
Registered by Australia Post Publication No. NBG6524

The Australian UNIX* systems User Group Newsletter
Volume 6 Number 5

April 1986

CONTENTS

Editorial 2
Assessing Interactive Programs via Batch Processing 3
UNIX Fighting Fires 7
A Controlled, Productive Applications Environment at
Esso Australia’s Production Department 19
CNFX - File Transfer Between UNIX systems and CSIRONET 30
Folding Regular Polyhedra 40
Initial Experiences with a Gould UTX/32 System in a University Environment46
An Introduction to the UNIFY Data Base Program 51
fsh - A Functional UNIX Command Interpreter 57
The Perth AUUG Meeting: A Visual Perspective 70
AUUG Meeting in Canberra 79
AUUG Membership and Subscription Forms 81

Copyright © 1985. AUUGN is the journal of the Australian UNIX
systems User Group. Copying without fee is permitted provided that
copies are not made or distributed for commercial advantage and credit
to the source is given. Abstracting with credit is permitted. No~ other
reproduction is permitted without the prior permission of the Australian
UNIX systems User Group.

* UNIX is a trademark of AT&T Bell Laboratories.

AUUGN Vol 6 No 5

Editorial

This issue is devoted entirely to the proceedings of the Perth conference. It contains eight of the sixteen papers
presented; the others I have so far been unable to obtain.

The group is also looking for a new newsletter editor as I find that I am unable to devote enough time to the exercise.
If you are interested, contact me as soon as possible at the address and phone number appearing on the last page of this issue.

Memberships and Subscriptions

Membership and Subscription forms may be found at the end of this issue and all correspondence should be addressed
to

Greg Rose
Honorary Secretary, AUUG
PO Box 366
Kensington NSW 2033
Australia

Next AUUG Meeting

The next meeting will be in Canberra at the Australian National University. Further information appears at the end of
this issue.

Contributions

Come on you people out there in UNIX-land, send me your views, ideas, gripes, likes or whatevers.

Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems User Group, its
Newsletter or the editorial committee.

Vol 6 No 5 AUUGN

Assessing Interactive,Programs via Batch Processing
John Lions

Department of Computer Science,
University of New South Wales,

Kensington, NSW 2033.

For the past several years, I have had to teach
C programming to students about to begin a
formal study of operating systems. This is
because the subject is taught via a case" study of
the UNIX system which is written in C, as are
nearly all the user programs that react directly
with the UNIX system kernel via system calls.

Since 95% of my students do not know C to
start with, a programming exercise (or two) is
the time honoured way to introduce them to the
language. Since they are going to be studying
the internals of the operating system, especially
the kernel program’s interface to user programs,
it is a good idea that they write at least one pro-
gram that uses system calls.

System calls allow a program to both sense
and change its environment. The most stdldng
environmental change is the use of fork to
create a new clone of the current process, and
exec to change it into something new (yes,
UNIX does remind me of Aladdin’s cave some-
times). Somewhat more mundane is the act of
creating or deleting files. Environment sensing
includes determining whether a file by a certain
name exists, and if so, finding its type, size, etc.

An important class of programs that sense
environments are the interactive programs such
as ed, vi, mail, etc. (Actually the majority of
UNIX commands such as sh and pr are not
interactive at all.) Interactive programs are not
trivial, but they are more fun to develop--so
that is why they are chosen.

scat
Initially the exercise was to write a program
dubbed scat, short for super cat. This com-
mand was to copy its input file(s) to its standard
output, except that if an input line began with
’!’, the line was to be treated as a command to

be executed, and its output was to be merged
with the output stream in place of the input
line. The input files were either given as argu-
ments to an invocation of scat, or else the stan-
dard input was to be used. To make sure that
students actually got to use fork and exec, use
of the system library routine was (and still is)
forbidden.

This exercise was not without its challenges,
but was not used again. Instead I have tended
to use variations on the following two exercises:

update
In this exercise the problem is to allow a termi-
nal user interactively to append an arbitrary
string to the end of each line of a data file, e.g.
a file of student marks, with one line (record)
for each student. Each new appendage is pre-
ceded by a tab character. In operation, a line
from the original data file is written to the
user’s terminal (standard output file) except that
the newline character is replaced by a tab, so
that the cursor remains on the same line..The
user then types the new string followed by a
Return character. To the user program, the new
string appears as a line on the standard input
which can be read and written to the revised
data file that the program is creating. Thus the
user program has to deal with four separate
files.

One of the problems I find when running
such programs is that inevitably, every so often,
I get interrupted to do something else, or I need
to get some more information, or I want to
revise one of the earlier entries. Thus the shell
escape mechanism is important here too, and a
suitable interpretation of the ’%’ in a command
string is very useful for referring to the revised
data file.

inspect
This exercise involves writing a program that
can be used interacfively to browse through a
set of files (like ones I haven’t seen for a while

AUUGN Vol 6 No 5

and have half forgotten). For ’each file on the
command argument list, the progra..rn displays a
status line giving the file name and some type
information. The user can then interactively
decide whether to view the file from sequen-
tially, or to go on to the next file. File contents
are displayed using cat, or peat, or ls -l, or
nothing, depending on whether file is just ordi-
nary, or packed, or a, directory, or a special file.
If a short sample of the file contents is enough,
the Delete key can be used to terminate the
display. Once again a shell escape via a ’!’
command line, with interpretation for ’%’ is
extremely useful.

This exercise is my favourite. I keep a copy
of my own private inspect program on hand for
house-keeping tasks all the time.

Students generally enjoy this assignment, ’but
they have relatively little time to learn C, to
read all the relevant manuals and to get down to
work. Since it is a learning exercise, I am quite
happy for students to work in pairs for mutual
support, but actually relatively few do. A
characteristic of modem-day students is that
they are very reluctant to undertake any exer-
cise, no matter how relevant and worthwhile it
may seem, unless there is a tangible reward
(marks towards their final grade) at the end of
it. Moreover they expect the mark will be
weighted to reflect the relative effort that they
have to expend. Thus I have been regularly
faced with the problem of assessing with rea-
sonable accuracy the relative values ofsome 60
to 80 interactive programs written by some
active, enterprising, ~:but not fully aware stu-
dents. Anything is possible, and it usually
does. The programs may be interactive but the
testing has to be done in batch mode.

Testing
Students submit a source version of their pro-
gram via the network. This is checked for cer-
tain properties and then compiled (woe betide
the owner if the compilation fails). The object
program is then executed in a number of test
situations. I don’t like the word ’situation’ as it
is now commonly used, but here it reflects not

only a set of input data, but also an environ-
ment (like a dungeon) of data files that the pro-
gram may or may not notice or manipulate
(rogue fans will be pleased to note).

The general plan is to devise a series of tests
to check that a program does what it is sup-
posed to do, and then to check that the program
behaves reasonably when it is asked to do
unreasonable things like read an unreadable file,
or execute a non-existent file, or create a file in
a directory where there is no write permission.
Before the test begins, the initial environment
has to be set correctly: " for example it may be
empty, or it may include three data files whose
creation times have a prescribed relationship.
After the test, the environment has to be
checked for any non-regulation changes.

For each test, there is a ’correct’ output and
final disposition of data files in the environ-
ment, determined by running a ’correct’ (i.e.
my) version of the program. The outputs have
to be compareck if they match exactly, well and
good; if they don’t, then the differences have to
be identified, and assessed. In the absence of
expert systems that can follow students’ thought
processes, this assessment can be a painfully
painstaking procedure. When all the testing is
done, a printout is generated listing all the
results: for a test, one line will suffice if it was
successful; maybe half a page or more will be
needed if it was not. My long standing ambi-
tion is to keep the amount of paper printed (and
subsequently scanned by me) to less than half a
box of paper each time!

Murphy’s Department
Over the years I have encountered problems
which cast light on the UNIX system and its
users. Here are some observations:

a, When the standard output file is directed to
a terminal, there is no output buffering;
when the output is directed to a file, there
is output buffering. This usually works
fine unless the output file is a merger of
the outputs of two or more processes, or
the standard output file and the standard

Vol 6 No 5 AUUGN

C.

do

error file. There are ways of dealing with
this problem, but the only universal solu-
tion is to suppress output buffering expli-
citly by including a setbuf command at the
beginning of each program.
Actually the output of student test pro-
grams is never sent straight to a file
because programs that enter infinite loops
still exist. The output has to be piped to a
program that will ’die’ as soon as it has
seen enough, and hence cause the termina-
tion of the test program. Getting a
sufficiently incisive criterion for ’enough’
is a problem. A simple output line limit is
sufficient, but may allow too much output
in many situations. A simple line com-
parator is an improvement: see the same
line three times in a row, then die. How-
ever output loops involving cycles of two
or three lines are a problem too.
An infinite loop does not necessarily pro-
duce output lines. Programs that execute
too long must also be terminated. By
rights, ’too long’ should be measured in
cpu time consumed. There is a weakness
here in UNIX: on our system, the criterion
has to be in terms of elapsed time, and to
be on the safe side (given the wild tran-
sient fluctuations of load on our system), I
allow one minute of elapsed time before
termination. Even at this level I have
noticed some peculiar behaviour at times
which I can only put down to a scheduler
glitch somewhere when heavy swapping is
occurring. The solution I have adopted is
to send an interrupt signal to the running
test program every ten seconds until the
minute is up, when a kill signal is sent.
The interrupt signal is set to be ignored so
it doesn’t terminate the program, but it
does stir up the scheduler.
These signals have to be sent by a separate
process from the one receiving the piped
output, so every execution of a test pro-
gram involves three processes, not just one.

e. Setting up a suitable execution environ-
ment is a problem. A directory for testing
is established. This is cleared before each
test, and then filled with a selection of
other files. Ordinary files are copied from
master versions. A directory file may be
created if needed. Access to a special file
is obtained by linking /dev/tty into the test
directory.

f. In order to provide reasonable protection
from a ’rogue’ program, each program is
initially ’frisked’ for signs of chdir or
chmod or unlink system calls which would
never be needed in the normal way. As a
further precaution, the test directory, which
must fully accessible to the test program,
has a parent directory for which write per-
mission is turned off during the testing
period. In order to be really defensive, the
test program should be executed with a
separate user number from that of the test
supervisor .(so far that precaution has not
been needed).

g. When data files are copied into the test
directory, if the creation times have to be
distinct, then at least one second must
elapse between successive creations. The
script that does this calls sleep 2 after each
file is copied. This slows the testing pro-
cess considerably, but I think it may be
appreciated by other users sometimes.

h. Assessing the environment after testing
presents problems. Usually the input data
files are unchanged, but sometimes they are
not. A technique I have used is simply to
’gather up’ all the files into one big one to.
express the end result. Some care is
needed, e.g. not to include a core file if the
program dropped one. Diff can then be
used to compare the test and target results,
usually quite satisfactorily.

i. Comparison of the test and target output
files presents the most problems. The
worst problem occurs when the output is
almost correct but there are methodical
differences e.g. with punctuation or

AUUGN Vol 6 No 5

k,

spelling or with a few additional blank
lines here and there. (Some students can
see no differences between e.g.’non-
existent’ and ’non-existant’ or’non
existent’ or ’Non-existent’ or’non-
existing’.) The problems raised here point
to a need for smarter file comparators than
diff, with or without the -b option.
Testing for a program’s reaction to Deletes
i.e. interrupt signals is not something I
have managed to do batch-wise. The
requested behaviour is invariably quite
simple: the parent program should ignore
interrupt signals, but child processes should
not (at least not by default). This testing is
done interactively under the control of a
shell script so that only two keys (Delete
and Return) are used.
When the testing is all over and printing is
the order of the day, a numbered listing for
each program is printed ahead of its test
results. I have found that printing a sum-
mary of the program obtained by greping
the number program listing for the follow-
ing terms: access, bin, chdir, chmod,
close, exec, fork, open, read, seek, signal,
system, wait, and write, reveals important
details of the structure of the program, and
also serves very well as an index into the
whole program.

Vol 6 No 5 AUUGN

UNIX Fighting Fires

Glenn Huxtable

Department of Computer Science
University of Western Australia

1. IntroduCtion

Thls paper describes a relatively simple, and efficient system for remote.
monitoring or flre alarms.

Traditionally the task of remote .fire alarm monitoring requires a high
degree of reliability. The classical solution has been to duplicate vital
components of the system to guard against failure. This is often
expensive and leads to complex systems of data collectors, and arbitrators
to determine which system to use when a fault occurs.

The Western Australian Fire Brigade Operations Management System
(BOMS) Is a distributed network of control systems reporting to a central
host; each control system is capable of autonomous control in the event of
a failure. There Is no duplication or components. BOMS Is also an
inrormatlon system, containing metropolitan street and building data, and
Brigade status information to rapidly assist in efficient mobilisation of
Brigade resources.

At the core of the system is a PDP 11/73 running UNIX (Version 7).
may be somewhat of a surprise, given that UNIX has attracted
criticism of its capabilities In "real world" situations.

This
much

This paper will overview the design and working of the complete system,
and describe the UNIX Interface and associated software.

AUUGN

2. Historical Perspective

For nearly 10 years the Western Australian Fire Brigades Board (WAFBB)
have scanned every 2.6 seconds, some I0000 alarm functions In nearly
I000 buildings In the metropolitan area. The monitoring or Direct Brigade
Alarms (DBA) is represented in figure 1. This configuration is widely used
for many telemetry monitoring systems including fire, security and
process control tasks.

Vol 6 No 5

’End Units’, or alarms to be monitored, are connected via leased lines to
the nearest district Concentrator, located at a Fire Station. This
maintains the shortest physical distance, and minimises Telecom line
costs between the alarm and Concdtrator. The Fire Station Concentrators
are connected in turn to a Huitiplexer located, together with its
associated control computers, at the Operations Center or the WAFBB.

The task of monitoring fire alarms is highly sensitive to faults in the
monitoring system, where failure of the smallest component can mean
loss of property, or loss of life.

Elaborate techniques have been developed to provide the necessary level of
reliability, usually involving the duplication of many of the vital
components of the system. Duplic ating host computers, or using tandem
CPU systems, is expensive and can introduce greater software
complexities. Duplication can be taken to extremes, with complete
systems being duplicated, down to having Telecom lines leaving each
station in diametrically opposite directions to reduce the risk of both
being cut. Complicated arbitrators are needed to automatically switch
over to the ’spare’ circuits when a failure occurs. The system can easily
become so complex as to present a reliability problem!

2.1 DBA System

The early DBA system, shown in figure 2, was designed largely of TTL
logic, with the only processing power being in the dual host computers.
These were connected to the Hultiplexer by a high speed bus, so that
telemetry could be processed in ’real-time’. Software in the host
computer, programmed in assembly language for speed, directly controlled
the Hultiplexer.

System integrity was maintained by an Arbitrator to detect the failure of
the ’active’ computer and switch automatically to the ’spare’. The
provision of dual computers was the extent of duplication in this system.
Failure of the Arbitrator or Hultiplexer caused the central monitoring of
alarms to fail.

While relat_ively advanced for its time, the TTL based design was
inflexible and difficult to change to meet the growing needs of the
Brigade.

3. BOMS System

Vol 6 No 5

The new BOHS system, shown in figure 3, has a similar topology to the
early system, however micro processors are now used in both the

Multiplexers and the Concen~tors. A single host computer controls the
system, the Multiplexer and Concentrators are intelligent and there is no
need for an Arbitrator.

By moving processing power into the Multiplexer and Concentrators, much
of the ’real-time’ processing may be removed from the host computer,
which is now able to perform many other less demanding tasks.

Modular design of Multiplexer and Concentrators units enables easy
maintenance and replacement of components. Each unit consists of a
standard backplane, into which may be placed the following custom
designed boards.

A Contro I i er Modu l e:
A board containing the processor, memory and EPROM’ed software
which drive the Multiplexer or Concentrator unit. New functions
may be programmed into the EPROM store.

Power Module:
A plugin power supply which provides power, through the backplane,
to all other modules.

Modem Modules:
Each modem module connects to a
Multiplexer and Concentrators scan
information and report line failures.

Telecom leased line. The
modem lines for telemetry

Line Modules:
Line modules monitor and display the status of ’End Line’ units
(alarms).

AUUGN

Speech Modules:
Speech Modules allow the Multiplexer and Concentrator Modules to
manually report active alarms. The speech modules use a high
quality synthesised (American) voice with a tailored dictionary of
about one hundred words to broadcast warnings over speakers in the
Fire Stations, and via Telecom lines to the Centrol Operations
Center. These modules also enable the aser to manually interact
with the Controller Module, to select an alarm number on a
thumbwheel, display its status on a row of LED’s, and acknowledge
active alarms.

Alarm Modules and Speech Modules enable the Concentrators to be operated
manually during Multiplexer communication failure. Speech modules are
able to broadcast through Fire Station PA systems, and enable alarms to be

Vol 6 No 5

monitored from unmanned country Fire Stations, or by Duty Firemen with
relatively little training.

The Multiplexer also connects to a log printer to record all alarm activity,
and during Host failure will respond to manual operator commands via a
local terminal in the Central Operations Room.

Duplication is unnecessary as the Multiplexer and Concentrators can be
easily operated manually. Failed components can be quickly identified and
the module replaced. Complete modules can be easily built from stock
spares, and programmed in a few minutes. Future development of the
system is a matter of reprogramming the Controller modules.

4. UNIX Software

The computers of the early DBA system were dedicated to monitoring
telemetry information in the Multiplexer, and reporting alarm activity to
operator terminals in the Operations Room. By placing much of the
monitoring activity in the Multiplexer Module, the host computer can
perform many other administrative functions.

UNIX was chosen as the operating system for the host.computer because it
offered the greatest freedom of choice of hardware, was widely
availability from many sources and provided the level of flexibility
needed. UNIX further had the advantage that the user interface could be
designed to suit the needs of the operations staff, professional Firemen
with little experience of computers.

The INFORMIX relational data base was selected for data management as it
provides both a library of interface routines and a flexible 4th Generation
Language (4GL) package. The 4GL interface allows Fire Brigade staff, with
little or no programming experience, to generate and maintain programs
for information retrieval, administration and report generation. The C
language interface is used in the various control programs maintaining
telemetry data and interfacing with telemetry systems.

The BOMS system consists of the following software modules.

4.| BOMS Data Base

Vol 6 No 5

At the heart of the system is the BOMS data base, comprising of:

DBA alarms -
extensive building information for all metropolitan DBA alrams
including address, nearest cross street, contact numbers, special

10
AUUGN

instructions and ’standard applicance turnout’. The latter is a list of
fire vehicles which should attend the DBA alarm.

Brigade Availability Tables (BAT)-
type, current status and location of all Brigade vehicles. This
information is referenced by the ’standard appliance turnout’ above.

Street Directory -
an online Metropolitan Street Directory including street names, high
and low street number range and Metropolitan Street Directory map
coordinates.

4.2 Hux Communications

flux is a program which maintains communications, via a standard try
interface, with the Multiplexer. Communication is governed by simple
Master/Slave handshake, where either Multiplexer or fluxmay inititate a
message only when it is ’Master’. The ’Slave’ may become ’Master’ only
when passed a POLL message from the Master,

<start-of-header> <POLL>
thus enabling it to send any waiting messages. This occurs once a second,
or when the ’Master’ has no further messages.

Messages are packaged in a simple protocol, consisting of
<start-of-header> <message-type> <message-data> <checksum>

and positive or negative acknowledgement replies
<start-of-header> <ESC> <ACK>

or
<start-of-header> <ESC> <NAK>

The checksum in a data message is a Cyclic Redundancy Checksum (CRC).

The Multiplexer sends telemetry information about DBA alarm activity, and
alarm and Concentrator failure and recovery. Fire and Fault alarm calls
are reported to operators in the Operations Room. Alarms can be tested
remotely by placing the ’end line’ unit in TEST mode, the TEST will be
recorded but will not cause a turnout.

Operators may direct Muxto send messages to the Multiplexer to request
the status of any alarm, to acknowledge DBA alarms (this also turns off
alarm bells in the Operations Room), to bring alarms or Concentrators
online or offline or to report a count of errors on a Concentrator.

Muxmaintains a file of current alarm status for each DBA alarm.

AUUGN

Multiplexer failure is detected and reported by Mux, which will

11
Vol 6 No 5

automatically restart communication when the Hultiplexer restores.
During Hultiplexer failure the BOHS system remains operational, however
alarms must be handled manually at the Concentrators where DBA alarm
calls will be announced over the PA system.

4.3 BAT Display

The BAT display is a large bank of lights in the Operations Center which
reflects the current status and availability of all Brigade vehicles. The
display logic is interfaced to the computer via a standard try interface.
Hessages of the form

<veh ic i e-hum ber> <status-code>
cause the display logic to update the display. Bat is a simple program
which periodically reads the BAT data relation (containing vehicle status)
and updates the BAT Display board.

4.4 AUTOLINK Communications

The AUTOLINK is a device which interfaces to the Brigade’s two-way radio
system, to send a data burst through the radio to electrostatic printers
mounted in vehicles. The printer has a number of ’status’ buttons which
send a status message back through the radio system to the AUTOLINK.
The AUTOLINK is interfaced to the host system via a standard try
interface.

Autolink is a program which periodically polls the AUTOLINK for status
updates from vehicles, to maintain the BAT data relation.

Operators can direct Autolink to send short (256 byte) messages to any
vehicle fitted with a printer. The AUTOLINK device can send to 3 printers
at a time.

Autolinkprotocoi is simpler than that of Mux, since it is always master,
it initiates data messages or polls for vehicle status updates. The
AUTOLINK provides positive and negative acknowledgement to these
messages.

Vol 6 No 5

4.5 OPERATOR Interi’ace

Opris the Iogin shell and UNIX interface for operators in the Operations
Center. It uses the curses window package to provide a secure, menu
driven interface for the operators. Single keystrokes select menu
functions enabling the user to:

12
AUUGN

®

®

0

Display Concentrator status.
Accept DBS FIRE, and FAULT alarm calls.
Display DBA building/alarm information.
Display and update vehicle availability data.
Search for, and display TEST, FIRE and FAULT alarms.
Bring alarms and Concentrators online and offline.
Edit and send messages via the AUTOLINI<
Display street information and maps.
Call shell scripts and Informix 4GL routine to perform other
administrative tasks.
Send and receive mail and other ’UNIX’ - like tasks.
Produce a multitude of reports via the INFORMIX report writer
(Informer).

Of these the most crucial is the processing of DBA calls (known as ’Mode
2’). When a fire call is received the Multiplexer rings a buzzer in the
Operations Center. Mux receives the alarm message and places it in the
alarm table. Opt fetches the alarm and sends Muxa message directing it
to send an acknowledge message to the Multiplexer, which then turns off
the buzzer in the Operations Center. This mode displays 2 windows of
DBA/Building information, the ’standard turnout’ for the alarm indicating
which vehicles are available (from vehicle status relation), and which
backup vehicles may be called on. With this information the operator is
able to mobilise the required resources. Provision is made to transmit
Building information to printers in the vehicles as they ’turnout’.

4.6 Street Search

The Street data base compirses information from the Metropolitan Street
Directory, including names, street numbers, suburb, and gird reference for
every section of street, intersection to intersection in the Perth
Metropolitan Area. The grid reference relates to map files which can be
used to display high resolution, colour maps of grid rectangles taken from
the Metroploitan Street Directory.

AUUGN

Streets, invoked from Opr, performs a ’wildcard’ lookup on a street name,
with or without suburb or street number, and displays the best match. The
opterator may expand the display to show other records with a lesser
degree of conformity. If a record is selected, the ’standard turnout’ for the
area is displayed and the street map is transmitted to an IBM PC in the
Operations Center, where it is displayed on a high resolution colour
graphics display. Hap files store drawing commands, so display time can
take up to a minute, while storage overheads are kept low.

The street search provides mobilising information for ’000’

13

telephone

Vol 6 No 5

calls, and replaces an earlier system of microfiche reproductions of the
Metropolitan Street Directory. While Brigade vehicles still carry fiche
maps, it may one day be possible to transmit maps directly to vehicles via
the AUTOLINK system.

Special maps and plans are also kept for a number of major industrial,
commercial and service complexes, highlighting points of relevance to the
Fire Brigade.

5. Kernel Hodifications

The current BOMS implementation relies on two ’pseudo-drivers’ (device
drivers which are not attached to real devices).

The passing of active alarms from Mux to Opr must be fast and efficient.
Alarms must be processed in a FIFO fashion, (difficult to implement in
simple text files), and have to be efficiently cleared when the Multiplexer
is reset or alarm telemetry is restarted (expensive in a database). The
alarm device manages a linked list of active alarms which is stored in a
table in kernel memory. Library calls put active alarms on the tail of the
list, and remove them from the head, or reset the entire list.
Synchronisation and mutual e~usion are ensured by the driver.

Opt communicates with Mux and Autolink to pass messages to the
telemetry systems. The messages require acknowledgement which is
difficult to synchronise through data files. The message ’pseudo-driver’
allows programs to write fixed length messages into a table in kernel
memory. Programs may nominate which program to send to and receive
from.

An advantage of the ’driver’ approach is that it can inform Opt if Mux is
not active or has failed. Opr does not have to restart the message
connection when Mux restarts. Simple UNIX pipes were insufficient to
the task, as they must be ingerited from a parent process. BORIS programs
are not ’related’ in this manner.

The use of these drivers arose because Version 7 UNIX has insufficient
shared memory and message passing facilities for the task. While the
above could be achieved with simple files, the pseudo-driver approach was
an expedient compromise. Both UNIX System V and 4.2Bsd UNIX implement
message passing mechanisms which appear suited to this application.

6. Conclusion

BOMS is a fault tolerant system for monitoring real-time telemetry. The

Vol 6 No 5
14

AUUGN

modular hardware design minimizes component downtime, while the
distribution of ’intelligence’ throughout the system provides a reltable
failsafe against failure and relieves the host computer of the real-time
constraints. The monitoring task is reduced to one of simple
communications and data management.

UNIX Provides a secure environment, and enables the telemetry monitoring
and communications tasks to be further separated into individual modules.
With the correct interprocess communication mechanisms (IPC), UNIX can
be used to build complex control systems from simple communicating
programs.

The finished system allows a high degree of flexibility in changing t.he
host computer, data base management system or any of !~he peripheral
systems.

AUUGN
15

Vol 6 No 5

FI2J~ PANEL

F_Fib UMIT

LOlL F|2.E 5TLT|Okl .

CENTtL~,.L FIP~ ~TATIQN

~CMEMA"T I C
OF "THE
MONITOP,.I 1,4.G
TA.SK

O~kI~NT ~_A’~OR.

MU LTIP LE’~QI~.

~MPUTF_I~

r

(ZENT P-.A L

Vol 6 No 5

Figure

16
AUUGN

I
I

VEHICLF,
UPbATE
.SYSTEM

WALLMAP
DISPLAY

THE ’OLD’ SYSTEM
 O0 L)

,.

R.(30 M II

I
II COMPUTER.

.,

~p,..l~ IT IZ.A’T.O R.

(:OMPUTE R.
e.I

I

MULTI -
PLEXOR-

AUUGN

Figure

17
Vol 6 No 5

I
I
I

OPE2A’fOE5L
O~ SO .~..~._

NEW 5Y6TE
A L’TEI~’4AT|V E MODEL)

i

I
I

Vol 6 No 5
18

AUUGN

A Controlled, Productive Applications Environment
at £sso Australia’s Production Department

Steven C. Landers*

For presentation at the Australian UNIX Systems User Group 1986
Summer Meeting, Perth February 10-11 1986.

ABSTRACT

A common problem facing business today is
reconciling demand for new applications with
the available workforce.

This paper describes an Applications Design
Environment that facilitates controlled
applications development and dramatically
improves developer productivity. The
philosophy behind the environment is described
along with several of the components.

Senior Computing Specialist,
Production Department,
Esso Australia Limited,
G.P.O. Box 372,
Sale. 3850. Australia
This paper was typeset on a VAX 11/750 running Unix System V, using the
Documenters Workbench software, and printed on a Canon-Imagen LBP-10 laser
printer.

AUUGN
19

Vol 6 No 5

A Controlled, Productive Applications Environment
at Esso Australia’s Production Department

January 1986

CONTENTS

1. Overview 1
2..The Background
3. Philosophy/Aims
4. Analysis of Program Content
5. ADE Components___

...
5.2 Argument/File Selection
5.3 Other Facilities

6. Examples of Applications Developed .
6.1 Land Rates and Taxes
6.2 WorkCare

7. Conclusion
8. Acknowledgements

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ a

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯

¯ ¯

¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

¯ 1
¯ 1
¯ 2
¯ 2
¯ 2
¯ 6

. 8
¯ 8
¯ 8
¯ 9
¯ 9
. 9

LIST OF FIGURES

Figure 1. Example of Vsh Menu Description File 3
Figure 2. Example of Vsh Display 4Figure 3. Printer Destination Selection ~enu 5
Figure 4. Sample Man Command Using Pick 5
Figure 5. Example of Pick Display 6
Figure 6. Utilities Menu Using Pick 7

Vol 6 No 5
20

AUUGN

A Controlled, Prod,u.ctive Appli.cations Environment
at Esso Austraha’s Prod~ctmn Department

Steve Landers

Esso Australia Ltd

1. Overview

The Esso Australia Ltd (EAL) Production
Department-has been using UNIXTM

System V and the ORACLETM Relational
Database System, on a VAX 11/750 since
1983. During this time an Application
Design Environment (ADE) has been
implemented using UNIX utilities,
ORACLE , and locally developed tools
and standards.

The ADE addresses many of the
problems associated with traditional
applications development. Productivity
is enhanced whilst maintaining controls
and standards.

Acknowledgments are due to my
colleagues Steve Adams and Ralph
Youie who were part of the team that
developed ADE.

The Background

Traditionally, the applications design
cycle has comprised:
1. The development of a detailed

project specification/design.

2. A long period of programming in a
compiled language such as C or
FORTRAN.

3. Extensive debugging.

4. Commissioning of the application.

5. Major revision based on user
feedback.

6. High maintenance requirements.

The effect of this strategy is:

UN,XTM is a trademark of AT&T Be11
Laboratories
OPJ~LETM iS a trademark of Oracle Corporation

Lack of standards and controls.

¯ Diverse user interfaces.

Long lead times.

Limited chance for
before commissioning.

user feedback

Lower quality applications.

® Low developer productivity.

The use of so-called "fourth generation
languages" has improved the developer
productivity somewhat. However,
standardisafion is still an issue: Real
programmers can code FORTRAN in any
language.

To avoid these problems an Applications
Design Environment (ADE) has been
implemented on EAL’s Gippsland Area
VAX 11/750.

The ADE comprises standard UNIX
System V utilities, ORACLE , and locally
developed tools. ADE was layered on
UNIX and required no changes to UNIX.

3. Philosophy/Aims

The philosophy of ADE is essentially the
UNIX philosophy. The emphasis is on
building applications from a series of
tools. The guidelines for such software
tools are:

Each tool performs one clearly
defined function, and is opfimised for
that function.

All tools are regarded as building
blocks that may be combined without
constraint.

Software development is reduced so
far as possible to assembling building
blocks.

When no suitable tool is available, a
new one should be strongly
considered for development or
acquisition in lieu of building an

Vol 6 No 5
AUUGN 21

-2-

Vol 6 No 5

application specific program.

The tools approach to software
development has minimised duplication
of effort and freed programmers to
concentrate on analysis and design.

The operating system run on the Area
Computer is UNIX System V (Release 2).

The applications development
philosophy applied is that of
"evolutionary prototyping". As users
and programmers alike are often unsure
of the scope and requirements of a new
application, it is regarded as important
that the users be involved in the
development cycle. This strategy is
aimed at avoiding time wasted in the
development of prototypes that must
thereafter be "thrown away".

The problem is how to get developers to
use the tools, and to overcome the
temptation to "re-invent the wheel".
The approach used has been termed
"Standards by Carrots". There must be a
positive incentive for the developer to
use the tool because it is quicker, or
more convenient; that use of the tool
complies with a standard should be
incidental.

Analysis o~ Program Content
To ascertain what tools are appropriate
one can conduct an analysis of program
content. Application program code can
be divided into four main categories:

setup (including argument
processing)
input (both disk file and terminal)

processing

output

An analysis of typical programs has
shown that processing is often the
smallest and certainly the most specific.
The other areas, however, offer great
potential for the toolsmith. Many tools
already exist under [JNIX. For example:

getopt for command option and
argument parsing.

22

curses for screen based terminal UO.

All such tools are characterised by the
developer describing what needs to be
done, rather than how to do it.

ADE contains even higher level tools.
These tools include the following:

vsh command/option selection

pick argument/file selection

sel database querying

As the other categories are simplified,
the processing can be handled, in most
instances, by an interpretive language
such as awk. This further contracts the
development cycle as the developer does
not have to wait for compilations.

S. ADE Components

ADE comprises several categories of
tools:

m development support tools

~ software building blocks
m runtime support

-- maintenance tools

We will examine two tools in some
detail, and briefly discuss others.

5.1 CommandlOpflon Selection

Command and option selection is
performed by the Visual Shell (vsh) .
Vsh was originally designed to insulate
novice users from a more typical UNIX
shell (eg: Bourne shell). It has
subsequently been developed to the
stage where is performs additional
functions, such as:

m security insurance

-- applications usage tracking

-- productivity enhancement

-- standardisation of user interface

5.1.1 Menu Layout

Vsh displays a menu from which the
user may select an action or submenu.
The menu description is read from a file.
Vsh interprets the file and decides the
menu layout. A typical vsh file is shown

AUUGN

-3-

menu

option
action
pause

option
action

option
action

option
action
help

option
action
help

option
action
pause

help
pause

option
action
wait

Unix Utilities

Working directory
pwd

List file names
Is-C IpS<

Long listing
ls -al I Pg <

V~ew a ~ite
pg -c ~iIe..~ame
demonstrates the use of substitution variables

Edit a file
$${EDITOR:-vedit} Stile_name
demonstrates the use of shell meta character~

Remove a file
rm -i SRemove_Jile

Rename a file

echo "Rename which fiIe"
read old
echo "New name "
read new
my $$old $$new

demonstrates compound statements

Process status
ps -f I p8 <

AUUGN

Figure 1. Example of Vsh Menu Description File

in Figure 1 and its appearance to the
user in Figure 2.

A selection is made by positioning the
cursor next to an option (usually with
the SPACE bar) and pressing the
RETURN key.

Other command keys are:
display an explanation of the
current option

?? display the help message

"N toggle NOVICE mode (for verbose
help)

"A invoke a particular application

"U invoke utilities submenu

! invoke a UNIX shell

"L redraw the screen

DEL backup to previous menu level

"D exit vsh directly

"E edit menu description file (debug
mode)

5.1.2 Menu Description File

If the first part of the menu description
file name is of the form ",--name", it is
expanded to the home directory of the

23
Vol 6 No 5

-4-

Unix Utiii|ie=

Working directory

List file names

Long listing

View a file

Edit a file

Remove a file

Rename a file

Process status

Fisure 2. Example of Vsh Display

Vol 6 No 5

user or group so named.

Vsh changes to the directory in which
the file is resident to discourage the use
of absolute pathnames.

Menu description files are composed of
blank lines and lines of the form:

keyword [value string]

The following keywords are recognised:

menu Supplies the menu heading

application Same as menu, but has two
additional affects. The bin
directory under the menu
directory is prepended to
the PATH environment
variable and an entry is
made in a usage file.

oracle Cause vsh to prompt the
user for a database
username and password.

option The prompt for the option.

help An explanationof the
option or menu.

submenu Names the menu
description file for a

24

action

pause

submenu. If of the form
"--name", it is expanded to
the home directory of the
user or group so named.

The action to be executed.
May be any valid shell
statement. Actions may
include substitution
variable that the user is
prompted for.

Cause vsh to pause after an
action.

wait

noreturn

return

Cause vsh to display the
message "Please wait ..."
before begining an action.

Execute the action but do
not return (ie: exec without
forking).

Exit with the supplied exit
status. Allows vsh to be
used from other programs
for menu work.

setenv Set the specified
environment variable.

One of the mutually exclusive keywords
action, setenv, submenu and return

AUUGN

-5-

menu Select Required Printer

option Main printer
action 1p -d main
pause

option
action
pause

Dot matrix printer (draft mode)
lp -d matrix -o draft

option . Dot matrix printer (letter mode)
action 1p -d matrix -o letter
pause

option
action
pause

laser printer (landscape mode)
Ip -d laser -o L

option
action
pause

laser printer (portrait mode)
Ip -d laser

pause

Printer attached to terminal

tput prtr_on
cat
tput prtr_off

Figure 3. Printer Destination Selection Menu

export IFS
man "Is SPATH l pick -h "Please select a program""

Figure 4. Sample Man Command Using Pick

AUUGN

must directly follow an option.

Vsh exercises a degree of intelligence by
changing groups where the users is
permitted access to the group of the
menu directory.

5.1.3 Future Enhancements

The current version of vsh cannot be
used as a filter. The next version,
currently under development, will allow
use in a pipeline. An example of the use
of such a facility would be a Printer
Destination Menu:

25

pr Sfile] yah -f printer.vsh

where prlnter.vsh is shown in Figure 3.
When used as a filter, the vsh noreturn
option would apply to all actions.

~.1.4 Philosophy

The philosophy of providing reusable
software components has led to the
addition of the vsh instructions
mentioned above.

For example, the use of the pause
option, which enables the user to see
output before vsh clears the screen and

Vol 6 No 5

-6-

so|oct ~ program

[] acctcom
adb

basename
binmail

cat

chgrp
chmod
chown
cmp
convert
cp
cpio
crypt
csh
date

~| flret |lno

Figure 5. Example of Pick Display

Vol 6 No 5

redisplays the menu, has four affects:

It saves the developer from writing
and debugging a small piece of
program code in each application.

¯It standardises the user interface.

It contains a timeout mechanism that
the average developer would not
provide.

¯It makes the user program smaller.

Reusable software is a key factor in
reconciling resources with demand. It is
also a key to ensuring standardisafion
and control.

5.2 Argument/File Selection

A common task in an applications
program is the selection of arguments or
files. Typically, the user is offered a list
of several files and prompted for a
choice. The program would then act
upon the file, (eg: invoking an editor).

Whilst the actual programming to
achieve this is not difficult, the task is
nevertheless non-trivial. Amongst the
tasks to be performed are:

26

Read each directory entry.

Display each file name.

Maintain a line count so as to avoid
terminal scro~ng.

Prompt for the required file (perhaps
using a number scheme).

Recognise if the user has selected a
file, or is requesting scrolling to the
next page.

Scroll the display (forward or
backward) if necessary.

In a workforce-constrained environment
it is not unusual for another approach to
be taken: Prompt the user and hope the
filename is known. This solution is not
satisfactory.

In ADE, argument selection is
accomplished by means of the pick tool.
Pick is used to select an input line from a
list. The specified input file (or standard
input) is displayed on the screen. The
user positions the cursor next to the
desired argument in much the same way
as in vsh. Should there be more input
lines than can fit on one screen, scrolling
is supported. As in vsh, the user selects

AUUGN

-7-

menu

option
action
pause

option
action
help

option
action
help

option
action
pause

}
help
pause

option
action
wait

Unix Utilities

Wor~ng directory
pwd

List file names

View a file
pg -c "IS Ipick -h "Please select a file""
demonstrates the use of pick

Edit a file
$${EDITOR:-vedit} "IS Ipick -h "Please select a file for editing""
demonstrates the use of pick

Remove a file
rm -i "IS Ipick -h "Remove which file""

Rename a file

old-’Is I pick -h "Rename which file""
echo "New name "
read new
my $$old $$new

demonstrates compound statements and pick

Fisure 6. Utilities Menu Using Pick

AUUGN

a line by pressing the RETURN key.
The selected line is written to standard
output. The user is also informed when
positioned at the first and last lines.

Other pick commands are:

? display available commands

/ search for a regular expression

f forward one page

b backward one page

! invoke a UNIX shell

^L redraw the screen

DEL exit with no selection

27

"D exit with no selection
RETURN select line and exit

Conceptually, pick is a data reduction
filter.

Now we can apply pick to the previously
mentioned task: Choosing a file from a
list. We could construct a pipeline that
uses the Is command to list directory
entries and pipe this into pick.

ls] pick

Ls would write a list of files in the
current working directory to standard
output. Pick would read this list and
display on a scrolling region of the

Vol 6 No 5

-8-

Vol 6 No 5

screen. A default heading would be
displayed and the cursor positioned next
to the first line.

This scheme could be used to construct a
screen based front end to the man
command, as shown in Figure 4. The
screen seen by the user is shown in
Figure 5.

Figure 6 shows the utilities menu
modified to use pick for argument
selection.

5.3 Other Facilities

There are many other components in
ADE. These include:

appsdir

asgroup

dirtree

getpass

group
home

Prints home directory of an
application

Executes a command as a
given group

Prints directory tree schematic

Program to get a password in
shell scripts

Prints effective group name

Prints the home directory of a
user

hs Horizontal scroll filter

index

keep

Automatically creates an index
of all files in a directory

Filter which keeps first n lines
on screen

lockedit
lockfile

mmake

newer

night

pages

printer

Edit a file exclusively

Create a lock file, waiting if
necessary

Pseudo make for source
directories with multiple load
modules. Enforces a standard
directory structure.

Test age relationship of files

Defer job to offpeak period

Report pagination with muifi-
line headings

Construct print command
string

28

remask

report

safety

SCCS

sel

start

width

File system access permission
maintenance utility

Run a sel/awk report

Print a safety message (Safety
is Esso’s number one priority)

SCCS user friendly interface
program

Database query facility.
Returns tables with TAB
separated columns.

Automatic top comment
generator

Print max line width of stdin
or files

xedit Use $EDITOR on encrypted
file

yes Ask a yes/no question
The key feature of all of these tools is
that they perform frequent tasks in a
controlled manner.

In addition, there is an Applications
Support Facility, comprising an extended
data dictionary, applications register and
several reporting utilities. These were
built using ADE.

Separate test and production ORACLE
database systems are run. The database
to be accessed is specified by setting an
environment variable in the vsh
applications menu. Prior to installation
on the production database, an
application undergoes a quality
assurance and the details entered into
the extended data dictionary. The use of
standard software b~ding blocks
facilitates the quality assurance phase.

6. Examples of Applications
Developed

6.1 Land Rates and Taxes
This is a sophisticated financial analysis
and information system for Esso/BHP
joint venture owned land.

The system is able to highlight
inappropriate increases in land
valuations (and hence rates) despite the

AUUGN

-9-

AUUGN

basis for valuations changing yearly.

The system was developed in 20
workforce days, including analysis,
design, development and
documentation. The contractor
developing the application had no prior
experience with ADE.

6.2 WorkCare

An application designed to. fulfill the
statutory requirements of self-insurers
under the Victorian Government
WorkCare legislation.

The application records all workers
compensation claims, payments and
recoveries. Monthly tapes are prepared
for the Victorian Accident Compensation
Commission.

Development required 20 workforce
days, of which 13 were to develop a 1400
line C program for the preparation of the
tape.

7. Conclusion

ADE has been successfully used to
develop over 40 applications. The
development and maintenance of these
applications with a relatively small
workforce is testimony to the:

productivity

-- quality
m standardisafion

inherent in the use of ADE.

The productivity is achieved by
providing tools that address frequent
and time consuming tasks.

The quality is achieved by tools that
perform one clearly defined function
well.

Standardisafion is achieved by tools
designed to implement standards
without affecting flexibility and
productivity.

8. Acknowledgements

The work described in this paper
includes contributions from a variety of
EAL and contract staff. The suggestions

29

of the following
acknowledged:

M.S. (Steve) Adams§
K.D. (Ken) Doig §
D.W. (Bill) Goss
M.E. (Mark) Horn §
S.W. (Steve) Shepard
R.A. (Ralph) Youie

§ Contract

are gratefully

Vol 6 No 5

CNFX- File Transfer Between
UNIX systems and CS IRONET o

Jeremy Firth and Jennifer Hudson

CSIRONET, c/- CSIRO Tasmanian Regional Laboratory,
Stowell Avenue, Battery Point, Ta8. ?000o

There is a continuing need for UNIX sites to con~municate with CSIRONET
hosts and peripherals. Various pieces of software already exist to enable
data to be transferred between particular CSIRONET file systems and UNIX.
Perhaps the best known of these are ugate and csiroo On the CSIRONET side
they tend to rely on various bongles and fudges such as fetching a file by
logging into CSIRONET ED on a Cyber and giving ED the @p instruction then
collecting whatever emerges on the line from CSIRONET.

Towards the end of 1985 (I~IRONET introduced a File Transfer and Spooling
system (called CNSTS) which is available on all major CSIRONET hosts. In
doing so the spooling function on CSIRONET has been decentralised from being a
single set of queues on a central host (the Oyber 76 - nc~ pensioned off) to
several sets of queues, one set for each CSIRONET host. Any host equipped
with CNFI~ can send files to or fetch files from any other host also equipped
with CNF~S. Apart from interhost file transfers, all spooling to peripherals
at CSIRONET nodes (such as printers and plotters) is performed by CNFFS.

Integral to the concept of CNSTS is the idea of ’auxiliary"connection of
various kinds of systems to CNFI~ for file tranfer purposes. In these cases,
file sends and fetches can be initiated from the auxiliary system end only.
Unsolicited file transfers cannot be initiated from the CNFI~ host at the
other (CSIRONET) end.

One large, identifiable group of users and potential users of CSIRONET in
this auxiliary connection category is the UNIX world. CNFX is the software
module intended to satisfy the needs of this group. Other systems for which
this software is being converted are the Oonvergent Technology NGEN running
CTOS which CSIRO Administration has selected as its preferred microcomputer,
and the IBM/PC running PC/DOS and its extended family.

CNFX consists of 3 components:

io The UNIX user/file interface which interprets the 4 CNFX commands and their
associated parameter strings, and accesses the local UNIX file system.

2. The transfer program which executes the commands by interacting with
CNF~S. This part of the software hides the CNFI~ transfer protocols.

3. The mechanism by which the data is actually transferred to and from
CSIRONET. The functionality of this component is provided by the mx
logical multiplexer (sometimes referred to as the xt driver on 4.2BSD).

All transfers must be initiated from the local UNIX system end. The

Vol 6 No 5
0

AUUGN

actual transfer process is made via a CNF~S queue on a specified CSIRONET
host. CNFX transfers frcm one UNIX system to another must be performed in
two steps: the sending UNIX system transfers the file to a CSIRONET host,
and the receiving UNIX system can then fetch the file frcm that host.

File transfers frcm a UNIX system to CSIRONET occur in one step using
the cnsend conm~nd. Options allow the UNIX user:

. to make a new file on a CSIRONET host,
. to append to or replace an existing file on a CSIRONET host,
. to submit .a file as a job to be run on a CSIRONET host,
. to spool a file to a CSIRONET output peripheral.

File transfers from a CSIRONE~ host to a UNIX system occur in two steps.
The cnfetch command transfers a file from a CSIRONET host file storage system
to an CNF~S queue. The cnpoll command actually transfers the file to the UNIX
system.

Although not really a file transfer facility, a further function is
available in CNFX called cnlogin. As its name implies, this provides
interactive access to CSIRONET. cnlo~inoperates in 2modes.

In C-mode it makes a UNIX terminal into a CSIRONET terminal. Lines are
delimited by CR/LF sequences, dle sequences are interpreted in the CSIRONET
vernacular.

In U-mode, cnlo~inmakes a local UNIX terminal into a remote UNIX terminal to
enable a user to log into another UNIX system also connected to CSIRONET. In
U-modes lines are delimited by a single carriage return. All ASCII characters
with a value less than 40 octal are transmitted over CSIRONET as soon as they
are received (except for the dle character which is handled separately).

The CSIRONET iogin sequence used by CNFX may be specified either as an
element in the CNFX site. h file (in which case it is hidden from UNIX users)
or as a parameter to a CNFX command. Anything that is missing (e.g.
passwords) is prompted for. Several CNFX sites have found it convenient to
have a shell script (called cnprint) with fixed CNFX parameters to enable
users more easily to dispose files to be printed at a specified CSIRONET node.

An end-to’end packeting facility is in the final stages of development
(hopefully it will be ready by the time this paper is presented). If invoked,
this allows checks to be made to ensure correct data delivery, regardless of
the underlying link conventions. The packeting facility is not by itself
suitable for use over unreliable links because it does not provide a mechanism
for error recovery. It can be used over a non-transparent link, provided such
a link can carry a full set of ASCII printed characters. The packet format is
based on KERMIT. The only incompatible change is the use of a 2-byte packet
length field, permitting packets longer than 94 characters. Given that the
UNIX version of CNFX uses the mx driver this facility may not be of great
interest to the UNIX fraternity. It is mentioned here for completeness.

A spooling option has been provided to allow nroff output files to be
disposed to CSIRONET printers.

AUUGN
31

Vol 6 No 5

Other features currently on the development wish list include:-

. An interrupt facility to enable interactive CSIRONET sessions via cnlogin
to be echoed selectively to a file on the UNIX system. This is already
available in t~jate.
. An interface between the UNIX mail network and CSIRONET MAIL.

CNFX was originally developed for UNIX level 7. A version is also
available for Berkeley 4 2BSD. A version for UNIX V.2 is currently being
developed.

In order to run CNFX, it is necessary to have an mx driver on the UNIX
side, and a CSIRONET node with UNIX gateway code installed in it. A CSIRONET
Micronode version of the existing PDPII gateway code will be available in
February 1986.

The method of installation is for an encrypted set of source modules to
be supplied to the UNIX site on a tar tape. CSIRONET then installs the
software remotely using an account on the local UNIX system. When all is
ready, the final object code has to be installed by root. UNIX Programmers
Manual entries are also provided.

To obtain CNFX the formal contact is to:
The Chief Executive
CS IRONET
G.P.O. Box 1800
CANBERRA. ACT 2601.

Further informal,information can be obtained from the authors at
CSIRONET, Hobart
(Tel. 002-201444 or CSIRONET MAIL
Aliases JEREMY and JENNIFER)

The charge for CNFX is $350.00 for installation and $300 p.a. ($25 per month)
for maintenance.

Using a PDPII as the CSIRONET gateway with a 9600 bps asynchronous line
to the mx port on a PDPII/34 running UNIX level 7 we have achieved transfer
rates of up to 10Kbytes/minute.

The authors embarked on this project having little but a theoretical
appreciation of UNIX, mostly absorbed from the professional literature. They
wish to note with appreciation the continuing and patient assistance of John
Field from the CSIRO Division of Mathematics and Statistics in Adelaide in
helping us convert to the UNIX view of the world. DMS Adelaide also provided
us with beta-test facilities. The help on the data communications side of
things was by John Gibbons of CSIRONET Sydney. Warwick Ford of CSIRONET
Canberra assisted with the intricacies of CNDTS. The above mentioned plus
John Paine from CSIRONET Canberra, contributed comments on early drafts of
this paper. Nevertheless, any errors of omission or commission are the sole
responsibility of the authors.

Vol 6 No 5
32

AUUGN

cnsend - send a file to a CSIRONET host or output peripheral

cnsend [options] file

DES(]~ IPT ION

cnsend transfers a local file to a remote host or CSIRONET output
peripheral. The file may be a sequence of job control language (jcl)
statements for the remote host to execute, or it may contain data for storage
on a remote host file system, or it may be intended for disposal to a CSIRONET
output peripheral.

Note that the arguments -m, -r, -a, -j, and -n, which indicate the
purpose for which the file is being sent, are mutually exclusive. One and
only one may be included as a parameter for cnsend. Other arguments are also
only relevant for certain types of destinations, but should not be specified
for other types. Most arguments have defaults and are not explicitly required
very often.

If the file being sent is a job containing jcl statements to be executed
on the remote host, only its name is necessary. Dayfile output will normally
be returned to the default destination specified in the CSIRONET login
sequence (this will either be a CSIRONET node peripheral or a CNFI~ queue name
such as PUB).

If the file is being sent to a remote host file system, a file name must
be given, with volume, user name .and cycle number where appropriate.
Passwords may also be included if necessary.

If the device is a CSIRONET output peripheral, the destination node
mnemonic must be given. If the peripheral is not a line printer, the device
type is also required.

If the file name is cmitted from the cnsend command, it is assumed to be
standard input.

OPTIO~

-ppw

Make a new file called n~m~ on a remote ~3IRONET host.

Replace an existing file called n~m~ on a remote host if it
exists, otherwise make a new file.

Append contents of the transferred file to an existing file
called rm~ if it exists, else make a new file.

Remote file password. If no pw is supplied, the user will
be prompted for a password.

Vol 6 No 5
AUUGN 33

-v vo l

-ycycle

--XSO

-uuser~/pwJ

-j

-nnode[, dt]

-t[nn]

-zcnlog

vol is the volume, or similar file structuring feature on
the remote CSIRONET host where the transferred file is to
be located.

cycle is the cycle number of name.

Other remote host specific options. Each element is
separated by whatever is the delimiter for jcl elements on
that host. For hosts that use a blank as the delimiter
between elements of a jcl statement, the so string should
be in quotes.

The file name contains binary dataand is to be handled in
a transparent manner, with no code changes, on the remote
host and during transfer processing.

user is the username on a non-CSIRONET remote host, pw is
the password for the username. If no password is given,
the user is prompted for the password, which can be given
interactively with no echo on the terminal.

The UNIX file given as a parameter to this conm~nd contains
jcl statements to be submitted for execution by the remote
host.

Destination CSIRONET node and device type where no dt is
specified, the default is LP.

Forces the character set for storage of the transferred
file on the remote host to be 7-bit ASCII (with the 8th bit
set to zero). If omitted, the default is the standard or
native code for that remote host.

The CSIRONET forms code (varies depending on device type).

If present, this parameter indicates that line printer
carriage control is to be taken from col 1 of each
record. It can only be used if d% = [2 (see the -n
parameter, above). If nn = cc (or is blank) carriage
control is taken from col 1 of each record. If nn = bs,
then embedded backspaces are converted into overprinted
lines so that nroff output can be printed on CSIRONET node
printers. (Warning: using the -tbs option requires many
wheels to go round and may be quite slow!)

cnlog is a UNIX file in which a CSIRONET login sequence may
be found. If the filename cnlog is omitted, the user will
be prompted for elements of the login sequence.

cnsend -nSY printfil
Send the file printfil to the line printer at (231RONET node SY (CSIRONET
Sydney).

Vol 6 No 5
34

AUUGN

man i cnfx I cnsend -nhh-tbs
Print the nroff output for the UNIX Progranm~r’s Manual entry for cnfx at
node HH (CS IRONET Hobart) .

cnsend -mQDATA /usr/user/survey.qdata
Send the file /usr/user/survey. qdata to the default remote host, and store
it as a file called QDATA.

cnsend-j -zMl80 facomjcl
Submit the jcl statements contained in the file fac~mjcl as a job on the
remote host specified in the MIS0 login sequence.

AUUGN
35

Vol 6 No 5

cnfetch - request the transfer of a file from C~IRONET.

SYNC~S IS

cnfetch [options]

cnfetch fetches a file from a remote host file system and places it in a CNPTS
queue. A file thus fetched can be retrieved from the CNPTS queue by using the
cnpoll command.
cnfetch always uses the queue relevant for the remote host specified in the
cnlog sequence.

File name on a remote CSIRONET host.

-p pw

-vvol

Remote file password. If no pw is supplied, the user will
be prompted for a password.

vol is the volume, or similar file structuring feature on
the remote CSIRONET host where the transferred file is
located.

-y cyc le cycle is the cycle number of name.

--X SO Other remote host specific options. Each element is
separated by whatever is the delimiter for jcl elements on
that host. For hosts that use a blank as the delimiter
between elements of a jcl statement, the 80 string should
be in quotes.

The file name contains binary data and is to be handled in
a transparent manner, with no code changes, on the remote
host and during transfer processing.

user is the username on a non-CSIRONET remote host, pw is
the password for the username. If no password is given,
the user is prompted for the password, which can be given
interactively with no echo on the terminal.

Forces the character set for storage of the transferred
file on the remote host to be 7-bit ASCII (with the 8th bit
set to zero). If omitted, the default is the standard or
native code for that remote host.

-zcnlog cnlog is a UNIX file in which a CSIRONET login sequence may
be found. If the filename cnlog is omitted, the user will
be prompted for elements of the login sequence.

cnfetch -eDATA01 -pXXX -vCCSI23
Fetch a file named DATA01 on volume CCS123 with file password XXX from the

Vol 6 No 5
36

AUUGN

default remote host.

cnfetch -eMYFILE -z/usr/user/M3Slogin; cnpoll NOS.dayfile
Fetch a file called MYFILE from a remote host specified in
/usr/user/~3Slo~in, poll the relevant CNF~S queue, if a file is there, put
it in a file called NSS.dayfile in the current directory.

AUUGN
37

Vol 6 No 5

cnpoll - poll a CSIRONET CNF~S queue.

cnpoll [options] file

cnpoll polls a. CNF~S queue exactly once. Any file that is waiting will be
transferred to the local UNIX system as file. If file is omitted, standard
output is assumed.

-q qname Name of a CSIRONET CNF~S queue. With each UNIX system
which has (~X, is associated a logical CNF~S queue
mnemonic (usually of 3, but may be up to 7 characters).
This mnemonic usually will have the form nnnFX where nnn is
a logical CSIRONET node mnemonic associated with the local
UND(system.

-zcnlog cnlog is a UNIX file in which a CSIRONET iogin sequence may
be found. If the filename cnlog is omitted, the user will
be prompted for elements of the Iogin sequence.

cnpoll
Look for a file in .the default CNFTS queue. If there is a file in the
queue, transfer it to standard output (on the local UNIX system).

cnpoll NOS dayfile
Look for a file in the default CNFfS queue. If there is a file there,
transfer it to the local UNIX host as a file called ~[]S.dayfile in the
current directory.

cnpoll -q999FX >> bond.c
Poll the queue 999FX on the CSIRONET host specified in the cnlog
sequence. If a file is waiting, append it to the local UNIX file bond.c in
the current directory.

Vol 6 No 5
38

AUUGN

i0

cnlogin - log in to CSIRONET as an interactive terminal

cnlogin [-z ~nlog]

cnlogin has .2 modes of oPeration:

C-mode This is the default. It should be used for CSIRONET !ogin
activities, and for connections to remote CS]RONET hosts.

U-mode This should be used once a connection has been made, via CSIRONET,
to a remote unix host.

Once connection has been established, all characters to and from the local
UNIX device are dealt with transparently (in RAW mode). ~b UNIX
metacharacters will be recognised locally until the device has been
disconnected from CS~ROhh-T. To disconnect from a remote host, enter <dle>T or
the logout command for that host. The connection to CSIRONET remains until
cntrl-y is entered. For details of how to use CSIRONET, refer to Edition 3.0
of the CS IRONET Users ’. Manual, particularly Vol .2 : ’ Network Users Manual ’ .
In C-mode, lines are delimited by a <CR><LF> sequence for transmission over
CSIRONET. Bells, carriage returns, linefeeds and <dle> sequences are all
interpreted in the CSIRONET vernacular. To change (back) to C-mode, enter a
<dle>C.

In U-mode, lines are delimited by a single <CR> for transmission over CSIRONET
to the remote host (almost certainly another UNIX host). To change to U-mode
enter a <dle>U. This should not be done until all login formalities to the
remote UNIX system have been completed. Once in U-mode, all ASCII characters
with a value of less than 040 (octal) are transmitted immediately they are
received by the CSIRONET gateway software (except for <dle> itself, which is
handled separately).

If the cnlo~in cc~mand has no accompanying -z parameter, the user is simply
connected to CSIRONET. If the -z parameter is present, a login sequence will
be prepared and sent to CSIRONET before the user’s terminal is connected to
CS IRONET.

-zenlog ~nlog is a UNIX file in which a CSIRONET login sequence may
be found. If the filename .~nlo~ is omitted, the user will
be prompted for elements of the login sequence.

AUUGN
39

Vol 6 No 5

Folding Regular Polyhedra

Andrew Hume

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This report describes a system for constructing a solid object from a
specification of its planar net. The system can handle nets of polygons which
may overlap. As an example, the nine regular polyhedra and the
Archimedean polyhedra are constructed from their nets. A film has been
made showing the construction process and some completed solids.§

Vol 6 No 5

Introduction
Many three dimensional objects are fabricated from planar shapes by folding along

straight lines and then bonding the edges that coincide. The problems in describing the
planar layout and assembly of these objects concern fields as diverse as sheet metalwork and
geometric model-making. Since I am more adept with scissors and paper than with a solder-
ing iron, this report will focus on the latter although all the techniques apply equally well to
the former. In particular, the focus is on polyhedra which can be considered as three-
dimensional shells made up of planar polygonal faces.

The end product of this work is a database of polyhedra, each of which ’is described as
a planar net and as a three dimensional object. The polyhedra include the nine regular
polyhedra, thirteen Archimedean polyhedra, thirteen Archimedean duals, and 92 other con-
vex polyhedra described by Johnson[3], hereafter referred to as Johnson solids. The Johnson
solids, combined with the Archimedean polyhedra and five of the regular polyhedra, consti-
tute all the possible convex polyhedra with regular faces*.

Regular Polyhedra
Before discussing regular polyhedra, we shall define a regular polygon as a polygon

with a finite number of equal sides and equal vertex angles. According to taste, the sides
may or may not be allowed to intersect. Figure 1 shows the two regular five-sided polygons,
the pentagon and the pentagram.

We can define a regular polyhedron analogously to a regular polygon; a finite number
of congruent regular polygon faces and equal dihedral angles (the angle formed by two faces
meeting along an edge) not equal to -rr radians. A more complete and rigorous treatment can
be found in [1].

Nine solids meet this definition: the first five are the Platonic solids, which were known
before the time of Euclid, the tetrahedron, cube, octahedron, dodecahedron and
icosahedron. The other four are known as the Kepler-Poinsot solids and have intersecting
faces. The small and great stellated dodecahedrons were discovered by Kepler (1571-1630)
and have pentagram (star) faces. The great dodecahedron and great icosahedron were found

§this paper (and film) was originally presented at the Usenix Graphics Conference at Monterey, California
in December 1985.
*excluding the two infinite classes described below (prisms and antiprisms).

40
AUUGN

-2-

i,

pentagon pentagram
Figure 1

by Poinsot (1777-1859) and have pentagonal and triangular faces respectively. The small stel-
lated dodecahedron (shown in Figure 2) and the great dodecahedron are peculiar as they do
not satisfy the Euler theorem F + V = E + 2 in its normal form.

small stellated dodecahedron
Figure 2

truncated icosahedron

Uniform Polyhedra
Another way to define a regular polyhedron is that its vertex figures are congruent reg-

ular polygons. The vertex figure is a polygon formed by joining the midpoints of all the
edges meeting at that vertex. Other classes of less regular polyhedra can be generated by
relaxing this definition. If the faces are all regular and the vertex figures congruent but not
regular, then we get the (facially-regular) Archimedean solids. In this case, the dihedral
angles are only equal between congruent pairs of faces. If the vertex figures are regular but
not all congruent and all the dihedral angles are equal, then we get the (vertically-regular)
Archimedean duals. For historical reasons, the Archimedean duals are largely ignored in
discussions of uniform polyhedra.

The Archimedean solids can be divided into three classes. The first class is an infinite
set of prisms formed by taking two regular congruent parallel faces and joining correspond-
ing edges with squares. The second class is an infinite set of antiprisms. To construct the
antiprism of a given prism, consistently divide each of the rectangular side faces into two tri-
angles by a diagonal and then rotate one of the two regular congruent faces* in the direction
such that all the triangular side faces are congruent. The third class is a set of thirteen solids

*through "rr where n is the number of sides in the rotated face.

Vol 6 No 5
AUUGN 41

-3-

ranging from 8 to 92 faces. One of these, the truncated icosahedron%, is shown in Figure 2.
The dual of an Archimedean solid s has its faces associated with the vertices of s. The

shape of the face is taken by constructing the dual of the vertex figure at any vertex. The
dual polygon is formed by drawing the circle containing all the vertices of the vertex figure
and drawing the tangents to this circle at each of the vertices. These tangents are the sides
of the dual polygon.

The Database

The database is built in three steps. The first and most tedious step is to describe the
planar net of the polyhedron. The second determines the dihedral angle between the faces.
The third step ~ombines the information from the first two steps and generates a three
dimensional description of the polyhedron.

The Net Database

The net or development of a solid is a set of polygonal faces and a description of which
edges are joined together. For polyhedra which are not convex, we need to indicate reverse
folds. Thus, each edge connection has a sign showing the direction of the fold. The nets for
the cube and dodecahedron are shown in Figure 3.

cube dodecahedron
Figure 3

solid "cube"
0:{4}-45
I:{4} 2: {4}. 3{4} 4: {4} 5: {4}
<0.0 2.2> <0. I 3.3> <0.2 4.0>
<0.3 1.1> <5.0 4.2>

The net description forms an ASCIIfile. The descriptionsforthe above nets are:

solid "dodecahedron"
0:{5}~180
I:{5} 2:{5} 3:{5} 4:{5} 5:{5} 6:{5}
7:{5} 8:{5} 9:{5} 10:{5} 11:{5}

<0.0 4.2> <0.1 5.2> <0.2 1.2>
<0.3 2.2> <0.4 3.2> <5.4 6.4>
<11.0 10.2> <11.1 6.2> <11.2 7.2>
<11.3 8.2> <11.4 9.2>

Solids are described by a label, a set of face descriptions and a set of edge connections.
Faces are shapes (typically regular n-gons denoted by {n}) followed by an optional rotation in
degrees*. Connections are denoted by two edge specifications. An edge is defined by f.e
where f is the face and e is the edge on that face. Edge e connects vertices e and (e + 1)modn

rYes, it really is a soccer ball! It is also the shape of a new molecule C6o (Nature, 318, 162-163, 1985).
*one rotation is useful for orienting the net. Other rotations can be useful as assertions as incorrect rota-
tions are flagged.

Vol 6 No 5
42

AUUGN

-4-

AUUGN

where n is the number of sides of the face. Vertices are numbered counter-clockwise with
zero at the north pole (before rotation). Reverse folds are denoted thus <f.e ^ g.h>. Faces
which are not regular n-gons are specified by their side lengths and vertex angles and
denoted by an alphanumeric identifier.

The Angler
The angler program determines dihedral angles by attempting to fold a planar net into

a convex polyhedron. Non-convex polyhedra have to be done by hand. Of course, for the
regular and Archimedean solids considered here, there are often simple and elegant con-
structions for the dihedral angles. However, the folder is designed for the general case. A
top level view of the algorithm is:

form perimeter
while perimeter not empty
{

pick a vertex v
form a solid vertex at v
update perimeter

}

The perimeter is kept as a linked list of edges in counter-clockwise order. Given a vertex,
the folder assumes that the two edges on the perimeter which meet at that vertex will coin-
cide. Using the methods described below, it calculates the dihedral angles and rotates the
faces (and any other attached faces). The perimeter is then checked and edges that coincide
are deleted. Note that this may cause the perimeter to become a number of isolated edge
lists. "

A vertex is selected according to the heuristic of finding the vertex with the minimum
angle between the two free edges. This heuristic may fail as sometimes a missing face will
come from another part of the net during folding. For example, the nets for the snub cube
and snub dodecahedron have large gaps that are filled by faces from another part of the net.
This only becomes apparent after partial assembly. If the angler detects an error or incon-
sistency, it backtracks and selects another vertex.

Vertex selection for the Johnson solids is done differently. If n faces meet at a vertex,
we say that vertex is of order n. If we are determining the dihedral angles between the faces
meeting at a vertex of order n, there are at most n-3 degrees of freedom. Thus, vertices of
order 3 have a unique solution. Because of the symmetries of the Archimedean solids and
their duals, all the order 4 and 5 vertices have unique solutions as well. The Johnson solids
do not have these symmetries. However, in most cases, by solving the order 3 vertices first,
we can reduce the degrees of freedom at higher order vertices to zero and thus solve the
entire solid.

In general, the angler checks itself after every vertex it forms and in case of errors, it
dumps out the current structure and the perimeter lists of unjoined edges. This catches both
bad vertex selection and impossible nets, that is, nets that do not form a solid.

Determining the Dihedral Angle
If all the faces are regular polygons, every vertex is of order 3, 4 or 5; examples are

shown in Figure 4. Because the sum of the angles at the vertex must be less than 2"rr and the
smallest angle in any regular polygon is "rr/3, the number of faces must be less than 6. ~

This is not true of the Archimedean duals as their faces are not regular polygons and in
fact the hexakis icosahedron (the dual of the great rhombicosahedron) has vertices of order
ten. However, as all the dihedral angles for the Archimedean duals are equal, we can use
the vertex of mimimum degree. By inspection, the maximum degree vertex is 5 (in the pen-
takis dodecahedron, the dual of the truncated dodecahedron).

43
Vol 6 No 5

-5-

B C

A~A’
V
(a)

C C

V
B

A
(b)

Figure 4

At

D

V

A A’
(c)

D

Vertices of order 3 are straightforward to solve. In the example in Figure 4(a), the face
VAB is rotated about the edge VB and VA’C about VC until the vertices A and A’ coincide.

Vertices of order 4 form a quadrilateral pyramid with one degree of freedom. As dis-
cussed above, for the Archimedean polyhedra and their duals, symmetries reduce the
number of possible cases to the following few. In Figure 4(b), the apex will be V and the
(rectangular) base ABCD. The base will always be one of four shapes. These shapes are
shown in Figure 5(a) and 5(b). Assuming all the edges are of length 1, the parameter z is
one of two values, V~- or ~b, where ~b is the golden ratio (-~-1.618). The two dihedral angles
can be found easily by spherical trigonometry.

1 1
\
\

\
\

\
\

\
x

/ \
/

\
\

/
t

/

z 1 z
(a) (b) (c)

Figure 5

Vertices of order 5 are treated analogously to vertices of order 4. In the example of Fig-
ure 4(c), the pyramid has apex V and base ABCDE. The shape of the base of the pyramid is

’Zshown in Figure 5(c). The half-angle o~ can be found by solving the cubic sino~-sin3o~ = ~.

The Folder

The folder program treats the polyhedron as a set of hinged shells. Initially, every face
is a shell. At every hinge, one of the two shells is rotated through the specified angle.
Checks are made for coinciding edges and all shells with coincident edges are merged into
one shell. At the end, there should be only one shell.

Current Status
The database has complete entries for the regular, Archimedean and Archimedean dual

polyhedra. Nets have been entered for all of the Johnson solids and some of these have
dihedral angles and have been folded. The numerical error in the coordinates (stored on a
VAX as double precision) is smaller than 10-14

Future work goes in two directions: determining an algorithmic way to find the
dihedral angles for awkward Johnson polyhedra and presenting the data for each

Vol 6 No 5
44

AUUGN

-6-

polyhedron symbolically. For example, specifying the dihedral angle for the dodecahedron
as "rr-tan-12 rather than the standard 116° 34’.

Conclusions
It is possible to construct a variety of solids using only their planar nets and with no

knowledge about the final structure other than convexity. In addition, many solids (such as
the regular stellated polyhedra) with concave vertices can be handled by means of reverse
folds.

Indeed, constructing the solids by folding rather than by analytic methods has some
advantages, as the mapping between faces in the planar and solid representations is directly
derived. For example, given a geographical database, it is possible to project a world map
onto any of the convex regular polyhedra. Each face is tangential to the inter-sphere and
using a gnomonic projection, we can obtain nets that fold into polyhedral world globes.
Such a net for the truncated icosahedron is shown in Figure 6.

Figure 6

Acknowledgements
My interest in polyhedra and models stems directly from a fine book on geometric

models by Cundy and Rollett[2]. Doug McIlroy provided encouragement and the map
software. Tom Duff wrote the polygon renderer used in making the film. Peter Weinberger
provided his inspiring visage .~.

References

[1] Coxeter, H.S.M., Regular Polytopes (2nd Ed), Macmillan, New York, 1963.

[2] Cundy, H.M. and Rollett, A.P., Mathematical Models (2nd Ed), Oxford University Press,
Oxford, 1961.
[3] Johnson, N.W., Convex Polyhedra with Regular Faces, Canadian Journal of Mathematics,
XVIII, 1966.

AUUGN
45

Vol 6 No 5

Initial experiences with a Gould UTX/32 System
in a University Environment

Bob Buckley
Computing Lecturer

School of Mathematics and Physics,
Macquarie University,

North Ryde,
NSW, 2113.

ACSnet: bob@mqcomp

ABSTRACT

This article describes our first semester
with a Gould PN6080 and UTX/32 (a version of
4.£BSD). The computer is used for teaching and
research. Most of the student programming is done
in Pascal and FORTRAN-77. Major student assign-
ments were about compilers and GKS graphics.

Introduction.

In 1985 the Computing Discipline at Macquarie Univer-
sity was able to purchase its first computer. The computer
was intended to relieve the load put on the central facili-
ties by our advanced students. We needed a computer capable
of supporting 30-40 simultaneous users. A computing labora-
tory was planned with about 25 terminals, including 5 graph-
ics terminals.

A Gould PN6080 and UTX/32 was priced attractively and
the system is suitable for most of our research activities
(particularly numerical analysis and graphics). Languages
were to include Pascal, FORTRAN-77, MODULA-2, COBOL and APL.
Other software included GKS graphics and a relational data-
base. Five APC-IIIs were purchased as graphics terminals.
Most of the hardware was delivered on schedule. Delays in
getting operational were caused by late delivery of software
and the University’s lack of resources.

The Hardware.

The processing engine is based on bit-slice technology.
The CPU executes most instructions in the 150ns cycle time.
The instruction set is reminiscent of the IBM360. The
PN6080 is a dual processor system. Each processor has a

Vol 6 No 5
46

AUUGN

- 2 -

floating point accelerator. We have 4Mb of memory, two
340Mb winchesters, a 1600bpi streaming tape drive and an
Ethernet interface.

We have 48 terminals ports: 26 in the laboratory, 5
modems and the rest are connections to offices or other com-
puters. Communication with terminals is via two ’intelli-
gent’ controllers. The first communicates between the
26Mb/sec SelBUS and the 1.5Mb/sec MultiPurpose Bus. The
second drives the RS232 ports from the MultiPurpose Bus. We
had problems with terminal communications.

The hardware has several deficiencies. Memory manage-
ment protection modes allow general read access to the ker-
nel and virtual (and real) memory is limited to 16Mb. Data
is completely aligned (even double words need to be double-
word aligned). The lack of a real stack makes porting
Berkeley Pascal, the Amsterdam Compiler Kit and some other
software a bigger job than one would like.

Since delivery, we’ve had a major processor upgrade
which has improved performance and system reliability. Ini-
tially, the system was very unstable. Reliability was so
poor that an undergraduate assignment had to be dropped.
The combination of faulty processors and premature software
inflicted a crisis on an overworked staff. Students lost
confidence in the system. Gould did all that was reasonable
to imprbve things, and recent experience suggests that their
efforts yielded a much improved system.

The Operating System.

UTX/32 is a version of 4.2BSD adapted for dual proces-
sors. Performance is good (after 3 software updates).
UTX/32 has ~a few System V features. System calls in this
category are fcntl, lockf, ulimit, uname and ustat.

There are several annoyances remaining in the system.
The system doesn’t auto-rebooto Device drivers can crash
the system by panicing (UTX/32 is the first place we’ve seen
device drivers with calls to ’panic’ - we hope this innova-
tion will be seen for what it is and eliminated). System
security is a problem (eg. clists can be examined by any
process). The printer spoolers still cause problems.

Applications.

The C compiler performs reasonably. We’ve had very few
portability problems with C programs. We’d like a faster
compiler. Object code performance is acceptable, especially
considering how poorly C maps onto the architecture.

The debugging environment isn’t good. Adb(1) disagrees
with as(l) about instruction mnemonics. A ’source code

AUUGN
47

Vol 6 No 5

- 3 -

debugger’ dbx(1) works with C programs

The Fortran-77 compiler is typical f77: compiles
slowly, produces mediocre code, etc. It compiles slightly
slower than VMS Fortran on a VAX-II/780.

LNS Pascal was supplied (without source code). This
compiler translates Pascal to C, then uses the native C com-
piler to produce executable code. The compiler has its own
set of features: Standard and UCSD Pascal are subsets of LNS
Pascal (ie. ~t has units and strings), it has C features
(like continue, break and return statements). It doesn’t
tell the C compiler about the source code from which it was
derived, making use of debuggers difficult (especially for
students). Each version of LNS Pascal has its own set of
bugs (eg. files can’t be used as arguments). At the moment,
we have two versions in use.

LNS Pascal isn’t suited to make. Separate compilation
may produce attribute files which are modified only when
their content changes. This is difficult to express in a
Makefile. It may be done by telling make how to create
attribute files but not showing their dependance on Pascal
source.

Seventy students were given a project involving modifi-
cation of a simple compiler. The compiler was written using
LLAMA (and Pascal) and produces Gould assembler. Table 1
gives a measure of Pascal performance on the Gould.

command time (secs) source
(cpu+sys) lines

llama comp.ll
pc -c tree.p
pc -c code.p
pc -c comp.p
pc *.o
make comp

17.5+10 5
5.2+2 4

27.3+ 3 3
61.6+ 4 9
3.8+3 7

116.4+32 2

276
147
527

1268

95O

pc llama.p 207.9+15.3 4000
pc -O llama.p 260.7+20.6 4000

Table i.

The first section gives some idea of performance for the
students work. The compiler is split into several modules:
comp.ll, tree.p and code.p. The file, comp.p, is output
from llama comp. ll. LLAMA compilation is given for com-
parison.

Gould supplied CEEGEN’s C version of GKS. This is a
level 2B implementation (includes interactive support). Our
students are not expected to know C so this wasn’t directly

Vol 6 No 5
48

AUUGN

- 4 -

usable. To use it from Fortran-77 or Pascal, interfacing
routines were required. Rather than write and document over
200 routines, we only tackled the 90 we expected students to
use. But GKS and f77 each have routines called malloc in
their libraries. We didn’t have source code so we used a
special program to convert all occurrences of ’malloc’ to
’Malloc’ in the GKS libraries.

GKS documentation is a problem. Reference books have
slight variations in the GKS interface. The CEEGEN documen-
tation is a single hardcopy manual. We still have to pro-
duce acceptable online manuals.

We developed our own software for APC-III graphics
(being unable to purchase a suitable package). The software
emulates a mixture of VT52 (we sometimes talk to VMS) and
tek4010. For simplicity, graphics is done via the MS-DOS
GRAPHIC.SYS and is slow, but is (just) acceptable for teach-
ing. We haven’t tackled graphics input yet, so half the
CEEGEN demonstration programs aren’t working at our site.

Student use of GKS graphics was testing for the system.
The combination of f77 compiles, large linking jobs and
graphics programs made the system sluggish (but not as slow
as IGL on VAX780/VMS). Executable programs using GKS are
large; we could have used a ’shared library’ mechanism to
good advantage had it been available. This would save disc
space and could improve performance.

Several other pieces of software had a workout.
ACSnet, PROLOG and Ditroff were ported and all work hard. A
Pascal hosted pseudo-parallel processing package was ported
to the Gould and used for process oriented simulations.
Gould were unable to supply MODULA-2 so we accepted an ADA
(90% subset) in its place. In the near future we expect to
be using ADA, APL, COBOL and database for teaching.

The standard system is augmented by user supplied
software (called the D4 tape). Our experience has been that
this software isn’t very good. Initially, LISP and INGRES
didn’t ~un and still have problems.

Documentation

UTX/32 online documentation is confused. It is set up
for a mixture of BSD and ATT manual macros - we spent some
time sorting this out. Some documentation is supplied in
post-nroff form. This is annoying and tedious.

Eqn and troff are missing. Nroff is a mess: half the
device tables cause core dumps. Many UNIX sites have to
sort this out for themselves; with Gould, things are no dif-
ferent. Fortunately, we have source code.

AUUGN
49

Vol 6 No 5

- 5 -

We had to produce a document describing instructions
and the assembler, for the students. We need a better pro-
cessor manual. Gould manuals are often longwinded and dif-
ficult to read. Detailed information about the hardware is
hard to obtain.

Conclusions

The processors are good value for money: they are fast
(especially doing floating point processing). The peri-
pherals are OK but Gould should put more effort into the
terminal interface.

Most of our problems have been with software. Local
support lacks experience of Gould, UNIX Systems and the sup-
port process. Local expertise is usually below our own
level. There isn’t enough experience of 3rd party software
yet and Gould seem unwilling to press the suppliers. In
most respects, Gould matches our experience of other
hardware suppliers.

suitable software for undergraduates is still needed.
Compiler performance needs work. A better Pascal is needed
(newcompilers are coming). Berkeley Pascal and the Amster-
dam Compiler Kit resisted our initial attempts to port them
(the latter runs and will cross compile code for almost any-
thing).

Acknowledgements

Our small but dedicated technical staff, Michael Hom-
sey, Kevin Dawson and Peter Dumbrell, kept the system run-
ning through the semester. They tolerated heavy workloads,
unreasonable demands, heated words and performed far beyond
the ’call of duty’ Credit for keeping the system running
through the semester belongs to them.

The local agents for Gould worked vigorously to meet
our requirements. The students showed considerable toler-
ance. They had more patience than one has a right to
expect.

Vol 6 No 5
5O

AUUGN

An Introduction to the UNIFY Data Base Pro~am

Roy R. Rankin

COMPUTERLIN~ DESIGN
66 Concord Rd, Concord NSW

UNIFY* is a relational based data system which runs under the UNIX**
operating system. This paper will look at some of the capabilities of
UNIFY using an example to demonstrate them.

1. Introduction

In order to demonstrate some of the capabilities of the UNIFY data base
program, an example will be presented. The present example comes from a
company that buys and sells used excavator equipment, and needed to keep
track of their customers and their stock. There are many companies with
similar needs.

It was decided to split the information into two different but linked
types of records. The first type of record contains intormation about
the customer and was given the name ~:t/st~me/’o This record includes data
such as company name, address, contact, phone, and telex. The second
type of record contains information about the equipment to be ~old, wan-
ted to buy, and for ~uture reference has been sold. This second record
type was given the name e~/z~m/~t (record names cannot exceed 8 charac-
ters), and carries details about the equipment. These details include
whether the equipment status is buy, sell, or user, details about the
equipment, and a pointer to a customer record.

This paper will describe some of the steps required to setup such an
application. It is hoped that this will give some insight into the power
and flexibility of the suite of programs known as UNIFY.

2. Entering a Schema

The first step in setting up an application is to design and enter the
schema. The schema tells UNIFY what records exist, how many records of
each type are expected, and sets the characteristics of the fields thus
defining the structure ot the data base.

A record is a collection of fields which is stored in the data base as a
single Unit. Each record definition in the schema is given a unique name
and the number of expected records. For those familiar with the C pro-
gramming language, there is a strong resemblance between records and

arrays of structures as well as between fields and variables.

A field has a name, type, length, and long name. The name is used to
reference the field in the system design. A field can have I of 7

trademark of UNIFY Corporation

** trademark of Bell Laboratory

AUUGN
51

Vol 6 No 5

- 2 -

types: NUMERIC, FLOAT, STRING, DATE, TIME, AMOUNT, and COMB. With the
statement that NUMERIC is for integer, and AMOUNT is for dollars and
cents, all the types are clear except for COMB. COMB, or combined type
is similar to a union in C. The length is the number of characters or
digits for the field. The long name is a name which is used by SQL to
identify fields during queries, and by the default screen form generator
as labels.

One field in each record definition is designated as a primary key. The
primary key is hashed. This allows search by primary key to be very
fast, but also means then when entering data the primary key must be
unique. The primary key field is indicated on a schema listings by a
preceding asterisk. The following is a simplified list of the schema
used for the excavator company which was entered into UNIFY using its
interactive schema generator.

Schema Listing

RECORD/FIELD REF TYPE LEN LONG NAME

customer
*id

idn
name
addl
add2
add3
pc
cont
phone
telex

1ooo customer
COHB cus_idkey
STRING 6 cus idn
STRING 30 cus_name
STRING 30 cus_addl
STRING 30 "cus add2
STRING 25 cus_add3
NUMERIC 4 cus_pc
STRING 35 cus cont
STRING 15 cus~hone
STRING 12 cus_telex

equipmnt
*eid.

ecus

type
make
model
year
location
cost
sell
disp
edate

node
*nkey

equipseq

10000

id

equipmnt
NUMERIC / eqp_eid
COMB eqp_ecus
STRING 15 eqp_type
STRING 15 eqp_make
STRING 15 eqp_model
STRING 15 eqp_year
STRING 20 eqp_location
AMOUNT 7 eqp_cost
AHOUNT 7 eqp_sell
STRING 4 eqp_disp
DATE eqp_edate

node
STRING ’I n_key
NUMERIC 7 n_seq

Vol 6 No 5
52 AUUGN

- 3 -

3. Enter Screen

Once the schema has been entered, an ente/" s~:/’ee/~ can be created. The
enter screen is used for interactive data entry and enquiry. There are
several ways to accomplish this task. The easiest is to use the default
screen form generator. By this method the schema record name is given to
the default screen generator, and the screen is generated. The default
screen generator uses the Long name field entered in the schema for
labels.

A second method of generating an enter screen is to use a full screen
editor known as PAINT. PAINT has a fairly simple, but powerful, set of
commands which allows you to move around the screen and place captions
and fields where desired, thus allowing you to Layout the screen as
desired.

The enter screen, no matter how created, is used by a program called
ENTER to allow data to be added, modified, deleted, or searched. In some
cases, we would like ENTER to perform functions it does not normally
perform. If this is the case, ENTER can easily be customised.

4. Customising ENTER

For the present case, we would like to customise the entry program for
two fields. The first field is the efdfield which i~ the equipment pri-
mary key for the equipmnt record and thus must be unique. On data
entry, we would like ENTER to generate this field automatically to give
a unique equipment id number. The form which was selected for this id
number is that it is a seven digit number. The two most significant
digits are the year, ie 85, 86, etc. The next three digits are the day
of the year, and the least two significant numbers are determined to
make the id number unique. Note that if more than]00 items are entered
in a single day, the id number will show the wrong day. This behaviour
was deemed to be acceptable. In order to implement the automatlc gen-
eration of the equipment id number(eid), a short C function was written
and a record called no~ was created. Node has a field equipseq which
is the last eid field generated. Although node is not required, it
improves the efficiency when a number of records are added in the same
day. The function operates in the following way. If a record is not
being added or the field has already been entered, the function exits to
default processing. Otherwise, it calls time() and ctime() and genera-
tes a key, and then reads the equipseq field of record node. If equip-
seq is greater than the key, it uses equipseq as the key. A search is
then done with the key, and if a record is found, the key is incremented
until no record is found. Equipseq is then updated with the new key, and
the new key is sent to be processed as if it had been typed in.

The second field customised was the date field. A second C function i~
written to put in the current date if it had not already been entered by
the operator. The logic of this subroutine is as follows. If a record
is not being added or the field has already been entered, return. Oth-
erwise, build the current date in the proper format using time() and

AUUGN
53

Vol 6 No 5

ctime() and then send the key to be processed as if it had been typed
in.

In order to get ENTER to use the custom functions which have been writ-
ten, several structures were created which indicate the record and the
field on which we wish to execute our custom functions. The details of
these simple structures are beyond the scope of this paper. Finally we
compile the functions and the structures using a special C compiler
front end called ~/cc and then create an archive of the object modules.
Then we load our functions into ENTER using a shell script called
e/~te/’.Z~E Once this is complete we can used our customised ENTER program
by just calling the appropriate enter screens.

5. SQL query/DML Language

With the ENTER program and our enter screens, we can already interac-
tively perform all the data base functions of adding, modifying,
deleting, or searching for data. There are some cases where we would
like to perform the above functions on a batch level such as for genera-
ting reports. This is where the SQL is useful. SQL, which stands for
Structured Query Language, was designed by IBM to be a powerful, flexi-
ble, and easy to use query language. SQL also uses a Data Manipulation
Language, DML, to allow batch addition, modification of deletion of data
base records. SQL/DML can either be run from the UNIFY program or out-
side it. -

For the present case we are using a fairly simple SQL script to generate
reports. The script is as follows-

lines 0
select *
from equipmnt, customer
where equipmnt.cus_idn = customer.cus_idn /

In SQL the "/" terminates the script starting execution. Normally SQL
prints out a heading at the top of every screen full of output. "lines
0" tells SQL not to put out any headings. The asterisk means all fields
in the given records, and thus the script says to print all fields from
record type equipment and customer. The ~he/’e clause is to print only
the customer record associated with each equipmnt record. This script
produces a list on the standard output of all the fields of equipmnt and
customer separated by a ’I’ with each record on a separate line. This
output could be sent to sed, auk, or any formatter program desired.

6. Report Processor

UNIFY also Contains a report processor called RPT which can be used to
format the output from SQL. RPT gives the programmer a high degree of
flexibility over the placement and format of fields, headings, footings,
titles, and pagination. To demonstrate some of the capabilities of RPT,
a script for generating labels from the customer records will be

Vol 6 No 5
54

AUUGN

- 5 -

examined. This script presents only some of the capabilities of RPT.
But first, the SQL script for this report is as follows:

lines 0
select * from customer/

The RPT script is as follows:

input
customer.cus_idn,
customer.cus_name,
customer..cus_addl,
customer.cus_add2,
customer.cus_add3,
customer.cus__pc,
customer.cus_cont,
cus_j3hone [string 153,
customer.cus telex

sort cus_pc, cus_name
detail

if cus_addl > 30[] then
begin

need 8
print cus_name
print cus_addl
print cus_add2
print cus_add3 no newline
if cusjc > 0
then

print cusjc using ’####’
else

prlnt ’ ’
skip
if cus cont > 35[] then

print ’ATTN:’ in col 5, cus_cont
else

skip
skip 2

end
end

This script has three main sections, input, sort, and detail.
The input section tells RPT what variables are being input and
the variable type. When the input is specified as customer.xxxx,
RPT looks into the data base and finds the format for the field
xxxx in record type customer. Alternatively the format can be specified
as was done for cus._phone.

The second section of the script is the sort command.
This sorts the data first by postal code, cus_pc, and then by
n#me, cus_name, causing the output to be first in postal code order
and then alphabetically by name.

AUUGN
55

Vol 6 No 5

- 6 -

The main secti6n of the script is the detail command.
The detail command is executed for every line in the input, and is
where the outputting is done. This part of the script checks
if the cus_addl field is other than 30 blanks, and if so prints the entry.
The "if cus_pc > 0 then" is to prevent 0 being printed if no postal code
was entered. The "using ’####’" provides formating information°
In this case, cus__pc is printed as a number right justified in a field
four characters wide. Two other constructs in the script are "in col 5"
which starts the printing of the field in column 5, and the skip command
which skips the number of lines specified with one as the default.
The following is a single entry from the output of the script.

ComputerLink Design
66 Concord Rd
Concord, NSW

2137

ATTN: Roy R. Rankin

7. Conclusion

This paper has gone through some of the steps required to setup an
application under the UNIFY data base program in order to provide an
introduction of some of its capabilities. Many capabilities have not
been shown by these examples. In particular, the menu driven nature of
the user interface has not been shown as well as the security features
provided by UNIFY. Nevertheless, it is hoped that this paper increases
understanding of a very significant piece of software which runs under
the UNIX operating system.

Vol 6 No 5
56

AUUGN

- A Functional UNIX Command Interpreter

Chris Hcbonald
Department oi’ Computer Science

The University of Western Australia

I. INTRODUCTION

Both the UNIX operating system and functional programming systems (FPs) provide
the ability to compose existing programs to form new ones. This ability was one
of the primary goals of the designers of each system [Ritchie~[Backus~. The
widely accepted UNIX command interpreters, or shells - the Bourne shell (sh),
C-shell (t:sh) and Korn shell (~s’h) - enable the user to combine existing
programs into new commands using the two mechanisms oi" pipes and control of
flow within each shell. Both of these have close correspondence with the
facilities provided in functional programming of composition and conditional
evaluation. The recognition of this has lead to a small number of functional
shells in which UNIX programs are viewed as functions and combining two UNIX
programs is functional composition LHatthews][Shultis].

Unfortunately there is unnecessary complexity in existing command interpreters.
Shells support a number of different command mechanisms - variables, aliases,
shell scripts (command files) and, a more recent addition, functions. Each has
a different syntax for definition and removal from the operating environment,
and access to any arguments.

A powerful command interpreter may be constructed which considers every object
as an expression requiring evaluation. Command sequences may be consistently
defined and applied using the functional approach - function definition and
application. Such an interpreter is termed a ?~/nct/o/~aL interpreter. Input
and output redirection, and error and signal handling, are also tasks to be
handled by an interpreter, and it is possible to handle these functionally - by
defining expressions to perform these tasks. All these features lead to a
syntactically and semantically consistent command processing environment.

One approach to creating a functional command interpreter has been to add
1:unction definitions to an existing shell, as has been done in ~sh. The
additions do not offer true functional benefits. The added facilities are
already available through the use of shell scripts. Higher order functions are
not fully supported. Control facilities are imperative, as in precursor
shells, rather than applicative as should be the case for true functions.
Unfortunately, none of these facilities may be made to follow the functional
paradigm without significant changes to the implementation.

The command syntax of existing functional command interpreters can often deter
users. To date, ~unctional command interpreters have used the syntax of
Backus’ FP and the advantages of expressiveness and command composition in an
interpreter have not been appreciated. [Stabile] discusses the use of Backus’
FP as a command language and comments particularly upon its ’notational
austerity’. Although using a more formal system, the user is presented with a
system that appears at a much lower level oi: complexity than the one he is

AUUGN
57

Vol 6 No 5

Functional UNIX Command Interpreter

trying to control.

This paper demonstrates the advantages that a functional command interpreter
offers over a non-functional one - consistency in command definition and
evaluation, control of flow and support for higher order functions. A
functional command interpreter is introduced, by way of examples, which
overcomes the syntactic deterents of precursor functional interpreters.

2. A FUNCTIONAL SHELL

In this section we introduce a iunctional shell, ~h. f~’h has been designed
to support, and hence enforce, a functional approach to command procedures.
Programs and functions are treated consistently as objects requiring
evaluation. The implementation runs under the UNIX operating system.

f~’h has a syntax similar to the abstract syntax used by [Henderson] in defining
the semantics of his Lispkit. The syntax is considered by the author to be
easier to learn than that existing programmable command interpreters. Syntax
changes have been made to Henderson’s syntax which provide filename expansion,
input/output redirection and pipes.

f~’h provides the types integer, character, string, boolean, functions and
nested lists of these types. This set permits easier command programming than
available in the existing UNIX shells, which perform all operations and
argument passing using strings. Rather than supplying ~n enormity of operators
for these types and a correspondingly difficult syntax, operators become
overloaded - their semantic actions dependent on the types of their arguments.
The basic operators on these types are arithmetic, relational and list and
string construction and decomposition.

The syntax and operators of f~h will be informally introduced by example. A
complete syntax is given in Appendix I.

The following command script uses all the above types. Function ne,r[~f~
receives string and integer arguments to determine the next available version
of an indicated filename. Here : is the string concatenation operator, which
appends the suffix of a file’s version number to the filename. Function ~’~’oa
converts the version number (an integer) to a string and e,r~’sts is a boolean
function indicating the existence of a ~ile (described later).

def nextfile(name version) =
let filenm = name : ’.’ : itoa(version)
in
if exists(filenm) then nextfile(name version+l)
else filenm;

A function parameter may be referred to by its name. This provides a distinct
advantage over positional parameters (the $I, $2, etc) and the use of the shfft
operator in s~ ~sh and ~’sh. Arguments to command scripts may be passed as
individual atoms or lists, providing a facility for scripts which accept a
variable number of arguments. When arguments are passed to UNIX programs, they
lose their type information and list "shape" by being flattened to string

Vol 6 No 5
58

AUUGN

~h - A Functional UNIX Command Interpreter

representations of their values.

Hany UNIX programs can recursively perform their function on a directory,
utilizing the tree structure of the UNIX file system, by providing a "do
recursively" flag (often "-r"). However, this ability is not consistent across
all commands, for example one may recursively delete files ("rm -r") but not
recursively protect them (there is no "chmod -r", [Bell3). Rather than add
recursive application to every program requiring it (unnecessarily increasing
program sizes), a generalized command procedure would accept a program,
arguments and a subtree of the file system over which to be applied. Function
t/.eea~[ypresents such a command script written in ~%~h.

def treeapply(com args fs) =

if null fs then nil
else Let f = hd fs in

if isfile(f) then com(args f).treeapply(com args tl fs)
else treeapply(com args glob(f:"/*")).treeapply(com args tl fs);

The intrinsic function g[ob expands its string argument and returns a list of
all matching file names (as strings) or nil if there is no match. This is
equivalent to standard UNIX filename expansion which returns matching filenames
as arguments to a program. To make the syntax of lilename expansion simpler,
~%~ also treats all t~a/’a~te/’s within curly brackets as a candidate for

expansion. These characters are not an expression needing evaluation (they are
constant), but are passed directly to the gZoD function. The command

treeapply(chmod 600 ~*~);

will now recursively protect all files in a directory, and

treeapply(Ipr "-Pip" ~*~)~

will recursively print them.

Functional languages with no side-effects provide inherent parallelism.
Arguments to functions and subexpressions provide opportunity for a 1:unctional
interpreter to evaluate expressions in parallel. Unfortunately the side-
effects introduced by programs destroy this inherent parallelism. Programs
modify the file system, hence a function that accesses the file system may
return different results if executed twice. It may be necessary to execute a
program twice to achieve a desired result. The result is that what appears to
the interpreter as a common .subexpression may need to be evaluated twice.

Under the UNIX operating system, all devices are an integral part of the file
system, and so any input/output performed by a program alters the file system.
Programs consistently return an indication of their success using an integer
exit-status, with success usually indicated by the value zero. Hence, the
result of executing a program is a pair (a ~s in Lisp), the first indicating
the success of executing the program, and the second the changes made to the
file system. It is, of course, impractical for every command to return a new
file system and so the modified file system is represented on a physical

AUUGN
59

Vol 6 No 5

Functional UNIX Command Interpreter

device.

Command processing environments use this exit-status as a boolean value. Using
this idea, many simple and useful f~h functions may be written using the UNIX
program tes~ Some of these have been seen already.

def isfile(name) = test("-f" name);
def isdir(name) = test("-d" name);
def exists(name) = test("-s" name);
def readable(name) = test("-r" name);
def writable(name) = test("-w" name);

Using these functions and the following higher order function map, a function
may be written to remove all core dump files in a file system. The function
is a standard UNIX program to remove files.

def map(f l) = if null l then nil
else f(hd l) . map(f tl l);

def rmcore(fs) : if null fs then nil
else Let f = hd fs in

if f="core" and isfiLe(f) then [rm(f)]
else map(rmcore gLob(f:"/*")).rmcore(tl

The result returned by this function will be a nested list of integers
representing the exit-status of each /’~ program.

Function DacA~ is an example of a command script to recursively backup files
and directories, maintaining successive versions of each. The keyword lambda
defines a E expression local to function ba~:A’~ [Henderson]. ~ is a standard
UNIX program to copy files.

def backup(from to) =

if isfile(from) then
if isdir(to) then cp(from nextfile(to:’/’:from I)
else cp(from nextfile(to))

else if isdir(from) then
if isdir(to) then map(lambda(x) backup(x to) glob(from:"/*"))
else error("cannot cp directory to file" to)

else error("cannot cp" from);

The extended set of types and operators demands a syntax that is more difficult
to use than that of existing UNIX shells, but permits and enforces a uniform
treatment ot UNIX programs and functions. Higher order functions involving both
command scripts and programs may be easily constructed. The development of
command scripts is identical to programming in a truly functional language.
Using higher level functions, such as ~ap given above, powerful one line
commands may be written. For example, to change all 1"ilenames having the suffix
".1986" to filenames ending in ".86", the command

map(la~bda(x) my(x:".1986" x:".86") map(stripsuffix(".1986") (*.1986}));

may be used. Alternatively, a general command to change filename suffixes may

Vol 6 No 5
6O

AUUGN

~’h - A Functional UNIX Command Interpreter

be written as

def change(old new) =

map(lambda(x) mv(x:old x:new) map(stripsuffix(old) glob("*":old)))~

3. EXECUTION

#%’h commences by parsing any function definitions found in the file .~%-ht’c in
the user’s home directory and any files indicated on the command line. The
function definitions found here are those the user desires to establish a
command environment of commonly used functions. Typically included is the
"lookup path" for the location of programs and function definitions :

def path = [". /bin /usr/bin" "/u/lib/fsh" 3~

which defines a function returning a list of directory names.

~L~’h then enters a "read-parse-evaluate-print" loop. Input expressions are
parsed using a parser generated with ya~. A parse tree is created with
operators or subexpressions at the nodes and atoms at the leaves. This tree is
traversed by applying each operator to -its arguments. If a function (or UNIX
program) is to be evaluated, its definition is first sought in the global
environment, then in a file of the same name in a directory in the search path
(each of the directory names returned when the path function is evaluated).
The definition of a UNIX program "is equivalent to ~he binary image of the
program on the disk, and "evaluation" of this program, akin to its execution.

As an example, the user may define the prompt as a function accepting an
integer parameter.

def prompt(n) = "\n" : itoa(n) : -.. ,

When t~h attempts to print the prompt, the pt’ompt function is evaluated in the
global environment. If it is not found, the pat~ function is evaluated to
obtain the directory list to locate a file containing the prompt 1"unction. In
evaluating the prompt, the function /toa (converting an integer to a string) is
required, and again the path function is used to locate the ~toa 1unction. A
program or function’s definition is only loaded into the global environment if
it is found in a file of the same name (as is the UNIX convention for
executable files). Using a stack of current input files, this procedure may
continue until some operating system limit is reached.

path and prompt are examples of functions that the command interpreter
evaluates during normal evaluation of the user’s functions or programs. Others
include ~ath (for changing the current working directory) and ~feb~ (the
level of function debugging reported). To indicate whether or not timing of
commands is required a function, t£m~ may be defined which returns true or
false.

AUUGN
61

Vol 6 No 5

Functional UNIX Co=mand Interpreter

BUILT-IN COHHANDS AS FUNCTIONS

Historically, UNIX utilities such as echo and test existed as programs which
were spawned by the shell and their result (exit-status) monitored. For
reasons of efficiency these programs are now built into shells, increasing
their size and complexity. These commands are often called buflt-fn commands.

f%"h only incorporates those commands as built-in functions which cannot
meaningfully exist as seperate programs. A good example is the command to
change the current working directory. The current directory is an attribute of
each process and cannot be directly passed back to the calling process.
Spawning a new process to change directory would leave the interpreter in the
original directory. Hence, changing directories must be performed by the
interpreter itself. For this reason there is no change directory program under
UNIX and ~h has a built-in function to change directories. In contrast, the
program test may exist as a seperate program and is not built into

For example, the change directory command is defined as :

def cd(directory) = builtin("cd" directory);

and may be evaluated with

cd("/user/chris/fsh");

ALL builtin functions return a result. The cd function returns either ~ or F
indicating whether or not it was possible to change directories. The function
~l~ (described earlier) is also a built-in function which returns a possibly
empty list of filenames.

Built-in functions also enable the user to access many values associated with
the user, his terminal and default parameters for commands. Under UNIX this
information is contained in an #nv~’onmen~ a collection os strings of the form
/~me= ~/e. The name describes the attribute contained in ~a~ue. A
representative environment is :

HOHE=/userichris
USER=chris
TERM=HE
PATH=/bin:/usr/ucb:/usr/bin:/usr/local:/usr/games

This information is inherited from a calling process and is accessed with the
UNIX call .qeten~ t~’h provides access to the environment strings with the
builtin function .qeten~ Frequently used functions are :

Vol 6 No 5
62

AUUGN

P~"h - A Functional UNIX Command Interpreter

def home = builtin("getenv" "HOHE");
def user = builtin("getenv USER");
def term = builtin("getenv" "TERM");
def path = builtin("getenv PATH");
def getenv(name) = builtin("getenv" name);

home.

command [ook"up l~a th

The environment values may be accessed by calling each function. Each function
returns the string value if name is defined and nil otherwise.

The use of the .qetenv function is in contrast to the use of shell vaz’/ables or
she/l parameters in sh and csh. In these shells the shell variables are
referred to by preceding thei~ name with a ’$’, for example Shome and $user.
:~h removes the need for shell variables by providing access to the environment
values with a builtin function. This results in a simpler, more consistent
syntax.

Built-in functions are not implemented as intrinsic functions in the
interpreter. For example the function cd is not builtin, but may call the
function ~uiItinwith the string "cd" as the first argument. This enables the
user to redefine the action of any built-in function for every expression using
local definitions.

5. INPUT/OUTPUT REDIRECTION

Input and output (i/o) necessarily introduce side eSfects in any functional
programming environment. Execution of UNIX programs provides each program with
a standard input channel, either from a pipe, file or (by default) the
keyboard, and a standard output channel, either to a pipe~ file or the
terminal. I/o is part of the operating environment of a UNIX program. This
idea may be extended by considering i/o as part oi" the environment ot any
expression being evaluated.

I/o redirection is treated as a binary operator of expressions, the first, the
expression whose input or output is being redirected and the second, an
expression returning a filename. The result returned by the i/o redirection
operator" is a boolean value indicating the success oi" all redirection for an
expression (see also Error and Signal Processing).

Iio redirection is evaluated in the environment of the current expression,
permitting conditional redirection. The n:’o/:/t command will redirect its
output to successive versions if the indicated output is a directory.

def nroffit(input output) =

nroff(input) -> if isdir(output) then output:’/’:nextfile(output,1)
else output;

If redirection is explicitly indicated, it is added to the current i/o
environment. By maintaining i/o as part of an expression’s environment, ~/o may
be inherited by any expression from its outer environment as are 1’unction
definitions and parameters. I/o redirection for a particular expression may be
viewed similarly to a local function definition for any expression. By default,
i/o is taken from the standard input and output of the interpreter.

AUUGN
63

Vol 6 No 5

~’h - A Functional UNIX Command Interpreter

6. ERROR AND SIGNAL PROCESSING WITH FUNCTIONS

During the parsing of an expression, all syntax errors are reported by way of
type and location. If a syntactically incorrect function definition is being
read from a file on which the user may edit, a copy of the syntax errors are
placed in the file and the user’s edito: function, typically

def editor = vii

is evaluated using ~ath, and if possible, applied to the file containing the
function definition. If the file is modified, it is re-parsed and evaluation
continues.

Run-time errors are of two types - those from which no meaningful recovery is
possible, and those from which the user may recover by supplying an alternative
action or result. The first type, such as the interpreter’s inability to spawn
a process, or attempting to apply an expression that that is not a function are
trapped and an error message printed.

If an error of the second type occurs, such as division by zero or an invalid
input/output redirection, the user defined function e:’/’o:" is evaluated in the
~z:’:e/~t environment enabling the user to recover from the error. As an example,
the following functions divide one list through by another,

def divlist(l n) = if null l then nil
else (if hd n=O then maxint()

else hd I/ hd n) . divlist(tl l tl n)~

def divlist(l n) = if null l then nil
else (hd l/ hd n . divlist(tl l tl n))

where error(type val) = if type=2 then maxint()
else error(type val);

The first function provides a thorough check against a division by zero, at the
expense of a test that may never evaluate to true. The second uses the ~/’:’oz" to
trap the division by zero as an exception, saving the test. Note that the local
definition of e/’z’o:" is not recursive (where is used rather than whererec) and
if an error arises that is not division by zero (here represented by 2), the
error can propagate to the outer (global) environment. By having a global
"catchall" e:/’o/" function, the user can both trap all errors and provide their
own error messages. For example, the er/’o~ function below reports two explicit
errors.

def error(errno val) =

let print(str) = builtin("error" str val)
in
if errno=2 then print("Attempted division by 0")
if errno=3 then print("Unable to redirect output")
else print("Error")~

A s~qz~mL or interrupt may be received at any time by a command interpreter and
so cannot predictably return a meaningful result to the current expression

Vol 6 No 5 AUUGN

~’h - A Functional UNIX Command Interpreter

being evaluated. However its occurrence must be noted and an action performed
upon receipt of a signal. ALL signals received by t3’h can either be trapped or
ignored through the user defined function ~’ap, shown below. The action taken
upon receipt of a signal is to evaluate the ~,ap function in the current
environment and the result returned to the "top-level" environment (where it is
printed). The special value nil is used to indicate that a signal is to be
ignored. As in the case of error handling, the use of non-recursive Local
definitions of ~’aA> enables signals to be propagated from each expression
level.

def trap(signal) =

let print(str) = builtin("trap" signal str)
in

if signal=2 then print("interrupt")
else if signal=3 then nil
else print("trapped " : itoa(signal));

7. IMPLEMENTATION

t3’h is written in the C programming language and runs under the 4.2BSD UNIX
operating system on a Digital VAX computer. Other than for memory requirements,
t~h could be transported to a smaller UNIX environment as no 4.2BSD specific
features have been used.

The interpreter performs all calculations in a static heap of 240k and uses a
dynamically allocated stack typically requiring a further 3Ok. A stack is used
to represent the input/output environment, limited by the number of files a
single process may have open. Strings are stored uniqely in a hash table.

Garbage collection is performed using Knuth’s modified version of the Schorr-
Waite algorithm [Schorr][Knuth], all accessible data in the global environment,
run-time stacks and the input/output stacks is marked and all unmarked storage
collected. Garbage collection is performed when the heap is exhausted or if
there is sufficiently high memory usage before the p/’o~pt lunct]on is
evaluated. This frequency does not cause a noticeable degradation in speed
under normal loads. Real time garbage collection has been examined
[Dijkstra][Wadler]. Host real-time algorithms require two equally sized data
spaces. Considering the large amount of memory already required by the
interpreter, this memory overhead would be excessive and has not been included
in t~h.

~.~ when used as a command programming language requires only one process to
evaluate command scripts (functions). Functional composition may be evaluated
within one process rather than one process for each shellscript as required
when piping between processes in conventional shells. UNIX programs and pipes
between UNIX programs still result in processes being spawned, their exits
being monitored.

Although not used here, [azy evaZ~/ation [Henderson] could be used in a command
interpreter. This would permit the composition of two t%’h functions to behave
similarly to two programs connected with a pipe. Pipes under UNIX permit the
passing of possibly infinite character streams between two processes. The

AUUGN
65

Vol 6 No 5

Functional UNIX Command Interpreter

process producing the character stream executes until its normal termination or
until the receiving process terminates. If the latter occurs, the pipe
connecting the processes is termed "broken". The writing process learns that
the reading process has terminated by attempting to write on this "broken
pipe". This often results in the premature termination of the writing process.
With lazy evaluation possibly infinite data structures may be passed between
two functions. The reading function requests input from the writing function.
This demand dr Yven concept of a pipe would result in each function only
performing as much work as required and would guarantee a cleaner termination
than the "broken pipes" under existing interpreters.

8. CONCLUSION

The UNIX file system and process structure encourage the use of functions to
control an interactive environment. This paper has described the functionality
available in a command interpreter under the UNIX operating system. A
functional shell, tL~h, has been introduced by way of example which encourages a
functional consideration of commands and provides a functional treatment of
command composition, input/output redirection and signal and error handling.
~%’h provides the user with control over his interactive environment with a
simple and consistent command syntax.

Vol 6 No 5
66

AUUGN

Functional UNIX Command Interpreter

References

[Backus]

[Baden]

[Bell3

[Dijkstra]

[Henderson]

[Kamath]

[Knuth]

[Matthews]

[Raoult]

Backus, J.
(ran Functional Pro.qrammT’#gbe Z Ybe/’atedF/’om the
w~n-Neumann StyZ.~.
A Functional Style and its ALgebra of Programs.
CACH, Vol 21, No 8.
August 1978, pp613-641.

Baden, S B.

Proc IEEE COMPCON, 1983.
pp274-277.

Bell Telephone Laboratories.
7~ LINZ,¥P/’o.qramm@/"s ,~anuaZ

Murray Hill, New Jersey.
1983.

Dijkstra EW, Lamport L, Martin AJ,
Scholten CS and Steffens EFM.
On the
CACM Vol 21, No 11
Nov 1978, pp966-971

Henderson, P.
Funct~’on~ P/’o.q/’ammY/~q : ,4pp~Ycatfon and Zmp~ementatTon
Prentice-Hall International Computer Science Series
ed : C.A.R Hoare
London, 1980.

Kamath, Y.

Env~’onment ~/" LINZX
M.Sc Thesis, University o~ ~outh Carolina

Knuth, D.E.
7h@. /Ir t o ~ Compute/" P/’o.qramm f#.q
VoL !, Fundamenta~ ALgor ithms

Addison-Wesley, Reading, Mass.

Hatthews, M.

IEEE SOUTHEASTCON ’83 PROCEEDINGS
pp91-94.

Raoult, JC.
P/’~ez’ties oF a Notation fbz" 4~mb~;fng Fun~:tz’ons’
JACM Vol 30, No 3.
July 1983, pp595-611.

AUUGN
67

Vol 6 No 5

:~’h - A Functional UNIX Command Interpreter

[Ritchie]

[Schorr]

[Shultis]

[Stabile]

[Wadler]

Ritchie, D.
7he UNIX 7~e-Sha:i~q. System

Bell Systems Technical Journal
Vol 57, No 6, 1978.

Schorr, W.
An Efficient Hach ine-lndependent P:oceduPe
~a~’ba~qe ~LLection on ~arious g
CACH Vol 10, No 8.
1967, pp 501-506.

Shultis, J.
A Functional SheLL
SIGPLAN Notices, Vol 18 No 6, 1983.
also : Proc. Symp. on Prog. Lang. Issues
in Software Systems, pp202-211.

Stabile, L.A.
FP and its uses as.a ~)mmand La/~qu~qe
Proc IEEE COMPCON, 1980.
pp301-306.

Wadler, PL.
AnaLysis of an AaLgorithm :~r Real Time ~az’ba.qe CoLLection
CACH Vol 19, No 9. -
pp 491-500.

Vol 6 No 5
68

AUUGN

t~’h - A Functional UNIX Command Interpreter

APPENDIX I : THE SYNTAX OF t~"h.

command
defn
params

= (defn I expr) , .
= def identifier ’(’ formal_args ’)’ ’=’ expr.
= {identifier}.

expr = identifier
constant
’(’ expr ’)’
lambda ’(’ formal_args ’)’ expr
\ ’(’ formal_args ’)’ expr
expr ’(’ {expr} ’)’
unary_op expr
expr binary_op expr
expr input-redirect
expr output-redirect
expr input-redirect output-redirect
if expr then expr else expr
(let I letrec) bindings in expr
expr (where I whererec) bindings

constant = integer I character I string

I TI F I nil.
list = ’[’ {constant} J {list}

I ’{’ string ’}’ .

unary_op = hd I tl
I atom I null
Iint I char I string
I not .

input-redirect = ’<-’ expr .
output-redirect = ’->’ expr

I ’->>’ expr .

input" t/’om

output a.ppended to

formal a/’~s = &~ntft’Ye/’l ~/’~aLargs
bindings = binding I bindings ’,’ binding .
binding = identifier

I identifier ’(’ params ’)’ ’=’ expr .

AUUGN
69

Vol 6 No 5

The Perth AUUG Meeting:
A Visual Perspective.

or

How I Pestered Everybody With a Camera,
and

How They Came Out.

Well, there I was in Perth, going to this meeting, and faced with the usual prospect of being
dragooned into work merely because I was unfortunate enough to be the AUUG Secretary. "Ha," I said
to my roommate Chris Maltby, "Ha," I said, "I’11 fool them, I’ll bother all of the speakers by taking
photos at crucial moments of their talks."

Chris (the Treasurer) replied "Just don’t do it to me, or else I’ll ...". I won’t tell you what he
would do. Suffice it to say that the picture of Chris is not shown here.

However, lots of others are.

Taking pride of place, because organising a meeting is even harder than being Secretary of
AUUG, so I really sympathise with him, and because he did a whacking good job, is Glenn Huxtable.
He also gave an interesting talk about setting fire to prominent public buildings, or something like that.

This was a meeting chock-a-block with overseas speakers. The first of these was Kirk McKusick, who
was really from the University of California at Berkeley, although there was some confusion over this in
the program.

Vol 6 No 5 AUUGN
70

Since this was one of the first talks, the photo was not very good, being taken by my inexperienced self.
I made up for this later, getting a reasonable shot of Kirk while he thought I was getting a shot of his
friend Eric. I also got a very good one of Kirk at a skinny dip on Rottnest Island, the negative of which
is for sale to the highest bidder.

AUUG got a bonus when we invited Kirk. He had enough miles on a free travel program to get a
free ticket for someone else, so when we invited him, we paid for his ticket, and some airline paid for
Erie Allman.

Eric, seen here during his talk, works for Britton-Lee, makers of database back-ends. He had a great T-
shirt, saying "Get your bits out of our Back End". I want one.

AUUGN
71

Vol 6 No 5

We got in touch with Kirk and Eric through Robert Elz, that villain of the melodrama from the
1984 meeting. Robert is rabidly antiphotography, so Kirk and Eric helped us get the next photo by
snatching the program away from his face just at the right moment.

Captions are desired for this photo, just to make life even harder for Robert.

The other (other) keynote speaker was Roger Hicks, representing the NZUSUGI (New Zealand
UNIX Systems User’s Group Inc.?). He had good t-shirts for sale, which just goes to show the terrible
commercialisation of the NZ group. His talk was a real eye opener for many of the listeners, and we
have a lot to learn from this young and progressive group. Not a flattering photo Roger, I’m sorry.

Vol 6 No 5
72

AUUGN

The next nearest to a keynote speaker was Andrew Hume (or Huge) who had come all the way
from the US to be with his native Australians and their Comet. His talk was quite interesting, being
about folding regular polyhedra, and showed that with enough backing from Bell Labs anything can
make a good presentation.

Here, I will present the locals of the meeting. These three were much in evidence around the meeting,
with the first two giving talks, and all three helping with organisation. There were a host of others who
helped, but these were the only ones with decent photos. Indeed, the last was the only photo given with
cooperation.

With great embarassment I admit that I am writing this much later than intended, and the photos
were shuffled by well meaning lookers, so I have lost the names of all but the first, Chris McDonald,
and I may have got that one wrong too, and I can’t get on to Glenn to check, and I’m sorry, god I’m
sorry, I’m just so ...

AU-UGN
73

Vol 6 No 5

LATE NEWS! STOP PRESS! (I told you this was a last minute effort.) Glenn has responded to my
descriptions and I now have more names. I like to think the next one is Mark Ellison, if he isn’t he
should be, and Glenn is very sorry...

This next one is of Anita Graham, who is actually with the West Australian Regional Computer
Centre, but who was around and helpful all of the time.

Vol 6 No 5 AUUGN
74

Now come the die hards. These are the people that you see at all of the meetings, who will try to
come even if it kills them, and who quite often talk. We need more of these. And just to further rankle
Robert Elz, I’ll put him first...

Bob Buckley, as always an erudite and well informed speaker, as well as funny. He was lying down for
the talk, which is why the photo is long and skinny, not short and wide.

AUUGN
75

Vol 6 No 5

Steven Landers, who works with Esso, and proves that commercial applications are more than
viable under UNIX.

Jeremy Firth was actually making his first journey (to my knowledge) to an AUUG meeting, from
CSIRONET in Hobart.

Vol 6 No 5 AUUGN
76

Roy Rankine is an old hand, and came all the way from Sydney. He has just started with a new
company, whose name I have forgotten.

Then, of course, the inimitable Chairman of AUUG, ,~ohn Lions, put in his bit, but he gets too much
publicity as it is, so I left him till later.

AUUGN
77

Vol 6 No 5

Well, that is it for the photos. There were of course more, including me and Chris Maltby, but of
course I won’t put them in. The photos are part of the AUUG archives, and can be made available en
masse if desired.

Greg Rose.

Vol 6 No 5
78

AUUGN

Preliminary Notice and First Call for Papers.
Australian Unix systems User Group.
1986 Winter Meeting.
Australian National University, Canberra.
September, 1-2, 1986.

Introduction

The 1986 Winter Meeting. of AUUG will be held at the Department of
Computer Science at the Australian National University, Canberra,
on Monday and Tuesday, 1 & 2, September, 1986.

Local arrangements are under the direction of Peter Wishart
[’pjw@anucsd.oz’] at the Department of Computer Science,
Australian National University, Canberra, ACT 2601.

Call for Papers

Papers on subjects related to the Unix system, or Unix-like
systems are now called for. Papers relating to new developments,
new applications, or new insights or research into the UNIX
system are particularly requested, but tutorial and survey
papers will also be very welcome.

The program committee consists of Chris Campbell (chairman),
Ross Nealon and Piers Lauder. Abstracts should be sent to the
Chairman or one of the committee members as soon as possible,
preferably no later than Friday, 23 May.

Completed papers are needed for reviewing by Friday, 20 June.
It is requested that final versions be ready for troff
formatting and publication by no later than Tuesday, August 5.

Abstracts and full papers may be sent by ordinary mail to:
Chris Campbell,
c/- Olivetti Australia Pty Ltd,
140- William Street,
Sydney 2011.
[(02) 358-2655 x 466, or ’chris@olisyd’]

or by ACSnetwork mail to Piers Lauder
[(02) 692-2824, or ’piers@basser.oz’]

Ross Nealon is at the University of Wollongong
[(042) 27-0802, or ’ross@uowcsa’]

The conference is one of the best way of sharing your UNIX

AUUGN
79

Vol 6 No 5

experience with others. Think seriously about presenting
a paper at this conference.

It would be appreciated if you indicated your intention to
the program committee as early as possible.

Hardware Display

There will be a display of appropriate hardware and software in
conjunction with the conference, and vendors/manufacturers are
invited to demonstrate their products. For more information on
participating in this display, contact:

Registration

What else ?

Peter Wishart
Department of Computer Science,
Australian National University,
Canberra City, ACT 2601.
[(062) 49-3850, or ’pjw@anucsd.oz’]

The registration fee will be $50, with a $10 discount for
AUUG members, and a further $10 discount for early registration.
To qualify for the early registration discount, your
registration must be received and paid for by not later than
Monday, 18 August.

Each speaker will receive a free ticket to the conference dinner,
and will be entitled to a complete remission of fees if a
final version of the paper in publishable format (2-4000 words)
is received by August 5.

Details of accommodation and transportation will be announced
in the next newsletter.

Further information will be posted to aus.auug in the near
future, including registration forms. AUUG members will receive
registration info via snail mail in due course. Non members,
not participating in netnews, may write to Peter Wishart.

Vol 6 No 5
80

AUUGN

Australian UNIX* systems User Group
(AUUG)

Membership Application

I, do hereby apply for ordinary($50)/student($30)**
membership of the Australian UNIX systems User Group and do agree to abide by the rules of the association especially with
respect to non-disclosure of confidential and restricted licensed information. I understand that the membership fee entities me
to receive the Australian UNIX systems User Group Newsletter and I enclose payment of $__ herewith.

Signed Date

Name

Mailing address for AUUG information

Telephone number (including area code)

UNIX Network address

I agree to my name and address being made available to software/hardware vendors
YES NO

Student Member Certification

I certify that is a full-time student at

Expected date of graduation

Faculty signature Date

Office use only 10/85

* UNIX is a trademark of AT&T Bell Laboratories

** Delete one

AUUGN
81

Vol 6 No 5

Australian UNIX* systems User Group Newsletter
(AUUGN)

Subscription Application

I wish to subscribe to the Australian UNIX systems User Group Newsletter and enclose payment of $
for the items indicated below.

herewith

Signed Date

II One years subscription (6 issues) available on microfiche or paper

[’q Back issues of Volume 1 (6 issues) available only on microfiche

I[Back issues of Volume 2 (6 issues) available only on microfiche

[~ Back issues of Volume 3 (6 issues) available only on microfiche

II Back issues of Volume 4 (6 issues) available on microfiche, some paper copies

1[Back issues of Volume 5 (6 issues) available on microfiche, some paper copies

[._J Subscribers outside Australia must pay more per volume to cover surface mail costs

[__l Subscribers outside Australia must pay more per volume to cover air mail costs

$30.00

$24.00

$24.00

$24.00

$24.00

$24.00

$10.00

$30.00

Name

Mailing address

Telephone number (including area code)

UNIX Network address

I agree to my name and address being made available to software/hardware vendors
YES NO

Office use only 10/85

* UNIX is a trademark of AT&T Bell Laboratories

Vol 6 No 5
82

AUUGN

