loosely based), db is not
loaded as part of the core image which it is~sed to examine; instead it examines files. Typically,
the file. ,will be either a core image produced after a fault or the binary output of the assembler.
Core is the file being debugged; if omitted core is assumed. Name/ist is a file containing a symbol
table. If it is omitted, the symbol table is obtained from the file being debugged, or if not there
from a.out. If no appropriate name list file can be found, db can still be used but some of its
symbolic facilities become unavailable.
For the meaning of the optional third argument, see the last paragraph below.
The format for most db requests is an address followed by a one character command. Addresses
are expressions built up as follows:
1. A name has the value assigned to it when the input file was assembled. It may be relocat-

able or not depending on the use of the name during the assembly.
2. An octal number is an absolute quantity with the appropriate value.
3. A decimal number immediately followed by ’.’ is an absolute quantity with the appropriate

value.
4. An octal number immediately followed by r is a relocatable quantity with the appropriate

value. ’
5. The symbol, indicates the current pointer of db. The current pointer is set by many db re-

quests.
6. A * before an expression forms an expression whose value is the number in the word ad-

dressed by the first expression. A * alone is equivalent to ’*.’.
7. Expressions separated by + or blank are expressions with value equal to the sum of the

components. At most one of the components may be relocatable.
8. Expressions separated by -- form an expression with value equal to the difference to the

components. If the right component is relocatable, the left component must be relocatable.
9. Expressions are evaluated left to right.

Names f~r registers are built in:

rO ’ r5
sp
pc
fro ... fr5

These may be examined. Their values are deduced from the contents of the stack in a core im-
age file. They are meaningless in a file that is not a core image.
If no address is given for a command, the current address (also specified by ".") is assumed. In
general, "." points to the last word or byte printed by db.
There are db commands for examining locations interpreted as numbers, machine instructions,
.ASCII characters, and addresses. For numbers and characters, either bytes or words may be ex-
amined. The following commands are used to examine the specified file.

I The addressed word is printed in octal.

\ The addressed byte is printed in octal.
_

.

DB(I) 8/20/73 DB(I)

" The addressed word is printed as two ASCII characters.
¯ The addressed byte is printed as an ASCII character.
¯ The addressed word is printed in decimal.
.9 The addressed word is interpreted as a machine instruction and a symbolic form of the in-

struction, including symbolic addresses, is printed. Often, the result will appear exactly as it
was written in the sour ,ce program. . _

& The addressed word is interpreted as a symbolic address and is printed as the name of the
symbol whose value is closest to the addressed word, possibly followed by a signed offset.

<nl>(i. e., the character "new line") This command advances the current location counter "."
and prints the resulting location in the mode last specified by one of the above requests.

^ This character decrements "." and prints the resulting location in the mode last selected one
of the above requests. It is a converse to <hi>.

% Exit.
Odd addresses to word-oriented commands are rounded down. The incrementing and decre-
menting of "." done bY the <hi> and" requests is by one or two depending on whether the last
command was word or byte oriented.
The address portion of any of the above commands may be followed by a comma and then by
an expression. In this case that number of sequential words or bytes specified by the expression
is printed. "." is advanced so that it points at the last thing printed.
There are two commands to interpret the value of expressions.

When preceded by an expression, the value of the expression is typed in octal. When not
preceded by an expression, the value of "." is indicated. This command does not change the
value of ".".
An attempt is made to print the given expression as a symbolic address. If the expression is
relocatable, that symbol is found whose value is nearest that of the expression, and the sym-
bol is typed, followed by a sign and the appropriate offset. If the value of the expression is
absolute, a symbol with exactly the indicated value is sought and printed if found; if no
matching symbol is discovered, the octal value of the expression is given.

The following command may be used to patch the file being debugged.
This command must be preceded by an expression. The value of the expression is stored at
the location addressed by the current value of ".". The opcodes do not appear in the sym-
bol table, so the user must assemble them by hand.

The

$
following command is used after a fault has caused a core image file to be produced.

causes the fault type and the contents of the general registers and several other registers to
be printed both in octal and symbolic format. The values are as they were at the time of the
fault.

For some purposes, it is important to know how addresses .typed by the user correspond with lo-
cations in the file being debugged. The mapping algorithm employed by db is non-trivial for two
reasons: First, in an a.out file, there is a 20(8) byte header which will not appear when the file is
loaded into core for execution. Therefore, apparent location 0 should correspond with actual file
offset 20. Second, addresses in core images do not correspond with the addresses used by the
program because in a core image there is a header containing the system’s per-process data for
the dumped process, and also because the stack is stored contiguously with the text and data part
of the core image rather than at the highest possible locations. Db obeys the following rules:
If exactly, one argument is given, and if it appears to be an a.out file, the 20-b~ite header is
skipped during addressing, i.e., 20 is added to all addresses typed. As a consequence, the header
can be examined beginning at location -20. _

-2-

DB(I) 8/20/73 DB(I)

If exactly one argument is given and if the file does not appear to be an a.out file, no mapping is
done. ,’.

If zero or two arguments are given, the mapping appropriate to a core image file is employed.
This means that locations above the program break and below the stack effectively do not exist
(and are not, in fact, recorded in the core file). Locations above the user’s stack pointer are
mapped, in looking at the core file, to the place where they are really stored. The per-process da-
ta kept by the system, which is stored in the first part of the core file, cannot currently be exam-
ined (except by $).
If one wants to examine a file which has an associated name list, but is not a core image file, the
last argument "--" can be used (actually the only purpose of the last argument is to make the
number of arguments not equal to two). This feature is used most frequently in examining the
memory file/dev/mem.

SEE ALSO
as (I), core (V), a.out (V), od (I)

DIAGNOSTICS
"File not found" if the first argument cannot be read; otherwise "?".

BUGS
Ther~ should be some way to examine the registers and other per-process data in a core image;
also there should be some way of specifying double-precision addresses. It does not know yet
about shared text segments.

-3-

DC(I) 1/15/73 DC(1)

NAME
dc- desk calculator

SYNOPSIS
de [file]

DESCRIPTION
Dc is an arbitrary precision int~er arithmetic package. The overall structure of dc is a stacking
(reverse Polish) calculator. The following constructions are recognized by the calculator:

number The value of the number is pushed on the stack. A number is an unbroken string of
the digits 0-9. It may be preceded by an underscore _ to input a negative number.

sx

d
p
f
q
x

The top two values on the stack are added (-t-), subtracted (-), multiplied (*), divided
(/), remaindered (%), or exponentiated (^). The two entries are popped off the stack;
the result is pushed on the stack in their place.
The top of the stack is popped and stored into a .register named x, where x may be
any character.
The value in register x is pushed on the stack. The register x is not altered. All re-
gisters start with zero value.
The top value on the stack is duplicated.
The top value on the stack is printed. The top value remains unchanged.
All values on the stack and in registers are printed.

exits the program. If executing a string, the recursion level is popped by two.
treats the top element of the stack as a character string and executes it as a string of
dc commands.
puts the bracketed ascii string onto the top of the stack.

The top two elements of the stack are popped and compared. Register x is executed
if they obey the stated, relation.

v replaces the top element on the stack by its square root.
! interprets the rest of the lineas a UNIX command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for further input.

o The top value on the stack is popped and used as the number radix for further out-
put.

z The stack level is pushed onto the stack.
? A line of input is. taken from the input source (usually the console) and executed.

new-line ignored except as the name of a register or to end the response to a ?.
space ignored except as the name of a register or to terminate a number.
If a file name is given, input is taken from that file until end-of-file, then input is taken from the
console. An example which prints the first ten values of n! is

.

! lal+dsa*plal0 > xlsx
0sal
lxx

-1-

DC(1) 1/15/73 DC(1)

FILES
/etc/msh to implement ’!’

DIAGNOSTICS
(x) ? for unrecognized character x.
(x) ? for not enough elements on the stack to do what was asked by command x.
’Out of space’ when the free list is exhausted (too many digits).
’Out of headers’ for too many numbers being kept around.
’Out of pushdown’ for too many items on the stack.
’Nesting Depth’ for too many levels of nested execution.

BUGS

-2-

DD(I) 5/15/74 DD(I)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option--value] ...

DESCRII~FION _
Dd copies its specified input f{le to its specified output with possible conversions. The input and
output block size may be specified to take advantage of raw physical I/0.
option values
if---- input file name; standard input is default
of-- output file name; standard output is default
ibsffi input block size (default 512)
obs-- output block size (default 512)
bsffi set both input and output block size, superseding ibs and obs; also, if no conver-

sion is specified, it is particularly efficient since no copy need be done
cbs-n conversion buffer size
skip--n skip n input records before starting copy
count--n copy only n input records
conv--ascii convert EBCDIC to ASCII

ebcdic convert ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
..., ... several comma-separated conversions

Where sizes are specified, a number of bytesis expected. A number may end with k, b or w to
specify multiplication by 1024, 512, or 2 respectively. Also a pair of numbers may be separated
by x to indicate a product.
Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters are
placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new-line
added before sending the line to the output. In the latter case ASCII characters are read into the
conversion buffer, converted to EBCDIC, and blanks added to make up an output record of size
cbs.
After completion, dd reports the number of whole and partial input and output blocks.
For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record into
the ASCII file x:
dd if--/dev/rmt0 of--x ibs--800 cbs--’80 convfascii,lcase
Note the use of raw magtape. Dd is quite suited to I/O on the raw physical devices because it al-
lows reading and writing in arbitrary record sizes.

SEE ALSO
cp (I)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM
Nov, 1968. It is not clear how this relates to real life.

-1-

DIFF (I) 5115174 DIFF (I)

NAME
diff- differential file comparator

SYNOPSIS
diff [--] namel name2

DESCRIPTION
Difftells what lines must be changed in two files to bring them into agreement. The normal, out-
put contains lines of these forms:

nl a n3,n4
nl, n2 d n3
nl, n2 c n3,n4

These lines resemble ed commands to convert file namel into file name2. The numbers after the
letters pertain to file name2. In fact, by exchanging ’a’ for ’d’ and reading backward one may
ascertain equally how to convert file name2 into namel. As in ed, identical pairs where nl = n2
or n3 ~. n4 are abbreviated as a single number.
Following each of these lines come all the lines that are affected in the first file flagged by ’*’,
then all the lines that are affected in the second file flagged by ’2.

¯

Under the -- option, the output of dtffis a script of a, c and dcommands for the editor ed, which
will change the contents of the first file into the contents of the second. In this connection, the
following shell pro.gram may help maintain multiple versions of a file. Only an ancestral file ($1)
and a chain of version-to-version ed scripts ($2,$3,...) made by dtff need be on hand. A ’latest
version’ appears on the standard output.

(cat $2 ... $9; echo "l,$p") ! ed- $1

D0’f does an optimal and unfailing job of detecting the file differences, and also reports these
differences side-by-side. However, dt.’/fuses a quadratic algorithm that usually slows to a crawl on
2000-line files.

SEE ALSO
cmp (I), comm (I), ed (I)

DIAGNOSTICS
’can’t open input’
’arg count’
’jackpot’ -- To speed things up, the program uses hashing. You have stumbled on a case where
there is a minuscule chance that this has resulted in an unnecessarily long list of differences be-
ing published. It’s a curio that we’d like to see.

BUGS
Editing scripts produced under the -- option are naive about creating lines consisting of a single
, ,
¯ o

-1-

DSW (I) 3/15/72 DSW (I)

NAME
dsw -- delete interactively

SYNOPSlS
dsw[directory]

DESCRIPTION
For each file in the given directory . if not specified) d~w types its name. If y is typed~ tl~efile
is deleted; if x, dsw exits; if new-line, the file is not deleted; if anything else, dsw asks again.

SEE ALSO
rm(1)

BUGS
The name dsw is a carryover from the ancient past. Its etymology is amusing.

-1-

DU(I) 1120/73 DU(I)

NAME
du - summarize disk usage

SYNOPSIS
du [--s] [--a] [name ...]

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories within each
specified directory or file name. If name is missing, ’.’ is used.
The optional argument --s causes only the grand ~otal to be given. The optional argument -a
causes an entry to be generated for each file. Absence of either causes an entry to be generated
for each directory only.
A file which has two links to it is only counted once.

BUGS
Non-directories given as arguments (not under -a option) are not listed.

Removable file systems do not work correctly since i-numbers may be repeated while the
corresponding files are distinct. Du should maintain an i-number list per root directory encoun-
tered.

-1-

ECHO(I) 3115/72 ECHO (I)

NAME
echo -- echo arguments

SYNOPSIS
echo [arg ...]

DESCRIPTION
Echo writes all its arguments in order as a line on the standard output file. It is mainly useful for
producing diagnostics in command files.

BUGS

-1-

ED(I) 1/15/73 ED(I)

NAME
ed - text editor

SYNOPSIS
ed [- 1[name]

DESCRIPTION
Ed is the standard text editor.
If a name argument is given, ed simulates an e command (see below) on the named file; that is to
say, the file is read into ed’s buffer so that it can be edited. The optional -- simulates an os com-
mand (see below) which suppresses the printing of character counts by e, r, and w commands.
Ed operates on a copy of any file it is editing; changes made in the copy have no effect on the file
until a w (write) command is given. The copy of the text being edited resides in a temporary file
called the buffer. There is only one buffer.
Commands to ed have a simple and regular structure: zero or more addresses followed by a single
character command, possibly followed by parameters to the command. These addresses specify
one or more lines in the buffer. Every command which requires addresses has default addresses,
so that the addresses can often be omitted.
In general, only one command may appear on a line. Certain commands allow the input of text.
This text is placed in the appropriate place in the buffer. While. ed is accepting text, it is said to
be in input mode. In this mode, no commands are recognized; all input is merely collected. Input
mode is left by typing a period ’.’ alone at the beginning of a line.
Ed supports a limited form of regular expression notation. A regular expression is an expression
which specifies a set of strings of characters. A member of this set of Strings is said to be
matched by the regular expression. The regular expressions allowed by ed are constructed as
follows:

1. An ordinary character (not one of those discussed below) is a regular expression and
matches that character.

2. A circumflex ’^’ at the beginning of a regular expression matches the null character at the
beginning of a line.

3. A currency symbol ’$’ at the end of a regular expression matches the null character at the
¯ end of a line.

4. A period ’.’ matches any character but a new-line character.
5. A regular expression followed by an asterisk ’*’ matches any number of adjacent oc-

currences (including zero) of the regular expression it follows.
6. A string of characters enclosed in square brackets ’[]’ matches an~, character in the string

but no others. If, however, the first character of the string is a circumflex ’^’ the regular
expression matches any character but new-line and the characters in the string.

7. The concatenation of regular expressions is a regular expression which matches the con-
catenation of the strings matched by the components of the regular expression.

8. The null regular expression standing alone is equivalent to the last regular expression en-
countered.

Regular expressions are used in addresses to specify lines and in one command (see s below) to
specify a portion of a line which is to be replaced.
If it is desired to use one of the regular expression metachatacters as an ordinary character, that
character may be preceded by ’\’. This also applies to the character bounding the regular expres-
sion (often ’/’) and to ’\’ itself.
Addresses are constructed as follows. To understand addressing in ed it is necessary to know
that at any time there is a current line. Generally speaking, the current line is the last line
affected by a command; however, the exact effect on the current line by each command is dis-

-1-

ED(I) 1/15/73 ED(I)

cussed under the description of the command.
1. The character ’.’ addresses the current line.

.

3.
4.
5.

The character ,A, addresses the line immediately before the current line.

The character ’$’ addresses the last line of the buffer.
A decimal number n addresses the n-th line of the buffer.
’°x’ addresses the line associated (marked) with the mark name character x which must be
a printable character. Lines are marked with the k command described below.

6. A regular expression enclosed in slashes ’/’ addresses the first line found by searching to-
ward the end of the buffer and stopping at the first line containing a string matching the
regular expression. If necessary the search wraps around to the beginning of the buffer.

7. A regular expression enclosed in queries ’?’ addresses the first line found by searching to-
ward the beginning of the buffer and stopping at the first line .found containing a string
matching the regular expression. If necessary the search wraps around to the end of the
buffer.

8. An address follo~ved by a plus sign ’+’ or a minus sign ’-’ followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign may
be omitted.

Commands may require zero, one, or two addresses. Commands which require no addresses re-
gard the presence of an address as an error. Commands which accept one or two addresses as-
sume default addresses when insufficient are given. If more addresses are given than such a
command requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ’,’. They may also be separated
by a semicolon ’;’. In this case the current line ’.’ is set to the previous address before the next
address is interpreted. This feature can be used to determine the starting line for forward and
backward searches (’/’, ’?’). The second address of any two-address sequence must correspond to
a line following the line corresponding to the first address.
In the following list of ed commands, the default addresses are shown in parentheses. The
parentheses are not part of the address, but are used to show that the given addresses are the de-
fault.
As mentioned, it is generally illegal for more than one command to appear on a line. However,
any command may be suffixed by ’p’ (for ’print’). In that case, the current line is printed after
the command is complete.

(.)a
< text>
¯

The append command reads the given text and appends it after the addressed line. ’.’
is left on the last line input, if there were any, otherwise at the addressed line. Ad-
dress ’0’ is legal for this command; text is placed at the beginning of the buffer.

(.,.)c
< text>

¯

The change command deletes the addressed lines, then accepts input text which re-
places these lines. ’.’ is left at the last line input; if there were none, it is left at the
first line not changed.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line originally
after the last line deleted becomes the current line; if the lines deleted were originally
at the end, the new last line becomes the current line.

-2-

ED(I) 1/15/73 ED(I)

e filename
The edit command causes the entire contents Of the buffer to be deleted, and then the
named file to be read in. ’.’ is set to the last line of the buffer. The number of char-
acters read is typed. ’filename’ is remembered for possible use as a default file name
in a subsequent r or w command.

f filename
The filename command prints the currently remembered file name.
given, the currently remembered file name is changed to ’filename’.

If ’filename’ is

(IS)g/regular expression/command list
In the global command, the first step is to mark every line which matches the given
regular expression. Then for every such line, the given command list is executed
with ’.’ initially set to that line. A single command or the first of multiple commands
appears on the same line with the global command. All lines of a multi-line list ex-
cept the last line must be ended with ’\’. A, L and c commands and associated input
are permitted; the ’.’ terminating input mode may be omitted if it would be on the
last line of the command list. The (global) commands, g, and v, are not permitted in
the command list.

¯ (.)i
< text>

This command inserts the given text before the addressed line. ’.’ is left at the l~t
line input; if there were none, at the addressed line. This command differs from the
a command only in the placement of the text.

(.)kx
The mark command associates or marks the addressed line With the single character
mark name x. The ten most recent m.ark names are remembered. The current mark
names may be printed with the n command.

(.,.)l
The list command will print the addressed lines in a way that is unambiguous. Non-
graphic characters are printed in octal, prefixed characters are overstruck with a
circumflex, and long lines are folded.

(.,.)ma
The move command will reposition the addressed lines after the line addressed by a.
The last of the moved lines becomes the current line.

os

The n command will print the current mark names.

After os character counts printed by e, r, and w are suppressed. Ov turns them back
on.

(.,.)p
The print command prints the addressed lines. ’.’ is left at the last line printed. The
p command may be placed on the same line after any command.

q
The quit command causes ed to exit. No automatic write of a file is done.

($)r filename ~
The read command reads in the given file after the addressed line. If no file name is
given, the remembered file name, if any, is used (see e and f commands). The
remembered file name is not changed unless ’filename’ is the very first file name
mentioned. Address ’0’ is legal for r and causes the file to be read at the beginning of
the buffer. If the read is successful, the number of characters read is typed. ’.’ is left
at the last line read in from the file.

-3-

ED(1) 1/15/73 ED(1)

(.,.)s/regular expression/replacement/ or,
(.,.)s/regular expression/replacement!g.

The substitute command searches each addressed line for an occurrence of the
specified regular expression. On each line in which a match is found, all matched
strings are replaced by the replacement specified, if the global replacement indicator
’g’ appears after the command. If the global indicator does not appear, only the first
occurrence of the matched string is replaced. It is an error for the substitution to fail
on all addressed lines. Any character other than space or new-line may be used in-
stead of ’/’ to delihait the regular expression and the replacement. ’.’ is left atthe last
line substituted.
An ampersand ’&’ appearing in the replacement is replaced by the regular expression
that was matched. The special meaning of"&’ in this context may be suppressed by
preceding it by ’\’.

(1,$)v/regular expression/command list
This command is the same as the global command except that the command list is
executed with ’.’ initially set to every line except those matching the regular expres-
sion.

(l,$)w filenhme ’
The write command writes the addressed lines onto the given file. If the file does not
exist, it is created mode 666 (readable and writeable by everyone). The remembered
file name is not changed unless ’filename’ is the very first file name mentioned. If no
file name is given, the remembered file name, if any, is used (see e and fcommands).
’.’ is unchanged. If the command is successful, the number of characters written is
typed.

The line number of the addressed line is typed. ’.’ is unchanged by this command.
!UNIX command

The remainder of the line after the ’!’ is sent to UNIX to be interpreted as a com-
mand. ’.’ is unchanged. The entire shell syntax is not recognized. See msh(VII) for
the restrictions. ..

(.-I:1) < newline>
An address alone on a line causes the addressed line to be printed. A blank line
alone is equivalent to ’.+lp’; it is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed will print a ’?’ and return to its command level.
If invoked with the command name ’-’, (see init(VII)) ed will sign on with the message ’Editing
system’ and print ’*’ as the command level prompt character.

Ed has size limitations on the maximum number of lines that can be edited, on the maximum
number of characters in a line, in a global’s command list, in a remembered file name, and in the
size of the temporary file. The current sizes are: 4000 lines per file, ,512 characters per line, 256
characters per global command list, 64 characters per file name, and 64K characters in the tem-
porary file (see BUGS).

/tmp/etm?, temporary
/etc/msh, to implement the ’!’ command.

DIAGNOSTICS
’?’ for errors in commands; ’TMP’ for temporary file overflow.

SEE ALSO
A Tutorial Introduction to the ED Text Editor (internal memorandum)

BUGS
The temporary file can grow to no more than 64K bytes.

-4-

EQN (I) 2/22/74 EQN (I)

NAME
eq.~ -- typeset mathematics

SYNOPSIS
eqn [file]...

DESCRIPTION
Eqn is a troff (I) preprocessor for typesetting mathematics on the Graphics Systems photo-
typesetter. Usage is almost always

eqn file ... I troff

If no files are specified, eqn reads from the standard input. A line beginning with ".EQ" marks
the start of an equation; the end of an equation is marked by a line beginning with ".EN". Nei-
ther of these lines is altered or defined by eqn, so you can define them yourself to get centering,
numbering, etc. All other lines are treated as comments, and passed through untouched.
Spaces, tabs, newlines, braces, double quotes, tilde and circumflex are the only delimiters. Braces
"{}" are used for grouping. Use tildes "-" to get extra spaces in an equation.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes xi,
a sub i sup 2 produces ai2, and e sup {x sup 2 + y sup 2] gives ex2+y2 Fractions are made with

a 1 . sqrt makes squareover. a over b is -~- and 1 over sqrt {ax sup 2 +bx+c} is x/ax2+bx+c

roots.

The keywords from and to introduce lower and upper limits on arbitrary things: lim~xi is
n’-~ 0

made with lim from {n-> in.I} sum from 0 to n x sub L Left and right brackets, braces, etc., of the
are made with left and right: left [x sup 2 + y sup 2 over alpha right]- ~ I producesr~ght .~lix2+hei~f_.~..lht__ 1. The right clause is optional.

I,’~"]~

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b above c} pro-
a

duces b. There can be an arbitrary number of elements in a pile. lpile left-justifies, pile and
c

cpile center, with different vertical spacing, and rpiie right justifies.

Diacritical marks are made with dot, dotdot, hat, bar: x dot = fit) bar is .~--f-~. Default sizes
and fonts can be changed with size n and various of roman, italic, and bold.

Keywords like sum (~) int (y) inf (~) and shorthands like >--- (>/.)-> (--"), != (;~), are
recognized. Spell out Greek letters in the desired case, as in alpha, GAMMA. Mathematical
words like sin, cos, log are made Roman automatically. Troff (I) four-character escapes like \(bs
(t~)) can be used anywhere. Strings enclosed in double quotes "..." are passed through untouched.

SEE ALSO
A System for Typesetting Mathematics (Computer Science Technical Report #17, Bell Labora-
.tories, 1974.)
TROFF Users’ Manual (internal memorandum)
TROFF Made Trivial (internal memorandum)

-troff (I), neqn (I) ,

BUGS
Undoubtedly. Watch out for small or large point sizes - it’s tuned too well for size 10. Be cau-
tious if inserting horizontal or vertical motions, and of backslashes in general.

-1-

EXIT(1) 3/15/72 EXIT(1)

NAME
exit - terminate command file

SYNOPSIS
exit

DESCRIPTION
Exit performs a seek to the,end of its standard input file. Thus, if it is invoke~! inside a file of
commands, upon return from exit the shell will discover an end-of-file and terminate.

SEE ALSO
if (1), goto (1), sh (1)

BUGS

,

-1-

FC (I) 8120/73 FC (I)

NAME
fc - fortran compiler

SYNOPSIS
fc [-c] sfilel.f ... ofilel ...

DESCRIPTION
Fc is the UNIX Fortran compiler. It accepts three types of arguments:
Arguments whose names end with ’.f’ are assumed to be Fortran source program units; they are
compiled, and the object program is left on the file sfilel.o (i.e. the file whose name is that of
the source with ’.o’ substituted for ’.f’).
Other arguments (except for -c) are assumed to be either loader flags, or object programs, typi-
cally produced by an earlier fc run, or perhaps libraries of Fortran-compatible routines. These
programs, together with the results of any compilations specified, are loaded (in the order given)
to produce an executable program with name a.out.

The --c argument suppresses the loading phase, as does any syntax error in any of the routines
being compiled.

The following is a list of differences between fc and ANSI standard Fortran (also see the BUGS
section)!

Arbitrary combination of types is allowed in expressions. Not all combinations are expected
to be supported at runtime. All of the normal conversions involving integer, real, double
precision and complex are allowed.

2. DEC’s implicit statement is recognized. E.g.: implicit integer/i-n/

3. The types doublecomplex, logical*l, integer*l, integer*2 and real*8 (double precision) are
supported.

.

5.

6.
7.
8.

.

10.
11.

& as the first character of a line signals a continuation card.

c as the first character of a line signals a comment.
All keywords are recognized in lower case.

The notion of ’column 7’ is not implemented.
G-format input is free form- leading blanks are ignored, the first blank after the start of the
number terminates the field.
A comma in any numeric or logical input field terminates the field.
There is no carriage control on output.
A sequence of n characters in double quotes ’"’ is equivalent to n h followed by those charac-
ters.
In data statements, a hollerith string may initialize an array or a sequence of array elements.
The number of storage units requested by a binary read must be identical to the number
contained in the record being read.

14. If the first character in an input file is "#", a preprocessor identical to the C preprocessor is
called, which implements "#define" and "#include" preprocessor statements. (See the C
reference manual for details.) The preprocessor does not recognize Hollerith strings written
with nh.

-In I/O statements, only unit numbers 0-19 are supported, iJnit number n refers to file fortnn;
(e.g. unit 9 is file ’fort09’). For input, the file must exist; for output, it will be created. Unit 5 is
permanently associated with the standard input file; unit 6 with the standard output file. Also
see setf!l (III) for a way to associate unit numbers with named files.

-1-

F¢(I) 8/2o/73 FC(I)

file.f input file
a.out loaded output
f.tmp[123] temporary (deleted)
/usr/fort/fcl compiler proper
/lib/fr0.o runtime startoff
/lib/filib.a interpreter library
/lib/libf.a builti, n functions, etc.
/lib/liba.a system library

SEE ALSO
ANSI standard, ld (I) for loader flags
Also see the writeups on the precious few non-standard Fortran subroutines, ierror and setfil. (III)

DIAGNOSTICS
Compile-time diagnostics are given in English, accompanied if possible with the offending line
number and source line with an underscore where the error occurred. Runtime diagnostics are
given by number as follows:
1
2
3
4
5
6
7
8
9
I0
II
12
13
14
15
16
17
I00

"I01
102
103
104
105
106
I07
108
I09
IIO
III
If2
120
999

invalid log argument
bad arg count to amod
bad arg count to atan2
excessive argument to cabs
exp too large in cexp
bad arg count to cmplx
bad arg count to dim
excessive argument to exp
bad arg count to idim
bad arg count to isign
bad arg count to mod
bad arg count to sign
illegal argument to sqrt
assigned/computed goto out of range
subscript out of range
real**real overflow
(negative real)**real
illegal I/O unit number
inconsistent use of I/O unit
cannot create output file
cannot open input file
EOF on input file
illegal character in format
format does not begin with (
no conversion in format but non-empty list
excessive parenthesis depth in ~’ormat
illegal format specification
illegal character in input field
end of format in hollerith specification
bad argument to setfil
bad argument to ierror
unimplemented input conversion

Any of these errors can be caught by the program; see ierror (liD.

BUGS
The following is a list of those features not yet implemented:
arithmetic statement functions
scale factors on input
Backspace statement.

-2-

FED(I) 1/15/73 FED (I)

NAME
fed - edit associative memory for form letter

SYNOPSIS
"fed

DESCRIPTION
Fed is used to edit a form letter associative memory file, form.m, which consists of named
strings. Commands consist of single letters followed by a list of string names separated by a sin-
gle space and ending with a new line. The conventions of the Shell with respect to ’*’ and ’?’
hold for all commands but m. The commands are:
e name ...

Fed writes the string whose name is name onto a temporary file and executes ed. On exit
from the ed the temporary file is copied back into the associative memory. Each argument is
operated on separately. Be sure to give an ed w command (without a filename) to rewrite fed’s
temporary file before quitting out of ed.

d [name ... l
deletes a string and its name from the memory. When called with no arguments d operates
in a verbose mode typing each string name and deleting only if a y is typed. A q response re-
turns to fed’s command level. Any other response does nothing.

m namel name2 ...
(move) changes the name of namel to name2 and removes previous string name2 if one ex-
ists. Several pairs of arguments may be given. Literal strings are expected for the names.

n [name ...]
(names) lists the string names in the memory. If called with the optional arguments, it just
lists those requested.

p name ...
prints the contents of the strings with names given by the arguments.

q
returns to the system.

c[pl[f]
checks the associative memory file for consistency and reports the number of free headers
and blocks. The optional arguments do the following:
p causes any unaccounted-for string to be printed.

f fixes broken memories by adding unaccounted-for headers to free storage and removing
references to released headers from associative memory.

/tmp/ftmp? temporary
form.m associative memory

SEE ALSO
form(I), ed(I), sh(I)

WARNING
It is legal but unwise to have string names with blanks, ’:’ or ’?’ in them.

BUGS

-1-

FIND(I) 5/15/74 FIND(I)

NAME
find - find files

SYNOPSIS
find pathname expression

DESCRIPTION
Find re, cursively descends ’the directory hierarchy from pathname seeking files that thatch a
boolean expression written in the primaries given below. In the descriptions, the argument n is
used as a decimal integer where +n means more than n, -n means less than n and n means ex-
actly n.
-name filename True if the f!lename argument matches the current file name. Normal Shell

argument syntax may be used if escaped (watch out for ’[’, ’?’ and ’*’).
-perm onum True if the file permission flags exactly match the octal number onum (see

chmod(I)). If onum is prefixed by a minus sign, more flag bits (017777, see
stat(II)) become significant and the flags will be compared:
(flags&onum)--=onum.

-type c True if the type of the file is c, where c is b, c, d or f for block special file,
character special file, directory or plain file.

-links n
--user uname True
-group gname As it
-size n True
-atime n True
-mtime n True
-exec command

-ok command

True if the file has n links.
if the file belongs to the user uname.
is for -user so shall it be for -group (someday).
if the file is n blocks long (512 bytes per block).

if the file has been accessed in n days.
if the file has been modified in n days.

True if the executed command returns exit status zero (most commands do).
The end of the command is punctuated by an escaped semicolon. A com-
mand argument ’{}’ is replaced by the current pathname.
Like -exee except that the generated command line is printed with a ques-
tion mark first, and is executed only if the user responds y.

--print Always true; causes the current pathname to be printed.
The primaries may be combined with these operators (ordered by precedence):

! prefix not
--a infix and, second operand evaluated only if first is true

--o infix or, second operand evaluated only if first is false
(expression) parentheses for grouping. (Must be escaped.)
To remove files named ’a.out’ and ’*.o’ not accessed for a week:

find / "(" -name a.out -o -name "*.o" ")" -a -atime +7 -a -exec rm {} ";"

FILES
/etc/passwd

SEE ALSO
sh (I), if(I), file system (V)

BUGS
There is no way to check device type.
Syntax should be reconciled with if.

-1-

FORM (I) (; ’15/72 FORM (I)

NAME
form -- form letter generator

SYNOPSIS
form proto arg ...

DESCRIPTION
Form generates a form letter from a prototype letter, an associative memory, arguments and in a
special case, the current date.
If form is invoked with the proto argument x, the associative memory is searched for an entry
with name x and the contents filed under that name are used as the prototype. If the search
fails, the message ’[x]:’ is typed on the console and whatever text is typed in from the console,
terminated by two new lines, is used as the prototype. If the prototype argument is missing,
’{letter}’ is assumed.
Basically, form is a copy process from the prototype to the output file. If an element of the form
[n] (where n is a digit from 1 to 9) is encountered, the n-th argument is inserted in its place, and
that argument is then rescanned. If [0] is encountered, the current date is inserted. If the desired
argument has not been given, a message of the form ’[n]:’ is typed. The response typed in then is
used for that argument.
If an element of the form [name] or {name} is encountered, the name is looked up in the associa-
tive memory. If it is found, the contents of the memory under this name replaces the original
element (again rescanned). If the name is not found, a message of the form ’[name]:’ is typed.
The response typed in is used for that element. The response is entered in the memory under
the name if the name is enclosed in []. The response is not entered in the memory but is
remembered for the duration of the letter if the name is enclosed in {}.
In both of the above cases, the response is typed in by entering arbitrary text terminated by two
new lines. Only the first of the two new lines is passed with the text.
If one of the special characters [{]}\ is preceded by a \, it loses its special character.
If a file named ’forma’ already exists in the user’s directory, ’formb’ is used as the output file and
so forth to ’formz’.
The file ’form.m’ is created if none exists. Because form.m is operated on by the disc allocator,
it should only be changed by using fed, the form letter editor, or form.

FILES
form.m associative memory
form? output file (read only)

SEE ALSO
fed (I), roff (I)

BUGS
An unbalanced] or } acts as an end of file but may add a few strange entries to the associative
memory.

.)

.

GOTO (I) 3/15/72 GOTO (I)

NAME
goto -- command transfer

SYNOPSIS
goto label

DESCRIPTION
Goto is only allowed when the Shell is taking commands from a file. The file is searched from
the beginning for a line beginning with ’:’ followed by one or more spaces followed by the label
If such a line is found, the goto command returns. Since the read pointer in the command file
points to the line after the label, the effect is to cause the Shell to transfer to the labelled line.
’:’ is a do-nothing command that is ignored by the Shell and only serves to place a label.

SEE ALSO
sh(I)

BUGS

-1-

GREP (I) 5/15/74 GREP (I)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [--v] [--b] [--c] [--n] expression [file]...

DESCRIPTION
Grep will search the input files (standard input defaul0 for each line containing the regular ex-
pression. Normally, each line found is printed on the standard output. If the -v flag is used, all
lines but those matching are printed. If the -c flag is used, each line printed is preceded by its
line number. If the --n flag is used, each line is preceded by the name of the input file and its
relative line number in that file. If the -b flag is used, each line is preceded by the block

0 number on which it was found. This is sometimes useful in locating disk block numbers by con-
text. If interrupt is hit, the file and line number last searched is printed.
For a complete description of the regular expression, see ed (I). Care should be taken when us-
ing the characters $ * [^ I () and \ in the regular expression as they are also meaningful to the
Shell. It is generally necessary to enclose the entire expression argument in quotes.

SEE ALSO
ed (I), sh (I)

BUGS
Lines are limited to 512 characters; longer lines are truncated.

_

IF(I) 5/2/74 IF(l)

NAME
if- conditional command

SYNOPSIS
if expr command [arg ...]

DESCRIPTION
If evaluates the expression ~_xpr, and if its value is true, executes the given command With the
given arguments.
The following primitives are used to construct the expr:

-r file true if the file exists and is readable.

-w file true if the file exists and is writable.

sl -- s2
sl !-- s2
{ command }

true if the strings sl and s2 are equal.
true if the strings sl and s2 are not equal.
The bracketed command is executed to obtain the exit status. Status zero is con-
sidered true. The command must not be another if.

These primaries may be combined with the following operators:
unary negation operator

--a binary and operator ~_ ~ -~’

--o binary or operator 1~,,/~) "
(expr) parentheses for grouping 3)
--a has higher precedence than --o. Notice that all the operator~m"flags are separate argu-
ments to if and hence must be surrounded by spaces. Notice also that parentheses are meaning-
ful to the Shell and must be escaped.

SEE ALSO
sh (I), find (I)

BUGS

-1-

KILL (I) 8118/73 KILL (I)

NAME
kill - do in an unwanted process

SYNOPSIS
kill --[signo] proeessid ...

DESCRIPTION
Kills the specified processes. The processid of each asynchronous process started with ’&’ is
ported by the shell. Processid’s can also be found by using ps (I).
The killed process must have been started from the same typewriter as the current user, unless
he is the super-user.
If a signal number preceded by "-" is given as an argument, that signal is sent instead of kill (see
signal (II)).

SEE ALSO
ps (I), sh (I), signal (II)

BUGS
Clearly people should only be allowed to kill processes owned by them, and having the same
typewriter is neither necessary nor sufficient.

-1-

LD(I) 8/16/73 LD(I)

NAME
ld - link editor

SYNOPSIS
Id [--sulxrnd] name ...

DEscRIPTION
Ld combines several object’programs into one; resolves external references; and searches li-
braries. In the simplest case the names of several object programs are given, and d combines
them, producing an object module which can be either e~ecuted or become the input for a furth-
er Id run. (In the latter case, the --r option must be given to preserve the relocation bits.) The
output of Id is left on a.out. This file is executable only if no errors occurred during the load.
The argument routines are concatenated in the order specified. The entry point of the output is
the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encountered in the argu-
ment list. Only those routines defining an unresolved external reference are loaded. If a routine
from a library references another routine in the library, the referenced routine must appear after
the referencing routine in the library. Thus the order of programs within libraries is important.
Ld understands several flag arguments which are written preceded by a ’-’. Except for --1, they
should appear before the file names.
--s ’squash’ the output, that is, remove the symbol table and relocation bits to save space (but

impair the usefulness of the debugger). This information can also be removed by strip.

--u take the following argument as a symbol and enter it as undefined in the symbol table. This
is useful for loading wholly from a library, since initially the symbol table is empty and an

unresolved reference is needed to force the loading of the first routi’n6.

--1 This option is an abbreviation for a library name. --1 alone stands for ’/lib/liba.a’, which is
the standard system library for assembly language programs. --Ix stands for ’/lib/libx.a’
where x is any character. A library is searched when its name is encountered, so the place-
ment of a --1 is significant.

--x do not preserve local (non-.globl) symbols in the output symbol table; only enter external
symbols. This option saves some space in the output file.

--r generate relocation bits in the output file so that it can be the subject of another /d run.
This flag also prevents final definitions from being given to common symbols.

--d force definition of common storage even if the --r flag is present (used for reloc (VIII)).
--n Arrange that when the output file is executed, the text portion will be read-only and shared

among all users executing the file. This involves moving the data areas up the the first pos-
sible 4K word boundary following the end of the text.

/lib/lib?.a libraries
a.out output file

SEE ALSO
as(I), ar(l)

BUGS

-1-

LN(I) 3115F/2 LN(I)

NAME
In - make a link

SYNOPSIS
In name l [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protection
information, etc) may have several links to it. There is no way to distinguish a link to a file
from its original directory entry; any changes in the file are effective independently of the name
by which the file is known.
Ln creates a link to an existing file namel. If name2 is given, the link has that name; otherwise it
is placed in the current directory and its name is the last component of namel.
It is forbidden to link to a directory or to link acros~ fi!e systems.

SEE ALSO
rm(I)

BUGS
Thereis nothing particularly wrong with In, but tp doesn’t understand about links and makes one
copy for each name by which a file is known; thus if the tape is extracted several copies are re-
stored and the information that links were involved is lost.

!

-1-

LOGIN (I) 3/15/72 LOGIN (I)

NAME
login - sign onto UNIX

SYNOPSIS
login [username]

DESCRIPTION
The Iogin command is used ~vhen a user initially signs onto UNIX, or it may be used at ar~y time
to change from one user to another. The latter case is the one summarized above and described
here. See ’How to Get Started’ for how to dial up initially.

If login is invoked without an argument, it will ask for a user name, and, if appropriate, a pass-
word. Echoing is turned off (if possible) during the typing of the password, so it will not appear
on the written record of the session.
After a successful login, accounting files are updated and the user is informed of the existence oi"
mailbox and message-of-the-day files.
Login is recognized by the Shell and executed directly (without forking).

/tmp/utmp accounting
/usr/adm/wtmpaccounting
mailbox mail
/etc/motd message-of-the-day
/etc/passwd password file

SEE ALSO
init (VIII), getty (VIII), mail (I)

DIAGNOSTICS
’login incorrect,’ if the name or the password is bad. ’No Shell,’, ’cannot open password file,’ ’no
directory’: consult a UNIX programming counselor.

BUGS,
If the first login is unsuccessful, it tends to go into a state where it won’t accept a correct login.
Hit EOT and try again.

-1-

LPR (I) 3/15/’74 LPR (I)

NAME
lpr - on line print

SYNOPSIS
lpr [--][-I-] [+--]file ...

DESCRIPTION
Lpr arranges to have the line printer daemon print the file arguments.
Normally, each file is printed in the state it is found when the line printer daemon reads it. If a
particular file argument is preceded by ÷, or a preceding argument of + has been encountered,
then Ipr will make a copy for the daemon to print. If the file argument is preceded by -, or a
preceding argument of- has been encountered, then Ipr will unlink (remove) the file.
If there are no arguments, then the standard input is read and on-line printed. Thus Ipr may be
used as a filter.

FILES
/usr/lpd/* spool area
/etc/passwd personal ident cards
/etc/lpd daemon

SEE ALSO
lpd (VIII), passwd (V)

BUGS

-1-

LS(I) 3/20/74 LS(I)

NAME
IS -- list contents of directory

SYNOPSIS
is [--ltasdruif] name ...

DESCRIPTION
For each directory argument, is lists the contents of the directory; for each file argument, is re.
peats its name and any other information requested. The output is sorted alphabetically by de-
fault. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents. There are several options:
--1 list in long format, giving mode, number of links, owner, size in bytes, and time of last

modification for each file. (See below.) If the file is a special file the size field will instead
contain the major and minor device numbers.

--t sort by time modified (latest firs0 instead of by name, as is normal
-a list allentries; usually those beginning with ’.’ are suppressed

"s give size in blocks for each entry
-d if argument is a directory, list only its name, not its contents (mostly used with --! to get

status on directory)

-r reverse the order of sort to get reverse alphabetic or oldest first as appropriate
--u use time of last access instead of last modification for sorting (-t) or printing (--!)
-i print i-number in first column of the report for each file listed
--f force each argument to be interpreted as a directory and list the name found in each slot.

This option turns off-1, -t, -s, and -r, and turns on -a; the order is the order in which
entries appear in the directory.

The mode printed under the --1 option contains 10 characters which are interpreted as follows:
the first character is
d if the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
-- if the entry is a plain file.
The next 9 characters are interpreted as three sets of three bits each. The first set refers to own-
er permissions; the next to permissions to others in the same user-group; and the l~st to all oth-
ers. Within each set the three characters indicate permission respectively to read, to write, or to
execute the-file as a program. For a directory, ’execute’ permission is interpreted to mean per-
mission to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable
w if the file is writable
x if the file is executable
-- if the indicated permission is not granted
Finally, the group-execute permission character is given as s if the file has set-group-ID mode;
likewise the user-execute permission character is given as s if the file has set-user-lD mode.

FILES
/etc/passwd to get user ID’s for Is --1.

BUGS

-1-

MAIL (I) 5115/74 MAIL (I)

NAME
mail - send mail to another user

SYNOPSIS
mail [--yn]
mail letter person ...
mail person

DESCRIPTION
Mail without an argument searches for a file called mailbox, prints it if present, and asks if it
should be saved. If the answer is y, the mail is renamed mbox, otherwise it is deleted. Mail
with a --y or -n argument works the same way, except that the answer to the question is sup-
plied by the argument.
When followed by the names of a letter and one or more people, the letter is prepended to each
person’s mailbox. When a person is specified without a letter, the letter is taken from the sender’s
standard input up to an EOT. Each letter is preceded by the sender’s name and a postmark.
A person is either a user name recognized by log|n, in which case the mail is sent to the default
working directory of that user, or the path name of a directory, in which case mailbox in that
directory is used.
When a user logs in he is informed of the presence of mail.

FILES
/etc/passwd
mailbox
mbox
/tmp/mtm?

to identify sender and locate persons
input mail
saved mail
temp file

SEE ALSO
login (I)

BUGS

-1-

MAN(I) 8/20/73 MAN (I)

NAME
man - run off section of UNIX manual

SYNOPSIS
man [section][title ...]

DESCRIPTION
Man is a shell command file that will locate and run off" one or more sections of this manual.
Section is the section number of the manual, as an Arabic not Roman numeral, and is optional.
Title is one or more section names; these names bear a generally simple relation to the page cap-
tions in the manual. If the section is missing, 1 is assumed. For example,

man man

would reproduce this page.

FILF~
/usrlmanlman?l*

BUGS
The manual is ~upposed to be reproducible either on the phototypesetter or on a typewriter.
However, on a typewriter some information is necessarily lost.

-1-

MESG (I) 3/15/72 MESG (I)

NAME
mesg - permit or deny messages

SYNOPSIS
mesg [n][y]

DESCRIPTION

FILES

Mesg with argument n forbids messages via write by revoking non-user write permission on the
user’s typewriter. Mesg with argument y reinstates permission. All by itself, mesg reverses the
current permission. In all cases the previous state is reported.

/dev/tty?

SEE ALSO
write (I)

DIAGNOSTICS
’?’ if the standard input file is not a typewriter

BUGS

-k

.

MKDIR (I) 3/15/72 MKDIR (I)

NAME
rnkdir - make a directory

SYNOPSIS
mkdir dirname ...

DESCRIPTION ,
Mkdir creates specified directories in mode 777. The standard entries ’.’ and ’..’ are ma~le au-
tomatically.

SEE ALSO
rmdidi)

BUGS

-1-

MV(I) 8/20/73 MV (I)

NAME
mv - move or rename a file

SYNOPSIS
my namel name2

DESCRIPTION
Mv changes the name of name1 to name2. If name2 is a directory, name1 is moved to that direc-
tory with its original file-name. Directories may only be moved within the same parent directory
Oust renamed).
If name2 already exists, it is removed before name1 is renamed. If name2 has a mode which for-
bids writing, mv prints the mode and reads the standard input to obtain a line; if the line begins
with y,. the move takes place; if not, mv exits.

If name2 would lie on a different file system, so that a simple rename is impossible, mv copies the
file and deletes the original.

BUGS
It should take a --f flag, like rm, to suppress the question if the target exists and is not writable.

!

-1-

NEQN (I) 4/30/74 NEQN (I)

NAME
neqn - typeset mathematics on terminal

SYNOPSIS
neqn [file] ...

DESCRIPTION
Neqn is an nroff (I) preprocessor. The input language is the same as that of eqn (I). Normal
usage is almost always , " -

neqn file ... [nroff
Output is meant for terminals with forward and reverse capabilities, such as the Model 37 tele-
type or GSI terminal. -
If no arguments are specified, neqn reads the’standard input, so it may be used as a filter.

SEE ALSO
eqn (I), gsi (VI)

BUGS
Because of some interactions with nroff there may not always be enough space left before and
after lines containing equations.

-1-

NICE (I) 1111/73 NICE (I)

NAME
nice - run a command at low priority

SYNOPSIS
nice command [arguments]

DESCRIPTION
Nice executes command at low priority.

SEE ALSO
nohup(I), nice(lI)

BUGS

-1-

NM (I) 8/20/73 NM (I)

NAME
nm - print name list

SYNOPSIS
nm[-enru][name]

DESCRIPTION
Nm prints the symbol table from the output file of an assembler or loader run. Each symbol
name is preceded by its valu~ (blanks if undefined) and one of the letters U (undefined) A (abso-
lute) T (text segment symbol), D (data segment symbol), B (bss segment symbol), or C (common
symbol). If the symbol is local (non-external) the type letter is in lower case. The output is sort-
ed alphabetically.
If no file is given, the symbols in a.out are listed.

Options are:
--e list only C-style external symbols, that is those beginning with underscore ’_’.
--n sort by value instead of by name

--r sort in ~everse order
--u print only undefined symbols.

FILES
a.out

BUGS

-1-

NOHUP (I) 11/1/73 NOHUP (I)

NAME
nohup - run a command immune to hangups

SYNOPSIS
nohup command [arguments]

DESCRIPTION
Nohup executes command with hangups, quits and interrupts all ignored.

SEE ALSO
nice(I), signal(II)

BUGS

-1-

NROFF (I) 5115174 NROFF (I)

NAME
nroff - format text

SYNOPSIS
nroff [+n] [-n] [--nn] [--mx] [--s] [--h] [--q] [--i] files

D~RIPTION
Nroffformats text according to control lines embedded in the text files. Nroffwill read the.stan-
dard input if no file arguments are given. The non-file option arguments are interpreted as
follows:

--nn

--h

-q

-i

Output will commence at the first page whose page number is n or larger.

will cause printing to stop after page n.
First generated (not necessarily printed) page is given number ~ simulates ".pn n".
Prepends a standard macro file; simulates ".so lusrllibltmac.x".
Stop prior to each page to permit paper loading. Printing is restarted by typing a ’new-
line’ character.
Spaces are replaced where possible with tabs to speed up output (or reduce the size of
the output file).

Prompt names for insertions are not printed and the bell character is sent instead; the
insertion is not echoed.
Causes the standard input to be read after the files.

/usr/lib/suftab
/tmp/rtm?
/usr/lib/tmac.?

suffix hyphenation tables
temporary
standard macro files

SEE ALSO
NROFF User’s Manual (internal memorandum).
neon (I)

BUGS
¯

.

-1-

NROFF(I) 5115/74 NROFF(I)

REQUEST REFERENCE AND INDEX
Request Initial
Form Value

If no Cause
Argument Break Explanation

I. Page Control
.pl +N N=66
.bp +N N--1
.pn +N N--1
.po +N N=0
.ne N -
.mk none
oft o

N---66 no Page length.
yes Begin page.

ignored no Page number.
N=prev no Page offset.
N--1 no Need N lines.
- no Mark current line.
- no Return to marked line.

II. Text Filling, Adjusting, and Centering
.br - yes
.fi fill - yes
.nf fill yes
.ad c adj,norm adjust no
.ha adjust - no
.ce N off N--1 yes

Break.
Fill output lines.
No filling and adjusting.
Adjust mode on.
No adjusting.
Center N input text lines.

III. Line Spacing and Blank Lines

.Is +N N-’I N--prev no

.sp N - N--1 yes

.Iv N - N--1 no

.sv N - N=I no
.os - no
¯ ns space - no
.rs - no
.xh off no

Line spacing.
Space N lines
Save N lines

Output saved lines.
No-space mode on.
Restore spacing.
Extra-half-line mode on.

IV. Line Length and Indenting

.11 +N N---65 N=prev no

.in +N N=O N=prev yes

.ti +N - N--1 yes

Line length.
Indent.
Temporary indent.

V. Macros, Diversion, and Line Traps

.de xx ignored

.am xx - ignored

.ds xx ignored

.as xx ignored no

.rm xx

.di xx - end

.da xx - end

.wh -N xx -

.ch -N.-M -

.ch xx-M - -

no Define or redefine a macro.
no Append to a macro.
no Define or redefine string.
Append to a string.
no Remove macro name.
no Divert output to macro "xx".
no Divert and append to "xx".
no When; set a line trap.
no Change trap line.

1!no

VI. Number Registers
.nr ab +N -M -
.nr a +N.-M -
.nc c \n \n
.ar arabic -
.ro arabic -
.RO arabic -

no
no
no
no
no
no

Number register.

Number character.
Arabic numbers.
Lower. case roman numbers.
Upper case roman numbers.

o .

-2-

NROFF (I) 5/15/74 NROFF (I)

VII. Input and Output Conventionsand Character Translations

.ta N,M,... none no

.tc c space space no

.It c no

.ul n - ~==1 no
no.cc c ; ;.c2 c no

.li N - N=I no

.tr abcd - - no

Pseudotabs setting.
Tab replacement character.
Leader replacement character.
Underline input text lines.
Basic control character.
Nobreak control character.
Escape character.
Accept input lines literally.
Translate on output.

VIII. Hyphenation.

.nh on - no

.hy on - no

.he c none none no

No hyphenation.
Hyphenate.
Hyphenation indicator character.

IX. Three Part Titles.
.tl "left’center’right" - no
.It N N==65 N=prev no

Title.
Length of title.

X. Output Line Numbering.

.nm +N M S I off no

.npMSl - reset no

XI. Conditional Input Line Acceptance
.if !N anything - no
.if c anything - no
.if !c anything - no
.if N anything - no

Number mode on or off, set" parameters.
Number parameters set or reset.

If true accept line of "anything".

XlI. Environment Switching.

.ev N N==0 N=prev no Environment switched (pushed down).

XIII. Insertions from the Standard Input Stream

.rd prompt - . bell no

.ex . - - no

XIV. Input 15ile Switching

.so filename- - no

.nx filename - no

Read insert.
Exit.

Switch source file (push down).
Next file.

XV. Miscellaneous

.tm mesg - - no
.ig - - no
.fl o yes
.ab - no

Typewriter message
Ignore.
Flush output buffer.
Abort.

-3-

OD(1) 1/15/73 OD(1)

NAME
od - octal dump

SYNOPSIS
od [--abcdho][file] [[÷] offset[.][b]]

DESCRIPTION
Od dumps f!/e in one or more formats as selected by the first argument. If the first argument is
missing -o is default. The meanings of the format argument characters are:

a interprets words as PDP-II instructions and dis-assembles the operation code. Unknown
operation codes print as ???.

b interprets bytes in octal.

c interprets bytes in ascii. Unknown ascii characters are printed as \?.

d interprets words in decimal.

h interprets words in hex.

o interprets words in octal.

The file argument specifies which file is to be dumped. If no file argument is specified, the stan-
dard input is used. Thus od can be used as a filter.
The offset argument specifies the offset in the file where dumping is to commence. This argu-
ment is normally interpreted as octal bytes. If ’2 is appended, the offset is interpreted in de-
cimal. If ’b’ is appended, the offset is interpreted in blocks. (A block is 512 bytes.) If the file ar-
gument is omitted, the offset argument must be preceded by ’+’.
Dumping continues until end-of-file.

SEE ALSO
db (I)

BUGS

-1-

OPR (I) 3/20/74 OPR (I)

NAME
opr - off line print

SYNOPSIS
opr [m[id]] [--][+] [-t---]file ...

DESCRIPTION
Opr arranges to have the 201,data phone daemon submit a job to the Honeywell 6070 to print the
file arguments. Normally, the output appears at the GCOS central site. If the first argument is
--, followed by an optional two-character remote station ID, the output is remoted to that sta-
tion. If no station ID is given, R1 is assumed. (Station R1 has an IBM 1403 printer.)

FILES

Normally, each file is printed in the state it is found when the data phone daemon reads it. If a
particular file argument is preceded by ÷, or a preceding argument of-I- has been encountered,
then opr will make a. copy for the daemon to print. If the file argument is preceded by -, or a
preceding argument of -- has been encountered, then opr will unlink (remove) the file.
If there are no arguments except for the optional ---, then the standard input is read and off-line
printed. Thus opr may be used.as a filter.

/usr/dpd/* spool area
/etc/passwd personal ident cards
/etc/dpd daemon

SEE ALSO
dpd (VIII), passwd (V)

BUGS

-1-

PASSWD (I) 9/1/72 PASSWD (I)

NAME
passwd - set login password

SYNOPSIS
passwd name password

DESCRIPTION
The password is placed on the given login name. This can only be done by the person
corresponding to the login name or by the super-user. An explicit null argument ("") for the
password argument will remove any password from the login name.

letclpasswd

SEE ALSO
login(i), passwd(V), crypt(III)

BUGS

I

-1-

PFE (I) 11/1/73 PFE (I)

NAME
pfe -- print floating exception

SYNOPSIS
pfe

DESCRIPTION
Pfe examines the floating point exception register and prints a diagnostic for the last floating
point exception.

SEE ALSO
signal (II)

BUGS
Since the system does not save the exception register in a core image file, the message refers to
the last error encountered by anyone. Floating exceptions are therefore volatile.

-1-

PR (I) 3/20/74 PR (I)

NAME
pr - print file

SYNOPSIS
pr [--h header] [--n] [+n] [--wn] [--In] [--t] [name...]

DESCRIPTION
Pr produces a printed listing of one or more files. The output is separated into pages headed by a
date, the name of the file or a header (if any), and the page number. If there are no file argu-
ments, pr prints its standard input, and is thus usable as a filter.
Options apply to all following files but may be reset between files:

FILES

--n produce n-column output

+n begin printing with page n

--h treat the next argument as a header

--wn for purposes of multi-column output, take the width of the page to be n characters instead
of the default 72

--In take the length of the page to be n lines instead of the default 66
--t do not print the 5,line header or the 5-line trailer normally supplied for each page

If there is a header in force, it is printed in place of the file name. Interconsole messages via
write(I) are forbidden during apr.

/dev/tty? to suspend messages.

SEE ALSO
cat(I), cp(I)

DIAGNOSTICS
none; files not found are ignored

BUGS

.

PROF(I) 3/12/73 PROF (I)

NAME
prof- display profile data

SYNOPSIS
prof [--v] [--a] [--1] [file]

DESCRIPTION
Prof interprets the file mon.o~t produced by the monitor subroutine. Under default modes, the
symbol table in the named object file (a.out default) is read and correlated with the mon.out
profile file. For each external symbol, the percentage or time spent executing between that sym-
bol and the next is printed (in decreasing order), together with the number of times that routine
was called and the.number of milliseconds per call.

If the -a option is used, all symbols are reported rather than just external symbols. If the --1
option is used, the output is listed by symbol value rather than decreasing percentage. If the --v
option is used, all printing is suppressed and a profile plot is produced on the 611 display.

In order for the number of calls to a routine to be tallied, the -p option of cc must have been
given when the file containing the routine was compiled.

mon.out for profile
a.out for namelist
/dev/vtO for plotting

SEE ALSO
monitor(III), profil(II), cc(I)

BUGS

PS (I) 3/20/74 PS (I)

NAME
ps -- process status

SYNOPSIS
ps [aklx]

DESCRIPTION
Ps prints certain indicia about active processes. The a flag asks for information about all
processes with teletypes (ordinarily only one’s own processes are displayed); x asks even about
processes with no typewriter; I asks for a long listing. Ordinarily only the typewriter number (if
not one’s own), the process number, and an approximation to the command line are given. If
the k flag is specified, the special file/dev/rkO is used in place of/dev/mem. This is used for post-
mortem system debugging.
The long listing is columnar and contains

A number encoding the state (last digit) and flags (first 1 or 2 digits) of the process.

The priority of the process; high numbers mean low priority.
A number related in some unknown way to the scheduling heuristic.
The last character of the control typewriter of the process.
The process unique number (as in certain cults it is possible to kill a process if you know
its true name).
The size in blocks of the core image of the process.
The last column if non-blank tells the core address in the system of the event which the
process is waiting for; if blank, the process is running. ’

Ps makes an educated guess as to the file name and arguments given when the process was creat-
ed by examining core memory or the swap area. The method is inherently somewhat unreliable
and in any event a process is entitled to destroy this information, so the names cannot be count-
ed on too much.

FILES
/unix system namelist
/dev/mem core memory
/dev/rf0 swap device
/dev/rk0 optional mem file

SEE ALSO
kill (I)

BUGS
The command has assumptions built into it about the number of typewriters that exist and what
hardware is used to interface them. It also has built into it the name of the device used for
swapping.

-1-

PWD(I) 5115H4 PWD(I)

NAME
pwd -- print working directory pathname

SYNOPSIS
pwd

DESCRIPTION
Pwd prints the pathname of the working (curren0 directory.

SEE ALSO
chdir (I)

BUGS
The algorithm sometimes fails on crossing mounted file systems.

I

-1-

REW (I) 1115~73 REW (I)

NAME
rew - rewind tape

SYNOPSIS
few [[m]digit]

DESCRIPTION
Re~, rewinds DECtape or magtape drives. The digit is the logical tape number, and should range
from 0 to 7. if the digit is preceded by m, rew applies to magtape rather than DECtape. A miss-
ing digit indicates drive 0.

Id~vltap?
Idevlmt?

BUGS ¯

-1-

RM(I) 1/20/73 RM(I)

NAME
rm - remove (unlink) files

SYNOPSIS
rm [-f] [-r] name ...

D~PTION
Rm removes the entries for dne or more files from a directory. If an entry was the last liiak to
the file, the file is destroyed. Removal of a file requires write permission in its directory, but nei-
ther read nor write permission on the file itself.
If there is no write permission to a file designated to be removed, rm will print the file name, its
mode and then read a line from the standard input. If the line begins with y, the file is removed,
otherwise it is not. The optional argument -f prevents this interaction.
If a designated file is a directory, an error comment is printed unless the optional argument -r
has been used. In that case, rm recursively deletes the entire contents of the specified directory.
To remove directories per se see rmdir(I).

/etc/glob to implement the--r flag

SEE ALSO
rmdir(I)

BUGS
When rm removes the contents of a directory under the -r flag, full pathnames are not printed
in diagnostics.

-1-

RMDIR (I) 3/15H2 RMDIR (I)

NAME
rmdir - remove directory

SYNOPSIS
rmdir dir ...

DESCRIPTION
Rmdir removes (deletes) directories. The directory must be empty (except for the standard en-
tries ’.’ and ’..’, which rmdir itself removes). Write permission is required in the directory in
which the directory appears.

BUGS
Needs a --r flag. Actually, write permission in the directory’s parent is not required.

-I-

ROFF (I) 6/12/72 ROFF (I)

NAME
roff - format text

SYNOPSIS
roff [+n] [--n] [--s] [--h] file ...

DESCRIPTION ’ " "
Roffformats text according to control lines embedded in the t~xt in the given files. Encounter-
ing a nonexistent file terminates printing. Incoming interconsole message.s are turned off during
printing. The optional flag arguments mean:

--n

--s

Start printing at (he first page with number n.
Stop printing at the first page numbered higher than n.
Stop before each page (including the first) to allow paper manipulation; resume on receipt of
an interrupt signal.

--h Insert. tabs in the output stream to replace spaces whenever appropriate.
A Request Summary is attached.

FILES
/usr/lib/suftab
/tmp/rtm?

suffix hyphenation tables
temporary

SEE ALSO
nroff (I), troff (I)

BUGS
Roffis the simplest of the runoff programs, but is virtually undocumented.

-1-

ROFF (I) 6112/72 ROFF (I)

Request Break Initial
.ad yes yes
.ar no arabic
.br yes -
.bl n yes -
.bp +n yes n--I
.CC C no
.ce n yes -
.de xx no -
.ds yes no
.ef t no t=’’’’
.eh t no t=’’’"
.fi yes yes
.fo no t----’""
.hc c no none
.he t no t--’""
.hx no .~ -
.hy n no n--I
.ig no -
.in +n yes -
.ix +n no -
.li n no -
.il +n no n--------65
.Is +n yes n---1
.ml n no n--2
.m2 n no n---2
.m3 n no n=l
.m4 n no n=3
.na yes no
.ne n no -
.nn +n no -
.nl no no
.n2 n no no
¯ ni +n no n==O
.nf yes no
.nx filename
.of t no t~’’’"
.oh t no t--’""
.pa +n yes n=l
.pl +n no n--66

¯ .po -t-n no n==O
.ro no arabic
.sk n no
.sp n yes
.ss yes yes
.ta N M ...
.tO C no c~ ’

.ti +n yes

.tr abcd., no -

.ul n " " no -

REQUEST SUMMARY
Meaning "
Begin adjusting right margins.
Arabic page numbers.
Causes a line break - the filling of the current line is stopped.
Insert of n blank lines,’on new page if necessary.
Begin new page and number it n; no n means ’+1’.
Control character becomes ’c’.
Center the next n input lines, without filling.
Define macro named ’xx’ (definition ends on line beginning ’..’).
Double space; same as ’.Is 2’.
Even foot title becomes t.
Even head title becomes t.
Begin filling output lines.
All foot titles are t.
Hyphenation character set to ’c’.
All head titles are t.
Title lines are suppressed.
Hyphenation is done, if n=l; and is not done, if n=0.
Ignore input lines through a line beginning with ’..’.
Indent n spaces from left margin.
Same as ’.in’ but without break.
Literal, treat next n lines as text¯
Line length including indent is n characters.
Line spacing set to n lines per output line.
Put n blank lines between the top of page and head title.
n blank lines put between head title and beginning of text on page.
n blank lines put between end of text and foot title.
n blank lines put between the foot title and the bottom of page.
Stop adjusting the right margin.
Begin new page, if n output lines cannot fit on present page.
The next n output lines are not numbered¯
Number output lines; start with 1 each page
Number output lines; stop numbering if n----0.
Line numbers are indented n.
Stop filling output lines.
Change to input file ’filename’.
Odd foot title becomes t.
Odd head title becomes t.
Same as ’.bp’.
Total paper length taken to be n lines.
Page offset. All lines are preceded by N spaces.
Roman page numbers.
Produce n blank pages starting next page.
Insert block of n blank lines.
Single space output lines, equivalent to ’.Is 1’.
Pseudotab settings. Initial tab settings are columns 9,17,25
Tab replacement character becomes ’c’.
Temporarily indent next output line n space.
Translate a into b, c into d, etc.
Underline the letters and numbers in the next n input lines.

-2-

SH (I) 5/15/74 SH (I)

NAME
sh - shell (command interpreter)

SYNOPSIS
sh [name [argl ... [arg9]]]

. .
DESCRIPTION ’

Sh is the standard command interpreter. It is the program which reads and arranges the execu-
tion of the command lines typed by most users. It may itself be called as a command to inter-
pret files of commands. Before discussing the arguments to the Shell used as a command, the
structure of command-lines themselves will be given.
Commands. Each command is a sequence of non-blank command arguments separated by
blanks. The first argument specifies the name of a command to be executed. Except for certain
types of special arguments discussed below, the arguments other than the command name are
passed without interpretation to the invoked command.
If the first, argument is the name of an executable file, it is invoked; otherwise the string ’/bin/’ is
prepended to the argument. (In this way most standard commands, which reside in ’/bin’, are
found.) If no such command is found, the string ’/usr’ is further prepended (to give
’/usribin/command’) and another attempt is made to execute the resulting file.-(Certain lesser-
used commands live in ’/usr/bin’.) If the ’/usr/bin’ file exists, but is not executable, it is used by
the Shell as a command file. That is to say it is executed as though it were typed from the con-
sole. If all attempts fail, a diagnostic is printed.
Command lines. One or more commands separated by ’1’ or ,A, constitute a chain of filters. The
standard output of each command but the last is taken as the standard input of the next com-
mand. Each command is run as a separate process, connected by pipes (see pipe(II)) to its neigh-
bors. A command line contained in parentheses ’()’ may appear in place of a simple command
as a filter.
A command line consists of one or more pipelines separated, and perhaps terminated by ’;’ or ’&’.
The semicolon designates sequential execution. The ampersand causes the preceding pipeline to
be executed without waiting for it to finish. The process id of such a pipeline is reported, so that
it may be used if necessary for a subsequent wait or kill.
Termination Reporting. If a command (not followed by ’&’) terminates abnormally, a message is
printed. (All terminations other than exit and interrupt are considered abnormal.) Termination
reports for commands followed by ’&’ are given upon receipt of the first command subsequent to
the termination of the command, or when a wait is executed. The following is a list of the ab-
normal termination messages:

Bus error
Trace/BPT trap
Illegal instruction
lOT trap
EMT trap
Bad system call
Quit
Floating exception
Memory violation
Killed

If a core image is produced, ’- Core dumped’ is appended to the appropriate message.
Redirection of l/O. There are three character sequences that cause the immediately following
string to be interpreted as a special-argument to the Shell itself. Such an argument may appear
anywhere among the arguments of a simple command, or before or after a parenthesized com-
mand list, and is associated with that command or command list.

-1-

SH(1) 5115/74 SH(1)

An argument of the form ’<arg’ causes the file ’arg’ to be used as the standard input (file
descriptor 0) of the associated command. ..
An argument of the form ’> arg’ causes file ’arg’ to be used as the standard output (file descriptor
1) for the associated command. ’Arg’ is created if it did not exist, and in any case is truncated at
the outset.
An argument of the form ’> >arg’ causes file ’arg’ to be used as the standard output for the as-
sociated command. If ’arg’ did not exist, it is created; if it did exist, the command output is ap-
pended to the file.
For example, either of the command lines

Is >junk; cat tail > >junk
(Is; cat tail) >junk

creates, on file ’junk’, a listing of the working directory, followed immediately by the contents of
file ’tail’.
Either.:of the constructs ’>arg’ or ’> >arg’ associated with any but the last command of a pipe-
line is ineffectual, as is ’<arg’ in any but the first.
In commands called by the Shell, file descriptor 2 refers to the standard output of the Shell be-
fore any redirection. Thus filters may write diagnostics to a location where they have a chance
to be seen.
Generation of argument lists. If any argument contains any of the characters ,9, ,*, or [, it is
treated specially as follows. The current directory is searched for files which match the given ar-
gument.

The character ’*’ in an argument matches any string of characters in a file nam.e (including the
null string).

The character ’?’ matches any single character in a file name.
Square brackets ’[...]’ specify a class of characters which matches any single file-name character in
the class. Within the brackets, each ordinary character is taken to be a member of the class. A
pair of characters separated by ’-’ places in the class each character lexically greater than or
equal to the first and less than or equal to the second member of the pair.
Other characters match only the same character in the file name.
For example, ’*’ matches all file names; ’?’ matches all 0he-character file names; ’[ab]*.s’ matches
all file names beginning with ’a’ or ’b’ and ending with ’.s’; ’?[zi-m]’ matches all two-character
file names ending with ’z’ or the letters ’i’ through ’m’.
If the argument with ’*’ or.’?’ also contains a ’/’, a slightly different procedure is used: instead of
the current directory, the directory used is the one obtained by taking the argument up to the last
’/’ before a ’*’ or ’?’. The matching process matches the remainder of the argument after this ’/’
against the files in the.derived directory. For example: ’/usr/dmr/a*.s’ matches all files in directo-
ry ’/usr/dmr’ which begin with ’a’ and end with ’.s’.
In any event, a list of names is obtained which match the argument. This list is sorted into al-
phabetical order, and the resulting sequence of arguments replaces the single argument containing
the ’*’, ’[’, or ’?’. The same process is carried out for each argument (the resulting lists are not
merged) and finally the command is called with the resulting list of arguments.
For example: directory /usr/dmr contains the files al.s, a2.sa9.s. From any directory, the
command

as/usr/dmr/a?.s
calls as with arguments iusr/dmrlal.s,/usr/dmr/a2.s, ... /usr/dmr/a9.s in that order.
Quoting. The character ’\’ causes the immediately following character to lose any special mean-
ing it may have to the Shell; in this way ’<-’, ’>’, and other characters meaningful to the Shell
may be passed as part of arguments. A special case of this feature allows the continuation of
commands onto more than one line: a new-line preceded by ’\’ is translated into a blank.

-2-

SH(I) 5/15/74 SH(I)

FILES

Sequences of characters enclosed in double ~) or single (’) quotes are also taken literally. For
example:

Is pr --h "My directory"
causes a directory listing to be produced by Is, and passed on to pr to be printed with the heading
’My directory’. Quotes permit the inclusion of blanks in the heading, which is a single argument
to pr. , " -
Argument passing. When the Shell is invoked as a command, it has additional string processing
capabilities. Recall that the form in which the Shell is invoked is

sh [name. [argl ... [arg9]]]
¯

The name is the name of a file which will be read and interpreted. If not given, this subinstance
of the Shell will continue to read the standard input file.
In command lines in the file (not in command input), character sequences of the form ’$n’,
where n is a digit, are replaced by the nth argument to the invocation of the Shell (argn). ’$0’ is
replaced by. name.
End of file. An"end-of-file in the Shell’s input causes it to exit. A side effect of this fact means
that the way to log out from UNIX is to type an EOT.
Special commands. The following commands are treated specially by the Shell.
chdir is done without spawning a new process by executing sys chdir (II).

Iogin is done by executing/bin/login without creating a new process.
wait is done without spawning a new process by executing sys wait (II).
shift is done by manipulating the arguments to the Shell.
’:’ is simply ignored.
Command file errors; interrupts. Any Shell-detected error, or an interrupt signal, during the ex-
ecution of a command file causes the Shell to cease execution of that file.
Process that are created with a ’&’ ignore interrupts. Also if such a process has not redirected its
input with a ’<’, its input is automatically redirected to the zero length file/dev/null.

/etc/glob, which interprets ’*’, ’?’, and ’[’.
/dev/null as a source of end-of-file.

SEE ALSO
’The UNIX Time-sharing System’, which gives the theory of operation of the Shell.
chdir (I), login (I), wait (I), shift (I)

BUGS
There is no way to redirect the diagnostic output.

-3-

SHIFT(I) 8/21/73 SHIFT (I)

NAME
shift - adjust Shell arguments

SYNOPSIS
shift

DESCRIPTION
Shift is used in Shell command files to shift the argument list left by 1, so that old $2 can now be
referred to by $1 and so forth. Shift is useful to iterate over several arguments to a command
file. For example, the command file

:loop
if Six -- x exit
or -3 $1
shift
goto loop

prints each of its arguments in 3-column format.

Shift is executed within the Shell.

SEE ALSO
sh (I)

BUGS

-I-

SIZE (I) 9/2/72 SIZE (I)

NAME
size - size of an object file

SYNOPSIS
size [object ...]

DESCRIPTION , " "
Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their
sum in octal and decimal, of each object-file argument. If no file is specified, a.out is used.

BUGS

-1-

SLEEP(1) 11/1/73 S! EEP(I)

NAME
sleep - suspend execution for an interval

SYNOPSIS
sleep time

DESCRIPTION
Sleep will suspend execution for time seconds. It is used to execute a command in a certain
amount of time as in:

(sleep 105; command)&
Or to execute a command every so often as in this shell command file:

"loop
command
sleep 37
goto loop

SEE ALSO
sleep(II)

BUGS
Time must be less than 65536 seconds.

SORT (I) 6/11/74 SORT (I)

NAME
sort - sort or merge files

SYNOPSIS
sort [-abdnrtx] [’l-pos [-pos]]... [-too] [name]...

DE~RIPTION
Sort sorts all the named files ~ogether and writes the result on the standard output. The nan~e ’-’
means the standard input. The standard input is also used if no input file names are given.
Thus sort may be used as a filter.
The default sort key is an entire line. Default ordering is lexicographic in ASCII collating se-
quence, except that lower-case letters are considered the same as the corresponding upper~case
letters. Non-ASCII bytes are ignored. The ordering is affected by the flags -abdnrt, one or more
of which may appear:

a Do not map lower case letters.

b Leading blanks (spaces and tabs) are not included in fields.

d ’Dictionary’ order: only letters, digits and blanks are significant in ASCII comparisons.

n An initial numeric string, consisting of optional minus sign, digits and optionally included
decimal point, is sorted by arithmetic value.

r Reverse the sense of comparisons.
Ix Tab character between fields is x.
Selected parts of the line, specified by +pos and -pos, may be used as sort keys. Pos has the
form m.n, where m specifies a number of fields to skip, and n a number of characters to skip
further into the next field. A missing .n is taken to be 0. +pos denotes the beginning of the key;
--pos denotes the first position after the key (end of line by default). The ordering rule may be
overridden for a particular key by appending one or more of the flags abdnr to -l-pos.
When no tab character has been specified, a field consists of nonblanks and any preceding
blanks. Under the --b flag, leading blanks are excluded from a field. When a tab character has
been specified, a field is a string ending with a tab character.
When keys are specified, later keys are compared only when all earlier ones compare equal.
Lines that compare equal are ordered with all bytes significant.
These flag arguments are also understood:
--m Merge only, the input files are already sorted.

--o The next argument is the name of an output file to use instead of the standard output. This
file may be the same as one of the inputs, except under the merge flag -m.

FILES
/usr/tmp/stm???

-1-

SPELL (I) 2/26/74 SPELL (I)

NAME
spell - find spelling errors

SYNOPSIS
spell file ...

DESCRIPTION
Spell attacks the same problem as typo (I), but from the opposite direction. It extracts words
from the input files and looks them up in Webster’s Seventh Collegiate Dictionary; any words
which appear neither in the dictionary nor in a list of about 2000 words frequently occurring in
Bell Laboratories documents are listed on the output file sp.out. Words which are reasonable
transformations of dictionary entries (e.g. a dictionary entry plus s) are so marked; words which
could not be found even when transformed are marked with asterisks.
The process takes on the order of 5 to 10 minutes. There is a limit of nine input files.

FILES
/usr/lib/w2006,/usr/dict/words, sp.out; spjnkq[123] are temporaries.

SEE ALSO
typo (I)

BUGS

There should be no limit on the number of input files.
More suffixes, and perhaps some prefixes, should be added.
It should be usable as a filter.

o)

-1-

SPLIT (I) 1/15/73 SPLIT (I)

NAME
split -- split a file into pieces

SYNOPSIS "
split --n [file [name]]

DESCRIPTION , " -
Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of
output files. The name of the first output file is name with aa appended, and so on lexicographi-
cally. If no output name is given, x is default
If no input file is given, or if- is given in its stead, then the standard input file is used.

BUGS

.

-1-

STRIP(I) 3/15/72 STRIP (I)

NAME
strip -- remove symbols and relocation bits

SYNOI~SIS
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output of the assem-
bler and loader. This is useful to save space after a program has been debugged.
The effect of strip is the the same as use of the --s option of ld.

FILES
/tmp/stm? temporary file

SEE ALSO
ld(I), as(I)

BUGS

-1-

STTY (I) 6/12/72 STTY (I)

NAME
stty -- set typewriter options

SYNOPSIS
stty option ...

DESCRIPTION
Stty will set certain I/O options on the current output typewriter. The option strings ares~lected
from the following set:

even
--even
odd
--odd
raw
--raw
--nl
nl
echo
-echo
lcase
--icase
--tabs
tabs
delay
--delay
tdelay
--tdelay

allow even parity
disallow even parity
allow odd parity
disallow odd parity
raw mode input (no erase, kill, interrupt, quit, EOT; parity bit passed back)
negate raw mode
allow carriage return for new-line, and output CR-LF for carriage return or new-line
accep.t only.new-line to end lines
echo back every character typed
do not echo characters
map upper case to lower case
do not map case
replace tabs by spaces in output
preserve tabs
calculate cr, tab, and form-feed delays
no cr/tab/ff delays
calculate tab delays
no tab delays

SEE ALSO
stty (II)

BUGS
There should be ’package’ options such as execuport, 33, or terminet.

-1-

SUM (I) 3/15/72 SUM (I)

NAME
sum - sum file

SYNOPSIS
sum name ...

D~RIP’I’ION

BUGS

Sum sums the contents of the bytes (rood T16) of one or more files and prints the answer in oc-
tal. A separate sum is printed for each file specified, along with the number of whole or partial
512-byte blocks read.
In practice, sum is often used to verify that all of a special file can be read without error.

-1o

TEE (I) 3/6/74 TEE (I)

NAME
tee -- pipe fitting

SYNOPSIS
tee [name ...]

.

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the named files.

BUGS

-1-

TIME (I) 8/16/73 TIME (!)

NAME
time - time a command

SYNOPSIS
time command

DESCRIPTION
The given command is executed~ after it is complete, time prints the elapsed time. during.the
command, the, time spent in the system, and the time spent in. execution of the command.
The execution time can depend on what kind of memory the program happens to land.in; °the
user time in MOS is often half what it is in core.
The times are printed on the diagnostic output stream.

BUGS
Elapsed. time is accurate to the second, while the CPU times are measured to the 60th second.
Thus thesum of the CPU times can be up to a second larger than the elapsed time.

-)

l .

TP(1) 10/15/73 TP(I)

NAME
tp -- manipulate DECtape and magtape

SYNOPSIS
tp [key][name ...]

.

DESCRIPTION
Tp saves and restores selected portions of the file system hierarchy on DECtape or mag tape. Its
actions are controlled by the key argument. The key is a string of characters containing at most
one function letter and possibly one or more function modifiers. Other arguments to the com-
mand are file or directory names specifying which files are to be dumped, restored, or listed.

The function portion of the key is specified by one of the following letters:
The indicated files and directories, together with all subdirectories, are dumped onto the
tape. If files with the same names already exist, they are replaced. ’Same’ is deter-
mined by string comparison, so ’./abc’ can never be the same as ’lusrldmrlabc’ even if
’/usr/dmr’ is the current directory. If no file argument is given, ’.’ is the default.
updates the tape. u is the same as r, but a file is replaced only if its modification date is
later than the date stored on the tape; that is to say, if it has changed since it was
dumped, u is the default command if none is given.
deletes the named files and directories from the tape. At least one file argument must
be given. This function is not permitted on magtapes.

x extracts the named files from the tape to the file system. The owner, mode, and date-
modified are restored to what they were when the file was dumped. If no file argument
is given, the entire contents of the tape are extracted.

t lists the names of all files stored on the tape which are the same as or are hierarchically
below the file arguments. If no file argument is given, the entire contents of the tape is
listed.

The following characters may be used in addition to the letter which selects the function desired.

m Specifies magtape as opposed to DECtape.
This modifier selects the drive on which the tape is mounted. For DECtape, ’x’ is
default; for magtape ’0’ is the default.
Normally tp does its work silently. The v (verbose) option causes it to type the name
of each file it treats preceded by the function letter. With the t function, v gives
more information about the tape entries than just the name.
means a fresh dump is being created; the tape directory will be zeroed before begin-
ning. Usable only with r and u. This option is assumed.with magtape since it is im-
possible to selectively overwrite magtape.
causes new entries on tape to be ’fake’ in that no data is present for these entries.
Such fake entries cannot be extracted. Usable only with r and u.
Errors reading and writing the tape are noted, but no action is taken. Normally, er-
rors cause a return to .the command level.

w causes tp to pause before treating each file, type the indicative letter and the file name
(as with v) and await the user’s response. Response y means ’yes’, so the file is treat-
ed. Null response means ’no’, and the file does not take part in whatever is being
done. Response x means ’exit’; the tp command terminates immediately. In the x
function, files previously asked about have been extracted already. With r, u, and d
no change has been made to the tape.

/dev/tap?
/dev/mt?

-1-

TP(I) 10/15/73 TP(I)

DIAGNOSTICS
Several; the non-obvious one is ’Phase error’, which means the file changed after it was selected
for dumping but before it was dumped.

BUGS

-2-

TR (I) 5/20/74 TR (I)

.

NAME
tr - transliterate

SYNOPSIS
tr [--eds] [stringl [string2]] ,

DE~RIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char-
acters. Input characters found in stringl are mapped into the corresponding characters of string2.
If string2 is short,, it is padded with corresponding characters from string1. Any combination of
the options --cds may be used. -c complements the set of characters in string1 with .respect to
the universe of characters whose ascii codes are 001 through 377 octal. -d deletes all input char-
acters in stringl. --s squeezes all strings of repeated output characters that are in string2 to single
characters.
The following abbreviation conventions may be used to introduce ranges of characters or repeat-
ed character~ into the strings:
la-bi stands for the string of characters whose ascii codes run from character a to character b.
la*nl, where n is an integer or empty, stands for n-fold repetition of character a. n is taken to be
octal or decimal according as its first digit is or is not zero. A zero or missing n is taken to be
huge; this facility is useful for padding string2
The escape character ’\’ may be used as in sh to remove special meaning from any character in a
string. In addition, ’\’ followed, by 1, 2 or 3 octal digits stands for the character whose ascii code
is given by those digits.

The following example creates a list of all the words in ’filel’ one per line in ’fileT, where a word
is taken to be a maximal string of alphabetics. The strings are quoted to protect the special char-
acters from interpretation by the Shell; 012 is the ascii code for newline.

tr --cs "[A-Z][a-z]" "[~012"]" <filel > file2

SEE ALSO
sh (I), ed (I), ascii (VII)

BUGS
Won’t handle ascii NUL in stringI or string2; always deletes NUL from input.

-1-

TROFF (I) 5/15/74 TROFF (I)

NAME
troff - format text

SYNOPSIS
troff [÷n] [--n] [--nn] [--mx] [--t] [--f I [--w] [--i l [--a] [--pn I files

DESCRIPTION
Troffformats text for a Graphic Systems phototypesetter according to control lines embedded in
the text files. It reads the standard input if no file arguments are given. The non-file option ar-
guments
+n

--t
--f
--W

-i
--a

--ptt

are interpreted as follows:

Commence typesetting at the first page numbered n or larger.
Stop after page n.
First generated (not necessarily printed) page is given the number n; simulates ".pn n".
Prepends a standard macro file; simulates ".so lusrllibltmac.x".
Place output on standard output instead of the phototypesetter.
Refrain from feeding out paper and stopping the phototypesetter at the end.
Wait until phototypsetter is available, if currently busy.
Read from standard input after the files have been exhausted.
Send a printable approximation of the results to the standard output.
Print all characters with point-size n while retaining all prescribed spacings and motions.

FILES
/usr/lib/suftab suffix hyphenation tables
/tmp/rtm? temporary
/usr/lib/tmac.x standard macro files

SEE ALSO
TROFF User’s Manual (internal memorandum).
TROFF Made Trivial (internal memorandum).
nrolf (I), eqn (I) catsim (VI)

BUGS

-I-

TSS(1) ~/~ 3/15/72 TSS(I)

NAME
tss - interface to MH-TSS

SYNOPSIS

DESCRIPTION
Tss will call the Honeywell 6070 on the 201 data phone. It will then go into direct access with
MH-TSS. Output generated by MH-TSS is typed on the standard output and input requested by
MH-TSS is read from the standard input with UNIX typing conventions.

An interrupt signal is transmitted as a ’break’ to MH-TSS.
Input lines beginning with ’!’ are interpreted as UNIX commands. Input lines beginning with ’"
are interpreted as commands to the interface routine.

"<file
.’>file

-q
-r file

¯ -s file

insert input from named UNIX file
deliver tss output to named UNIX file
pop the output file
disconnect from tss (quit)
receive from HIS routine csr/daccopy
send file to HIS routine csr/daccopy

Ascii files may be most etticiently transmitted using the HIS routine csr/daccopy in this fashion.
Bold face text comes from MH-TSS. Aftname is the 6070 file to be dealt with; file is the UNIX
file.
SYSTEM? csr/daccopy (s) aftname
Send Encoded File "s file
SYSTEM? csr/daccopy (r) aftname
Receive Encoded File -r file

/dev/dn0,/dev/dp0,/etc/msh

DIAGNOSTICS
Most often, ’Transmission error on last message.’

BUGS
When problems occur, and they often do, tss exits rather abruptly.

-1-

TTY (I) 3115/72 TTY (I) "

NAME
tty - get typewriter name

SYNOPSIS
try

DESCRItY~ION
Try gives the name of the user’s typewriter in the form ’ttyn’ for n a digit or letter. The actual
path name is then ’ldevlttyn’.

DIAGNOSTICS
’not a tty’ if the standard input file is not a typewriter.

BUGS

-1-

TYPO (I) 5/15/74 TYPO (I)

NAME
typo -- find possible typos

SYNOPSIS
typo [--1][--n] file ...

¯

DF_S~RIPTION . -
Typo hunts through a document for unusual words, typographic errors, and hapax legomena and
prints them on the standard output.
The words used in the document are printed out in decreasing order of peculiarity along with an
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very
common English words is suppressed.
The statistics for judging words are taken from the document itself, with some help from known
statistics of English. The --n option suppresses the help from English and should be used if the
document is written in, for example, Urdu.

The -1 .option causes the final output to appear in a single column instead of three columns.
The normal h~ader and pagination is alsosuppressed.

Rotf (I) and nrolf (I) control lines are ignored. Upper case is mapped into lower case. Quote
marks, vertical bars, hyphens, and ampersands are stripped from within words. Words hy-
phenated across lines are put back together.

FILES
/tmp/ttmp??
/usr/lib/salt
/usr/lib/w2006

BUGS
Because of the mapping into lower case and the stripping of special characters, words may be
hard to locate in the original text.
The escape sequences of troff (I) are not correctly recognized.

i
..

-1-

UNIQ(I) 12/1/72 UNIQ (I)

NAME
uniq -- report repeated lines in a file

SYNOP.SIS
uniq [--udc [÷n][--:n]][input [output]]

DESCRIPTION
Uniq reads the input file comparing adjacent lines. In the normal case, the second and succeed-
ing copies of repeated lines are removed; the remainder is written on the output file. Note that
repeated lines must be adjacent in order to be found; see sort(I). If the -u flag is used, just the
lines that are not repeated in the original file are output. The -d option specifies that one copy
of just the repeated lines is to be written. The normal mode output is the union of the -u and
-d mode outputs.
The --c option supersedes -u and -d and generates an output report in default style but with
each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:
-n The first n fields together with any blanks before each are ignored. A field is defined as

a string of non-space, non-tab characters separated by tabs and spaces from its neigh-
bors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort (I), comm (I)

BUGS

-1-

W AIT (I) 4/9/7 3 WAIT (I)

NAME
wait - await completion of process

SYNOPSIS
wait

DESCRIPTION ’
Wait until all processes s~rted with & have completed, and report on abnormal terminations.
Because sys wait must be executed in the parent process, the Shell itself executes wait, without
creating a new process.

SEE ALSO
sh (I)

BUGS
After executing wait you are committed to waiting until termination, because interrupts and quits
are ignored by all processes concerned. The only out, if the process does not terminate, is to kill
it from another terminal or to hang up.

-1-

WC (I) 3/10/74 WC (I)

NAME
wc -- word count

SYNOPSIS
wc [--rlwapc][name ...]

DESCRIPTION
Wc counts lines and words in the named files, or in the standard input if no name appears. A
word is a maximal string of ascii graphics delimited by spaces, tabs or newlines. Other charac-
ters are always ignored.

Any of the following options may appear in any order. When any option other than -r appears,
only the specified information is reported in the order in which the options occur. Otherwise,
printing is as with option --lw.

--r Ignore all ro.ff, nro.ffand tro.ffcontrol lines, i.e. lines beginning with ’.’ or ’",

--I Print count of lines.
--w Print count of words.

--a Print count of alphanumeric strings, with underscore taken as alphanumeric.
--p Print count of punctuation strings, i.e. all strings of printing characters other than al-

phanumerics.
--c Print count of roffcontrol lines, regardless of --r.

-1-

WHO (I) 3/15/72 WHO (I)

NAME
who - who is on the system

SYNOPSIS
who [who-file]

DESCRIPTION
Who, without an argument, lists the name, typewriter channel, and login time for each current
UNIX user.
Without an argument, who examines the /tmp/utmp file to obtain its information. If a file is
given, that file is examined, Typically the given file will be/tmp/wtmp, which contains a record
of all the logins since it was created. Then who will list logins, logouts, and crashes Since the
creation of the wtmp file.
Each login is listed with user name, typewriter name (with ’/dev/’ suppressed), and date and time.
When an argument is given, logouts produce a similar line without a user name. Reboots pro-
duce a line with ’x’ in the p.lace of the device name, and a fossil time indicative of when the sys-
tem went down. "

/tmp/utmp

SEE ALSO
login (I), init (VIII)

BUGS

-I-

WRITE (I) 8/5/73 WRITE (I)

NAME
write -- write to another user

SYNOPSIS
write user [ttyno]

DESCRIPTION
Write copies lines from your typewriter to that of another user. When first called, it sends the
message

message from yourname...
The recipient of the message should write back at this point. Communication continues until an
end of file is read from the typewriter or an interrupt is sent. At that point write writes ’EOT’
on the other terminal and exits.
If you want to write to a user who is logged in more than once, the ttyno argument may be used
to indicate the last character of the appropriate typewriter name.
Permission to write may be denied or granted by use of the mesg command. At the outset writ-
ing is allowed. Certain ~commands, in particular roff and pr, disallow messages in order to
prevent messy output.
If the character ’!’ is found at the beginning of a line, write calls the mini-shell msh to execute the
rest of the line as a command.
The following protocol is suggested for using write: when you first write to another user, wait for
him to write back before starting to send. Each party should end each message with a distinctive
signal ((o) for ’over’ is conventional) that the other may reply. (oo) (for ’over and out’) is sug-
gested when conversation is about to be terminated. ’

FILES
/tmp/utmp to find user
/etc/msh to execute ’!’

SEE ALSO
mesg(I), who(I)

BUGS

-1-

INTRO (II) 11/5173 INTRO (II)

INTRODUCTION TO SYSTEM CALLS

Section II of this manual lists all the entries into the system. In most cases two calling sequences are
specified, one of which is usable from assembly language, and the other from C. Most of these calls
have an error return. From assembly language an erroneous call.is always indicated by turning on the c-
bit of the condition codes. The presence of an error is most easily tested by the instructions bes. and bec
("branch on error set (or clear)"). These are synonyms for the bcs and bcc instructions.

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this
is -1; the individual sections specify the details.

In both cases an error number is also available. In assembly language, this number is returned in r0 on
erroneous calls. From C, the external variable errno is set to the error number. Errno is not cleared on
succesful calls, so it should be tested only after an error has occurred. There is a table of messages asso-
ciated with each error, and a routine for printing the message. See perror (liD.

The possible error numbersare not recited with each writeup in section II, since many errors are possible
for most of the calls. Here is a list of the error numbers, their names inside the system (for the benefit
of system-readers), and the messages available using perror. A short explanation is also provided.

0 - (unused)

EPERM Not owner and not super-user
Typically this error indicates an attempt to modify a file in some way forbidden except to its own-
er. It is also returned for attempts by ordinary users to do things allowed only to the super-user..

ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or when one
of the directories in a path name does not exist.

ESRCH No such process
The process whose number was given to signal does not exist, or is already dead.

D (unused)

EIO I/O error
Some physical I/O error occurred during a read or write. This error may in some cases occur on a
call following the one to which it actually applies.

ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of the device.
It may also occur when, for example, a tape drive is not dialled in or no disk pack is loaded on a
drive.

E2BIG Arg list too long
An argument list longer than 512 bytes (counting the null at the end of each argument) is present-
ed to exec.

ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions, does not
start with one of the magic numbers 407 or 410.

EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to a file which
is open only for writing (resp. reading).

-1-

.ECHILD No children
Wait and the process has no living or unwaited-for children.

INTRO(II)

11 EAGAIN No more processes
In a fork, the system’s process table is full and no more processes can for the moment be created.

12 ENOMEM Not enough core
During an exec or break, a program asks for more core than the system is able to supply. This is
not a temporary condition; the maximum core size is a system parameter. The error may also oc-
cur if the arrangement of text, data, and stack segments is such as to require more than the exist-
ing 8 segmentation registers.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 - (unused)

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt was made to dismount a device on which there is an open file or some process’s
current directory.

...,.~17 K EEXIST File exists ¯
"’"~ -""’!:~ln existing file was mentioned in a context in which it should not have, e.g. link.

18

19

E XDEV Cross-device l ink
A link to a file on another device was attempted.

ENODE’v; No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a write-only dev-
ice.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name or as an
argument .to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument ¯

Some invalid argument: currently, dismounting a non-mounted device, mentioning an unknown
signal in signal, and giving an unknown request in stty to the TIU special file.

23

25

ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted.

EMFILE Too many open files
Oni~-"~les can be open per process; this error occurs when tl~e eleventh is opened.

ENOTTY Not a typewriter
The file mentioned in stty or gtty is not a typewriter or one of the other devices to which these
calls apply.

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing (or reading!).

-2-

INTRO (11) 11/5/73 INTRO (II)

27

28

29

30

EFBIG File too large
An attempt to make a file larger than the ma.ximum of 2048 blocks.

ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

ESPIPE Seek on pipe
A seek was issued to a pipe., This error should also be issued for other non-seekable devices.

EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

-3-

BREAK (II) 815H3 BREAK (II)
¯

NAME
break - set program break

SYNOPSIS
(break ffi 17.)
sys break; addr
char *brk(addr)
char *sbrk(incr)

DESCRIPTION
Break sets the system’s idea of the lowest location not used by the program (called the break) to
addr (rounded up to the next multiple of 64 bytes). Locations not less than addr and below the
stack pointer are not in the address space and will thus cause a memory violation if accessed.
From C, brk will set the break to addr. The old break is returned.
In the alternate entry sbrk, incr more bytes are added to the program’s data space and a pointer
to the start of the new area is returned.
When. a program begins execution via exec the break is set at the highest location defined by the
program and data storage areas. Ordinarily, therefore, only programs with growing data areas
need to use break.

SEE ALSO
exec ill), alloc (lid

DIAGNOSTICS
The c-bit is set if the program requests more memory than the system limit or if more than 8
segmentation registers would be required to implement the break. From C, -I is returned for
these errors.

t

-I-

CHDIR (lI) 3/15/72 CHDIR (II)

NAME
chdir - change working directory

SYNOPSIS
(chdir--- 12.)
sys chdir; dirname
chdir(dirname)
char *dirname;

DESCRIPTION
Dimame is the address of the pathname of a directory, terminated by a null byte. Chdir causes
this directory tO become the current working directory.

SEE ALSO
chdir(I)

DIAGNOSTICS
The error bit (c-bit) is set if the given name is not that of a directory or is not readable. From C,
a -1 returnedvalue indicates an error, 0 indicates success.

-1-

CHMOD(II) 815173 CHMOD(II)

NAME
chmod - change mode of file

SYNOPSIS
(chmod = 15.)
sys chmod; name; mode

chmod(name, mode)
char *name;

DESCR! PTION
The file whose name is given as the null-terminated string pointed to by name has its mode
changed to mode. Modes are constructed by ORing together some combination of the following:

4000 set user ID on execution
:2000 set group ID on execution
0400 read by owner
0200 write by owner
0100 execute (search on directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

Only the owner of a file (or the super-user) may change the mode.

SEE ALSO
chmod (1)

DIAGNOSTIC
Error bit (c-bit) set if name cannot be found or if current user is neither the owner of the file nor
the super-user. From C,a -1 returned value indicates an error, 0 indicates success.

-1-

CHOWN (II) 815/73 CHOWN (II)

NAME
chown - change owner

SYNOPSIS
(chmod-- 16.)
sys chown; name; owner
chown(name, owner)
char *name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to by name has its owner
changed to owner (a numerical user ID). Only the present owner of a file (or the super-user) may
donate the file to another user. Changing the owner of a file removes the set-user-lD protection
bit unless it is done by the super user.

SEE ALSO
chown (I), passwd (V)

DIAGNOSTICS
The error bit (c-bit) is set on illegal owner changes. From C a -1 returned value indicates error,
0 indicates success.

CLOSE (II) 8/5/73 CLOSE (II)

NAME
close -- close a file

SYNOPSIS
(close = 6.)
(file descriptor in r0)
sys close

close(tildes)

DESCRIPTION
Given a file descriptor such as returned from an open, creat, or pipe call, close closes the associat-
ed file. A close of all files is automatic on exit, but since processes are limited to 15 simultane-
ously open files, close is necessary for programs which deal with many files.

SEE ALSO
creat (II), open (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set for an unknown file descriptor. From C a -1 indicates an error, 0 indi-
cates success.

-1-

CREAT (II) 8/5/73 CREAT (II)

NAME
creat - create a new file

SYNOPSIS
(creat = 8.)
sys creat; name; mode
(file descriptor in rO)
treat(name, mode)
char * name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing file called name, given as the address of
a null-terminated string. If the file did not exist, it is given mode mode. See chmod(ll) for the
construction of the mode argument.
If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.
The file is also opened for writing, and its file descriptor is returned (in r0).
The modb given is arbitrary; it need not allow writing. This feature is used by programs which
deal with temporary files of fixed names. The creation is done with. a mode that forbids writing.
Then if a second instance of the program attempts a creat, an error is returned and the program
knows that the name is unusable for the moment.

SEE ALSO
write (II), close (II), star (II)

DIAGNOSTICS
The error bit (c-bit) may be set if: a needed directory is not searchable; the file does not exist and
the directory in which it is to be created is not writable; the file does exist and is unwritable; the
file is a directory; there are already too many files open.

From C, a -I return indicates an error.

-1-

CSW (II) 7/29/72 CSW (II)

NAME
csw - read console switches

SYNOPSIS
(csw -- 38.; not in assembler)
sys csw
getcsw()

DESCRIPTION
The setting of the console switches is returned (in r0).

.

DUP(II) 8/5/73 DUP(II)

NAME
dup - duplicate an open file descriptor

SYNOPSIS
(dup = 41.; not in assembler)
(file descriptor in r0)
sys dup
dup(fildes) ’
int tildes;

DESCR! PTION
Given a file descriptor returned from an open, pipe. or creat call, dup will allocate another file
descriptor synonymous with the original. The new file descriptor is returned in r0.
Dup is used more to reassign the value of file descriptors than to genuinely duplicate a file
descriptor. Since the algorithm to allocate file descriptors returns the lowest available value,
combinations of dup and close can be used to manipulate file descriptors in a general way. This
is handy for manipulating standard input and/or standard output.

SEE ALSO
creat (I1), open (II), close (II), pipe (II)

DIAGNOSTICS
The error bit (c-bit) is set if: the given file descriptor is invali& there are already too many open
files. From C, a -1 returned value indicates an error.

-1-

EXEC (ll) 8/5/73 EXEC (II)

NAME
exec - execute a file

SYNOPSIS
(exec = 11.
sys exec; name; args

name: <...\0>

args: argl; arg2; ...; 0
argl: <...\0 >
arg2: < ...\0 >

execl(name, argl, arg2, ..., argn, O)
char *name, *argl, *arg2, ..., *argn;
execv(name, argv)
char *name;
char *argv[l;

DESCRIPTION
Exec overlays the calling process with the named file, then transfers to the beginning of the core
image of the file. There can be no return from the file; the calling core image is lost.
Files remain open across exec calls. Ignored signals remain ignored across exec, but signals that
are caught are reset to their default values.
Each user has a real user ID and group ID and an effective user ID and group ID (The real ID
identifies the person using the system; the effective ID determines his access privileges.) Exec
changes the effective user and group ID to the owner of the executed file if the file has the "set-
user-lD" or "set-group-ID" modes. The real user ID is not affected.
The form of this call differs somewhat depending on whether it is called from assembly language
or C; see below for the C version.
The first argument to exec is a pointer to the name of the file to be executed. The second is the
address of a null-terminated list of pointers to arguments to be passed to the file. Conventional-
ly, the first argument is the name of the file. Each pointer addresses a string terminated by a
null byte.

Once the called file starts execution, the arguments are available as follows. The stack pointer
points to a word containing the number of arguments. Just above this number is a list of
pointers to the argument strings. The arguments are placed as high as possible in core.

sp-- nargs
argl
o,,

argn
--1

argl: <argl\O>

argn: < ar
From C tw~ interfaces Are available, execl is useful when a known file with known arguments is
being called;~,,}he~ ar~ments to execl are the character strings constituting t e file and the
arguments; as ~ basic call, the first argument is conventionally the same as the file name (or
its last component). A 0 argument must end the argume.nt list.
The execv version is useful when the number of arguments is unknown in advance; the argu-
ments to execv are the name of the file to be executed and a vector of strings containing the ar-
guments. The last argument string must be followed by a 0 pointer.

-1-

EXEC (11) 8/5/73 EXEC (I1)

When a C program is executed, it is called as follows:
mai n(argc, argv)
i n t argc;
char *argv[1;

where argc is the argument count and argv is an array of character pointers to the arguments
themselves. As indicated, argc is conventionally at least one and the first member of the array
points to a string containing the name of the file. . .

Argv is not directly usable in another execv, since argv[argc] is -1 and not 0.

SEE ALSO
fork (II)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not have a valid header (407 or 410
octal as first word), if maximum memory is exceeded, or if the arguments require more than 512
bytes a return from exec constitutes the diagnostic; the error bit (c-bit) is set. From C the
turned value is -1.

BUGS
Only 512 characters of arguments are allowed.

-2-

EXIT (II) 8/5F’. 3 EXIT (II)

NAME
exit -- terminate process

SYNOPSIS
(exit---- 1.)
(status in r0)
sys exit

exit(status)
int status;

DESCRIPTION
Exit is the normal means of terminating a process. Exit closes all the process’s files and notifies
the parent process if it is executing a wait. The low byte of r0 (resp. the argument to exit) is
available as status to the parent process.

This call can never return.

SEE ALSO
wait (I I)

DIAGNOSTICS
None.

-1-

FOR K (II) 8/5/73 FORK (II)

NAME
fork - spawn new process

SYNOPSIS
(fork = 2.)
sys fork
(new process return)
(old process return)

fork()

DESCRIPTION
Fork is the only way new processes are created. The new process’s core image is a copy of that
of the caller of.fork. The only distinction is the return location and the fact that r0 in "the old
(parent) process contains the process ID of the new (child) process. This process ID is used by
wait.
The two returning processes share all open files that existed before the call. In particular, this is
the way that standard input and output files are passed and also how pipes are set up.
From C, the r6turned value is 0 in the child process, non-zero in the parent process: however, a
return of-1 indicates inability to create a new process.

SEE ALSO
wait (II), exec (II)

DIAGNOSTICS
The error bit (c-bit) is set in the old process if a new process could not be created because of lack
of process space. From C, a return of -1 (not just negative) indicates an error.

-1-

FSTAT (II) 3/15/72 FST AT (II)

NAME
fstat -- get status of open file

SYNOPSIS
(fstat-- 28.)
(file descriptor in r0)
sys fstat; buf

fstat(fildes, bu0
struct inode buf;

DESCRIPTION
This call is identical to stat, except that it operates on open files instead of files given by name.
It is most often used to get the status of the standard input and output files, whose names are
unknown.

SEE ALSO
stat(II)

DIAGNOSTICS
The.error bit (c-bit) is set if the file descriptor is unknown; from C, a -I return indicates an er-
ror, 0 indicates success.

.

GETGID (I1) 5/15/74 GETG! D (11)

NAME
getgid - get group identifications

SYNOPSIS
(getgid = 47.~ not in assembler)
sys getgid

getgid()
. .

DESCRIPTION
Getgid returns a word, the low byte of which contains the real group ID of the current process.
The high byte contains the effective group ID of the current process. The real group ID
identifies the group 9f the person who is logged in, in contradistinction to the effective group ID,
which determines his access permission at the moment. It is thus useful to programs which
operate using the "set group ID" mode, to find out who invoked them.

SEE ALSO
setgid (11)

DIAGNOSTICS

-1-

GETUID(II) 5/15/74 GETUID (II)

NAME
getuid - get user identifications

SYNOPSIS
(getuid -- 24.)
sys getuid
getuid()

DESCRIPTION
Getuid returns a word, the low byte of which contains the real user ID of the current process.
The high byte contains the effective user-ID of the current process. The real user ID identifies
the person who is logged in, in contradistinction to the effective user ID, which determines his
access permission at the moment. It is thus useful to programs which operate using the "set user
ID" mode, to find out who invoked them.

SEE ALSO
setuid (II)

DIAGNOSTICS

-I-

GTTY (II) 815/73 GTTY (II)

NAME
gtty -- get typewriter status

SYNOPSIS
(gtty =~ .32.)
(file descriptor in r0)
sys gtty; arg
o~e

arg: .----.-I-6

gtty(fildes, arg)
int arg[3];

DE~RIPTION
Gtty stores in the three words addressed by arg the status of the typewriter whose file descriptor
is given in r0 (resp. given as the first argumen0. The format is the same as that passed by stty.

SEE ALSO
stty (II) ¯

DIAGNOSTICS
Error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a -1 value is
returned for an error, 0, for a successful call.

-1-

INDIR (II) 9115H3 INV~IR (II)

NAME
indir - indirect system call

SYNOPSIS
(indir = 0.; not in assembler)
sys indir; syscall

DESCRIPTION
The system call at the location syscall is executed. Execution resumes after the indir call.
The main purpose of indir is to allow a program to store arguments in system calls and execute
them out of line in the data segment. This preserves the purity of the text segment.
If indir is executed indirectly, it is a no-op.

SEE ALSO

DIAGNOSTICS

KILL (II) . 8/5/73 KILL (II)

NAME
kill - send signal to a process

SYNOPSIS
(kill = 37.; not in assembler)
(process number in r0)
sys kill; sig
kill(pid, sig);

DESCRIPTION
Kill sends the signal sig to the process specified by the process number in r0. See signal (II) for a
list of signals.
The sending and receiving processes must have the same controlling typewriter, otherwise this
call is restricted to the super-user.

SEE ALSO
signal (II), kill (I)

DIAGNOSTICS
The error bit ~c-bit) is set if the process does not have the same controlling typewriter and the
user is not super-user, or if the process does not exist.

BUGS
Equality between the controlling typewriters of the sending and receiving process is neither a
necessary nor sufficient condition for allowing the sending of a signal. The correct condition is
equality of user IDs.

.

LINK(II) 3/15/72 LINK(II) :

NAME
link - link to a file

SYNOPSIS
(link = 9.)
sys link; namel; name2
link(namel, name2)
char * namel, *name2;

DESCRIPTION
A link to namel is created; the link has the name name2. Either name may be an arbitrary path
name.

SEE ALSO
link(I), unlink(II)

DIAGNOSTICS
The error bit (c-bit) is set when namel cannot be found; when name2 already exists; when the
directory of name2 cannot be written; when an attempt is made to link to a directory by a user
other than the super-user; when an attempt is made to link to a file on another file system.
From C, a -1 return indicates an error, a 0 return indicates success.

-1-

MKNOD (II) 815173 M KNOD (I1)

NAME
mknod - make a directory or a special file

SYNOPSIS
(mknod = 14.; not in assembler)
sys mknod; name; mode; addr
mknod(name, mode, addr)
char *name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by name. The
mode of the new file-(including directory and special file bits) is initialized from mode. The first
physical address of the file is initialized from addr. Note that in the case of a directory, addr
should be zero. In the case of a special file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir (I), mkno.d (Vll!), fs (V)¯¯

DIAGNOSTICS
Error bit (c-bit) is set if the file already exists or if the user is not the super-user. From C, a -1
value indicates an error.

-1-

MOUNT (II) 5/15/74 MOUNT (II)

NAME
mount -- mount file system

SYNOPSIS
(mount - 21.)
sys mount; special; name; rwflag
mount(special, name, rwtlag)
char *special, *name;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings contain-
ing the appropriate path names.
Name must exist already. Its old contents are inaccessible while the file system is mounted.

The rw.[lag argument determines whether the file system can be written on; if it is 0 writing is al-
lowed, if non-zero no writing is done. Physically write-protected and magnetic tape file systems
must be mounted read-only or errors will occur when access times are updated, whether or not
any explicit write is attempted.

SEE ALSO
mount (VIII), umount (II)

DIAGNOSTICS
Error bit (c-bit) set if: special is inaccessible or not an appropriate file; name does not exist: special
is already mounted; there are already too many file systems mounted.

.

NICE (II) 3115/72 NICE (II)

NAME
nice -- set program priority

SYNOPSIS
(nice = 34.)
(priority in r0)
sys nice
nice(priority)

DESCRIPTION
The currently executing process is set into the priority specified by priority. If priority is positive,
the priority of the process is below default; if negative the proems must be the super-user and its
priority is raised. The valid range of priority is between 20 and -220. The value of 16 is recom-
mended to users who wish to execute long-running programs without flak from the administra-
tion.
The effect of this call is passed to a child process by the fork system call. The effect can be can-
celled by another call to nice with a priority of 0.

SEE ALSO
nice(I)

DIAGNOSTICS
The error bit (c-bit) is set if the user requests a priority outside the range of 0 to 20 and is not the
super-user.

-1-

OPEN (II) 8/5/73 OPEN (II)

NAME
open - open for reading or writing

SYNOPSIS
(open ffi 5.)
sys open; name; mode
open(name, mode)
char *name;

DESCRIPTION
Open opens the file name for reading (if. mode is 0), writing (if mode is 1) or for both reading and
writing (if mode is 2). Name is the address of a string of ASCII characters representing a path
name, terminated by a null character.

The returned file descriptor should be saved for subsequent Calls to read, write, and close.

SEE ALSO
creat (II), read (II), write (II), close (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file does not exist, if one of the necessary directories does not ex-
ist or is unreadable, if the file is not readable (resp. writable), or if too many files are open. From
C, a -1 value is returned on an error.

i

-1-

PIPE (II) 8/5/73 PIPE (II)

NAME
pipe - create a pipe

SYNOPSIS
(pipe = 42.)
sys pipe
(read file descriptor in r0)
(write file descriptor in rl)

pipe(tildes)
int fildes[2l;

DESCRIPTION
The pipe systemcall izreates an I/O mechanism called a pipe. The file descriptors returned.can be
used in read and write operations. When the pipe is written using the descriptor returned in rl
(resp. tildes[l]), up to 4096 bytes of data are buffered before the writing process is suspended. A
read using the descriptor returned in r0 (resp. tildes[0]) will pick up the data.

It is assumed thal after the pipe has been set up, two (or more) cooperating processes (created by
subsequent .fork calls) will pass data through the pipe with read and write calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors closedl
return an end-of-file. Write calls under similar conditions are ignored.

SEE ALSO
sh (I), read (II), write (II), fork (II)

DIAGNOSTICS
The error bit (c-bit) is set if too many files are already open. From C, a -1 returned value indi-
cates an error.

-1-

PROFIL (II) 5115/74 PROFIL (11)

NAME
profil - execution time profile

SYNOPSIS
(profil = 44.; not in assembler)
sys profil; buff; bufsiz; offset; scale
profil(buff, bufsiz, offset, scale)
char buffl I;
int bufsiz, offset, scale;

DESCRIPTION
Buffpoints to an area of core whose length (in bytes) is given by bufsiz. After this call, the user’s
program counter (pc) is examined each clock tick (60th second); offset is subtracted from it, and
the result multiplied by scale. If the resulting number corresponds to a word inside buff, that
word is incremented.
The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
177777(8) gives a 1-1 mapping of pc’s to words in buff; 77777(8) maps each pair of instruction
words together. 2(8) maps all instructions onto the beginning of buff (producing a non-
interrupting core clock).
Profili~ag is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of 0.
Profiling is also turned off when an exec is executed but remains on in child and parent both
after a .fork.

SEE ALSO
monitor (liD, prof (I)

DIAGNOSTICS

-1-

READ(II) 8/5/73 READ (II)

NAME
read - read from file

SYNOPSIS
(read "- 3.)
(file descriptor in r0)
sys read; buffer; nbytes
read(tildes, buffer, nbytes) ,
char *buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open, or pipe call. Buffer is the location of
nbytes contiguous byi.es into which the input will be placed. It is not guaranteed that all nbytes
bytes will be read; for example if the file refers to a typewriter at most one line will be returned.
In any event the number of characters read is returned (in r0).

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open (II), pipe (II)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If th~ read was other-
wise unsuccessful the error bit (c-bit) is set. Many conditions can generate an error: physical I/O
errors, bad buffer address, preposterous nbytes, file descriptor not that of an input file. From C, a
-1 return indicates the error.

-1-

SEEK (II)SEEK(II) 3115/72

NAME
seek - move read/write pointer

SYNOPSIS
(seek-- 19.)
(file descriptor in r0)
sys seek; offset; ptrname

seek(tildes, offset, ptrname)

DESCRIPTION
The file descriptor refers to a file open for reading or writing. The read (resp. write) pointer for
the file is set as follows:

if ptrname is 0, the pointer is set to offset.
if ptmame is 1, the pointer is set to its current location plus offset.
if ptrname is 2, the pointer is set to the size of the file plus offset.
if ptrname is 3, 4 or 5, the meaning is as above for 0, 1 and 2 except that the offset is multi-

plied by 512.
If ptrname is 0 or 3, offset is unsigned, otherwise it is signed.

SEE ALSO
open(II), creat(II)

DIAGNOSTICS
The error bit (c-bit) is set for an undefined file descriptor. From C, a -1 return indicates an er-
ror.

l .

SETGID(II) 3/15/72 SETGID (II)

NAME
setgid - set process’s group ID

SYNOPSIS
(setgid - 46.)
(group ID in r0)
sys setgid

setgid(gid)

DESCRIPTION
The group ID of the current process is set to the argument. Both the effective and the real group
ID are set. This call.is only permitted to the super-user or if the argument is the real group ID.

SEE ALSO
getgid(II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a -I value is returned.

-I-

SETUID(II) 3115/72 SETUID(II)

NAME
setuid - set process’s user ID

SYNOPSIS
(setuid - 23.)
(user ID in r0)
sys setu|d

setuid(uid)

DE~RIPTION
The user ID of the current process is set to the argument. Both the effective and the real user ID
are set. This call is only permitted to the super-user or if the argument is the real user ID.

SEE ALSO
getuid(II)

DIAGNOSTICS
Error bit (c-bit) is set as indicated; from C, a -1 value is returned.

-1-

SIGNAL (11) 8/5/73 SIGNAL (II)

NAME
signal - catch or ignore signals

SYNOPSIS
(signal ---- 48.)
sys signal:, sig; label
(old value in r0)
signal(sig, func)
int (*funcX);

DESCRIPTION
When the signal defined by sig is sent to the current process, it is to be treated according to label
(resp. func.)The following is the list of signals:

1 hangup
2 interrupt
3* quit
4* illegal instruction
5* . trace trap
6* IOT instruction
7* EMT instruction
8* floating point exception
9 kill (cannot be.caught or ignored)
10" bus error
11" segmentation violation
12’ bad argument to sys call

If label is 0, the default system action applies to the signal. This is processes termination with or
without a core dump. If label is odd, the signal is ignored. Any other even label specifies an ad-
dress in the process where an interrupt is simulated. An RTI instruction will return from the in-
terrupt. As a signal is caught, it is reset to 0. Thus if it is desired to catch every such signal, the
catching routine must issue another signal call.

In C, iffunc is 0 or 1, the action is as described above. If func is even, it is assumed to be the
address of a function entry point. When the signal occurs, the function will be called. A return
from the function will simulate the RTI.
The starred signals in the list above cause a core image if not caught or ignored.
In assembly language, the old value of the signal is returned in r0. In C, that value is returned.
After a.fork, the child inherits all signals. The exec call resets all caught signals to default action.

SEE ALSO
kill (I), kill (II)

DIAGNOSTICS
The error bit (c-bit) is set if the given signal is out of range. In C, a -1 indicates an error; 0 indi-
cates success.

-1-

SLEEP (II) 9/4/72 SLEEP (II)

NAME
sleep - stop execution for interval ’ :

SYNOPSIS
"(sleep = 35.; not in assembler)
(seconds in r0)
sys sleep
sleep(seconds)

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the ar-
gument.

SEE ALSO
sleep (I)

DIAGNOSTICS

.

STAT (I I) 8/5/73 STAT (I1)

NAME
star - get file status

SYNOPSIS
(stat-- 18.)
sys stal; name; bur
slat(name, bur)
char * name;
slruct inode *bur;

DESCRIPTION
Name points to a null-terminated string naming a file; bufis the address of a 36(10) byte buffer in-
to which informatiori is placed concerning the file. It is unnecessary to have any permissions at
all with respect to the file, but all directories leading to the file must be readable. After s’tat, bur
has the following structure (starting offset given in bytes):

struct {
char minor; /* +0: minor device of i-node */
char major; /* +1: major device */
int -inumber /* +2 */
int flags; /* +4: see below */
char nlinks; /* -I-6: number of links to file */
char uid; /* +7: user ID of owner */
char gid; /* +8: group ID of owner */
char size0; /* +9: high byte of 24-bit size */
int sizel; /* +10: low word of 24-bit size */
int addr[8]; /* +12: block numbers or device number */
int actime[2]; /* +28: time of last access */
int modtime[2]; /* +32: time of last modification*/

The flags are as follows:
100000 i-node is allocated
060000 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000
004000
002000
000400
000200
000100
000070
000007

large file
set user-ID on execution
set group-lD on execution
read (owner)
write (owner)
execute (owner)
read, write, execute (group)
read, write, execute (others)

SEE ALSO
Is (I), fstat (II), fs (V)

DIAGNOSTICS
Error bit (c-bit) is set if the file cannot be found. From C, a -I return indicates an error.

-I-

STIME (ll) 8/5/73 STIME (II)

NAME
stime -- set time

SYNOPSIS
(stime -- 25.)
(time in r0-rl)
sys st|me

stime(tbu0
int tbuf[21;

DESCRIPTION
Stime sets the system’s idea of the time and date. Time is measured in seconds from 0000 GMT
Jan 1 1970. Only the super-user may use this call.

SEE ALSO
date (I), time (II), crime (III)

DIAGNOSTICS
Error bit (c-bit) set if user is not the super-user.

-1-

STTY (11) 8/5/73 STTY (!1)

NAME
stty -- set mode of typewriter

SYNOPSIS
(stty ---- 31.)
(file descriptor,in r0)
sys stty; arg

arg: speed; 0; mode
stty(fildes, arl~)
int arid31;

DESCRIPTION
Stty sets mode bits and character speeds for the typewriter whose file descriptor is passed in r0
(resp. is the first argument to the call). First, the system delays until the typewriter is quiescent.
Then the speed and general handling of the input side of the typewriter is set from the low byte
of the first word of the arg, and the speed of the output side is set from the high .byte of the first
word of.the arg. The speeds are selected from the following table, which corresponds to the
speeds supporfed by ~the DH-I 1 interface. If DC-11, DL-I 1 or KL-I 1 interfaces are used, impos-
sible speed changes are ignored.

0 (turn off device)
1 50 baud
2 75 baud
3 110 baud
4 134.5 baud
5 150 baud
6 200 baud
7 300 baud
8 600 baud
9 1200 baud
10 1800 baud
11 2400 baud
12 4800 baud
13 9600 baud

" 14 External A
15 External B

In the current configuration, only 150 and 300 baud are really supported, in that the code conver-
sion and line control required for 2741’s (134.5 baud) must be implemented by the user’s pro-
gram, and the half-duplex line discipline required for the 202 dataset (1200 baud) is not supplied.
The second word of the arg is currently unused and is available for expansion.
The third word of the arg sets the mode. It contains several bits which determine the system’s
treatment of the typewriter:

u~,~t..~ o cal t~.l taO~ . W~]" .~,,on~!3t’~’~\---

200 even parity allowed on input (e. g. for M37s)
100 odd parity allowed on input
040 raw mode: wake up on all characters
020 map CR into LF; echo LF or CR as CR-LF
010 echo (full duplex)
004 map upper case to lower on input (e. g. M33)
002 echo and print tabs as spaces

~ ~.~/~
Characterswith the wrong parity, as determined by bits 200an~i 100, are ignored.

-1o

STTY (II) 815173 STTY (II)

In raw mode, every character is passed back immediately to the program. No erase or kill pro-
cessing is done; the end-of-file character (EOT), the interrupt character (DELETE) and the quit
character (FS) are not treated specially.
Mode 020 causes input carriage returns to be turned into new-lines; input of either CR or LF
causes LF-CR both to be echoed (used for GE TermiNet 300’s and other terminals without the
newline function).

SEE ALSO
Stty (I), gtty (II)

DIAGNOSTICS
The error bit (c-bit) is set if the file descriptor does not refer to a typewriter. From C, a negative
value indicates an error.

-2-

SYNC (II) 6/12/72 SYNC (II)

NAME
sync -- update super-block

SYNOPSIS
(sync = 36.; not in assembler)
sys sync

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out..This in-
cludes modifi~ super blocks, modified i-nodes, and delayed block I/0.
It should be used by programs which examine a file system, for example check, d.£ etc. It is
mandatory before a boot.

SEE ALSO
sync (VIII)

DIAGNOSTICS

-1-

TIME (II) 3/15/72 TIME (II)

NAME
time - get date and time

SYNOPSIS
(time-- 13.)
sys time
time(tvec)
int tved21;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. From as, the high
order word is in the r0 register and the low order is in rl. From C, the user-supplied vector is
filled in.

SEE ALSO
date(I), stime(II), ctime(III)

DIAGNOSTICS
none

-1-

TIMES (II) 8/5/73 TIMES (II)

NAME
times - get process times

SYNOPSIS
(times = 434 not in assembler)
sys times; buffer

times(buffer)
struet tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 1/60 seconds.
After the call, the buffer will appear as follows:

struct tbuffer {
int
int
int
int

proc_user_time;
proc_system_time;
child_user_time[2];
child_system_time[2];

The children times are the sum of the children’s process times and their children’s times.

SEE ALSO
time(I)

DIAGNOSTICS

BUGS
The process times should be 32 bits as well.

-1-

UMOUNT (II) 8/5/73 UMOUNT (I!)

NAME
umount -- dismount file system

SYNOPSIS
(umount = 22.)
sys umount; special

DESCRIPTION
Umount announces to the system that special file special is no longer to contain a removable file
system. The file associated with the special file reverts to its ordinary interpretation (s~ mount).

SEE ALSO
umount (VIII), mount (ll)

DIAGNOSTICS
Error bit (c-bit) set if no file system was mounted on the special file or if there are still active
files on the mounted file system.

-1-

UNLINK (II) 8/5/73 UNLINK (II)

NAME
unlink - remove directory entry

SYNOPSIS
(unlink = 10.)
sys unlink; name

unlink(name)
char *name;

DESCRIPTION
Name points to a null-terminated string. Un/ink removes the entry for the file pointed to by
name from its directory. If this entry was the last link to the file, the contents of the. file are
freed and the file is destroyed. If, however, the file was open in any process, the actual des-
truction is delayed until it is closed, even though the directory entry has disappeared.

SEE ALSO
rm (I), rmdir (I), link (II)

DIAGNOSTICS -
The error bit (c-bit) is set to indicate that the file does not exist or that its directory cannot be
written. Write permission is not required on the file itself. It is also illegal to unlink a directo-
ry (except for the super-user). From C, a -1 return indicates an error.

-1-

WAIT(II) 8/5/73 WAIT (II)

SYNOPSIS

sys wait
wait(status)
int *status;

DESCRIPTION
Wait causes its caller to delay until one of its child processes terminates. If any child has died
since the last wait, return is immediate; if there are no children, return is immediate with the er-
ror bit set (resp. with a value of -1 returned). In the case of several children several wait calls
are needed to learn of all the deaths.
If no error is indicated on return, the rl high byte (resp. the high byte stored into status) con-
tains the low byte of the child process r0 (resp. the argument of exit) when it terminated. The
rl (resp. status) low byte contains the termination status of the process. See signal (II) for a list
of termination statuses (signals); 0 status indicates normal termination. If the 0200 bit of the ter-
mination status is set, a core image of the process was produced by the system.
If the parent process terminates without waiting on its children, the initialization process (process
ID -- 1) inherits the children.

exit (II), fork (II), sign~al (II)! :

DIAGNOSTICS
The error bit (c-bit) is set if there are no children not previously waited for. From C, a returned
value of--1 indicates an error.

.

WRITE (II) 3/15/72 WRITE (II)

NAME
write - write on a file

SYNOPSIS
(write ---- 4.)
(fi!e descriptor in r0)
sys write; buffer; nbytes
write(tildes, buffer, nbytes)
char *buffer;

DESCRIPTION
A file descripto~ is a word returned from a successful open, creat or pipe call.

Buffer is the address of nbytes contiguous bytes which are written on the output file. The number
of characters actually written is returned (in r0). It should be regarded as an error if this is not
the same as requested.
Writes which are: multiples of 512 characters long and begin on a 512-byte boundary are more
efficient than any others.

SEE ALSO
creat(II), open(II), pipe(II)

DIAGNOSTICS
The error bit (c-bit) is set on an error: bad descriptor, buffer address, or count; physical I/0 errors.
From C, a returned value of-I indicates an error.

-I-

ALLOC (III) 3/1/74 ALLOC (III)

NAME
alloc - core allocator

SYNOPSIS
char *allot(size)
free(ptr)
char *ptr;

DESCRIPTION
Alloc and free provide a simple general-purpose core management package. Alloc is given a size
in bytes; it returns a pointer to an area at least that size which is even and hence can hold an ob-
ject of any type. The argument to free is a pointer to an area previously allocated by alloc; this
space is made available for further allocation.
Needless to say, grave disorder will result if the space assigned by alloc is overrun or if some
random number is handed to free.
The routine uses a first-fit algorithm which coalesces blocks being freed with other blocks already
free. It calls sbrk (see break (1I)) to get more core from the system when there is no suitable
space already free, and writes "Out of space" on the standard output, then exits, if that fails.
The external variable slop (which is 2 if not set) is a number such that if n bytes are requested,
and if the first free block of size at least n is no larger than n÷slop, then the whole block will be
allocated instead of being split up. Larger values of slop tend to reduce fragmentation at the ex-
pense of unused space in the allocated blocks.

DIAGNOSTICS
"Out of space" if it needs core and can’t get it.

BUGS

-1-

ATAN (III) 4/30/73 ATAN (III)

NAME
atan - arc tangent function

SYNOPSIS
jsr rS,atan[2]
double atan(x)
double x;
double atan2(x, y)
double x, y;

DESCRIPTION
The atan entry returns the arc tangent of frO in fr0i from C, the arc tangent of x is returned.
The range is -’n’/2 to ¢r/2. The atan2 entry returns the arc tangent of fr0/frl in frO; from C, the
arc tangent of xly is returned. The range is

DIAGNOSTIC
There is no error return.

BUGS

I

-I-

ATOF (III) 4/30/73 ATOF (III)

NAME
atof- ascii to floating

SYNOPSIS
double atof(nptr)
char *nptr;

.
DESCRIPTION ’

Atofconverts a string to a floating number. Nptr should point to a string containing the number;
the first unrecognized character ends the number.
The only numbers recognized are: an optional minus sign followed by a string of digits optional-
ly containing one decimal point, then followed optionally by the letter e followed by a signed in-
teger.

DIAGNOSTICS
There are none; overflow results in a very large number and garbage characters terminate the
scan.

BUGS
The routine should accept initial +, initial blanks, and E for e. Overflow should be signalled.

,

-1-

CRYPT (III) 4/30/73 CRYPT (III)

NAME
crypt - password encoding

SYNOPSIS
mov Skey,rO
jsr pc,crypt
char *crypt(key)
char *key;

DESCRIPTION
On entry, r0 should point to a string of characters terminated by an ASCII NULL. The routine
performs an operation on the key which is difficult to invert (i.e. encrypts it) and leaves the
resulting eight bytes of ASCII alphanumerics in a global cell called "word".
From C, the key argument is a string and the value returned is a pointer to the eight-character
encrypted password.
Login uses this result as a password.

SEE ALSO
passwd(I), passwd(V), login(I)

¯

.

CTIME (Ill) 10/15/73 CTIME (III)

NAME
ctime - convert date and time to ASCII .

SYNOPSIS
char *ctime(tvec)
int tvecl2l;
[from Fortran]
double precision ctime
... -- crime(dummy)
int * localtime(tvec)
int tvecl21;
int *gmtime(tvec)
int tvecl21;

DESCRIPTION
Crime converts a time in the vector tvec such as returned by time (II) into ASCII and returns a
pointer’to a character string in the form

Sun S~p 16 O1:03:52 1973~\0
All the fields have constant width.
Once the time has been placed into t and t+2, this routine is callable from assembly language as
follows:

mov $t,--(sp)
jsr pc,...ctime
tst (sp)+

and a pointer to the string is available in r0.
The Iocaltime and gmtime entries return pointers to integer vectors containing the broken-down
time. Localtime corrects for the time zone and possible daylight savings time; gmtime converts
directly to GMT, which is the time UNIX uses. The value is a pointer to an array whose com-
ponents are
0 seconds
.1~ minutes
2 hours
~’~ day of the month (1-31)
4 month (0-11)
5 year- 1900
6 day of the week (Sunday = 0)
7 day of the year (0-365)
8 Daylight Saving Time flag if non-zero

The external variable timezone contains the difference, in seconds, between GMT and local stan-
dard time (in EST, is 5*60*60); the external variable daylight is non-zero iff the standard U.S.A.
Daylight Saving Time conversion should be applied between the last Sundays in April and Oc-
tober. The external variable nixon.flg if non-zero supersedes da.vliglTt and causes daylight time all
year round.
A routine named crime is also available from Fortran. Actually it more resembles the time (I1)
system entry in that it returns the number of seconds since theepoch 0000 GMT Jan. 1, 1970 (as
a floating-point number).

SEE ALSO
time(ll)

BUGS
.

-I-

ECVT (lI!) 4/30/73 ECVT (lIl)

NAME
ecvt -- output conversion

SYNOPSIS
jsr pc,ecvt
jsr pc,fcvt
char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char *fort(value, ndigit, decpt, sign)

DESCRIPTION
Ecvt is called with a floating point number in frO.
On exit, the number has been converted into a string of ascii digits in a buffer pointed to by r0.
The number of digits produced is controlled by a global variable _ndigits.
Moreover, the position of the decimal point is contained in r2:r2-----0 means the d.p. is at the left
hand end of the string of digits; r2>0 means the d.p. is within or to the right of the string.

The sign of the number is indicated by rl (0 for +; 1 for -).
The low order digit has suffered decimal rounding (i. e. may have been carried into).

From C, the value is converted and a pointer to a null-terminated string of ndigit digits is re-
turned. The position of the decimal point is stored indirectly through decpt (negative means to
the left of the returned digits). If the sign of the result is negative, the word pointed to by sign is
non-zero, otherwise it is zero.
Fcvt is identical to ecvt, except that the correct digit has had decimal rounding for F-style output
of the number of digits specified by ndigits.

SEE ALSO
printf(lll)

BUGS

-1-

EXP (III) 4/30/73 EXP (III)

NAME
exp - exponential function

SYNOPSIS
jsr r5,exp
double exp(x)
double x;

DESCRIPTION
The exponential of frO is returned in frO. From C, the exponential of x is returned.

DIAGNOSTICS
If the result is not t:epresentable, the c-bit is set and the largest positive number is re.turned.
From C, no diagnostic is available.

Zero is returned if the result would underflow.

BUGS

-I-

FLOOR (III) 5/15/74 FLOOR (Ill)

NAME
floor -- floor and ceiling functions

SYNOPSIS
double floor(x)
double x;
double cei|(x)
double x;

DESCRIPTION
The floor function returns the largest integer (as a double precision number) not greater than x.
The ceil function returns the smallest integer not less than x.

BUGS

o | o’

FPTRAP(III) 11/18/73 FPTRAP (III)

NAME
fptrap - floating poi n t interpreter ¯

SYNOPSIS
sys signal; 4; fl~tral~

DESCRIPTION
Fptrap is a simulator of the 11/45 FPll-B floating point unit. It works by interccpting.i!!egai in-
struction faults and examining the offending operation codes for possible floating point.

FILES
found in/lib/libu.a; a fake version is in/lib/liba.a

DIAGNOSTICS
A break point trap is given when a real illegal instruction trap occurs.

SEE ALSO
signal(lI)

BUGS
Rounding mod~ is not interpreted. It’s slow.

o I o

GAMMA(III) 5/15/74 GAMMA(Ill)

NAME
gamma -- log gamma function

SYNOPSIS
jsr rS,gamma
double gamma(x)
double x;

DESCRIPTION
If x is passed (in frO) gamma returns In I F(x)l (in frO). The sign of F(x) is returned in the exter-
nal integer signgam. The following C program might be used to calculate F:

y ---- gamma(x);
if (y > 88.)

error(~,
y -- exp(y);
if(signgam)

y ---- --y;

DIAGNOSTICS
The c-bit is set on negative integral arguments and the maximum value is returned. There is no
error return for C programs.

BUGS
No error return from C.

-1-

GETARG (III) 11/24/73 GETARG (III)

NAME
getarg - get command arguments from Fortran

SYNOPSIS
call getarg (i, iarray [, isize])
... --- iargc(dummy)

DESCRIPTION , ¯ -
The getarg entry fills in iarray (which is considered to be integer) with the Hollerith string
representing the i th argument to the command in which it it is called. If no isize argument is
specified, at least one blank is placed after the argument, and the last word affected is blank pad-
ded. The user should make sure that the array is big enough.
If the isize argument is given, the argument will be followed by blanks to fill up isize woi’ds, but
even if the argument is long no more than that many words will be filled in.
The blank-padded array is suitable for use as an argument to setfil (III).
The iargc entry returns the number of arguments to the command, counting the first (file-name)
argument.. .

SEE AUSO
exec (II), setfil 01l)

BUGS

-I-

GETC (III) 4/30/72 GETC (llI)

NAME
getc -- buffered input

SYNOPSIS
¯ mov $filename,r0
jsr r5,fopen; iobuf
fopen(filename, iobuf)
char *filename;
struct buf *iobuf;
jsr r5,getc; iobuf
(character in r0)
getc(iobuf)
struct bur *iobuf;
jsr r5,getw; iobuf
(word in rO)
getw(iobuf)
struct buf *iobuf;

DESCRIPTION
These routines provide a buffered input facility, lobuf is the address of a 518(10) byte buffer area
whose contents are maintained by these routines. Its format is:
ioptr: .=.+2

.=.+2

.=.+2

.=.+512o
Or in C,

/ file descriptor
/ characters left in buffer
/ ptr to next character
/ the buffer

struct buf {
int tildes;
int nleft;
char *nextp;
char buffer[5121;

};
Fopen may be called initially to open the file. On return, the error bit (c-bit) is set if the open
failed. If fopen is never called, get will read from the standard input file. From C, the value is
negative if the open failed.
Getc returns the next byte from the file in r0. The error bit is set on end of file or a read error.
From C, the character is returned; it is -1 on end-of-file or error.
Getw returns the next word in r0. Getc and getw may be used alternately; there are no odd/even
problems. Getw is may be called from C; -1 is returned on end-of-file or error, but of course is
also a legitimate value.
l̄obu.f must be provided by the user; it must be on a word boundary.

To reuse the same buffer for another file, it is sufficient to close the original file and call .fopen
again.

SEE ALSO
open(ll), read(ll), putc(lll)

DIAGNOSTICS
c-bit set on EOF or error;
from C, negative return indicates error or EOF.

-1-

GETCHAR (III) 4/7/73 GETCHAR (III)

NAME
getchar - read character

SYNOPSIS
getchad)

DESCRIPTION
Getchar provides the simplest means of reading characters from the standard input for C pro-
grams. It returns successive characters until end-of-file, when it returns "\0".
Associated with this routine is an external variable called .fin, which is a structure containing a
buffer such as described under getc (III).
Generally speaking, getchar should be used only for the simplest applications; getc is better when
there are multiple input files.

SEE ALSO
getc (III)

DIAGNOSTICS
Null character returned on EOF or error.

BUGS
--1 should be returned on EOF; null is a legitimate character.

-1o

GETPW (ili) 4/7/73 GETPW(III)

NAME
getpw - get name from UID

SYNOPSIS
l~etpw(uid, bud
char *buf;

DESCRI PTION
Getpw searches the password file for the (numerical) uid, and fills in bu.f with the corresponding
line: it returns non-zero if uidcould not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
passwd(V)

DIAGNOSTICS
non-zero return on error.

BUGS

-1-

HMUL (III) 4/7/73 HMUL (III)

NAME
hmul - high-order product

SYNOPSIS
hmul(x, y)

DESCRIPTION
Hmul returns the high-order 16 bits of the product of x and y. (The binary multiplication opera-
tor generates the low-order,16 bits of a product.) " -

-1-

HYPOT (III) 6/12/72 HYPOT (I Il)

NAME
hypot - calculate hypotenuse

SYNOPSIS
jsr rS,hyoot

DESCRIPTION
The square root of fr0x frO + frl x frl is returned in frO. The calculation is done in such a
way that overflow will not occur unless the answer is not representable in floating point.

DIAGNOSTICS
The c-bit is set if the result cannot be represented.

BUGS

-1-

IERROR (III) 10/29/73 IERROR (III)

NAME
ierror - catch Fortran errors

SYNOPSIS
if (ierror (ermo) .ne. 0) goto label

DESCRIPTION
lerror provides a way of detecting errors during the running of a Fortran program,Its argument
is a run-time error number such as enumerated in fc (I). " -

When ierror is called, it returns a 0 value; thus the goto statement in the synopsis is not executed.
However, the routine stores inside itself the call point and invocation level. If and when the in-
dicated error occurs, a return is simulated from ierror with a non-zero value; thus the goto (or
other statement) is e~ecuted. It is a ghastly error to call ierror from a subroutine which has al-
ready returned when the error occurs.
This routine is essentially tailored to catching end-of-file situations. Typically it is called just be-
fore the start of the loop which reads the input file, and the goto jumps to a graceful termination
of the program.
There is alimit.of 5 on the number of different error numbers which can be caught.

SEE ALSO
fc

BUGS
There is no way to ignore errors.

LDIV (III) 51717"~ LDIV (III)

NAME
ldiv - long division

SYNOPSIS
ldiv(hidividend, lodividend, divisor)

lrem(hidiv idend, lodividend, divisor)

DESCRIPTION
The concatenation of the signed 16-bit hidividend and the unsigned 16-bit Iodividend is divided by
divisor. The 16-bit signed quotient is returned by Idly and the 16-bit signed remainder is returned
by Irem. Divide check and erroneous results will occur unless the magnitude of the divisor is
greater than that of the high-order dividend.

An integer division of an unsigned dividend by a signed divisor may be accomplished by

quo = ldiv(0, dividend, divisor);

and similarly for the remainder operation.

Often both the quotient and the remainder are wanted. Therefore Idly leaves a remainder in the
external cell Idivr.

BUGS
No divide check check.

.

LOCV (III) 3/9/74 LOCV (IlI)

NAME
locv -- long output conversion

SYNOPSIS
char *locv(hi, Io)
int hi, Io;

DESCRIPTION
Locv converts a signed double-precision integer, whose parts are passed as argumerit~, to the
equivalent ASCII character string and returns a pointer to that string.

BUGS

I .

LOG (III) 4/30/72 LOG (III)

NAME
log- natural logarithm

SYNOPSIS
jsr rS,log
double log(x)
double x;

DESCRIPTION
Th~- natural logarithm of frO is returned in frO. From C, the natural logarithm of x is returned.

DIAGNOSTICS
The error bit (c-bit) is set if the input argument is less than or equal to zero and the result is a
negative number very large in magnitude. From C, there is no error indication.

.

MONITOR (III) 2/11/74 MONITOR (III)

NAME
monitor - prepare execution profile :

SYNOPSIS
monitor(Iowpc, highpc, buffer, bufsize)
int lowpc(), highpe(), buffed I, bufsize;

DF.,SCRIPTION . .
Monitor is an interface to the system’s profile entry (II). Lowpc and highpc are the names of two
functions; bu.ffer is the address of a (user supplied) array of bufsize integers. Monitor arranges for
the system to sample the user’s program counter periodically and record the execution histogram
in the buffer. The lowest address sampled is that of Iowpc and the highest is just below highpc.
For the results to be significant, especially where there are small, heavily used routines, it is sug-
gested that the buffer be no more than a few times smaller than the range of locations sampled.
To profile the entire program, it is sufficient to use

extern etext;
,oo

monitor(2, &etext, buf, bufsize~,
Etext is a loader-defined symbol which lies just above all the program text.
To stop execution monitoring and write the results on the file mon.out, use

monitor(0);
Then, when the program exits, prof (I) can be used to examine the results.
It is seldom necessary to call this routine directly; the --p option of cc is simpler if one is
satisfied with its default profile range and resolution. ¯

FILES
mon.out

SEE ALSO
prof (I), profii (II), cc (I)

-1-

NARGS (III) 5/10/73 NARGS (lII)

NAME
nargs - argument count

SYNOPSIS
nargs()

DESCRIPTION
Nargs returns the number of actual parameters supplied by the caller of the routine which calls
nargs.
The argument count is accurate only when none of the actual parameters is float or double. Such
parameters count as four arguments instead of one.

BUGS
As indicated.

-1-

NLIST(III) 6/12/72 NLIST (III)

NAME
nlist - get entries from name list

SYNOPSIS
jsrr5,nlist; file; list

file:
list:

~:’file name\O> ; .even
< namelxxx> ; tyffel; valuel
<name2xxx>; type2; value2

0
nlist(filename, nl)
char *filename;
struct {

char
int
int

} nl[1; "

namel81;
type;
value;

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of a list of 8-character names (null padded) each followed by two
words. The list is terminated with a null name. Each name is looked up in the name list of the
file. If the name is found, the type and value of the name are placed in the two words following
the name. If the name is not found, the type entry is set to --1.
This subroutine is useful for examining the system name list kept in the file/unix. In this way
programs can obtain system addresses that are up to date.

SEE ALSO
a.out (V)

DIAGNOSTICS
All type entries are set to -1 if the file cannot be found or if it is not a valid namelist.

BUGS

-1-

PERROR (III) 11/5/73 PERROR (I11)

NAME
perror - systemerror messages

SYNOPSIS
perror(s)
char *s;

int sys_nerr;
char *sys_errlistll;

int errno;

DESCRIPTION
Perror produces a short error message describing the last error encountered during a call to the
system from a C program. First the argument string s is printed, then a colon, then the message
and a new-line. Most usefully, the argument string is the name of the program which incurred
the error. The error number is taken from the external variable errno, which is set when errors
occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

SEE ALSO
Introduction to System Calls

BUGS

.

POW (III) 4/30/73 POW (III)

NAME
pow - floating exponentiation

SYNOPSIS
movf x, fr0
movf y,frl
jsr pc,pow

double pow(x,y)
double x, y;

DESCRIPTION
Pow returns the val~e of x~ (in frO). Pow(O, y) is 0 for any y. Pow(-x, y) returns a result only if"
y is an integer.

SEE ALSO
ex~(III), log(liD

DIAGNOSTICS
The carry biVis s~t on return in case of overflow, pow(O, 0), or pow(-x, y) for non-integral
From C there is no diagnostic.

BUGS

-I-

PRINTF(III) 9/17/73 PRINTF(III)

NAME
printf- formatted print

SYNOPSIS
printf(format, argt):
char *format:

DESCRIPTION
Printf converts, formats, and prints its arguments after the first under control of the first argu-
ment. The first argument is a character string which contains two types of objects: plain charac-
ters, which are simply copied to the output stream, and conversion specifications, each of which
causes conversion and printing of the next successive argument to print.£

Each conversion specification is introduced by the character %. Following the %, there may be
-an optional minus sign "-" which specifies left adiustment of the converted argument in

the indicated field;

an optional digit string specifying a field width; if the converted argument has fewer char-
acters than the field width it will be blank-padded on the left (or right, if the left-
adjustment indicator has been given) to make up the field width;

an optional period "." which serves to separate the field width from the next digit string;

an.optional digit string (precision)which specifies the number of digits to appear after the
decimal point, for e- and f-conversion, or the maximum number of characters to be print-
ed from a string;

--a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are

d

The (integral) argument is converted to decimal, octal, or hexadecimal notation respective-
ly.

f The argument is converted to decimal notation in the style "[--]ddd.ddd" where the
number of d’s after the decimal point is equal to the precision specification for the argu-
ment. If the precision is missing, 6 digits are given; if the precision is explicitly 0, no di-
gits and no decimal point are printed. The argument should be float or double.

e The argument is converted in the style "[-]d.ddde±dd" where there is one digit before
the decimal point and the number after is equal to the precision specification for the
argument; when the precision is missing, 6 digits are produced. The argument should be a
float or double quantity.

C

S

The argument character or character-pair is printed if non-null.
The argument is taken to be a string (character pointer) and characters from the string are
printed until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a null
are printed.
The argument is taken to be an unsigned integer which is converted to decimal and print-
ed (the result will be in the range 0 to 65535).

If no recognizable character appears after the %, that character is printed; thus % may be printed
by use of the string %%. In no case does a non-existent or small field width cause truncation of
a field; padding takes place only if the specified field width exceeds the actual width. Characters
generated by print.fare printed by calling putchar.

SEE ALSO-
putchar (Ill)

_

PUTC (Ill) 6/12/72 PUTC (Ill)

NAME
putc -- buffered output

SYNOPSIS
mov $filename,r0
jsr r5,fcreat; iobuf
fcreat(file, iobuf)
char *file;
struct buf *iobuf;
(get byte in r0)
jsr r5,putc; iobuf
pure(c, iobuf)
int c;
struct buf *iobuf;
(get word in r0)
jsr r5,putw; iobuf
putw(w, iobuf);
int w;
struct buf *iobuf;
jsr r5,flush; iobuf

fflush(iobuf)
struct buf *iobuf;

DESCRIPTION
Fcreat creates the given file (mode 666) and sets up the buffer iobu.f(size 518 bytes); putc and putw
write a byte or word respectively onto the file; .[lush forces the contents of the buffer to be writ-
ten, but does not close the file. The format of the buffer is:
iobuf: .=.+2

.’-.+2

.=.+2

.=.+512.

/ file descriptor
/ characters unused i~ buffer
/~ptr to next free character
/ buffer

Or in C,
struct buf {

int tildes;
int nunused;
char *nxtfree;
char buttlS121;

}:
Fcreat sets the error bit (c-bit) if the file creation failed (from C, returns -1); none of the other
routines returns error information.
Before terminating, a program should call .flush to force out the last of the output (fflush from C).
The user must supply iobu.f, which should begin on a word boundary.
To write a new file using the same buffer, it suffices to call [fl/tush, close the file, and call .fcrear
again.

SEE ALSO
creat(ll), write(ll), getc(lll)

DIAGNOSTICS
error bit possible on fcreat call.

.

-1-

PUTCHAR (III) 5/10/73 PUTCHAR (Ill)

NAME
putchar -- write character

SYNOPSIS
putchar(ch)
flush()

DESCRIPTION
Putchar writes out its argument and returns it unchanged. Only the low-order byte is written,
and only if it is non-null. Unless other arrangements have been made, putchar writes in
unbuffered fashion on the standard output file.

Associated with this routine is an external variable fout which has the structure of a buffer dis-
cussed under putc (III). If the file descriptor part of this structure (first word) is greater than 2,
output via putchar is buffered. To achieve buffered output one may say, for example,

lout = dup(1); or
lout = creat(...~,

In such a case .[lush must be called before the program terminates, in order to flush out the
buffered output. Flush may be called at any time.

SEE ALSO
putc(Ill)

BUGS
The.four notion is kludgy.

-1-

QSORT(III) 6/12/72 QSORT (III)

NAME
qsort -- quicker sort

SYNOPSIS
(base of data in rl)
(end+l of data in r2)
(element width in r3)
jsr pc,qsort
qsort(base, nel, width, com’par)
char *base;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The assembly-language ve~:sion is
designed to sort equal length elements. Registers rl and r2 delimit the region of core containing
the array of byte strings to be sorted: rl points to the start of the first string, r2 to the first loca-
tion above the last string. Register r3 contains the length of each string, r2-rl should be a mul-
tiple of r3. On return, r0, rl, r2, r3 are destroyed. ’
The C Version has somewhat different arguments and the user must supply a comparison
routine. The first argument is to the base of the data; the second is the number of elements; the
third is the width of an element in bytes; the last is the name of the comparison routine. It is
called with two arguments which are pointers to the elements being compared. The routine must
return .a negative integer if the first element is to be considered less than the second, a positive
integer if the second element is smaller than the first, and 0 if the elements are equal.

SEE ALSO
sort (I)

BUGS

-1-

RAND (III) 1115/73 RAND (III)

NAME
rand - random number generator

SYNOPSIS
(seed in r0)
jsr pc,srand /to initialize
jsr pc,rand/to get a random number
stand(seed)
int seed;
rand()

DESCRIPTION
Rand uses a multiplicative congruential random number generator to return successive pseudo-
random numbers (in r0) in the range from 1 to 215-1.

The generator is reinitialized by calling srand with 1 as argument (in r0). It can be set to a ran-
dom starting point by calling srand with whatever you like as argument, for example the low-
order word of the time.

BUGS
The low-order bits are not very random.

-1-

RESET (III) 5110/73 RESET (III)

NAME
reset - execute non-local goto

SYNOPSIS
setexit()
reset()

DESCRIPTION
These routines are useful for dealing with errors discovered in a low-level subroutine of a pro-
gram.
Setexit is typically called just at the start of the main loop of a processing program. It stores cer-
tain parameters suchas the call point and the stack level.
Reset is typically called after diagnosing an error in some subprocedure called from the main
loop. When reset is called, it pops the stack appropriately and generates a non-local return from
the last call to setexit.
It is erroneous, and generally disastrous, to call reset unless setexit has been called in a routine
which is an ancestor of reset.

BUGS

-I-

SETFIL (III) 10129/73 SETFI k (III)

NAME
setfil - specify Fortran file name

SYNOPSIS
call setfil (unit, hollerith-string)

DESCRIPTION
Setfil provides a primitive way to associate an integer I/O unit number with a file named by the
hollerith-string. The end of the file name is indicated by a blank. Subsequent I/O on this unit
number will refer to the file whose name is specified by the string.
Set.ill should be called only before any I/O has been done on the unit, or just after doing a rewind
or endfile. It is ineffective for unit numbers 5 and 6.

SEE ALSO
fc (I)

BUGS
The exclusion of units 5 and 6 is unwarranted.

-1-

SIN (Ill) 3/15/72 SIN (III)

NAME
sin - sine, cosine

SYNOPSIS
|sr rS,sin (cos)
double sin(x)
double x;
double cos(x)
double x;

DESCRIPTION
The sine (cosine) of frO (reap. x), measured in radians, is returned (in frO).

¯

The magnitude of the argument should be checked by the caller to make sure the result is mean-
ingful.

BUGS

-1-

SQR T (III) 3/15/72 SQRT (III)

NAME
sqrt -- square root function

SYNOPSIS
jsr rS,sqrt
double sqrt(x)
double x;

DESCRIPTION
The square root of frO (resp. x) is returned (in frO).

DIAGNOSTICS
T̄he c-bit is set on negative arguments and 0 is returned. There is no error return for C pro-
grams.

BUGS
No error return from C.

-1-

TTYN (III) 1/15/7 3 TTYN (III)

NAME
ttyn -- return name of current typewriter

SYNOPSIS
Jsr pc,ttyn
ttyn(flle)

DESCRIPTION ’ " -
Ttyn hunts up the last character of the name of the typewriter which is the standard input (from
as) or is specified by the argument file descriptor (from C). If n is returned, the typewriter name
is then "ldevlttyn’.
x is returned if ihe indicated file does not correspond to a typewriter.

-1-

VT(III) 6/4/73 VT(III)

NAME
vt - display (vtO1) interface

SYNOPSIS
openvt)
erase()
label(s)
char s[];
line(x,y)
circle(x,y,r)

arc(x,y,xO,yO,xl,yl)
dot(x,y,dx,n,pattern)
int pattern[I;
move(x,y)

DESCRIPTION
C interface routines to perform similarly named functions described in vt(IV). Openvt must be
used before any of the others to open the storage scope for writing.

FILES
/dev/vtO, found in/lib/libp.a

SEE ALSO
vt (IV)

BUGS

CAT (IV) 10/’27/73 CAT (IV)

NAME
cat - phototypesetter interface

DESCRIPTION

FILES

Cat provides the interface to a Graphic Systems C/Aft phototypesetter. Bytes written on the file
specify font, size, and other control information as well as the characters to be flashed. The cod-
ing will not be described here.
Only one process may havo this file open at a time. It is write-only.

/dev/cat

SEE ALSO
troff (I), Graphic Systems specification (available on r~uest)

BUGS

-I-

DC(IV) 5/27/74 DC(IV)

N,MVIE
dc - DC-I 1 communications interface

DESCRIPTION¯ The discussion of typewriter I/O given in try (IV) applies to these devices.
The DC-11 typewriter interface operates at any of four speeds, independently settable for input
and output. The speed is selected by the same encoding used by the DH (IV) device (enumerated
in stty (II)); impossible speed changes are ignored.

FILES
/dev/tty[O1234567abcd]

SEE ALSO
tty (IV), stty (II), dh (IV)

113B Dataphones (not currently connected- see dh (IV))

BUGS

-1-

DH (IV) 5/27/74 DH (IV)

NAME
dh - DH-11 communications multiplexer

DESCRIPTION
Each line attached to the DH-11 communications multiplexer behaves as described in tty (IV).
Input and output for each line may independently be set to run at any of 16 speeds; see stty (II)
for the encoding.

FILES
/dev/tty[f-u]

SEE ALSO
tty (IV), stty (II)

BUGS

-I-

DN(IV) 3/20/74 DN(IV)

NAME
dn - dnll ACU interface

DESCRIPTION
The dn? files are write-only. The permissible codes are:

0-9 dial 0-9
dial *

; dial #
4 second delay for second dial tone

= end-of-number
The entire telephone number must be presented in a Single write system call.
It is recommended that an end-of-number code be given even though not all ACU’s actually re-
quire it.

FILES
/dev/dn0
/dev/dnl
/dev/dn2

connected to 801 with dp0
not currently connected
not currently connected

SEE ALSO
dp (IV)

BUGS

-1-

DP(IV) 8/24/73 DP (IV)

NAME
dp - dpl 1 201 data-phone interface

DESCRIPTION
The dp0 file is a 201 data-phone interface. Read and write calls to dp0 are limited to a maximum
of 512 bytes. Each write call is sent as a single record. Seven bits from each byte are written
along with an eighth odd parity bit. The sync must be user supplied. Each read call returns
characters received from a ~;ingle record. Seven bits are returned unaltered; the eighth bit is set if
the byte was not received in odd parity. A 10 second time out is set and a zero-byte record is re-
turned if nothing is received in that time.

FILES
/dev/dp0

SEE ALSO
dn (IV), gerts (III)

BUGS

-I-

KL(IV) 5/27/74 KL(IV)

NAME
kl- KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of typewriter I/O given in try (IV) applies to these devices.
Since they run at a constant speed, attemptsto change the speed via stty (II) are ignored.
The on-line console typewriter is interfaced using a KL-11 or DL-11. By appropriate switch set-
tings during a reboot, UNIX will come up as a single-user system with I/O on the console type-
writer.

FILES
/dev/tty
/dev/tty8
/dev/tty9

synonym for/dev/tty
second console (not currently connected)

SEE ALSO
try (IV), init (VIII)

BUGS
Modem control for the DL-11E is not implemented.

-1-

LP(IV) 5/27/74 LP(IV)

NAME
lp - line printer

DESCRIPTION ¯

Lp provides the interface to any of the standard DEC line printers. When it is opened or closed,
a suitable number of page ejects are generated. Bytes written are printed.

An internal parameter within the driver determines whether or not the device is treated as hav-
ing a 96- or 64-character set. In half-ASCII mode, lower case letters are turned into upper case
and certain characters are escaped according to the following table:

{
I +¯ ,__

.

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. A sequence of
newlines which extends over the end of a page is turned into a form feed. Lines longer than 80
characters are truncated. (This number is a parameter in the driver.)

FILES
/dev/lp

SEE ALSO
Ipr (I)

BUGS
Half-ASCII mode and the maximum line length should be settable by a call analogous to stty (lit.

-1-

MEM (IV) 5/27/74 MEM (IV)

NAME
mem - core memory

DESCRIPTION
Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system using the debugger.
A memory address is an 18-bit quantity which is used directly as a UNIBUS address. References
to non-existent locations cause errors to be returned.
Examining and patching device registers is likely to lead to unexpected results when read-only or
write-only bits are present.
The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed. In particular, the I/O area of kmem is located beginning at 160000 (octal)
rather than at 760000. The 1K region beginning at 140000 (octal) is the system’s data for the
current process.
The file null returns end-of-file on read and ignores write.

FILES
/dev/mem,/dev/kmem,/dev/null

.)

.

PC (IV) 10/15/73 PC (IV)

NAME
pc - PC-11 paper tape reader/punch

DESCRIPTION
Ppt refers to the PC-11 paper tape reader or punch, depending on whether it is read or written.
When ppt is opened for writing, a 100-character leader is punched. Thereafter each byte written,
is punched on the tape. No editing of the characters is performed. When the file is-closed, a
100-character trailer is punched.
When ppt is opened for reading, the process waits until tape is placed in the reader and the
reader is on-line. Then requests to read cause the characters read to be passed back to the pro-
gram, again wi(hout any editing. This means that several null leader characters will usually ap-
pear at the beginning of the file. Likewise several nulls are likely to appear at the end. End-
of-file is generated when the tape runs out.
Seek calls for this file are meaningless.

FILES
/dev/ppt

BUGS
If both the reader and the punch are open simultaneously, the trailer is sometimes not punched.
Sometimes the reader goes into a dead state in which it cannot be opened.

-1-

RF (IV) 10115H3 RF (IV)

NAME
rf- RFll/RSll fixed-head disk file

DESCRIPTION
This file refers to the concatenation of all RS-I 1 disks.
Each disk contains 1024 256-word blocks. The length of the combined RF file is
1024x(minor+l) blocks. That is minor device zero is 1024 blocks long; minor device one is 2048,
etc.
The rf0 file accesses the disk via the system’s normal buffering mechanism and may be read and
written without regard to physical disk records. There is also a "raw" interface which provides
for direct transmission between the disk and the user’s read or write buffer. A single read or
write call results in exactly one I/O operation and therefore raw I/O is considerably more efficient
when many words are transmitted. The name of the raw RF file is rrf0. The same minor device
considerations hold for the raw interface as for the normal interface.
In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes.

.

FILES
/dev/r~O,/dev/rrfO

BUGS
The 512-byte restrictions are not physically necessary, but are still imposed.

-)

-I-

RK (IV) 10/15/73 RK (IV)

NAME
rk - RK-11/RK03 (or RK05) disk

DESCRIPTION
Rk? refers to an entire RK03 disk as a single sequentially-addressed file. Its 256-word blocks are
numbered 0 to 4871.
Drive numbers (minor dex{ices) of eight and greater are treated specially. Drive 8+x is-the x+l
way interleaving of devices rk0 to rkx. Thus blocks on rkl0 are distributed alternately among
rk0, rkl, and rk2.
The rk files discussed above access the disk via the system’s normal buffering mechanism and
may be read and written without regard to physical disk records. There is also a "raw" interface
which provides for direct transmission between the disk and the user’s read or write btJffer. A
single read or write call results in exactly one I/O operation and therefore raw I/O is considerably
more efficient when many words are transmitted. The names of the raw RK files begin with rrk
and end with a number which selects the same disk as the corresponding rk file.
In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rk?,/dev/rrk?

BUGS
Care should be taken in using the interleaved files. First, the same drive should not be accessed
simultaneously using the ordinary name and as part of an interleaved file, because the same phy-
sical blocks have in effect two different names; this fools the system’s buffering strategy. Second, .
the combined files cannot be used for swapping or raw I/O.

-1o

RP (IV) 2121/74 RP (IV)

NAME
rp - RP-11/RP03 moving-head disk

DESCRIPTION
The files 070 ... 07 7 refer to sections of RP disk drive 0. The files 078 ... 0715 refer to drive 1 etc.
This is done since the size of a full RP drive is 81200 blocks and internally the system is only ca-
pable of addressing 65536 blocks. Also since the disk is so large, this allows it to be broken up
into more manageable pieces.
The origin and size of the pseudo-disks on each drive are as follows:

disk start length
0 0 40600
1 40600 40600
2 0 9200
3 72000 9200
4 0 65535
5 15600 65535
6-7 unassigned

It is unwise for all of these files to be present in one installation, since there is overlap in ad-
dresses and protection becomes a sticky matter. Here is a suggestion for two useful
configurations: If the root of the file system is on some other device and the RP used as a
mounted device, then 070 and 071, which divide the disk into two equal size portions, is a good
idea. Other things being equal, it is advantageous to have two equal-sized portions since one can
always be copied onto the other, which is occasionally .useful.

If the RP is the only disk and has to contain the root and the swap area, the root can be put on
072 and a mountable file system on 075. Then the swap space can be put in the unused blocks
9200 to 15600 of 070 (or, equivalently, 074). This arrangement puts the root file system, the swap
area, and the i-list of the mounted file system relatively near each other and thus tends to
minimize head movement.
The 07 access the. disk via the system’s normal buffering mechanism and may be read and written
without regard to physical disk records. There is also a "raw" interface which provides for direct
transmission between the disk and the user’s read or write buffer. A single read or write call
results in exactly one I/O operation and therefore raw I/O is considerably more efficient when
many words are transmitted. The names of the raw RP files begin with rrp and end with a
number which selects the same disk section as the corresponding 07 file.
In raw I/O the buffer must begin on a word boundary, and counts should be a multiple of 512
bytes (a disk block). Likewise seek calls should specify a multiple of 512 bytes.

FILES
/dev/rp?,/dev/rrp?

BUGS

-1-

TC (IV) 10/15/73 TC (IV)

NAME
tc - TC-11/TU56 DECtape

DESCRIPTION
The files tapO ... tap7 refer to the TC-11/TU56 DECtape drives 0 to 7.
The 256-word blocks on a standard DECtape are numbered 0 to 577.

FILES ~
/dev/tap?

SEE ALSO
tp (I)

BUGS
Since reading is synchronous, only one block is picked up per tape reverse.

-I-

TI! J (IV) 10/28/73 TIU (IV)

NAME
tiu - Spider interface

DESCRIPTION
Spider is a fast digital switching network. Tiu is a directory which contains files each referring to
a Spider control or data channel. The file Idevltiuldn refers to data channel n, likewise
/dev/tiu/cn refers to control channel n.
The precise nature of the UNIX interface has not been defined yet.

FILES
/dev/tiu/d?,/dev/tiu/c?

BUGS

I o

TM (IV) 2/21/74 TM (IV)

NAME
tm - TM-11/TU-10 magtape interface

DESCRIPTION
The files mtO,mr7 refer to (he DEC TU10/TMll magtape. When opened for reading or writ-
ing, the tape is rewound. When closed, it is rewound; if it was open for writing, an end-of-file is
written first. . .
A standard tape consists of a series of 512 byte records terminated by an end-of-file. To the ex-
tent possible, the system makes it possible, if ineflqcient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.
The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the "raw" interface is appropriate. The associated files are named rmtO,
.... rmtZ Each read or write call reads or writes the next record on the tape. In the write case the
record has the same length as the buffer given. During a read, the record size is passed back as
the number of. bytes-read, provided it is no greater than the buffer size; if the record is long, an
error is indicated. In raw tape I/O, the buffer must begin on a word boundary and the count
must be even. Seeks are ignored. An error is returned when a tape mark is read, but another
read will fetch the first record of the new tape file.

FILES
/d¢v/mt?,/dev/rmt?

SEE ALSO
tp (I)

BUGS
If any non-data error is encountered, it refuses to do anything more until closed. In raw I/O,
there should be a way to perform forward and backward record and file spacing and to write an
EOF mark.

-1-

TTY (IV) 5/27/74 TTY (IV)

NAME
tty --general typewriter interface

DESCRIPTION
All of the low-speed asynchronous communications ports use the same general interface, no
matter what hardware is involved. This section discusses the common features of the interface;
the KL, DC, and DH writeups (IV) describe peculiarities of the individual devices.

When a typewriter file is opened, it causes the process to wait until a connection is established.
In practice user’s programs seldom open these files; they are opened by init and become a user’s
input and output file. The very first typewriter file open in a process becomes the control type-
writer for that process, The control typewriter plays a special role in handling quit or interrupt
signals, as discussed below. The control typewriter is inherited by a child process during a fork.

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely choked, which is rare, or when the user has accumu-
lated the"maximum allowed number of input characters which have not yet been read by some
program. :Currently this limit is 256 characters. When the input limit is reached all the saved
characters are thrown away without notice.

When first opened, the interface mode is 300 baud; either parity accepted; I0 bits/character (one
stop hi0; and newline action character. The system delays transmission after sending certain
function characters. Delays for horizontal tab, newline, and form feed are calculated for the
Teletype Model 37~ the delay for carriage return is calculated for the GE TermiNet 300. Most of
these operating states can be changed by using the system call stty(ll). In particular, provided the
hardware permits, the speed of received and transmitted characters can be changed. In addition,
the following software modes can be invoked: acceptance of even parity, odd parity, or both; a
raw mode in which all characters may be read one at a time; a carriage return (CR) mode in
which CR is mapped into newline on input and either CR or line feed (LF) cause echoing of the
sequence LF-CR; mapping of upper case letters into lower case; suppression of echoing: suppres-
sion of delays after function characters; and the printing of tabs as spaces. See getty (VIII) for
the way that terminal speed and type are detected.

Normally, typewriter input is processed in units of lines. This means that a program attempting
to read will be suspended until an entire line has been typed. Also, no matter how Many charac-
ters are requested in the read call, at most one line will be returned. It is not however necessary
to read a whole line at once; any number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. The character ’#’ erases the last char-
acter typed, except that it will not erase beyond the beginning of a line or an EOT. The charac-
ter ’6~’ kills the entire line up to the point where it was typed, but not beyond an EOT. Both
these characters operate on a keystroke basis independently of any backspacing or tabbing that
may have been done. Either ’~’ or ’#’ may be entered literally by preceding it by ’\’; the erase
or kill character remains, but the ’\’ disappears.

In upper-case mode, all upper-case letters are mapped into the corresponding lower-case letter.
The upper-case letter may be generated by preceding it by ’\’. In addition, the following escape
sequences are generated on output and accepted on input:

for use¯
\,

- \-,
{ \(

In raw mode, the program reading is awakened on each cl~aracter. No erase or kill processing is
done; and the EOT, quit and interrupt characters are not treated specially. The input parity bit is
passed back to the reader, but parity is still generated for output characters.

-1-

TTY (IV) 5/27/74 TTY (IV)

The ASCII EOT character may be used to generate an end of file from a typewriter. When an
EOT is received, all the characters waiting to be read are immediately passed to the program,
without waiting for a new-line. Thus if there are no characters waiting, which is to say the EOT
occurred at the beginning of a line, zero characters will be passed back, and this is the standard
end-of-file signal. The EOT is passed back unchanged in raw mode.
When the carrier signal from the dataset drops (usually because the user has hung up his termi-
nal) a hangup signal is sent to all processes with the typewriter as control typewriter. Unless oth- ¯
er arrangements have beefi made, this signal causes the processes to terminate. If th~ hangup
signal is ignored, any read returns with an end-of-file indication. Thus programs which read a
typewriter and test for end-of-file on their input can terminate appropriately when hung up on.
Two characters have a special meaning when typed. The ASCII DEL character (sometimes
called ’rubout’) is not passed to a program but generates an interrupt signal which is sent to all
processes with the associated control typewriter. Normally each such process is forced to ter-
minate, but arrangements may be made either to ignore the signal or to reveive a simulated trap
to an agreed-upon location. See signal (II).
The ASCII character FS generates the quit signal. Its treatment is identical to the interrupt signal
except that unless a receiving process has made other arrangements it will not only be terminat-
ed but a core image file will be generated. See signal (II). If you find it hard to type this charac-
ter, try control-\ or control-shift-L.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. Input characters are echoed by putting
them in the output queue as they arrive. When a process produces characters more rapidly than
they can be typed, it will be suspended when its output queue exceeds some limit. When the
queue has drained down to some threshold the program is resumed. Even parity is always gen-
erated on output. The EOT character is not transmitted (except in raw mode) to prevent termi-
nals which respond to it from banging up.

SEE ALSO
dc (IV), kl (IV), dh (IV), getty Will), stty (I, II), gtty (I, II), signal (II)

BUGS
Half-duplex terminals are not supported. On raw-mode output, parity should be transmitted as
specified in the characters written.

-2-

VS(IV) 10128/73 VS(IV)

NAME
vs - voice synthesizer interface

DESCRIPTION
Bytes written on vs drive a Fe.Meral Screw Works Votrax® voice synthesizer. The upper two bits
encode an inflection, the other 6 specify a phoneme. The code is given in section vs (VII).

FILES

Touch-Tone® signals sent by a caller will be picked up during a read as the ASCII characters
{0123456789#*}.

/dev/vs

SEE ALSO
speak (VI), vs (VII)

BUGS ...
..

-)

-1-

VT(IV) 10/22/73 VT(IV)

,

NAME
vt - 11/20 (vt01) interface

DESCRIPTION
The file vtO provides the interface to a PDP 11/20 which runs a VT01A-controlled Tektronix 611
storage display. The inter-computer interface is a pair of DR-11C word interfaces.

Although the display has essentially only two commands, namely "erase screen" and "display
point", the 11/20 program ’will draw points, lines, and arcs, and print text on the screen. The
11/20 can also type information on the attached 33 TTY.

This special file operates in two basic modes. If the first byte written of the file cannot be inter-
preted as one of. the codes discussed below, the rest of the transmitted information is assumed to
ASCII and written on the screen. The screen has 33 lines (1/2 a standard page). The file simu-
lates a 37 TTY: the control characters NL, CR, BS, and TAB are interpreted correctly. It also in-
terprets the usual escape sequences for forward and reverse half-line motion and for full-line re-
verse. Greek is not available yet. Normally, when the screen is full (i.e. the 34th line is started)
the screen is erased before starting a new page. To allow perusal of the displayed text, it is usual
to assert bit 0 of the console switches. This causes the program to pause before erasing until this
bit is lowered. -
If the first byte written is recognizable, the display runs in graphic mode. In this case bytes writ-
ten on the file are interpreted as display commands. Each command consists of a single byte
usually followed by parameter bytes. Often the parameter bytes represent points in the plotting
area. Each point coordinate consists of 2 bytes interpreted as a 2’s complement 16-bit number.
The plotting area itself measures (+03777)×(:!:03777) (numbers in octal); that is, 12 bits of preci-
sion. Attempts to plot points outside the screen limits are ignored.
The graphic commands follow.

order (1); 1 parameter byte
The parameter indicates a subcommand, possibly followed by subparameter bytes, as
follows:
erase(1)

The screen is erased. The program will wait until bit 0 of the console switches
is down.

label(3); several subparameter bytes
The following bytes up to a null byte are printed as ASCII text on the screen.
The origin of the text is the last previous point plotted; or the upper left hand
of the screen if there were none.

point(2); 4 parameter bytes
The 4 parameter bytes are taken as a pair of coordinates representing a point to be
plotted.

line (3); 8 parameter bytes
The parameter bytes are taken as 2 pairs of coordinates representing the ends of a
line segment which is plotted. Only the portion lying within the screen is displayed.

frame (4); 1 parameter byte
The parameter byte is taken as a number of sixtieths of a second; an externally-
available lead is asserted for that time. Typically the lead is connected to an automat-
ic camera which advances its film and opens the shutter for the specified time.

circle (5); 6 parameter bytes
The parameter bytes are taken as a coordinate pair representing the origin, and a
word representing the radius of a circle. That portion of the circle which lies within
the screen" is plotted.

arc (6); 12 parameter bytes
The first 4 parameter bytes are taken to be a coordinate-pair representing the center
of a circle. The next 4 represent a coordinate-pair specifying a point on this circle.

-1-

VT (IV) !. 0/22/73 VT (IV)

FILES

BUGS

The last 4 should represent another point on.the circle. An arc is drawn counter-
clockwise from the first circle point to the second. If the two points are the same,
the whole circle is drawn. For the second point, only the smaller in magnitude of its
two coordinates is significant; the other is used only to find the quadrant of the end
of the arc. In any.event only points within the screen limits are plotted.

dot-line (7); at least 6 parametel" bytes
The first 4 parameter bytes are taken as a coordinate-pair representing the origin of a
dot-line. The next byte is taken as a signed x-increment. The next byte is an un-
signed word-count, with ’0’ meaning ’256’. The indicated number of words is picked
up. For each bit in each word a point is plotted which is visible if the bit is ’1’, in-
visible if not. High-order bits are plotted first. Each successive point (or non-point) is
offset rightward by the given x-increment.

Asserting bit 3 of the console switches causes the display processor to throw away everything
written on it. This sometimes helps if the display seems to be hung up.

/dev/vt0

-2-

A.OUT(V) 9/9/73 A.OUT(V)

NAME
a.out - assembler and link editor output :

DESCRIPTION
A.out is the output file of the assembler as and the link editor Id. Both programs make a.out exe-
cutable if there were no errors and no unresolved external references.
This file has four sections: a header, the program and data text, a symbol table, and relocation ’
bits (in that order). The la3;t two may be empty if the program was loaded with the "’s" option
of/d or if the symbols and relocation have been removed by strip.
The header always contains 8 words:

1 A magic number (407 or 410(8))
2 The size of the program text segment
3 The size of the initialized portion of the data segment
4 The size of the uninitialized (bss) portion of the data segment
5 The size.of the symbol table
6 The entry location (always 0 at present)
7 Unused .. ¯

8 A flag indicating relocation bits have been suppressed

Thesizes of each segment are in bytes but are even. The size of the header is not included in
anyof the other sizes.
When a file produced by the assembler or loader is loaded into core for execution, three logical
segments are set up: the text segment, the data segment (with uninitialized data, which starts off
as all 0, following initialized), and a stack. The text segment begins at 0 in the core image; the
header is not loaded. If the magic number (word 0) is 407, it indicates that the text segment is
not to be write-protected and shared, so the data segment is immediately contiguous with the
text segment. If the magic number is 410, the data segment begins at the first 0 rood 8K byte
boundary following the text segment, and the text segment is not writable by the program: if oth-
er processes are executing the same file, they will share the text segment.
The stack will occupy the highest possible locations in the core image: from 177776(8) and grow-
ing downwards. The stack is automatically extended as required. The data segment is only ex-
tended as requested by the break system call.
The start of the text segment in the file is 20(8); the start of the data segment is 20+S~ (the size of
the text) the start of the relocation information is 20"l-Stq-Sd: the start of the symbol table is
20-1-2(Stq-Sd) if the relocation information is present, 20+S,+Sd if not.
The symbol table consists of 6-word entries. The first four words contain the ASCII name of the
symbol, null-padded. The next word is a flag indicating the type of symbol. The following
values are possible:

00 undefined symbol
01 absolute symbol
02 text segment symbol
03 data segment symbol
37 file name symbol (produced by ld)
04 bss segment symbol
40 undefined external (.globl)symbol
41 absolute external symbol
42 text segment external symbol
43 data segment external symbol
44 bss segment external symbol

Values other than those given above may occur if the user has defined some of his own instruc-
tions.
The last word of a symbol table entry contains the value of the symbol.

-1-

A.OUT (V) 9/9/73 AA ~UT (V)

If the symbol’s type is undefined external, and the value field is non-zero, the symbol is inter-
preted by the loader ld as the name of a common region whose size is indicated by the value of
the symbol.

The value of a word in the text or data portions which is not a reference to an undefined exter-
nal symbol is exactly that value which will appear in core when the file is executed. If a word in
the text or data portion involves a reference to an undefined external symbol, as indicated by the
relocation bits for that word, then the value of the word as stored in the file is an offset from the
associated external symbol. When the file is processed by the link editor and the external sym-
bol becomes defined, the value of the symbol will be added into the word in the file.
If relocation information is present, it amounts to one word per word of program text or initial-
ized data. There is no relocation information if the "suppress relocation" flag in the header is
on.

Bits 3-1 of a relocation word indicate the segment referred to by the text or data word associated
with the relocation word:

00 indicates the reference is absolute
02 indicates the reference is to the text segment
04 indicates the reference is to initialized data
06 indicates the reference is to bss (uninitialized data)
10 indicates the reference is to an undefined external symbol.

Bit 0 of the relocation word indicates if on that the reference is relative to the pc (e.g. "clr x"); if
Off, that the reference is to the actual symbol (e.g., "clr *$x").
The remainder of the relocation word (bits 15-4) contains a symbol number in the case of exter-
nal references, and is unused otherwise. The first symbol is numbered 0, the second 1, etc.

SEE ALSO
as(I), ld(I), strip(I), nm(I)

-2-

ARCHIVE (V) 9/10/73 ARCHIVE (V)

NAME
archive (library) file format

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are used mainly as
libraries to be searched by the link-editor ld.

A file produced by ar has a magic number at the start, followed by the constituent files, each pre-
ceded by a file header. The magic number is 177555(8) (it was chosen to be unlikely to occur
anywhere else). The header of each file is 16 bytes long:

0-7
8-11
12
13
14-15

file name, null padded on the right
modification time of the file
user ID of file owner
file mode
file size.

If the file is an odd number of bytes long, it is padded with a null byte, but the size in the header
is correct.
Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar, ld (I)

BUGS
Names are only 8 characters, not 14. More important, there isn’t enough room to store the prop-
er mode, so ar always extracts in mode 666.

-1-

CORE (V) 9/10/73 CORE (V)

NAME
core - format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various errors occur. See sig-
nal (II) for the list of reasons: the most common are memory violations, illegal instructions, bus
errors, and user-generated quit signals. The core image is called "core" and is written in the
process’s working directory (provided it can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the syste!’n’s per-user data for the process,
including the registers as they were at the time of the fault. The remainder represents the actual
contents of the user’s core area when the core image was written. At the moment, if the text
segment is write-protected and shared, it is not dumped: otherwise the entire address space is
dumped.
The actual format of the information in the first 1024 bytes is complicated. A guru will have to
be consulted if enlightenment is required. In general the debugger db (I)should be used to deal
with core images.

SEE ALSO
db (1), signal (II)

-1-

DIRECTORY (V) 9/10/73 DIRECTORY (V)

NAME
format of directories

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry. Direc-
tory entries are 16 bytes long. The first word is the i-number of the file represented by the entry,,
if non-zero; if zero, the envy is empty. - -
Bytes 2-15 represent the (14-character) file name, null padded on the right. These bytes are not
cleared for empty slots.
By convention,.the first two entries in each directory are for "." and "..". The first is an entry
for the directory itself. The second is for the parent directory. The meaning of ".." is modified
for the root directory of the master file system and for the root directories of removable file sys-
tems. In the first case, there is no parent, and in the second, the system does not permit off-
device references. Therefore in both cases ".." has the same meaning as ".".

SEE ALSO
file system (V)o

-I-

DUMP (V) 5115/74 DUMP (V)

NAME
dump - incremental dump tape format

DESCRIPTION
The dump and restor commands are used to write and read incremental dump magnetic tapes.

The dump tape consists of blocks of 512-bytes each. The first block has the following structure.

struct {
int isize:
int fsize;
int date[21;
int ddate[2];
int tsize;

lsize, and ./’size are the corresponding values from the super block of the dumped file system.
(See file system (V).) Date is the date of the dump. Ddate is the incremental dump date. The in-
cremental dump contains all files modified between ddate and date. Tsize is the number of
blocks per reel. This block checksums to the octal value 31415.

Nexi. there are enough whole tape blocks to contain one word per file of the dumped file system.
This is isize divided by 16.rounded to the next higher integer. The first word corresponds to i-
node 1, the second to i-node 2, and so forth. If a word is zero, then the corresponding file was
not dumped. A non-zero value for the word indicates that the file was dumped and the value is
one more than the number of blocks it contains.
The rest of the tape contains for each dumped file a header block and the data blocks from the
file. The header contains an exact copy of the i-node (see file system (V)) and also checksums to
031415. The number of data blocks per file is directly specified by the control word for the file
and indirectly specified by the size in the i-node. If these numbers differ, the file was dumped
with a ’phase error’.

SEE ALSO
dump (VIII), restor (VIII), file system(V)

-1-

FILE SYSTEM (V) 9/7/73 FILE SYSTEM (V)

NAME
fs - format of file system volume

DESCRIPTION
Every file system storage volume (e.g. RF disk, RK disk, RP disk, DECtape reel) has a common
format for certain vital information. Every such volume is divided into a certain number of 256
word (512 byte) blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information., - -
Block 1 is the super block. Starting from its first word, the format of a super-block is

struct [
int isize;.
int fsize:
int nfree;
int free[100];
int ninode;
int inode[100];
char flock;
char ilock;
char fmod;
int time[2];

lsize is the number of blocks devoted to the i-list, which starts just after the super-block, in block
2. Fsize is the first block not potentially available for allocation to a file. This number is unused
by the system, but is used by programs like check (I)to test for bad block numbers. The free list
for each volume is maintained as follows. The free array contains, in free[l], free[nfree-1],
up to 99 numbers of free blocks. Free[O] is the block number of the head of a chain of blocks
constituting the free list. The first word in each free-chain block is the number (up to 100) of
free-block numbers listed in the next 100 words of this chain member. The first of these 100
blocks is the link to the next member of the chain. To allocate a block: decrement nfree, and the
new block is free[nfree]. If the new block number is 0, there are no blocks left, so give an error.
If nfree became 0, read in the block named by the new block number, replace nfree by its first
word, and copy the block numbers in the next 100 words into the free array. To free a block,
check if nfree is 100; if so, copy nfree and the free array into it, write it out, and set nfree to 0. In
any event set free[nfree]to the freed block’s number and increment nfree.
Ninode is the number of free i-numbers in the inode array. To allocate an i-node: if ninode is
greater than 0, decrement it and return inode[ninode]. If it was 0, read the i-list and place the
numbers of all free inodes (up to 100) into the inode array, then try again. To free an i-node, pro-
vided ninode is less than 100, place its number into inode[ninode] and increment ninode. If ninode
is already 100, don’t bother to enter the freed i-node into any table. This list of i-nodes is only
to speed up the allocation process; the information as to whether the inode is really free or not is
maintained in the inode itself.
Flock and ilock are flags maintained in the core copy of the file system while it is mounted and
their values on disk are immaterial. The value of fmod on disk is likewise immaterial; it is used
as a flag to indicate that the super-block has changed and should be copied to the disk during the
next periodic update of file system information.
Time is the last time the super-block of the file system was changed, and is a double-precision
representation of the number of seconds that have elapsed since 0000 Jan. 1 1970 (GMT). Dur-
ing a reboot, the time of the super-block for the root file system is used to set the system’s idea
of the time.
I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also, i-nodes are 32 bytes
long, so 16 of them fit into a block. Therefore, i-node i is located in block (i + 31)/16, a.nd be-
gins 32"((i + 31)(mod 16) bytes from its start. I-node ! is reserved for the root directory of the
file system, but no other i-number has a built-in meaning, Each i-node represents one file. The
format of an i-node is as follows.

-1-

FILE SYSTEM (V) 9HFI3 FILE SYSTEM (V)

struct [
int flags;
char nlinks;
char uid;
char gid;
char size0;
int sizel;
int addr[8];
int actime[2];
int modtime[2];

1" +0: see below *1
1"+2: number of links to file */
1"+3: user ID of owner *1
/* 4-4: group ID of owner */
/* +5: high byte of 24-bit size */
/* -t-6: low word of 24-bit size */
/* +8: block numbers or device number */
/* +24: time of last access */
/* +28: time of last modification */

The flags are as follows:

100000 i-node is allocated
060(KI0 2-bit file type:

000000 plain file
040000 directory
020000 character-type special file
060000 block-type special file.

010000
004000
002000
000400
000200
000100
000070
000007

large file
set user-lD on execution
set group-ID on execution
read (owner)
write (owner)
execute (owner)
read, write, execute (group)
read, write, execute (others)

Special files are recognized by their flags and not by i-number. A block-type special file is basi-
cally one which can potentially be mounted as a file system; a character-type special file cannot,
though it is not necessarily character-oriented. For special files the high byte of the first address
word specifies the type of device; the low byte specifies one of several devices of that type. The
device type numbers of block and character special files overlap.
The address words of ordinary files and directories contain the numbers of the blocks in the file
(if it is small) or the numbers of indirect blocks (if the file is large).
Byte number n of a file is accessed as follows. N is divided by 512 to find its logical block
number (say b) in the file. If the file is small (flag 010000 is 0), then b must be less than 8, and
the physical block number is addr[b].
If the file is large, b is divided by 256 to yield i, and addr[i] is the physical block number of the
indirect block. The remainder from the division yields the word in the indirect block which con-
tains the number of the block for the sought-for byte.
For block b in a file to exist, it is not necessary that all blocks less than b exist. A zero block
number either in the address words of the i-node or in an indirect block indicates that the
corresponding block has never been allocated. Such a missing block reads as if it contained all
zero words.

SEE ALSO
check (VIII)

-2-

MTAB (V) 1/6/74 MTAB (V)

NAME
mtab - mounted file system table

DESCRIPTION
Mtab resides in directory /et(and contains a table of devices mounted by the mount command.
Umount removes entries.
Each entry is 64 bytes lon~; the first 32 are the null-padded name of the place where (h~ special
file is mounted; the second 32 are the null-padded name of the special file. The special file has
all its directories stripped away; that is, everything through the last "1" is thrown away.

This table is present only so people can look at it. It does not matter to mount if there are dupli-
cated entries nor to umount if a name cannot be found.

FILES
/etc/mtab

SEE ALSO
mount (VIII), umount (VIII)

BUGS

-1-

PASSWD (V) , 9/10/73 PASSWD (V)

NAME
passwd -- password file

DESCRIPTION
Passwdcontains for each user the following information:

name (login name, contains no upper case)
encrypted password
numerical user ID
numerical group ID (for now, always 1)
GCOS job number and box number
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
The job and box numbers are separated by a comma. Each user is separated from the next by a
new-line. If the password field is null, no password is demanded; if the Shell field is null, the
Shell itself is used.
This file resides in directory/etc. Because of the encrypted passwords, it can and does have gen-
eral read permission and can be used, for example, to map numerical user ID’s to names.

SEE ALSO
login (I), crypt (III), passwd (I)

-1-

SPEAK.M(V) 5/30/74 SPEAK.M (V)

NAME
speak.m - voice synthesizer vocabulary

SYNOPSIS
struct {

} vocab

int n;
struct {

int key; ,
int phon;

} entry[vocab.nl;
int m;
char strings[vocab, m];

DESCRIPTION
This type of file is created and used-only by speak. The keys are the words, word fragments and
letters of the vocabulary.
The ith key is stored as a null-terminated string at &vocab.strings[entry[i].key] Its phonetic string
is similarly sto~:ed at &vocab.strings[entry[i]phon] The keys are ordered lexicographically. The
contents of certain parts of vocab are invariant: vocab.entry[O].key = vocab.entry.[O]phon =
vocab.strings[O] -- O.
Each key is maintained exactly as entered into speak, so that fragments are recognized by ~an ini-
tial ’%’ and letters by an initial ’*’
Each phoneme of a phonetic string is maintained in vs code. A ’%’ in a phonetic string is
represented as octal 001, and all following characters are kept literally.

SEE ALSO
speak (VI), vs (VII)

BUGS
The coding 001 for ’%’ precludes the use of phoneme 3-1, which is no particular loss on the
model 5 Votrax, but will pinch on the model 6. 0200 would be a safe choice.

.

TP(V) 9/10/73 TP(V)

tp -- DEC/mag tape formats
¯

DESCRIPTION
The command tp dumps and extracts files to and DECtape and magtape. The formats of these
tapes are the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See boot procedures (VIII).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

path name 32 bytes
mode 2 bytes
uid 1 byte
gid 1 byte
unused 1 byte
size 3 bytes
time modified 4 bytes
tape address 2 bytes
unused 16 bytes
check sum 2 bytes

The path name entry is the path name of the file when put on the tape. If the pathname starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte. Mode,
uid, gid, size and time modified are the same as described under i-nodes (file system (V)). The
tape address is the tape block number of the start of the contents of the file. Every file starts on
a block boundary. The file occupies (size+511)/512 blocks of continuous tape. The checksum en-
try has a value such that the sum of the 32 words of the directory entry is zero.

Blocks 25 (resp. 63) on are available for file storage.

A fake entry (see tp(I)) has a size of zero.

SEE ALSO
file system(V), tp(I)

TTYS(V) 2/20/74 TTYS(V)

NAME
ttys -- typewriter initialization data

DESCRIPTION
The ttys file is read by the init program and specifies which typewriter special files are to have a
process created for them which will allow people to log in. It consists of lines of 3 characters
each.
The first character is either"0’ or ’1’; the former causes the line to be ignored, the latter eauses it
to be effective. The second character is the I~t character in the name of a typewriter; e.g. x
refers to the file ’/dev/ttyx’. The third character is the offset in a table contained in init which
selects an initialization program for the line; currently it must be ’0’ and the only such program
is letc/getty.

FILES
found in/etc

SEE ALSO
init (VIII)

-I-

UTMP (" !) 9/10/73 UTMP (V)

NAME
utmp - user information

DESCRIPTION
This file allows one to discover information about who is currently using UNIX. The file is
binary; each entry is 16(10) bytes long. The first eight bytes contain a user’s Iogin name or are
null if the table slot is unused. The low order byte of the next word contains the last character
of a typewriter name. The next two words contain the user’s login time. The last word is
unused.
This file resides in directory/tmp.

SEE ALSO
¯init (VIII) and login (I), which maintain the file; who (I), which interprets it.

-1-

WTMP(V) 2/22/74 WTMP(V)

NAME
wtmp -- user login history

DESCRIPTION
This file records all logins and logouts. Its format is exactly like utmp (V) except that a null user
name indicates a logout on the associated typewriter. Furthermore, the typewriter name ’~’ indi-
cates that the system was rebooted at the indicated time~ the adjacent pair of entries with type-
writer names ’I’ and ’}’ indicate the system-maintained time just before and just after a date com-
mand has changed the system’s idea of the time.

Wtmp is maintained by login (I) and init (VII). Neither of these programs creates the file, so if" it
is removed re, cord-keeping is turned off. It is summarized by ac (VIII).

¯

This file resides in directory/usr/adm.

SEE ALSO
login (I), init (VIII), ac (VIII), who (I)

-1-

APL (VI) 5/27/74 APL (VI)

NAME
apl -- APL interpreter

SYNOPSIS
apl

DESCRIPTION
Apl is an interpreter for the language APL described in the reference. The interpreter maintains ’
its workspace on disk rather than in core. This has two consequences: there is the potefitial of a
million byte workspace; it takes a week to access that much data.
Not Implemented (never)

1. Lamination (except for scalar,scalar)
2. 0 div 0 is a domain error.
3. 0 mod x is a domain error.
4. No function definition - use ’)edit fname’ to enter the system editor; type "w" when done

editing to write the function out in a place where apl can pick. it up. Type "w file" to save
it.

5. Indexing is off in character vectors containing overstrikes.
Under Implemented (later)

1. Negative numbers raised to fractional powers are handled incorrectly.
2. No trace or SI.
3. Incomplete set of I-beams and system calls.

Over Implemented (over zealous)
1. Ravel[i] - obvious extension of cat.
2. Grade up and grade down extend to matrices.
3. Arbitrary overstriking is allowed in characters.

FILES
/usr/lib/apl/* programs
alloc.d workspace
apl_ed editor intermediate

SEE ALSO
IBM GH20-0906-1 "APL User’s Manual"
/usr/pub/apl ASCII APL character set

BUGS

-I-

AZEL (VI) 6/3/74 AZEL (VI)

NAME
azel -- obtain satellite predictions

SYNOPSIS
azel [--d] [-I] satellitel [-d] [-!] satellite2 ...

DESCRIPTION
Azel predicts, in convenient form, the apparent trajectories of Earth satellites whose orbital ele-
ments are given in the argument files. If a given satellite name cannot be read, an attempt is
made to find it in a directory of satellites maintained by the programs’s author. The -d option
causes azel to ask for a date and read line 1 data (see below) from the standard input. The -!
option causes azel to ask for the observers latitude, west-longitude, and height above sea level.
For each satellite given the program types its full name, the date, and a sequence of lines each
containing a time, an azimuth, an elevation, a distance, and a visual magnitude. Each such line
indicates that: at the indicated time, the satellite may be seen from Murray Hill (or provided lo-
cation) at the indicated azimuth and elevation, and that its distance and apparent magnitude are
as given. Predictions are printed only when the sky is dark (sun more than 5 degrees below the
horizon) and when the satellite is not eclipsed by the earth’s shadow. Satellites which have not
been seen and verified will not have had their visual magnitude level set correctly.
All times input and output by azel are GMT (Universal Time).

The satellites for. which elements are maintained are:
sla,b,e,f,k

cop
oao

pag

Skylab A through Skylab K. Skylabs A and B are the laboratory and its rocket
respectively; the remainder are various other objects attendant upon its launch and
subsequent activities. A, B, and probably K have been sighted and verified.

¯
Copernicus I. Never verified.
Orbiting Astronomical Observatory. Seen and verified.
Pageos I. Seen and verified; fairly dim (typically 2nd-3rd magnitude), but elements are
extremely accurate.

expl9 Explorer 19; seen and verified, but quite dim (4th-5th magnitude) and fast-moving.

cl03b, c156b, c184b, c206b, c220b, c461b, c500b
Various of the USSR Cosmos series; none seen.

7276a Unnamed (satellite # 72-76A); not seen.
The element files used by azel contain five lines. The first line gives a year, month number, day,
hour, and minute at which the program begins its consideration of the satellite, followed by a
number of minutes and an interval in minutes. If the year, month, and day are 0, they are taken
to be the current date (taken to change at 6 A.M. local time). The output report starts at the in-
dicated epoch and prints the position of the satellite for the indicated number of minutes at
times separated by the indicated interval. This line is ended by two numbers which specify op-
tions to the program governing the completeness of the report; they are ordinarily both "1". The
first option flag suppresses output when the sky is not dark; the second supresses output when
the satellite is eclipsed by the earth’s shadow. The next line of an element file is the full name
of the satellite. The next three are the elements themselves (including certain derivatives of the
elements).

FILES
/usr/jfo/el/* -- orbital element files

.

SEE ALSO
sky (VI)

AUTHOR
J. F. Ossanna

.)

),

-I-

BAS (VI) 5/15/74 BAS (VI)

NAME
bas - basic

SYNOPSIS
bas [file]

DESCRIPTION
Bas is a dialect of Basic. If a file argument is provided, the file is used for input before the con-. -
sole is read. Bas accepts lihes of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later execution. They
are stored in sorted ascending order. Non-numbered statements are immediately executed. The
result of an immediate expression statement (that does not have ’--’ as its highest operator) is
printed.
Statements have the following syntax:
expression

The exp~:ession is executed for its side effects (assignment or function call) or for printing as
described above.

done
Return to system level.

draw expression expression expression
A line is drawn on the Tektronix 611 display ’/dev/vt0’ from the current display position to
the XY co-ordinates specified by the first two expressions. The; scale is zero to one in both
X and Y directions. If the third expression is zero, the line is invisible. The current
display position is set to the end point.

display list
The list of expressions and strings is concatenated and displayed (i.e. printed) on the 611
starting at the current display position. The current display position is not changed.

dump
The name and current value of every variable is printed.

erase
The 611 screen is erased.

for name-- expression expression statement
for name--- expression expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the
first expression, then is incremented by one on each loop, not to exceed the value of the
second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to the correspond-
ing integer numbered statment. If executed from immediate mode, the internal statements
are compiled first.

if expression statement
The statement is executed if the expression evaluates to non-zero.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are given, all internal
statements are printed. If one argument is given, only that internal statement is listed. If
two arguments are given, all internal statements inclusively between the arguments are
printed.

-1-

BAS (VI) 5/15/74 BAS (VI)

print list
The list of expressions and strings are concatenated and printed. (A string is delimil~ed by "
characters.)

prompt list
Prompt is the same as print except that no newline character is printed.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The internal statements are compiled. The symbol table is re-initialized. The random
number generator is reset. Control is passed to the lowest numbered internal statement.

save [expression [expressionl]
Save is like list except that the output is written on the .file argument. If no argument is
given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to’specify a variable. Names are composed.of a letter followed by letters
and digits. The first four characters of a name are significant.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol-
lowed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by
an operator denoting the function. A complete list of operators is given below.

expression ([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expression followed by
the arguments in parentheses separated by commas. The expression evaluates to the line
number of the entry of the function in the internally stored statements. This causes the
internal statements to be compiled. If the expression evaluates negative, a buiitin function
is called. The list of builtin functions appears below.

name I expression [, expression] ... I
Each expression is truncated to an integer and used as a specifier for the name. The result
is syntactically identical to a name. all,21 is the same as aill121. The truncated expressions
are restricted to values between 0 and 32767.

. The following is the list of operators:

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right: ~

& (logical and) has result zero if either of its arguments are zero. It has result one if both
its arguments are non-zero. I (logical or) has result zero if both of its arguments are zero. It
has result one if either of its arguments are non-zero.

-2-

BAS (Vl) 5/15/74 BAS (Vl)

<---- > >------ <>
The relational operators (< less than, <= less than or equal, > greater than, >= greater
than or equal, == equal to, < > not equal to) return one if their arguments are in the
specified relation. They return zero otherwise. Relational operators at the same level ex-
tend as follows: a>b>c is the same as a>b&b>c.

*/
Add and subtract.

Multiply and divide.

Exponentiation.
The following is a list of builtin functions:
arg(i)

ts the value of the i -th actual parameter on the current level of function call.
exp(x)

ts the exponential function of x.
log(x)

ts the natural logarithm of x.

sin(x)
~s the sine of x (radians).

cos(x)
~s the cosine of x (radians).

atn(x)
ts the arctangent of x. Its value is between -~r/2 and ~’/2.

rnd()
~s a uniformly distributed random number between zero and one.

expr()
~s the only form of program input. A line is read from the input and evaluated as an ex-
pression. The resultant value is returned.

int(x)
returns x truncated to an integer.

FILES
/tmp/btm? temporary
b.out save file

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the parse failed. All
other diagnostics are self explanatory.

BUGS
Has been known to give core images.

-3-

BJ (Vl) 3115/72 BJ (VI)

NAME
bj - the game of black jack

SYNOPSIS
/usr/games/bj

DESCRIPTION
Bi is a serious attempt at simulating the dealer in the game of black jack (or twenty-one) as might
be found in Reno. The following rules apply:
The bet is $2 every hand.

A player ’natural’ (black jack) pays $3. A dealer natural loses $2. Both dealer and player
naturals is a ’push’ (no money exchange). "
If the dealer has an ace up, the player is allowed to make an ’insurance’ bet against the
chance of a dealer natural. If this bet is not taken, play resumes as normal. If the bet is
taken, it is a side bet where the player wins $2 if the dealer has a natural and loses $1 if the
dealer does not.
If the player is dealt two cards of the same value, he is allowed to ’double’. He is allowed
to play two hands, each with one of these cards. (The bet is doubled also; $2 on each
hand.)
If a dealt hand has a total of ten or eleven, the player may ’double down~. He may double
the bet ($2 to $4) and receive exactly one more card on that hand.
Under normal play, the player may ’hit’ (draw a card) as long as his total is not over
twenty-one. If the player ’busts’ (goes over twenty-one), the dealer wins the bet.
When the player ’stands’ (decides not to hit), the dealer hits until he attains a total of
seventeen or more. If the dealer busts, the player wins the bet.

¯

If both player and dealer stand, the one with the largest total wins. A tieis a push.
The machine deals and keeps score. The following questions will be asked at appropriate times.
Each~ question is answered by y followed by a new line for ’yes’, or just new line for ’no’.
9 (means, "do you want a hit?")
Insurance?
Double down?
Every time the deck is shuffled, the dealer so states and the ’action’ (total bet) and ’standing’ (to-
tal won or lost) is printed. To exit, hit the interrupt key (DEL) and the action and standing will
be printed.

BUGS

-1-

CAL (Vl) 11/1/73 CAL (Vl)

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION
Ca/prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Year can be between 1 and 9999. The month is a number betweenl-and 12.
The calendar produced, is that for England and her colonies.
Try September 1752.

BUGS
The year is always considered to start in January even though this is historically naive.

-1-

CATSIM (VI) 11/1/73 CATSIM (VI)

NAME
catsim - phototypesetter simulator

SYNOPSIS
catsim

DE.SCRIPTION
Catsim will interpret its standard input as codes for the phototypesetter (cat). The output of cat-
sim is output to the display (vt).
About the only use of catsim is to save time and paper on the phototypesetter by the following
command:

FILES

troff-t file ... [catsim

/dev/vtO

SEE ALSO
troff (I), cat (IV), vt (IV)

BUGS
Point sizes are not correct. The vt character set is restricted to one font of ASCII.

CHESS (Vl) 11/1/73 CHESS (VI)

NAME
chess - the game of chess

SYNOPSIS
/usr/games/chess

DESCRIPTION

FILES

Chess is a computer program that plays class D chess. Moves may be given either in standard ¯
(descriptive) notation or in algebraic notation. The symbol ’+’ is used to specify check af~d is not
required; ’o-o’ and ’o-o-o’ specify castling. To play black, type ’first’; to print the board, type an
empty line.
Each move is echoed in the appropriate notation followed by the program’s reply.

/usr/lib/book opening ’book’

DIAGNOSTICS
The most cryptic diagnostic is ’eh?’ which means that the input was syntactically incorrect.

WARNING -
Over-t~se of this program will cause it to go away.

BUGS
Pawns may be promoted only to queens.

-1-

COL (VI) 5/20/74 COL(VI)

NAME
col - filter reverse line feeds

SYNO~S~S
col

DESCRIPTION
Col reads the standard input and writes the standard output. [t performs the line overlays im-
plied by reverse line feeds (ascii code ESC-7). Col is particularly useful for filtering multicolumn
output made with the ’.rt’ command of nroff.

SEE ALSO
nroff (I)

BUGS
Can’t back up more than 102 lines.

I

!

-1-

CUBIC (Vl) 1111/73 CUBIC (Vl)

NAME
cubic - three dimensional tic-tac-toe "

SYNOPSIS
lust/games/cubic

DESCRIPTION
Cubic plays the game of,three dimensional 4x4x4 tic-tac-toe. Moves are given by. the three
digits (each 1-4) specifying the coordinate of the square to be played.

WARNING
Too much playing of the game will cause it to disappear.

BUGS

.

FACTOR (VI) 1115/73 FACTOR (Vl)

NAME
factor - discover prime factors of a number

SYNOPSIS
factor

DESCRIPTION
When factor is invoked, it types out ’Enter:’ at you. If you type in a positive number less than
256 (about 7.2×1016) it will repeat the number back at you and then its prime factors each one
printed the proper number of times. Then it says ’Enter:’ again. To exit, feed it an EOT or a
delete.
Maximum time to factor is proportional to ~ and occurs when n is prime or the square of a
prime. It takes 1 minute to factor a prime near 1013.

DIAGNOSTICS
’Ouch.’ for input out of range or for garbage input.

BUGS

-1-

GRAF (VI) 5/1/74 G RAF (VI)

NAME
graf- draw graph on GSI terminal

SYNOPSIS
grafl nroff[gsi

DESCRIPTION ¯

Grafis a preprocessor to ttroff(q.v.) for producing plots imbedded in documents. The.standard
input is copied to the standard output except for plots, which are inserted whenever a line begin-
ning ".GR" is found. The remainder of the line should be the arguments to p/og, normally in-
cluding a "<file" to point off to the data for the graph. Grafitself reads its standard input.

Grafand neqn can b~ used together:

neqn files [graf[nroffl gsi

produces a memo with figures and equations and text all intermixed. There is no typesetter
equivalent of graf, nor are there any plans for one.

SEE ALSO
plog (VI), neqn (I), nroff (I), gsi (VI)

BUGS
Same as plog (VI). Axes and labels are not scaled down correctly for smaller graphs. It should
recognize .so commands.

-1-

GSI (Vl) 3/20/74 GSI (VI)

NAME
gsi - interpret funny characters on GSI terminal

SYNOPSIS
gsi

DESCRIPTION
Gsi interprets commands specific to the GSI terminal. It converts half line forward and reverse
motions into the right vertical motion, It also attempts to draw Greek letters and other special
symbols of the Model 37 extended character set. (These are normally preceded by shift-out and
followed by shift-in.) Gsi is most often used to print equations neatly, in the sequence

neqn file ... I nroffl gsi

Gsi also interprets the plot control characters ACK and BEL. This makes it useful in the se-
quence

grafl nroffl gsi

FILES

SEE ALSO

neqn (I), graf (VI), greek (VII)

BUGS

Some funny characters can’t be correctly printed in column 1 because you can’t move to the left
from there.

-1-

HYPHEN (VI) 1/15/73 HYPHEN (VI)

NAME
hyphen - find hyphenated words

SYNOPSIS
hyphen file ...

DESCRIPTION
It finds all of the words ia a document which are hyphenated across lines and prints.them back
at you in a convenient format.

BUGS

If no arguments are given, the standard input is used. Thus hyphen may be used as a filter.

Yes, it gets confused, but with no ill effects other than spurious extra output.

.

IBM (VI) 3/20/74 IBM (VI)

NAME
ibm - submit off-line job to HO IBM 370

SYNOPSIS
ibm [--j] file ...

DESCRIPTION
Ibm arranges to have the 201 data phone daemon submit a job to the IBM 370 at Holmdel via
the Murray Hill H6070. Normally the job is submitted with enough "JCL" (the IBM version of
the shell) to return the output to your box at Murray Hill. You can supply your own if you
dare-- the -j option suppresses all JCL.
If there are no arguments, the standard input is read and submitted. Thus ibm may be used as a
filter.

FII.JgS
/usr/dpd/* spool area
/etc/passwd personal ident cards
/etc/dpd daemon

¯ SEE ALSO
dpd (VIII), passwd (V)

BUGS
Stuff is sent on 6-bit cards, so lower case vanishes, as do some of the special characters.

-1-

LC(VI) 5/15/74 LC(VI)

NAME
Ic -- LIL compiler

SYNOPSIS
Ic [--c][--p][-P] file ...

DESCRIPTION
Lc is the UNIX LIL compiler. It accepts three types of arguments:
Arguments whose names end with ’.!’ are taken to be LIL source programs; they are compiled,
and each object program is left on the file whose name is that of the source with ’.o’ substituted
for ’.1’. The ’.o’ file is normally deleted, however, if a single LIL program is compiled and loaded
all at one go.
The following flags are interpreted by Ic.

--p

-p

Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

If loading takes place, replace the standard startup routine by one which automatically
calls the monitor subroiatine (Ill)at the start and arranges to write out a mon.out file at nor-
mal termination of execution of the object program. An execution profile can then be
generated by use of prof(1).

Run only the string preprocessor on the named LIL programs, and leave the output on
corresponding files suffixed ’.i’.

Other arguments are taken to be object programs or perhaps libraries of routines. These pro-
grams, together with the results of any compilations specified, are loaded (in the order given) to
produce an executable program with name a.out.

FILES
file.l input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/lib/l[01] compiler
/lib/crt0.o runtime startoff
/lib/mcrt0.o runtime startoff for monitoring.
/lib/libc.a builtin functions, etc.

SEE ALSO
"Programming in LIL: a tutorial," LIL Reference Manual,
monitor (liD, prof (I), cdb (I), ld (I).

DIAGNOSTICS
The diagnostics produced by LIL itself are intended to be self-explanatory.

BUGS
Creates temporary symbols of the form ’..octal’, which might conflict with user defined symbols.

-1-

M6 (VI) 2/19/74 M6 (VI)

NAME
m6 - general purpose macroprocessor

SYNOPSIS
m6 [name]

DESCRIPTION
M6 copies the standard input to the standard output, with substitutions for any macro calls that
appear. When a file name argument is given, that file is read before the standard input.
The processor is as described in the reference with these exceptions:

#def, argl, arg2,arg3: causes argl to become a macro with defining text arg2 and (optional) built-
in serial number arg3.
#del, argl: deletes the definition of macro argL
#end: is not implemented.
#list, argl: sends the name of the macro designated by argl to the current destination without
recognition of any warning characters; argl is 1 for the most recently defined macro, 2 for the
next most recent, and so on. The name is taken to be empty when argl doesn’t make sense.
#warn, argl, arg2: replaces the old warning character argl by the new warning character arg2.

#quote, argl: sends the definition text of macro argl to the current destination without recogni-
tion of any warning characters.
#serial, argl: delivers the built-in serial number associated with macro argl.
#source, argl: is not implemented.
#trace, argl: with argl --- ’1’ causes a reconstruction of each later call to be placed on the stan-
dard output with a call level number; other values of argl turn tracing off.

The built-in ’warn’ may be used to replace inconvenient warning characters. The example below
replaces ’#’ ’:’ ’<’ ’>’ by ’[’ ’]’ ’{’ ’}’.

#warn, < # >,[:
[warn,< :> ~1:
[warn,[substr,< < > >,1,1 ;,{]
[warn,[substr,{{ > > ,2,1 ;,}]
[now,{calls look like this}]

Every built-in function has a serial number, which specifies the action to be performed before
the defining text is expanded. The serial numbers are: 1 gt, 2 eq, 3 ge, 4 It, 5 ne, 6 le, 7 seq, 8
she, 9 add, 10 sub, 11 mpy, 12 div, 13 exp, 20 if, 21 def, 22 copy, 23 warn, 24 size, 25 substr, 26
go, 27 gobk, 28 del, 29 dnl, 32 quote, 33 serial, 34 list, 35 trace. Serial number 0 specifies no
built-in action.

SEE ALSO
A. D. Hall, M6 Reference Manual. Computer Science Technical Report #2, Bell Laboratories,
1969.

DIAGNOSTICS
Various table overflows and "impossible" conditions result in comment and dump. There are no
diagnostics for poorly formed input.

AUTHOR
-M. D. McIlroy

BUGS
Provision should be made to extend tables as needed, instead of wasting a big fixed core alloca-
tion. You-get what-the PDPll gives you for arithmetic.

.

MAZE (Vl) 11/1/73 MAZE (VI)

NAME
maze - generate a maze problem

SYNOPSIS
maze

DESCRIPTION

BUGS

Maze asks a few questions,and then prints a maze.

Some mazes (especially small ones) have no solutions.

-1-

MOO(VI) 11/1/73 MOO(VI)

NAME
moo - guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a number �onsistingOf
four distinct decimal digits. The player guesses four distinct digits being scored on each guess.
A ’cow’ is a correct digit in an incorrect position. A ’bull’ is a correct digit in a correct position.
The game continues until the player guesses the number (a score of four bulls).

BUGS

-I-

NPR (Vl) 3/20/74 NPR (Vl)

NAME
npr - print file on Spider line-printer

SYNOPSIS
npr file ...

DESCRIPTION

FILES

BUGS

Npr prints files on the line, printer in the Spider room, sending them over the Spider loop.
If there are no arguments, the standard input is read and submitted. Thus npr may be used as a
filter.

/dev/tiu/d2 tiu to loop

-1-

PLOG (VI) 511F/4 PLOG (VI)

NAME
plog -- make a graph on the gsi terminal

SYNOPSIS
plog [option] ...

DESCRIPTION
Plog is almost the same as plot (q.v.) but the plot is written on the standard output using the con-
trol sequences for the GSI terminal. The following changes have been made:

- The default for grids is no grid at all.
- The ’a’ option can be followed by two arguments; the second is the starting point for automatic

abscissas.
- There is a new option ’h’ which must be followed by a numerical argument: it specifies the

height desired for the plot.
- There is a new option ’w’ similar to ’h’, except that the width is specified. If only one of ’h’

and ’w’ is given, the plot is made square of the indicated size. If neither is given, the plot is
made six inches square.
There is a new option ’r’ to be followed by a number which locates the plot that many inches
to the right on the page.

SEE ALSO
plot (VI)

BUGS
Same as plot (VI). Drawing lines is not yet done exactly right. If you store the output in a file,
before printing with cat you must turn off delays and turn off CR-NL echo (e.g. "stty -delay hi");

-1-

PLOT (VI) 6/4/7 3 PLOT (VI)

NAME
plot -- make a graph

SYNOPSIS
plot [option] ...

DESCRIPTION

FILES

Plot takes pairs of numbe~;s from the standard input as abscissas and ordinates of a graph. The
graph is plotted on the storage scope,/dev/vt0.
The following options are recognized, each as a separate argument.

a Supply abscissas automatically (they are missing from the input); spacing is given by the
next argument, or is assumed to be 1 if next argument is not a number.

e Place character string given by next argument at each point.

d Omit connections between points. (Disconnect.)
gn Grid style:

tin0, no grid.
n=l, ax~ only
n=2, complete grid (default).

s Save screen, don’t erase before plotting.
x Next 1 (or 2) arguments are lower (and upper) x limits.
y Next 1 (or 2) arguments are lower (and upper) y limits.
Points are connected by straight line segments in the order they appear in input. If a specified
lower limit exceeds the upper limit, or if the automatic increment is negative, the graph is plot-
ted upside down. Automatic abscissas begin with the lower x limit,or with 0 if no limit is
specified. Grid lines and automatically determined limits fall on round values, however round-
ness may be subverted by giving an inappropriately rounded lower limit. Plotting symbols
specified by c are placed so that a small initial letter, such as + o x, will fall approximately on
the plotting point.

/dev/vt0

SEE ALSO
spline (VI), plog (VI)

BUGS
A limit of 1000 points is enforced silently.

-1-

PTX (VI) 10115/73 PTX (Vl)

NAME
ptx - permuted index

SYNOPSIS
ptx [--t] input [output]

DESCRIPTION
Ptx generates a permuted index from file input on file output. It has three phases: the first does
the permutation, generating one line for each keyword in an input line. The keyword is rotated
to the front. The permuted file is then sorted. Finally the sorted lines are rotated so the key-
word comes at the middle of the page.
Input should be edited to remove useless lines. The following words are suppressed: ’a’, ’an’,
’and’,’ ’ " ’ ’ ’ ’ ’ to, .as, is, ’for’, ’of’, on, or, ’the’, ’ ’ ’up’

The optional argument -t causes ptx to prepare its output for the phototypesetter. .
The index for this manual was generated using ptx.

FILES ’
/bin/sort

-1-

SFS (Vl) 6/25/73 SFS(VI)

NAME
sfs - structured file scanner

SYNOPSIS
sfs filename [--]

DESCRIPTION
Sfs provides an interactive, program for scanning and patching a structured file. If the-second ar-
gument is supplied, the file is block addressed.

Some features of sfs include.
1. It provides interactive and preprogrammed operation.
2. It provides expression evaluation (32 bit precision) and branching.
3. It provides the ability to define a large set of hierarchical structure definitions.
4. It provides the ability to locate, to dump, and to patch specific instances of structure in the

file. Furthermore, in the dump and patch operations the external form of the structure is
selected by the user.

5. It provides the ability to escape to the UNIX command level to allow the use of other
UNIX debugging aids.

SEE ALSO
"SFS reference manual" (internal memorandum)

BUGS

-1-

SKY (Vl) 9/22/73 SKY (VI)

NAME
sky -- obtain ephemerides

SYNOPSIS
sky

DF_S~RIPTION
Sky predicts the apparent locations of the Sun, the Moon, the planets out to Saturn, stars of mag-
nitude at least 2.5, and certain other celestial objects. Sky reads the standard input to obtain a
GMT time typed on one line with blanks separating year, month number, day, hour, and minute;
if the year is missing the current year is used. If a blank line is typed the current time is used.
The program prints the azimuth, elevation, and magnitude of objects which are above the hor-
izon at the ephemeris location of Murray Hill at the indicated time.
Placing a "1" input after the minute entry causes the program to print out the Greenwich Side-
real Time at the indicated moment and to print for each body its right ascension and declination
as well as its azimuth and elevation. Also, instead of the magnitude, the geocentric distance of
the body, in units the program considers convenient, is printed. (For planets the unit is essen-
tially A. U.)
The magnitudes of Solar System bodies are not calculated and are given as 0. The effects of at-
mospheric extinction are not included; the mean magnitudes of variable stars are marked with

For all bodies, the program takes into account precession and nutation of the equinox, annual
(but not diurnal) aberration, diurnal parallax, and the proper motion of stars (but not annual
parallax). In no case is refraction included.
The program takes into account perturbations of the Earth due to the Moon, "~enus, Mars, and
Jupiter. The expected accuracies are: for the Sun and other stellar bodies a few tenths of seconds
of arc; for the Moon (on which particular care is lavished) likewise a few tenths of seconds. For
the Sun, Moon and stars the accuracy is sufficient to predict the circumstances of eclipses and oc-
cultations to within a few seconds of time. The planets may be off by several minutes of arc.

FILES
/usr/lib/startab,/usr/lib/moontab

SEE ALSO
azel (Vl)
American Ephemeris and Nautical Almanac, for the appropriate years; also, the Explanatory Supple-
ment to the American Ephemeris and Nautical Almanac.

AUTHOR
R. Morris

BUGS

,)

-1-

SNO(VI) 2/9/73 SNO(VI)

NAME
sno - Snobol interpreter

SYNOPSIS
sno [file]

DESCRIPTION
Sno is a Snobol III (with slight differences) compiler and interpreter. Sno obtains input from the’
concatenation of file and ’the standard input. All input through a statement containiia/~ the label
’end’ is considered program and is compiled. The rest is available to ’syspit’.
Sno differs from Snobol III in the following ways.
There are no unanchored searches. To get the same effect:

a ** b unanchored search for b
a *x* b --- x c unanchored assignment

There is no back referencing.

x -- "abc"
a *x*-x . is an unanchored search for ’abe’

Function declaration is different. The function declaration is done at compile time by the use of
the label ’define’. Thus there is no ability to define functions at run time and the use of the
name ’define’ is preempted. There is also no provision for automatic variables other than the
parameters. For example:
define f()
or

define fla,b,c)
All labels except ’define’ (even ’end’) must have a non-empty statement.
If ’start’ is a label in the program, program execution will start there. If not, execution begins
with the first executable statement. ’define’ is not an executable statement.
There are no builtin functions.
Parentheses for arithmetic are not needed. Normal precedence applies. Because of this, the ar-
ithmetic operators ’/’ and ’*’ must be set off by space.
The right side of assignments must be non-empty.
Either ° or " may be used for literal quotesl
The pseudo-variable ’sysppt’ is not available.

SEE ALSO
Snobol III manual. (JACM: Vol. 11 No. 1; Jan 1964; pp 21)

BUGS

-1-

SPEAK(VI) 8/15/73 SPEAK(VI)

NAME
speak - word to voice translator

SYNOPSIS ¯

speak [--epsv] [vocabulary [output]]

DESCRIPTION
Speak turns a stream of words into utterances and outputs them to a voice synthesizer, or to a
specified output file. It has facilities for maintaining a vocabulary. It receives, from the standard
input

- working lines: text of words separated by blanks
- phonetic lines: strings of phonemes for one word preceded and separated by commas. The

phonemes may be followed by comma-percent then a ’replacement part’ -- an ASCII string
with no spaces. The phonetic code is given in bs (VII).

- empty lines
- command lines: beginning with !. The following command lines are recognized:

!r file
!w file
!p
1|
!c word
!d

replace coded vocabulary from file
write coded vocabulary on file
print phonetics for working word
list vocabulary on standard output with phonetics
copy phonetics from working word to specified word
print decomposition into substrings

Each working line replaces its predecessor. Its first word is the ’working word’. Each phonetic
line replaces the phonetics stored for the working word. In particular, a phonetic line of comma
only deletes the entry for the working word. Each working line, phonetic line or empty line
causes the working line to be uttered. The process terminates at the end of input.

Unknown words are pronounced by rules, and failing that, are spelled. Spelling is done by taking
each character of the word, prefixing it with ’*’, and looking it up. Unspellable words burp.
Speak is initialized with a coded vocabulary stored in file/usr/lib/speak.m. The vocabulary op-
tion substitutes a different file for/usr/lib/speak.m.

A set of single letter options may appear in any order preceded by --. Their meanings are:
--e suppress English preprocessing
--p suppress pronunciation by rule
-s suppress spelling
--v suppress voice output

The following input will reconstitute a coded vocabulary, ’speak.m’, from an ascii listing,
’speak.v’, that was created using !!. ’Null’ names a nonexistent vocabulary, file.

cat speak.v- I speak-v null
!w speak.m

FILES
/usr/lib/speak.m

SEE ALSO
M. D. McIlroy, "Synthetic English Speech by Rule," Computing Science Technical Report #14,
Bell Laboratories, 1973
vs (VII), vs (IV)
-

¯ BUGS
Excessively long words cause dumps.
Space is not reclaimed from deleted entries; use !w and !r to effect reclamation.
The first phoneme is sometimes dropped when !p is used after !d. .

-1-

SPLINE (Vl) ¯ 5/15/74 SPLI NE (Vl)

NAME
spline -- interpolate smooth curve

SYNOPSIS
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates of a function. It °
produces a similar set, which is approximately equally spaced and includes the input Set, on the
standard output. The cubic spline output (R. W. Hamming, Numerical Methods.for Scientists and
Engineers, 2nd ed., 349fl) has two continuous derivatives, and sufficiently many points to look
smooth when plotted, for example by plot (I).

The following Options are recognized, each as a separate argument.
a Supply abscissas automatically (they are missing from the input); spacing is given by the

next argument, or is assumed to be 1 if next argument is not a number.

k The constant k used in the boundary value computation

.. YO -- kYl ’ Y,, Y,, - I
is set by the next argument. By default k -- 0.
Space output points so that approximately n points occur between the lbwer and upper x
limits. (Default n-- 100.)
Make output periodic, i.e. match derivatives at ends. First and last input values should
normally agree.
Next 1 (or 2) arguments are lower (and upper) x limits. Normally these limits are calculated
from the data. Automatic abcissas start at lower limit (default 0).

SEE ALSO
plot (I)

AUTHOR
M. D. Mcllroy.

¯

BUGS
A limit of 1000 input points is enforced silently.

-1-

¯

TMG(VI) 10/21/72 TMG(VI)

NAME
trng - compiler-compiler

SYNOPSIS
tmg name

DEscRIPTION
Tmg produces a translator for the language whose parsing and translation rules are described in
file name.t. The new translator appears in a.out and may be used thus:
a.out input [output]
Except in rare cases input must be a randomly addressable file. If no output file is specified, the
standard output file is assumed.

FILES
/sys/tmg/tmgl.o the compiler-compiler
/sys/tmg[abc] libraries
alloc.d table storage

SEE ALSO
A Manual for the Tmg Compiler-writing Language, internal memorandum.

DIAGNOSTICS
Syntactic errors result in "???" followed by the offending line.
Situations such as space overflow with which the Trng processor or a Tmg-produced processor
can not cope result in a descriptive comment and a dump.

AUTHOR
M. D. Mcllroy

BUGS
9.2 footnote 1 is not enforced, causing trouble.
Restrictions (7.) against mixing bundling primitives should be lifted.
Certain hidden reserved words exist: gpar, classtab, trans.
Octal digits include 8=10 and 9=11.

.

TTT(VI) 11/I/73 TTT(VI)

NAME
ttt -- tic-tac-toe

SYNOPSIS
/usr/games/ttt

DESCRIPTION
Ttt is the X and 0 game popular in the first grade. This is a learning program that never makes "
the same mistake twice. ’ - -
Although it learns, it learns slowly. It must lose nearly 80 games to completely know the game.

FILES
lusr/games/ttt, k lear riing file

BUGS

-I-

WUMP (VI) 11/25/73 WUMP (VI)

NAME
wump -- hunt the wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wurnp plays the game of "Hunt the Wumpus." A Wumpus is a creature that lives in a cave with
several rooms connected by tunnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot-
tomless Pits. There are also Super Bats which are likely to pick you up and drop you in some
random room.

The program asks various questions which you answer one per line; it will give a more detailed
description if you want.

This program is based on one described in People’s Computer Company, 2, 2 (November 1973).

BUGS
It will never replace Space War.

-1-

YACC (VI) 6/6/73 Y ACC (Vl)

NAME
yacc -- yet another compiler-compiler

SYNOPSIS
yacc [--v] [grammar]

DESCRIPTION
Yacc converts a context-free grammar into a set of tables for a simple automaton which executes ’
an LR(1) parsing algorithrfl. The grammar may be ambiguous: specified precedence ~’ules are
used to break ambiguities.
The output is y.tab.c, which must be compiled by the C compiler and loaded with any other
routines required (perhaps a lexical analyzer) and the Yacc library:

cc y.tab.c other.o -ly

If the --v flag is given, the file y.output is prepared, which contains a description of the parsing
tables and a report on conflicts generated by ambiguities in the grammar.

SEE ALSO
"LR Parsing", by A. V. Aho and S. C. Johnson, to appear in Computing Surveys. "The YACC
Compiler-compiler", internal memorandum.

AUTHOR
S. C. Johnson

FILES
y.output
y.tab.c
/lib/liby.a runtime library for compiler

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a
more detailed report is found in the y.output file.

BUGS

-1-

ASCII (VII) 6/12/72 ASCII (VII)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat/usr/pub/~cii

DESCRIPTION
Ascii is a map of the ASCI]~ character set, to be printed as needed. It contains:

000 nul
010 bs
020 die
030 can
040 sp
050 (
060 0
070 8
100 @
110 H
120 P
130 X
140 "
150 h
160 p
170 x

001 soh
011 ht
021 dcl
031 ern
041
051)
061 1
071 9
101 A
1i.1 I°
121 Q
131 Y
141 a
151 i
161 q
171 y

002 stx
012 nl
022 dc2
032 sub
042 "
052
062 2
072 :
102 B
112 J
122 R
132 Z
142 b
152 j
162 r
172 z

003 etx
013 vt
023 dc3
033 esc
043 #
O53 +
O63 3
073 ;
103 C
113 K
123 S
133 [
143 c
153 k
163 s
173 {

004 eot
014 np
.024 dc4
034 fs
044 $
054
064 ~
074 <
104 D
114 L
124 T
134 \
144 d
154 1
164 t
174 I

005 enq!
015 cr
025 nak
035 gs
045 %
055 -
065 5
075 =
105 E
115 M
125 U
135]
145 e
155 m
165 u
175 }

006 ack
016 so
026 syn
036 rs
046 &
O56
O66 ~
076 >
106 F
116 N
126 V
136 ^
146 f
156 n
166 v
176 -

007 bel
017 si
027 etb
037 us
047 "
057 /
067 7
077 ?
107 G
117 O
127 W
137
147 g
157 o
167 w
177 del

FILES
found in/usr/pub

-1-

GREEK (VII) 10131H2 GREEK (VII)

NAME
greek - graphics for extended ascii type-box

SYNOPSIS
cat/usr/pub/greek

DESCRIPTION
Greek gives the mapping from ascii to the "shift out" graphics in effect between SO and SI on
model 37 Teletypes with a 128-character type-box. It contains:

alpha a A beta /3 B gamma y \
GAMMA F G delta 8 D DELTA A W
epsilon E S zeta /j Q eta rt N
THETA O T theta 0 O lambda h L
LAMBDA A E mu t~ M nu v @
xi ~2 X pi ,r J PI II P
rho p K sigma o- Y SIGMA 5’. R
tau r I phi ~b U PHI ¯ F
psi tk V PSI W H omega ~ C
OMEGA fl Z nabla ~ [not --,
partial ~] integral f ^ -

SEE ALSO
ascii (VII)

-1-

TABS (VII) 6/15/72 T ABS (VII)

NAME
tabs - set tab stops

SYNOPSIS
cat/usr/pub/tabs

DESCRIPTION ¯

When printed on a suitable terminal, this file will set tab stops every 8 columns. Suitable termi-
nals include the Teletype model 37 and the GE TermiNet 300.

These tab stop settings are desirable because UNIX assumes them in calculating delays.

-1-

TMHEADER (VII) 10/20/73 TMHEADER (VII)

NAME
tmheader - TM cover sheet

SYNOPSIS
ed/usr/pub/tmheader

DESCRIPTION
/usr/pub/tmheader contains a prototype for making a troff(1) formatted cover sheet for a technical
memorandum. Parameters to be filled in by the user are marked by self-explanatory names be-
ginning with "--"

BUGS
God help you on two-page abstracts. Try to write less.

.

VS (VII) 9/4/73 VS (VII)

NAME
vs - voice synthesizer code

DESCRIPTION
The octal codes below are understood by the Votrax® voice synthesizer. Inflection and
phonemes are or-ed together. The mnemonics in the first column are used by speak (VI); the
upper case mnemonics are used by the manufacturer.

0 300 4-strong inflection
1 200 3
2 100 2
3 000 1-weak inflection

a0 033 AH-contact
al 052 AHl-connect
aw 002 AW-law(,l,u2,aw)
au 054 AWl-fault
ae 021 AE-cat
ea 020 AEl-:-antenna
ai 037 A-name(,n,ai,y0,m)
aj 071 Al-namely
e0 004 EH-met enter
el 076 EHl-seven
e2 077 EH2-seven
er 005 ER-weather
eu 073 OOH-Goethe cheveux
eh 067 EHH-Ie cheveux
y0 023 EE-three
yl 026 Y-sixty
y2 035 Yl-yes
ay 036 AY--may
i0 030 I--six
il 064 II-inept inside
i2 065 I2-static
iy 066 IY--cry(,k,r,a0,iy)
ie 003 IE-zero
ih 072 IH-station
o0 031 O-only no
ol 012 Ol-hello
02 013 O2-notice
ou 051 OO1--good should
oo 050 OO-look

u0 014 UH-but
ul 015 UHl-uncle
u2 016 UH2-stirrup
u3 034 UH3-app_le ab_le
yu 027 U-use
iu 010 Ul-unite(,yl,iu,...)
ju 011 IU-new
b 061 B
d 041 D
f 042 F
g 043 G
h 044H
k 046 K
1 047 L
m 063 M
n 062 N
p 032 P
q 075 Q
r 024 R
s 040 S
t 025 T
v 060 V
w 022 W
z 055 Z
sh 056 SH-show ship
zh 070 ZH-pleasure
j 045 J-edge
ch 057 CH-batch
th 006 TH-thin
dh 007 THV-then
ng 053 NG-long ink
---0 017 PA2-1ongpause
--1 001 PAl
--2 074 PA0-short pause

SEE ALSO
speak (VI), vs (IV)

-1-

20BOOT (VIII) 10/31/73 20BOOT (VIII)

NAME
20boot - install new 11/20 system

SYNOPSIS
20boot

DESCRIPTION
This shell command file copies the current version of the 11/20 program used to run the VT01
display onto the/dev/vt0 file. The 11/20 should have been started at its ROM location 773000.

/dev/vtO,/usr/mdec/20.o (11120 program)

SEE ALSO
vt (IV)

-1-

AC (VIII) 2/20/74 AC(VIII)

NAME
ac -- login accounting

SYNOPSIS
ac [--w wtmp][--p][-d] people

DESCRIPTION
Ac produces a printout giving connect time for each user who has logged in during the life of the
current wtmp file. A total is also produced. --w is used to specify an alternate wtmp file. -p
prints individual totals; without this option, only totals are printed. --d causes a printout for
each midnight to midnight period. Any people will limit the printout to only the specified login
names. If no wtmp file is given,/usr/adm/wtmp is used.

The accounting file /usr/adm/wtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting, it
should be created with length O. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file truncated.

/usr/adm/wtmp

SEE ALSO
init (VIII), login (1), wtmp (V).

BUGS

-I-

BOOT PROCEDURES(VIII) 11/1/73 BOOT PROCEDURES(VIII)

NAME
boot procedures - UNIX startup

DESCRIPTION
How to start UNIX. UNIX is started by placing it in core starting at location zero and transfer-
ring to zero. There are various ways to do this. If UNIX is still intact after it has been running,°
the most obvious method, is simply to transfer to zero, but this is not recommended if the sys-
tem has crashed.
The tp command places a bootstrap program on the otherwise unused block zero of the tape.
The DECtape version of this program is called tboot, the magtape version mboot. If tboot or
mboot is read into location zero and executed there, it will type ’=’ on the console, read in a tp
entry name, load that entry into core, and transfer to zero. Thus the next easiest way to run
UNIX is to maintain the UNIX code on a tape using tp. Then when a boot is required, execute
(somehow) a program which reads in and jumps to the first block of the tape. In response to the
’=’ prompt, type the entry name of the system on the tape (we use plain ’unix’). It is strongly
recommended that a current version of the system be maintained in this way, even if the first or
third methods_of booting the system are usually used.

The standard DEC ROM which loads DECtape is sufficient to read in tboot, but the magtape
ROM loads block one, not zero. If no suitable ROM is available, magtape and DECtape pro-
grams are presented below which may be manually placed in core and executed.
A third method of rebooting the system involves the otherwise unused block zero of each UNIX
file system. The single-block program uboot will read a UNIX pathname from the console, find
the corresponding file on a device, load that file into core location zero, and transfer to it. The
current version of this boot program reads a single character (either p or k for RP or RK, both
drive 0) to specify which device is to be searched. Uboot operates under very severe space con-
straints. It supplies no prompts, except that it echos a carriage return and line feed after the p or
k. No diagnostic is provided if the indicated file cannot be found, nor is there any means of
correcting typographical errors in the file name except to start the program over. Uboot can re-
side on any of the standard file systems or may be loaded from a tp tape as described above.

The standard DEC disk ROMs will load and execute uboot from block zero.
The switches. The console switches play an important role in the use and especially the booting
of UNIX. During operation, the console switches are examined 60 times per second, and the
contents of the address specified by the switches are displayed in the display register. (This is
not true on the 11/40 since there is no display register on that machine.) If the switch address is
even, the address is interpreted in kernel (system) space; if odd, the rounded-down address is in-
terpreted in the current user space.
If any diagnostics are produced by the system, they are printed on the console only if the
switches are non-zero. Thus it is wise to have a non-zero value in the switches at all times.
During the startup of the system, the init program (VIII) reads the switches and will come up
single-user if the switches are set to 173030.
It is unwise to have a non-existent address in the switches. This causes a bus error in the system
(displayed as 177777) at the rate of 60 times per second. If there is a transfer of more than 16ms
duration on a device with a data rate faster than the bus error timeout (about 10/xs) then a per-
manent disk non-existent-memory error will occur.
ROM programs. Here are some programs which are suitable for installing in read-only
memories, or for manual keying into core if no ROM is present. Each program is position-
independent but should be placed well above location 0 so it will not be overwritten. Each reads
a block from the beginning of a device into core location zero. The octal words constituting the
program are listed on the left.

-1-

BOOT PROCEDURES(VIII) 11/1/73 BOOT PROCEDURES(¢II!)

DECtape (drive 0) from endzone:
012700 mov
177346
010040 mov
012710 mov .
000003
105710 1: tstb
002376 bge
112710 movb
000005
000777 br

$tcba,r0

r0,-(r0) / use tc addr for wc
$3,(r0) / read bn forward

(r0) / wait for ready
lb
$5,(r0) / read (forward)

DECtape (drive 0) with search:
012700 1: mov
177346
010040 mov
012740 mov
004003
005710 2: tst (r0)
0̄02376 bge 2b
005760 tst -2(r0)
177776
002365 bge lb
012710 mov $3,(r0)
000003
105710 2: tstb (r0)
002376 bge 2b
112710 movb $5,(r0)
000005
105710 2:
002376
005007

/ loop; now halt and start at 0

Stcba,r0

r0,---(r0) / use tc addr for we
$4003,---(r0) / read bn reverse

/ wait for error
/ loop if not end zone

/ read bn forward

/ wait for ready

/ read (forward)

Caution: both of these
Magtape from load point:

012700 mov $mtcma,r0
172526
010040 mov r0,--(r0)
012740 mov $60003,--(r0)
060003
000777 br

RK (drive 0):
012700 mov Srkda,r0
177412
005040 clr -(r0)
010040 mov r0,---(r0)
012740 mov $5,-(r0)
O00005
105710 1: tstb (r0)
002376 bge lb

- " 005007 clr pc

RP (drive 0)
012700 mov Srpmr,r0
176726
005040 cir. --(rO) .
005040 clr --(r0)
005040 clr --(r0)

tstb (r0) / wait for ready
bge 2b
clr pc / transfer to zero
DECtape programs will (literally) blow a fuse if 2 drives are dialed to zero.

/ usr mt addr for wc
/ read 9-track

/ loop; now halt-and start at 0

/ rkda cleared by start

-2-

BOOT PROCEDURES(VIII) 11/1/73 BOOT PROCEDURES(VIII)

FILES

010040 mov
012740 mov
000005
105710 1: tstb (r0)
002376 bge lb
005007 clr pc

r0,---(r0)
$5,-(r0)

/unix - UNIX code
/usr/mdec/mboot - tp magtape bootstrap
/usr/mdec/tboot - tp DECtape bootstrap
/usr/mdec/ubo0t - file system bootstrap

SEE ALSO
tp (I), init (VIII)

-3-

CHECK (VIII) 8/31/73 CHECK(VIII)

NAME
check - file system consistency check

SYNOPSIS
check [-lsuib [numbers]] [filesystem]

DESCRIPTION
Check examines a file system, builds a bit map of used blocks, and compares this bit map against
the free list maintained on the file system. It also reads directories and compares the link-count
in each i-node with the number of directory entries by which it is referenced. If the file system
is not specified, a check of a default file system is performed. The normal output of check in-
cludes a report of

The
The
The
The
The
The
The
The
The

number of blocks missing; i.e. not in any file nor in the free list,
number of special files,
total number of files,
number of large files,
number of directories,
number of indirect blocks,
number of blocks used in files,
highest-numbered block appearing in a file,
number of free blocks.

The --I flag causes check to produce as part of its output report a list of the all the path names of
files on the file system. The list is in i-number order; the first name for each file gives the i-
number while subsequent names (i.e. links) have the i-number suppressed. The entries "." and
".." for directories are also suppressed. If the flag as given as -!!, the listing will include the ac-
cessed and modified times for each file. The --! option supersedes --s.
The --s flag causes check to ignore the actual free list and reconstruct a new one by rewriting the
super-block of the file-system. The file system should be dismounted while this is done; if this is
not possible (for example if the root file system has to be salvaged) care should be taken that the
system is quiescent and that it is rebooted immediately afterwards so that the old, bad in-core
copy of the super-block will not continue to be used. Notice also that the words in the super-
block which indicate the size of the free list and of the i-list are believed. If the super-block has
been curdled these words will have to be patched. The -s flag causes the normal output reports
to be suppressed.
With the --u flag, check examines the directory structure for connectivity. A list of all i-node
numbers that cannot be reached from the root is printed. This is exactly the list of i-nodes that
should be cleared (see clri (VIII)) after a series of incremental restores. (See the bugs section of
restor (VIII).) The --u option supersedes --s. -.
The occurrence of i n times in a flag argument --ii...i causes check to store away the next n argu-
ments which are taken to be i-numbers. When any of these i-numbers is encountered in a direc-
tory a diagnostic is produced, as described below, which indicates among other things the entry
name.
Likewise, n appearances of b in a flag like -bb...b cause the next n arguments to be taken as
block numbers which are remembered; whenever any of the named blocks turns up in a file, a
diagnostic is produced.

FILES
Currently,/dev/rpO is the default file system.

¯

SEE ALSO
fs (V), clri (VIII), restor(VlIl)

DIAGNOSTICS: "
if a r~d error is encountered, the block number of the bad block is printed and check exits.
"Bad freeblock" means that a block number outside the available space was encountered in the
free list. "n dups in free" means that n blocks were found in the free list which duplicate blocks

-1-

CHECK (VIII) 8131/73 CHECK (VIII)

either in some file or in the earlier part of the free list.
An important class of diagnostics is produced by a routine which is called for each block which
is encountered in an i-node corresponding to an ordinary file or directory. These have the form

b# complaint ; i= i# (’class)

Here b# is the block number being considered; complaint is the diagnostic itself. It may be
. -

blk if the block numl~er was mentioned as an argument after --b;
bad if the block number has a value not inside the allocatable space on the device, as indi-

cated by the devices’s super-block;
dup if the block number has already been seen in a file;
din if the block is a member of a directory, and if an entry is found therein whose i.-number

is outside the range of the i-list on the device, as indicated by the i-list size specified by
the super-block. Unfortunately this diagnostic does not indicate the offending entry
name, but since the i-number of the directory itself is given (see below) the problem can
be tracked down.

The i# in the form above is the i-number in which the named block was found. The class is an
indicator of What type of block was involved in the difficulty:

sdir indicates that the block is a data block in a small file;
idir indicates that the block is a data block in a large file (the indirect block number is not

available);
idir indicates that the block is an indirect block (pointing to data blocks) in a large file;
free indicates that the block was mentioned after --b and is free;
urk indicates a malfunction in check.

When an i-number specified after -i is encountered while reading a directory, a report in the
form

i# ino; i= d# (class) name
where i# is the requested i-number, d# is the i-number of the directory, class is the class of the
directory block as discussed above (virtually always "sdir") and name is the entry name. This di-
agnostic gives enough information to find a full path name for an i-number without using the -!
option: use --b n to find an entry name and the i-number of the directory containing the refer-
ence to n, then recursively use-b on the i-number of the directory to find its name.

Another important class of file system diseases indicated by check is files for which the number
of directory entries does not agree with the link-count field of the i-node. The diagnostic is hard
to interpret. It has the form

i# delta
Here i# is the i-number affected. Delta is an octal number accumulated in a byte, and thus can
have the value 0 through 377(8). The easiest way (short of rewriting the routine) of explaining
the significance of delta is to describe how it is computed.

If the associated i-node is allocated (that is, has the allocated bit on) add 100 to delta. If its link-
count is non-zero, add another 100 plus the link-count. Each time a directory entry specifying
the associated i-number is encountered, subtract 1 from delta. At the end, the i-number and del-
ta are printed if delta is neither 0 nor 200. The first case indicates that the i-node was unalloca~-
ed and no entries for it appear; the second that it was allocated and that the link-count and the
number of directory entries agree.
Therefore (to explain the symptoms of the most common difficulties) delta = 377 (-1 in 8-bit, 2’s
complement octal) means that there is a directory entry for an unallocated i-node. This is some-
what serious and the entry should be be found and removed forthwith. Delta -- 201 usually
means that a normal, allocated i-node has no directory entry. This difficulty is much less serious.
Whatever blocks there are in-the fileare unavailable~ but no further damage will occur if nothing
is done: A clri followed by a check --s will- restore the lost space at leisure~

-2-

CHECK (VIII) 8131/73 CHECK(VIII)

BUGS

In general, values of delta equal to or somewhat above 0,. 100, or 200 are relatively innocuous;
just below these numbers there is danger of spreading infection.

Check -! or -u on large file systems takes a great deal of core.
Since check is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.
It believes even preposterous super-blocks and consequently can get core images.

-3-

CLRI (VIII) 10/31/73 CLRI (VIII)

NAME
clri - clear i-node

SYNOPSIS
clri i-number [filesystem]

DESCRIPTION
Clri writes zeros on the 32’ bytes occupied by the i-node numbered i-number. If the file ~ystem ar-
gument is given, the i-node resides on the given device, otherwise on a default file system. The
file system argument must be a special file name referring to a device containing a file system.
After clri, any blocks in the affected file will show up as "missing" in a check of of the file sys-
tem.
Read and write permission is .required on the specified file system device. The i-node becomes
allocatable.
The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken to
track down th.e entry, and remove it. Otherwise, when the i-node is reallocated to some new file,
the old entry will still point to that file. At that point removing the old entry will destroy the
new file. The new entry will again point to an unallocated i-node, so the whole cycle is likely to
be repeated again and again.

BUGS
Whatever the default file system is, it is likely to be wrong. Specify the file system explicitly.
If the file is open, clri is likely to be ineffective.

-1-

DF (VIII) 1/20/73 DF(VIII)

NAME
df- disk free

SYNOPSIS
df [filesystem]

DESCRIPTION
Df prints out the number of free blocks available on a file system. If the file system is
unspecified, the free space on all of the normally mounted file systems is printed.

FILES
/dev/rf?.,/dev/rk?,/dev/rp?

SEE ALSO
check (VIII)

BUGS

.

DPD (VIII) 3/15/72 DPD (VIII)

NAME
dpd - spawn data phone daemon

SYNOPSIS
/etc/dpd

DESCRIPTION
Dpd is the 201 data phone’daemon. It is designed to submit jobs to the Honeywell 6070 comput-
er via the GRTS interface.
Dpd uses the directory /usr/dpd. The file lock in that directory is used to prevent two daemons
from becoming active. After the daemon has successfully set the lock, it forks and the main
path exits, thus spawning the daemon. The directory is scanned for files beginning with dr.
Each such file is submitted as a job. Each line of a job file must begin with a key character to
specify what to do with the remainder of the line.

S directs dpd to generate a unique snumb card. This card is generated by incrementing the
first word of the file lusrldpdlsnumb and converting that to three-digit octal concatenated
with the.station ID.

L specifies that the remainder of the line is to be sent as a literal.

B specifies that the rest of the line is a file name. That file is to be sent as binary cards.
F is the.same as B except a form feed is prepended to the file.

U specifies that the rest of the line is a file name. After the job has been transmitted, the file
is unlinked.

Any error encountered will cause the daemon to drop the call, wait up to 20 minutes and start
over. This means that an improperly constructed dffile may cause thesame job to be submitted
every 20 minutes.
While waiting, the daemon checks to see that the lock file still exists. If it is gone, the daemon
will exit.

FILES
/dev/dn0,/dev/dpO,/usr/dpd/*

SEE ALSO
opr (I)

-1-

DUMP (VIII) 11/24/73 DUMP (VIII)

NAME
dump - incremental file system dump

SYNOPSIS
dump [key [arguments] filesystem]

DE,~RIPTION
Dump will make an incremental file system dump on magtape of all files changed after a certain
date. The argument key, specifies the date and other options about the dump. Key consists of
characters from the set iu0hds.

i the dump date is taken from the file/ete/ddate.

u the date just prior to this dump is written on/ete/ddate upon successful completion of this
dump.

0 the dump date is taken as the epoch (beginning of time). Thus this option causes an entire
file system dump to be taken.

h the dump date is some number of hours before the current date. The number of hours is
taken from the next argument in arguments.

d the dump date is some number of days before the current date. The number of days is tak-
en from the next argument in arguments.

s the size Of the dump tape is specified in feet. The number of feet is taken from the next
argument in arguments. It is assumed that there are 9 standard UNIX records per foot.
When the specified size is reached, the dump will wait for reels to be changed. The default
size is 1700 feet.

If no arguments are given, the key is assumed to be i and the file system is assumed to be
IdevlrpO.
Full dumps should be taken on quiet file systems as follows:

dump 0u/dev/rp0
check -I/dev/rp0

The check will come in handy in case it is necessary to restore individual files from this dump.
Incremental dumps should then be taken when desired by:

dump
When the incremental dumps get cumbersome, a new complete dump should be taken. In this
way, a restore requires loading of the complete dump tape and only the latest incremental tape.

FILES
/dev/mt0 magtape
/dev/rp0 default file system
/etc/ddate

SEE ALSO
restor (VllI), check (VIII), dump (V)

BUGS

I .

GETTY (VllI) 9/19/73 GETTY (VIII)

NAME
getty --set typewriter mode

SYNOPSIS
/etc/getty

DESCRIPTION
Getty is invoked by init (VIII) immediately after a typewriter is opened following a dial-up. The
user’s login name is read and the login (I) command is called with this name as an argument.
While reading this name getty attempts to adapt the system to the speed and type of terminal be-
ing used.
Getty initially sets the speed of the interface to 300 baud, specifies that raw mode is tobe used
(break on every character), that echo is to be suppressed, and either parity allowed. It types the
"login:" message (which includes the characters which put the Terminet 300 terminal into full-
duplex and return the GSI terminal to non-graphic mode. Then the user’s name is read, a char-
acter at a time. If a null character is received, it is assumed to be the result of the user pushing
the "break" ("interrupt") key. The speed is then changed to 150 baud and the "login:" is typed
again, this time including the character sequence which puts a Teletype 37 into full-duplex. If a
subsequent null character is received, the speed is changed back to 300 baud.
The user’s name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriately (see stty (II)).

The user’s name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is nonempty, the system is told to map any future upper-case characters into the
corresponding lower-case characters. Thus UNIX is usable from upper-case-only terminals.
Finally, login is called with the user’s name as argument.

SEE ALSO
init (VIII), login (I), stty (II)

BUGS

-1-

INIT (VIII) 2/22/74 INIT(VIII)

NAME
init - process control initialization

SYNOPSIS
/etc/init

DESCRIPTION
lnit is invoked inside UNIX as the last step in the boot procedure. Generally its role is to create
a process for each typewriter on which a user may log in.
First, init checks to see if the console switches contain 173030. (This number is likely to vary
between systems.) If so~ the console typewriter /dev/tty8 is opened for reading and writing and
the Shell is invoked immediately. This feature is used to bring up a single-user system. When
the system is brought up in this way, the getty and login routines mentioned below and described
elsewhere are not used. If. the Shell terminates, init starts over looking for the console switch
setting.
Otherwise, init invokes a Shell, with input taken from the file letc/rc. This command file per-
forms housekeeping like removing temporary files, mounting file systems, and starting daemons.
Then init reads the file letclttys and forks several times to create a process for each typewriter
specified in the file. Each of these processes opens the appropriate typewriter for reading and
writing. These channels thus receive file descriptors 0 and 1, the standard input and output.
Opening the typewriter will usually involve a delay, since the open is not completed until some-
one is dialed up and carrier established on the channel. Then the process executes the program
specified by its line in ttys; the only program currently specifiable is letclgetty (q.v.). Getty reads
the user’s name and invokes Iogin (q.v.) to log in the user and execute the Shell.
Ultimately the Shell will terminate because of an end-of-file either typed expliciily or generated
as a result of hanging up. The main path of init, which has been waiting for such an event,
wakes up and removes the appropriate entry from the file utmp, which records current users, and
makes an entry in/usrladmlwtmp, which maintains a history of logins and logouts. Then the ap-
propriate typewriter is reopened and getty is reinvoked.
Init catches the hangup signal (signal #1) and interprets it to mean that the switches should be ex-
amined as in a reboot: if they indicate a multi-user system, the /etc/ttys file is read again. The
Shell process on each line which used to be active in ttys but is no longer there is terminated; a
new process is created for each added line; lines unchanged in the file are undisturbed. Thus it is
possible to drop or add phone lines without rebooting the system by changing the ttys file and
sending a hangup signal to the init process: use "kill --1 1."

FILES
/dev/tty?,/tmp/utmp,/usr/adm/wtmp,/etc/ttys,/etc/rc

SEE ALSO
login (I), kill (I), sh (I), ttys (V), getty (VIII)

-1-

LPD(VIII) 6/1/74 LPD(VIII)

NAME
lpd -- line printer daemon

SYNOPSIS
/etc/Ipd

DESCRIPTION
Lpd is the line printer daemon (spool area handler)invoked by Ipr. It~uses the director~, /usr/Ipd.
The file lock in that directory is used to prevent two daemons from becoming active simultane-
ously. After the daemon has successfully set the lock, it scans the directory for files beginning
with "dr." Lines in each df file specify files to be printed in the same way as is done by the
data-phone daemon-dpd (VIII).

FILES
/usr/lpd/* spool area
/dev/lp pri n ter

SEE ALSO
dpd HID, lpr (VI)

BUGS

-1-

MOUNT (VIII) 10/31/73 MOUNT (VIII)

NAME
mount - mount file system

SYNOPSIS
/etc/mount special file [--r]

DESCRIPTION
Mount announces to the system that a removable file system is present on the device correspond-
ing to special file special (which must refer to a disk or possibly DECtape). The file must exist
already; it becomes the name of the root of the newly mounted file system.
Mount maintains a table of mounted devices; if invoked without an argument it prints the table.
The optional last argument indicates that the file is to be mounted read-only. Physically write-
protected and magnetic tape file systems must be mounted in this way or errors will occur when
access times are up~Jated, whether or not any explicit write is attempted.

SEE ALSO
mount (II), mtab (V), umount (VIII)

BUGS
Mounting file systems full of garbage will crash the system.

-I-

MSH (VIII) 6115/72 MSH (VIII)

NAME
msh -- mini-shell

SYNOPSIS
/etc/msh

DESCRIPTION ’~ - .
Msh is a heavily simplified version of the Shell. It reads one line.from the standard input file,
interprets it as a command, and calls the command.

The mini-shell supports few of the advanced features of the Shell; .none of the following charac-
ters is special:

¯

> < !" ..,
However, "*", "[", and "?" are recognized and glob is Called. The main use of msh is to provide a
command-executing facility for various interactive sub-systems.

SEE ALSO
sh (I), glob (VIII)

-1-

SYNC (VIII) 11/1/73 SYNC(VIII)

sync -- update the super block

SYNOPSIS
sync

DESCRIPTION
Sync executes, the.sync system primitive. If the system is to be stopped, sync must be called to
insure file system integrity. S~e sync (II) for details.

BUGS

-1-

UMOUNT(VIII) 10/31/73 UMOUNT~(VIII)
:~

NAME
umount - dismount file system

SEE ALSO
mount (VIII), umount (II), mtab (V)

FILES
/etc/mtab mounted device table

DIAGNOSTICS

BUGS

...

It complains if the special file is not mounted or if it is busy. The file system i~tbusy..if there is
an open file on it or if someone has his current directory there.

-I-

.. UPDATE(vIII) 11/1/73. ’~ ,UPDATE (VIII)

NAME
:-~ update - periodically update._ the super block

ū~.~ate .-.
DgSCaWrt0i~

~: U~..ate is a program .t.hat .e×~ut, e~ the.sy~c..~fi~jtive e~ery 30s~on~. This insur~ that the file
:.syStem is ;f~rly-:~p, to;",~t¢~O, c~,~f.a cr~h. : T~is command .should not ~ ex~uted dir~tly,
. ~ut s~ld-M ex~uted out 3f th~ ~giii~lization sh~l command, file. -~ sync (II) for details.

SEE A~
.

BUGS ".:’ " " -’; ,’
. With .~date r, Mnni~. if th~...C~U is, halmd-j~t ~ t~ .~nc is ex~ut~,, a file system can ~ dam-

" ~.’[~. This,js.~lly ~9~ :to.DE~.".~d~e.that,~fit~ z~os WhenNPRT~u~ fail. A fix
.’~0 ~. tg~.h~yt,~y~c tem~lyin~re~nt, ~he "~#~tem time," by ’ at l~t-30.s~n~ to triter

.. ~’ ’.the ex~ution of update. This. Would give ~ s~0n~~ace-to halt the CPU.
., :

-1-
,7

