
Australian UNIX systems User Group Newsletter

Volume 10,

August

Number 4

1989

AUUG89 Conference Issue

Registered by Australia Post, Publication Number NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 10 Number 4

August 1989

CONTENTS

AUUG General Information 3

4Editorial

Adelaide UNIX Users Group Information 6

Western Australian UNIX systems Group Information7

AUUG Institutional Members 8

President’s Letter 10

AUUG 89 Comments from the Programme Committee Chair11

AUUG 89 Programme 12

AUUG 89 Keynote and Invited Speakers Biographical Notes15

AUUG 89 Conference Papers 17

UNIX - a Dialectic 21

Sun, Surf and X in California - Abstract 26

The NeWS Window System - A look under the hood27

Adaptable Text Interfaces 33

Strategies for Writing Graphical UNIX Applications Productively and Protably50

Open Electronic Messaging and its role in EDI 62

UUL - UNIX User Limits 74

UNIX and Internationalisation 84

UNIX and Artifical Intelligence in the ’90s 97

Storage and Retrival Methods for an Interactive Spelling Corrector98

Interprocess Communication in the Ninth Edition Unix System115

Secutriy in Standard Environments 125
,~.

Enhanced Error Processing for UNIX Parsers 127

Macintosh system emulation under A/UX, Apple UNIX140

User Mode File Servers 154

Ace - A syntax-driven C preprocessor 167

ANSI-C So What? 178

No one ever got fired for delivering on time 183

AUUGN 1 Vol 10 No 4

AUUG 89 Conference Papers continued 201

Problems Facing Corporate Distributed Database Systems201

~ OLTP Performance - What’s Behind the Smoke and Mirrors208

What’s Gold Lotto On-Line? 216

Evaluation of Computer Tenders in the Goverment Context223

Sun, Surf and X in California 238

SWIGS Report 248

AUUG Newsletter Back Issues 250

AUUG Membership Catorgories 251

AUUG Forms 252

Copyright © 1989. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies, are made without modification, and are not made or
distributed for commercial advantage. Credit to the AUUGN and author must be given. Abstracting
with credit is permitted. No other reproduction is permitted without prior permission of the Australian
UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 10 No 4 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

AUUG Executive

President Greg Rose Secretary Tim Roper

greg@softway.sw.oz
Softway Pty. Ltd.
New South Wales

timr@labtam.oz
Labtam Information Systems Pty. Ltd.
Victoria

Treasurer Michael Tuke

mjt@conjure@ labtam.oz
Vision Control Australia
Victoria

Committee
Members

Peter Barnes

pdb@uqcspe.cs.uq.oz
Computer Science
University of Queensland

John Carey

john@labtam.oz
Labtam Information Systems Pry. Ltd.
Victoria

Pat Duffy Chris Maltby

pat@pta.oz
Pyramid Technology Australia
New South Wales

chris@softway.sw.oz
Softway Pty. Ltd.
New South Wales

Next AUUG Meeting

Details of the AUUG90 Conference and Exhibition will be announced at AUUG89.

Further details will be provided in the next issue.

AUUGN 3 Vol 10 No 4

AUUG Newsletter

Editorial
Welcome to the special AUUG89 Connfernce issue of Newsletter. This issue contains the papers that
will be presented at this Conference. I hope you will enjoy hearing our range of speakers which our
Programme Chairman, Peter Barnes has assembled for this occasion.

This will be my last Newsletter I will be prepare for AUUG, after 3 years and 18 issues. It has been
long haul and I look forward to a change of scene. I would like to thank Ken J. McDonell for getting
me into this mess in the first place. Seriously, thank you kenj, for having the faith in me to do the job.
Also thanks to Tim Roper, Robert Elz, Chris Maltby, and Kartharine Ching who have assisted me with
the AUUGN production and distribution. I hope my contributions to the format and logistics of AUUG
production will useful in building an even better Newsletter in the future. My only regret is that I have
failed to keep local content as high as it should be, especially when AUUG conferences aren’t providing
an imputeus for papers.

I wish the new editor David Purdue all the best and every success.

Unfortuately you are not rid of me yet as I will be working on the General Committee this year and be
looking to help carry the User Group forward in its endevours.

The Newsletter and the Annual Conference are the public face of AUUG and need your continuing and
increased support. PLEASE CONTRIBUTE to the effort if you wish AUUG thrive and grow.

Goodbye for now - John Carey.

PS REMEMBER, if the mailing label that comes with this issues is highlighted, it is time to renew your
AUUG Membership.

AUUGN Correspondence
All correspondence reguarding the AUUGN should be addressed to:-

David Purdue
AUUGN Editor
Labtam Information Systems Pty. Ltd.
43 Malcolm Road
Braeside Victoria 3195
AUSTRALIA

ACSnet: davidp@labtam.oz

Phone: +61 3 587 1444
Fax: +61 3 580 5581

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 20th of October 1989.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX Will be accepted.

Hardcopy submissions should be on A4 with 30 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on .an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Vol 10 No 4 4 AUUGN

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Tim Roper.

Back Issues

Various back issues of the AUUGN are available, details are printed at the end of this issue.

Acknowledgement

This Newsletter was produced with the kind assistance and equipment provided by Labtam Information
Systems Pry Ltd.

Disclaimer

Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committe~.

AUUGN 5 Vol 10 No 4

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135}!mulga!aegir.dmt.oz!dhj
ARPA: dhj %aegir.dmt.oz!dhj@seismo.arpa
CSNET: dhj@aegir.dmt.oz

Vol 10 No 4 6 AUUGN

WAUG
Westem Australian UNIX systems Group

PO Box 877, WEST PERTH 6005

Western Australian Unix systems Group

The Western Australian UNIX systems Group (WAUG) was formed in late 1984, but
floundered until after the 1986 AUUG meeting in Perth. Spurred on by the AUUG
publicity and greater commercial interest and acceptability of UNIX systems, the group
reformed and has grown to over 70 members, including 16 corporate members.

A major activity of the group are monthly meetings. Invited speakers address the group on
topics including new hardware, software packages and technical dissertations. After the
meeting, we gather for refreshments, and an opportunity to informally discuss any points
of interest. Formal business is kept to a minimum.

Meetings are held on the third Wednesday of each month, at 6pm. The (nominal) venue is
"University House" at the University of Western Australia, although this often varies to
take advantage of corporate sponsorship and facilities provided by the speakers.

The group also produces a periodic Newsletter, YAUN (Yet Another UNIX Newsletter),
containing members contributions and extracts from various UNIX Newsletters and
extensive network news services. YAUN provides members with some of the latest news
and information available.

For further information contact the Secretary, Skipton Ryper on (09) 222 1438, or
Glenn Huxtable (glenn@wacsvax.uwa.oz)on (09) 380 2878.

Glenn Huxtable,
Membership Secretary, WAUG

AUUGN 7 Vol 10 No 4

AUUG Institutional Members

Vol 10 No 4

ACUS / UNISYS
Adept Business Systems Pty Ltd

Aldetec Pty Ltd
Apple Computer Australia

Apscore International Pty Ltd
Australian Electoral Commision

Australian Nuclear Science & Technology Organisation
Australian Wool Corporation

Autodesk Australia P/L
BHP Melbourne Research Labs

Ballarat Base Hospital
Basser Department of Computer Science

CSIRO DIT
CSIRO Division of Manufacturing Technology

Centre for Information Tech & Comms
Civil Aviation Authority

. Comperex (NSW) Pty Ltd
Computer Power IR+D, NSW Branch

Computer Software Packages
Computerscene International
Corinthian Engineering Pty Ltd
Cybergraphic Systems Pty Ltd

DBA Limited
Data General

" Davey Products Pty Ltd
Dept of Agricultural + Rural Affairs

Dept of Indus,try, .Technology and.Resources, Victoria
Dept of Lands- Central Mapping Authority

Digital Equipment Corporation (Australia) Pty. Limited
Earth Resource Mapping Pty Ltd

Elxsi Australia Ltd
Flinders University Discipline of Computer Science

Fujitsu Australia Limited
Gould Electronics Pty Ltd

Great Barrier Reef Marine Park Authority
Harris & Sutherland Pty Ltd

Hewlett Packard Australia Limited
Hewlett-Packard Australian Software Operation

IPS Radio and Space Services
Ipec Transport Group

Labtam Information Systems Pty Ltd
Lands Department, Qld

Lionel Singer Corporation
8 AUUGN

AUUG Institutional Members

Macquarie Bank Limited
Macquarie University

Main Roads Department, Queensland
Monash University Computer Science
Motorola Communications Australia

NEC Information Systems Australia Pty Ltd
NSW Parliament

National Engineering Information Services P/L
Nixdorf Computer Pty Limited

Olivetti Australia Pty Ltd
Olympic Amusements P/L

Overseas Telecommunications Corporation
Performance Systems

Prentice Computer Centre
Prime Computer of Australia Ltd

Q. H. Tours Limited
Racecourse Totalizators Pty Ltd

Reark Resources
SEQEB

Sigma Data Corporation Pty Ltd
South Australian Institute of Technology

Sphere Systems Pty Ltd
State Bank Victoria

State Library of Tasmania
Sun Microsystems Australia

Swinbume Institute of Technology
Tattersall Sweep Consul(ation

Telecom Network Engineering - C.S.S
The Australian National University

The Department of Industry Technology and Commerce
The University of Adelaide

The University of Melbourne
The University of New South Wales

The University of Wollongong
University of New England

University of Technology Sydney Computing Services Division
Vicomp

Wang Australia Pty Ltd
Yartout Pty Ltd

AUUGN 9 Vol 10 No 4

President’s Letter

Welcome to the Proceedings of the AUUG’89
Conference.

Hopefully, as you read this, you will be surrounded
by the glamour of the Sydney Hilton, with the
excitement of the Exhibition of New Things just up
the stairs, and an impressive list of speakers just
waiting to address you.

More seriously, AUUG’89 is an important event.
UNIX is entering the growth phase that some
pundits predicted ten to fifteen years ago (and that
others are still predicting to be ten years away, if
ever). UNIX has suddenly been seen to be of great
commercial importance, and this conference is the
largest yet to be run by AUUG with a clearly
commercial focus.

The theme of the conference is the proposition that
’iNobody ever got fired for buying UNIX". This is
clearly untrue, as it is written in the past tense, and
I know one person about five years ago.., but that
is a different story. The intent of the statement is
that in the future, UNIX will be one unquestioned
attribute of a correct purchasing decision. In many
instances this is already the case, but I believe that
it is in the best interests of the computer industry as
a whole for us to work toward the universality
implied in the statement.

That is, after all, what UNIX offers - universality.

The fact that the conference theme contains the word "buying" also demonstrates AUUG’s commitment
to servicing the entire spectrum of UNIX users, not only the academics and researchers who brought it
to life and prominence, or the computer manufacturers whose very existence depends upon the
availability of a portable, fully functional operating system. Many of the real users of UNIX today have
never heard of it - but they should not be ignored, and AUUG is focussing more of its efforts toward
helping these people, and the industry in general.

I hope you have been able to attend the AUUG’89 conference and Exhibition, and that it, and these
proceedings, are of great use to you. If they are, it will be because of the great efforts of many people,
and I would like to extend to them, "Many thanks".

Regards,

Greg Rose AUUG President.

(Note to the Editor: If you publish my picture with this, we’ll have to find another editor...)

(Note from the Editor: Sorry Greg, you talked me into it, since this is my last issue couldn’t resist)

Vol 10 No 4 10 AUUGN

Comments from the Programme Committee Chair

AUUG89

Peter Barnes

Key Centre for Software Technology
Department of Computer Science

University of Queensland

I accepted this position with some trepidation, after last year’s successful conference. Could we possibly
equal, or even better that performance? Having seen the papers for AUUG89, I believe we can claim to
have done that. That is to say, this year’s authors have done that, for the success of any conference
derives, eventually, from the quality of its papers, and this conference is no exception. AUUG has
achieved several milestones in that area this year.
t~irstly, we have a greater breadth and depth of experience from our invited speakers than ever before.
Dennis Ritchie is almost impossible to introduce without resorting to cliches. We are certainly honoured
to have him at AUUG89. One of the parents of UNY~, he has continued in that role over the years, mak-
ing further key contributions to its development and maturation. In his keynote address, he surveys his
(now perhaps grown-up) child and its relations.
James Gosling, familiar to many for EMACS, brings to us considerable expertise in windowing sys-
tems, and is joined in that area by Stephen Brown, who will discuss user interfaces. Their insights into
this rapidly evolving area, one of great importance to the commercial success of UNIX, should be of
interest to all.

We are also pleased introduce Sunil Das from UKUUG, who brings us light-hearted news of their
activities. Sunil will also be presenting a (serious) paper on aspects of an interactive spelling corrector.
Lastly, we welcome back Ross Bott. Those who heard Ross’ paper last year (on ABI and OSF) will be
eagerly anticipating his paper on the commercial computing engine of the 1990’s.

It is in the emphasis on commercial UNIX that AUUG achieves its second milestone, in hosting the larg-
est u~x conference in Australia, with a theme that is particularly relevant - u~x in the commercial
marketplace.

The third milestone is in the number, and quality of papers submitted for this conference. For the first
time, we have had, reluctantly, to reject nearly as many papers as were accepted, such was the response
to the Call for Papers. This is a very good omen for future conferences, and we hope that many papers
which could not be included in this conference will be re-submitted for the proposed regional Summer
Conferences next year.

Of course, having twice as many submissions as programme slots puts a considerable burden on the Pro-
gramme Committee, and I would like to thank the members of the Committee for their timely .and con-
siderable efforts. Likewise, I should like to thank all authors for their patience with the inevitable slip-
pages and re-organizations. Many thanks, as ever, go to John Carey, for beating the brunt of all slip-
pages, and working typesetting miracles to produce these proceedings. Finally I should like to thank my
employer for the time and resources necessary for such (inter)national organization.

I hope that you will find much that it interesting and relevant in AUUG89, whether you be expert or
neophyte, programmer or manager, academic or business person. I look forward to hearing your paper
at the next conference.

AUUGN 11 Vol 10 No 4

AUUG 89

Australian UNIX* systems User.Group
1989 Conference and Exhibition

Wednesday 9th to Friday 1 lth August, 1989
Hilton International, Sydney

PROGRAMME

DAY 1 - WEDNESDAY, AUGUST 9th

0800-0930 Registration

0930-1030 Keynote Address: UNIX - a Dialectic
Dennis Ritchie, AT&T Bell Laboratories

1030-1100 Morning tea and Exhibition viewing

1100-1200 UNIX User Interfaces
Stephen J. Brown, Hewlett Packard

1200-1230 Adaptable Text Interfaces
Michael Paddon and David Spaziani, University of Melbourne

1230-1400 Lunch and Exhibition viewing

1400-1430 Sun, Surf and X in California - a report on Xhibition 89
Andrew McRae, Megadata Pty. Ltd.

1430-1530 The NeWS Window System: A look under the hood
James Gosling, Sun Microsystems

1530-1600 Afternoon tea and Exhibition viewing

1600-1700

1700-1730

1730-1900

Storage and Retrieval Methods for an Interactive Spelling Corrector
Sunil K. Das and Philip M. Sleat, Computer Science Department, City University London

Break

Cocktail Reception, sponsored by Applied Computing Pty. Ltd.

Vol 10 No4 12 AUUGN

DAY 2 - THURSDAY, AUGUST 10th

0800-0900 Registration

0900-0930 Strategies for Writing Graphical UNIX Applications Productively and Portably
Stephen J. Brown, Hewlett Packard

0930-1000 UNIX and Internationalisation
Andrew Tune, Technix Consulting Services, Pry. Ltd.

1000-1030 ANSI C: So What?
Bruce Ellis, C-Side Software Services

1030-1100 Morning tea and Exhibition viewing

1100-1130 The UNIX Software Operation and System V.4 status
Larry Crume, AT&T UNIX Pacific Co. Ltd. Japan

1130-1200 Open Systems through an Open Process
Gary Oden, OSF - Open Software Foundation

1200-1230 Question Time

1230-1245 Sigma Data Award Presentation

1245-1400 Lunch and Exhibition viewing

1400-1430 UNIX and Artifical Intelligence
Jason Catlett, Basset Department of Computer Science, Sydney University

1430-1500 Open Electronic Messaging and its role in EDI
Ian Sharrock, ICL Australia

1500-1530 Security in Standard Environments
Robert A. Michael, The Santa Cruz Operation, Inc.

1530-1600 Afternoon tea and Exhibition viewing

1600-1630 Interprocess Communication in the Ninth Edition UNIX System
D. L. Presotto, Dennis Ritchie, AT&T Bell Laboratories

1630-1700 UNIX User Groups: A Report from Europe
Sunil K. Das, Computer Science Department, City University London

1700-1800 AUUG Annual General Meeting

1800-1930 Break

t930-2300 Conference Dinner, sponsored by Pyramid Technology Australia

AUUGN 13 Vol 10 No 4

DAY 3 - FRIDAY, AUGUST llth

0800-0900 Registration

0900-0930 UNIX User Limits Revisited
Ray Loyzaga, Basser Department of Computer Science, Sydney University

0930-1000 Macintosh system emulation under A/UX, Apple UNIX
Kent Sandvik and Philip Cookson, Apple Australia

1000-1030 User Mode File Servers
Bruce Janson, Basset Department of Computer Science, Sydney University

1030-1100 Morning tea and Exhibition viewing

1100-1130 ACE: A syntax-driven C preprocessor
James Gosling, Sun Microsystems

1130-1200 Enhanced Error Processing for UNIX Parsers
Arnold Pears and Rhys Francis, Department of Computer Science, La Trobe University

1200-1230 No one ever got fired for delivering on time
Stephen Young, NEC Informations Systems Australia

1230-1400 Lunch and Exhibition viewing

1400-1430 Problems Facing Corporate Distributed Database Systems
Russell Burstow, ICL Australia Ltd., and
S haun Travers, Main Roads Department (Queensland)

1430-1530 The Commercial Computing Engine of the 1990s
Ross Bott, Pyramid Technology Corporation

1530-1600 Afternoon tea and Exhibition viewing

1600-1630 OLTP Performance - What’s Behind the Smoke and Mirrors
Ken McDonell, Pyramid Technology Corporation

1630-1700 What’s Gold Lotto Online? - UNIX
Mark Pickering and David Moles, DMP Software

Vol 10 No 4 14 AUUGN

AUUG 89 Keynote and Invited Speakers Biographical Notes

AUUG is honoured to have one of the fathers of Unix,

DR DENNIS M. RICHIE delivering the keynote address. Dennis was born in 1941, and received his
Bachelor’s and advanced degrees from Harvard University where, as an undergraduate, he concentrated
in Physics and, as a graduate student, in Applied Mathematics.

Since joining the technical staff of AT&T Bell Laboratories in 1968, Dennis has worked on the design
of computing languages and operating systems. After contributing to the Multics project, he joined Ken
Thompson in the creation of the Unix operating system, and designed and implemented the C language
in which Unix is written.

In 1982, Dennis shared the IEEE Emmanual Piore award with Thompson and, in 1983, he and
Thompson won the ACM Turing Award. He was elected to the National Academy of Engineering in
1988. His current research is concerned with structure of operating systems.

Dennis’ keynote speech will be Unix: A Dialectic.

He will examine some of the characteristics that contributed to the success of the Unix system: the
simplicity and power of its model of computation, the culture of tool-making and tool-using, and
portablility. Each of these have inherent negative aspects as well.

For example, the simplicity of the underlying model encourages the assumption that the user understands
the model and is comfortable in using it. Similarly, the decomposition of tasks into simpler tools means
that the user must be familiar with the tools, instead of being presented with a unified interface
specialised to the task that the user needs to do. Finally, portability of the operating system has
necessarily led to several variants of the system, which tends to defeat portability.

Dennis will also present a paper on Interprocess Communication in the Ninth Edition Unix System.

INVITED SPEAKERS

DR. JAMES GOSLING received a bachelor of science in Computer Science from the University of
Calgary, Canada in 1977. He received his PhD in Computer Science from Carnegie-Mellon University
in 1983. He has built satellite data acquisition systems, a multiprocessor version of Unix, several
compilers, mail systems and window managers. He is very well known for his EMACS text editor for
Unix systems and has also built a WYISWYG text editor and a constraint based drawing editor.

James will present two papers, the NeWS Window System: A Look under the Hood, and ACE: A Syntax-
Driven C Preprocessor. The first will cover some of the issues inside NEWS, although a brief overview
of NeWs will be included. Design decisions behind NEWS, particularly the use of the PostScript
language will be discussed. It will cover the awkward problems in the language that led to alterations,
but it will also cover some of the beautiful aspects of the language that lead to the elegant solution of
many problems.

DR. ROSS BOTT, 37, is Vice-President Strategy and Planning, Pyramid Technology Corporation.
Ross has a bachelor of science in mathematics from Stanford University and a PhD in artificial
intelligence from the University of California, San Diego.

Prior to joining Pyramid, Ross spent four years at Xerox’s Palo Alto Research Center on the Star
workstation project, the precursor to the Apple Macintosh. He joined Pyramid in 1982 and has held
various positions, including manager of the group that designed Pyramid’s dualPort OSx operating
system that combined AT&T System V and Berkeley Unix. He was also Manager of the Networking
~d Communications Group, Director of Software, Vice President of Advanced Architectures, and Vice
President of International Marketing.

Ross will present a paper on The Commercial Computing Engine of the 1990’s. He discusses how
relational database management systems (RDBMS) and the client-server architecture they help to
implement will have broad benefits for the next generation of commercial applications. They provide an
elegant basis for distributed computing, freedom from slavery to a single instruction set or architecture,
and much greater programmer productivity in an era where they are our most precious resource.

AUUGN 15 Vol 10 No 4

However, the revolution does not come for free. The performance and capacity requirements mandated
by RDBMSs and client-server software are suprisingly (and remarkably) large. In this presentation Ross
will parameterise some of the requirements and consider how the next generation of commercial
computers must be designed to meet this challenge.

SUNIL K. DAS was awarded a bachelor’s degree in Mathematics by the University of Surrey and a
master’s degree in Computing and Numerical Analysis by the Victoria University of Manchester. Sunil
first encountered the Unix system in 1977 while employed as a research fellow in the Computer
Networks Research Group at University College London where he was investigating distributed
computing environments, local and wide area networking, and network computer systems.

In 1980 he joined the academic stuff of City University’s Computer Science Department where his
research includes concurrent and parallel programming, systems programming and software engineering.

Sunil is also chairman of the UK Unix Systems User Group (UKUUG). He has lectured on Unix and C
related topics in North America, throughout Europe and in Asia.

At AUUG 89 Sunil will present two papers. The first will look at the role and functions of Unix User
Groups in Europe, networking and standards.. It will provide a non-technical overview of the news in
the Unix world in Europe. The second paper describes the storage and retrieval methods for designing
and building an interactive spelling corrector capable of running on a Unix system. This will be
followed by an account of the design, coding and use of the spelling corrector.

STEPHEN J. BROWN is Product Line Manager, Unix User Interface Products for Hewlett-Packard.
He has been at HP for eight years, joining as an R&D engineer. He spent four years developing several
microcomputers which ran the Unix operating system. For the past four years he has worked in Product
Marketing and has had project management responsibility for new product development for HP’s Unix
User Environments.

In addition to the work on HP’s User Interface submission to Open Software Foundation (what is now
OSF/Moti0. Steve’s group is currently working on future programs in the area of system user interface
technology and bringing the HP NewWave technology to Unix.

Steve holds a Bachelor of Science degree in Mechanical Engineering from California Polytechnic State
University and is a registered Professional Engineer in the State of California. Steve will present a
paper on the advances in user interface technology. Starting with the emergence of key "foundation"
software technology such as the X Window System, he will discuss emerging user interface standards
such as Presentation Manager and OSF/Motif. Emerging object-oriented technology promises to provide
the "foundation" layer which will enable the industry to make even greater strides in user interface
technology.

The discussion will cover how far the industry has come with human/computer interface !echnology and
how far we still have to go in order to provide users with the capability to access the full potential of
their computing systems.

GARY ODEN is the director of American Operations for the Open Systems Software Foundation, and
is responsible for all membership activities for North America, South America, Australia and New
Zealand. Oden has bought 20 years of industry experience to OSF. He came to OSF from Digital
Equipment Corporation where his most recent position was group manager for Ultrix product
development. Gary holds a BS from the University of Connecticut and an MBA from Clark University.

His presentation is titled Open Systems through an Open Process and will cover the role of OSF in
providing an Open Software Computing Environment.

Vol 10 No 4 16 AUUGN

AUUG 89 Conference Papers
In order of appearance

UNIX - a Dialectic
Keynote Address

Paper
Dennis Richie

AT&T Bell Laboratories

User Interfaces
Paper Unavailable

Stephen J. Brown
Hewlett Packard

Sun, Surf and X in California - a report on Xhibition 89
Preliminary Paper

Full Paper printed at end of this issue
Andrew McRae

MegaI)ata Pry. Ltd.

The NeWS Window System - A look under the hood
Paper

James Gosling
Sun Microsystems

Adaptable Text Interfaces
Paper

Michael Paddon
David Spaziani

University of Melbourne

Strategies for Writing Graphical UNIX Applications Productively and Portably
Paper

Jannet Dobbs
presented by Stephen J. Brown

Hewlett Packard

Open Electronic Messaging and its role in EDI
Paper

Ian Sharrock
ICL Australia

AUUGN 17 Vol 10 No 4

AUUG 89 Conference Papers

continued

UNIX User Limits Revisited
Paper

Ray Loyzaga
Basset Department of Computer Science

Sydney University

The UNIX Software Operation and System V.4 Status
Paper Unavailable
Larry Crume

AT&T UNIX Pacific Company Limited, Japan

Open Systems through an Open Process
Paper Unavailable

Gary Oden
OSF - Open Systems Foundation

UNIX Internationalisation: recent developments
Paper

Andrew Tune
Technix Consulting Services Pty. Ltd.

UNIX and Artificial Intelligence in the ’90s
Abstract

Jason Catlett
Basset Department of Computer Science

Sydney University

Storage and Retieval Methods for an Interactive Spelling Checker
Paper

Sunil K. Das
Philip M. Sleat

Computer Science Department
City University London

Interprocess Communication in the Ninth Edition UNIX System
Paper

Dennis Richie
AT&T Bell Laboratories

Vol 10 No 4 18 AUUGN

AUUG 89 Conference Papers.
continued

Security in Standard Environments
Preliminary Paper

Robert A. Michael
The Santa Cruz Operation Incorporated

UNIX User Groups: A Report from Europe
Paper Unavailable

Sunil K. Das
Computer Science Department

City University London

Enhanced Error Processing for UNIX Parsers
Paper

Arnold Pears
Rhys Francis

Department of Computer Science
La Trobe University

Machintosh system emulation under A/UX, Apple UNIX
Paper

Kent Sandvik
Apple Australia

User Mode File Servers
Paper

Bruce Janson
Basset Department of Computer Science

Sydney University

ACE - A syntax-driven C preprocessor
Paper

James Gosling
Sun Microsystems

AUUGN 19 Vol 10 No 4

AUUG 89Conference Papers

continued

ANSI C: So What?
Paper

Bruce Ellis
C-Side Software Services

No one ever got fired for delivering on time
Paper

Stephen Young
NEC Information Systems Australia

Problems Facing Corporate Distributed Database Systems
Paper

Shaun Travers
Main Roads Department (Queensland)

The Commercial Computing Engine of the 1990s
Paper Unavailable

Ross Bott
Pyramid Technology Corporation

OLTP Performance - What’s Behind the Smoke and Mirrors
Paper

Ken McDonell
Pyramid Technology Corporation

What’s Gold Lotto Online? - UNIX
Paper

David Moles
Mark Picketing

DMP Software Pty. Ltd.

Vol 10 No 4 20 AUUGN

Unix: A Dialectic

Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill,

NJ 07974 USA

This paper is about why the Unix® system has succeeded, and why it is good, and how its virtues
lead to limitations. It is not about what it doesn’t try to do, or even about what it tries to do but does
badly, but instead is about problems that arise out its very nature and history. I will discuss its compu-
tational model, its use of tools, and portability.

The Model
The Unix kernel embodies a simple, coherent, and powerful model of computation. The operating

system itself has only two underlying concepts: the file system, and the process. Once these are under-
stood, the system as a whole is mastered. Moreover, it should be possible to understand them; they
were designed to be comprehensible, in the sense that a 9-page paper, published in CACM more than a
decade ago [1], still constitutes a description nearly complete enough to serve as an implementation
plan.

The file system has two aspects: its static structure, and the operations that can be performed on it.
The static structure is specified by the set of file names, and their organization, which is a tree of arbi-
trary depth. Some files are directories, and contain names of other files and subdirectories. Directories
can be read, to enumerate the files they contain.

All ordinary files are simply sequences of bytes, without any system-imposed structure. Text
files, in particular, are nothing but characters, with new-line characters to delimit lines. There are no
"access methods" or "file types." Of course, programs can write files with any structure they please,
but the custom is to avoid complicated formats whenever possible.

The operations are few: create a file, delete a file, read bytes from a file, write some bytes. A
newly created file replaces an old one of the same name, and fries grow as necessary.

The file system operations generalize to objects other than ordinary disk files. For example, tapes
and terminals and network connections behave, to the extent possible, in the same way as disk files.
Each is, in its own way, complicated and unique, but a largely successful effort is devoted to making
these things behave in the same way as files, so that a program seldom needs to know what kind of
object it is talking to. In particular, devices have names in the file system, the same protection mechan-
ism applies to them as to regular files, and the same I/O system calls are used.

The characteristic form of interprocess communication, likewise, is treated like file I/O. The pipe
is a connection between two processes, whereby one process writes data that another reads, with buffer-
ing and synchronization handled transparently by the system. Of course, the ordinary read and write
calls apply to pipes too.

The other fundamental object is the process: a program in execution. New processes are created
when an existing process splits, or forks. Often the new process immediately performs an execute
operation-that is, it calls in a new program from a file and causes this program to start running.
Processes have only certain kinds of interaction with the rest of the universe. First, when a new pro-
gram starts executing, it receives several character string arguments via the request that started it.
Thereafter, it carries out I/O to files. Some of these it opens or creates by itself, often getting the file
names from its arguments. There is a convention by which processes start off with a "standard input"
and "standard output," which are pre-opened files that often refer to the terminal but can be redirected

AUUGN 21 Vol 10 No 4

elsewhere.
A standard command interpreter, called the shell, works this way: First, it reads a line from its

standard input; this line specifies a file containing a command, and some arguments. A new process is
created, and the new process calls in the named command, passing it the given arguments. If requested,
the shell will adjust the standard input or output of the command to take input from, or place output in,
a named file, or it will connect several processes to form a pipeline, in which the output of one com-
mand is connected to, and processed by another.

Tools

The characteristic style of user-level programs exploits the metaphor of the toolbox: the com-
mands constitute a set of software tools, each performing a limited function, that can be combined in
powerful and interesting ways. The books of Kernighan and Plauger (see, for example, reference 2)
show how the approach can succeed in environments other than Unix. However, the tools work espe-
cially well in the world provided by the shell, with its notation for combining programs.

The tool metaphor has led to an explosion of interesting commands. Many of them are small:
they are the nuts and bolts of the toolbox. They do things like concatenate files, count words, and
search for text patterns. The approach has encouraged new ideas about how to design programs, and
how to represent data. The crucial perception is that the output of any program is potentially the input
of another. Elementary examples: one asks how many users there are on the machine by sending the
output of the who command into the command that counts lines; one counts the distinct words in a
document by splitting the document into one word per line, sorting, casting out duplicates, and tallying
what results.

Larger programs, more akin to power tools, often embody "little languages," and are often
special-purpose processors of text. This is most evident in our approach to word-processing. The
powerful if rebarbative programs nroff and troff, developed by Ossanna, provided a way to format
documents consisting of ordinary text. The first significant preprocessor for it was eqn, by Kernighan
and Cherry; it provided a language for describing mathematical equations. Others include tbl (Lesk) for
setting tables; pic (Kemighan) and ideal (VanWyck) for incorporating line-graphic material; refer
(Lesk) for consulting a database of references and incorporating them into the text*. *All of these pro-
grams are described in most volumes of the Unix Programmer’s Manual.
Most recently, grap (Kernighan and Bentley [3]) has appeared; it is used for graphs.

The important observation is that it seems certain that these programs would never have been
developed if they had to be incorporated into troff. The structure of the operating system, and the type
of thinking it induced, encouraged modularity: each tool could be developed independently of the
typesetter’s internals.

Portability
A third contribution to the success of Unix is portability. The system is written in C, a reasonably

expressive, medium-level language; programs written in it can be moved to a variety of kinds of
hardware. The operating system proper makes relatively modest demands on the hardware, and itself is
relatively easy to move. Moreover, the system is widely available in source form under remarkably
liberal licenses. Consequently, many groups had a chance to contribute to the system, and it was tied
neither to the machine on which it was developed, nor to the group that developed it.

People used to think of operating systems as givens, as lumps provided by the manufacturer that
they must simply learn, and perhaps petition for changes in. Because of its history as a research effort
not a product, this has been much less true for Unix: as it was being developed, people inside AT&T,
and in universities, saw it simply as a program that could be understood and changed. Most notably,
this apperception occurred within the Programmer’s Workbench group at Bell Labs (they largely merged
into the Unix Support Group or USG, and that group, much larger now, has since become part of AT&T
Information Systems), and also at the University of California at Berkeley. There are those who think
that the Seventh Edition distribution (or perhaps even the Sixth Edition) from Bell Labs research is the

Vol 10 No 4 22 AUUGN

loveliest flowering of the system, but System V and BSD 4.2 or 4.3 are the versions that most people
use. Certainly, the contributions from many separate sources were necessary to the system’s success.

Portability to variegated hardware was also vital. Unix prospered early because it was first avail-
able for a popular machine, the PDPll, and was later moved to another popular machine, the VAX
(after portability was demonstrated on a rare one, the Interdata 8/32). It has now propagated to nearly
every important machine architecture, from the 8086 to the Cray 2. This development is important, if
for no other reason than that availability of a common, understood environment for computing is a valu-
able good. This value is seen, for example, in the persistence of old languages, such as Fortran. Few,
these days, defend the language itself. Numerical analysts, however, are realists: they would prefer to
write in other languages, but understand that when an algorithm is expressed in Fortran, it can be com-
municated to their colleagues, that there are good Fortran compilers on most machines, and that by using
it they are increasing their own effort but maximizing their contribution to society.

Thus, these three technical characteristics contributed to the success of Unix:

1) simplicity and coherence

2) the tool-using approach

3) portability
Each of these virtues, individually and in combination, has negative aspects. Although I think the

negative aspects-the "dark sides," are considerably outweighed by the virtues, they are fundamental and
have to be faced.

Simplicity and Coherence?
Consider "simplicity and coherence." The first fact is that the system is not so simple as it once

was; time and reality have complicated it. For example: most operating systems have an ugly file sys-
tem, with operations so low-level and complex as to be impossible for application programs to use, and
an I/O library to paper over the complexities and ugliness. In part, the file system was designed to
make this step unnecessary, so that one could actually understand the operating system interface.
Nevertheless, the "standard I/O library" had to be invented for various reasons: buffering for effi-
ciency, and for portability of programs to systems other than Unix. Unfortunately, the I/O library has
itself become complicated-more complicated, indeed, than the underlying calls, yet it is the interface that
most programs actually use. Why does this matter? For exgrnple, the underlying file system can make
promises about atomicity of operations. However, these promises are lost when I/O is buffered by the
standard library.

The intended simplicity, and concomitant intention that the workings of the system should be fully
understood and predictable, leads both to a certain curtness in the documentation and to some blind
spots in the services provided. For example, a utility to repair damaged file systems did not appear until
relatively late in the development of the system; until fsck was written, administrators, at least, not only
needed to know the structure of the file system, but how to fix it when it was broken.

More fundamental is this fact: Unix is simple and coherent with respect to a certain model of
what you might want from a machine; it makes a strong, visible statement that what you want is an
operating system. On these terms, it is excellent. Many people, though, do not want an operating sys-
tem at all; they simply want the machine to do a particular job. They do not care about files or direc-
tories or processes or I/O redirection. These people form the majority of the computer-using population,
and may just want to edit and enter text, and get it formatted nicely; or they just want to receive and
send mail; or they just want to create and run their reactor-design or weather-modeling codes. If they
are sophisticated, they may see, and begrudge, every machine cycle that goes into overhead,

Many users have no interest whatever in forming a correct model of what is really happening, and
using it to predict the behavior of the machine when they try new things. Furthermore, a substantial
fraction of them are entirely justified in not bothering even to learn what an operating system is, let
alone how to use it creatively. In other words, the underlying simplicity of the concepts underlying the
operating system is irrelevant to many of its users, because these concepts are unrelated in any direct
way to their desires and needs.

AUUGN 23 Vol 10 No 4

Tool Using

This begins to touch on the second great virtue of Unix: composition of tools. I spoke above of
our approach to text-processing. To write a paper with a complicated textual structure, one must deal
with a great many programs: an editor, ,he basic formatter, and some subset of the more specialized
tools: one for equations, another for tables, another for graphs, another for references; and there is a
whole host of ancillary services available, like spelling and grammar checkers, double-word finders, and
so forth. The approach is certainly more forbidding and complex than a single, integrated word-
processing program like the ones that can be bought for a microcomputer, because there is more free-
dom: you get to build things for yourself.

It is easy to argue that the several pipelined programs take more CPU time than they would if
they were jammed together. Moreover, there are inherent limitations in pipelined text-processing pro-
grams, because the pipeline is one-directional, without feedback. For example, the programs setting
tables and equations have no idea where their result will land on the page, which leads to imperfect
placement; similarly, the equation-setter suffers from lack of knowledge of the properties of the font it is
using.

Implications of Portability

Unix is portable in two senses. First, .in the computer-specific way: it can be moved, without
great difficulty, to a wide variety of machines. Second, it has been transported to, and through, a great
many different groups of people; that is it has had many contributors.

That it had many contributors-the Bell Labs research group where it was invented, the develop-
ment group that has become a division of AT&T Information Systems, and UC Berkeley-is historical
fact. It was born as a research effort, not as a product, and was not described as a whole until recently,
in even an informal specification: it grew over a period of years. It is regrettable, but was probably
inevitable, that it split into somewhat differing branches, of which the most notable might be called the
System V family and the BSD family.

When development of anything is undertaken by separate organizations, with differing purposes,
the products of their development will diverge, as surely as evolution creates new species when similar
populations become separated. In retrospect, I can see how certain of the most annoying
differences-such as the terminal control specifications-might have been prevented by timely efforts.
Other differences between System V and BSD, for example the approach to networking, could not have
been prevented, because they developed independently and in different environments. And there is a
whole host of small variations in command behavior, and bits of the software like include files, that
differ for no important reason; to continue the evolution analogy, they illustrate random genetic drift.

Unfortunately, software portability itself is, for someone who is trying to sell hardware or whole
systems, rather an annoyance. To succeed in selling something, a manufacturer needs product differen-
tiation: people should to be able to tell the product from the competitor’s. This is true even if the sel-
ling is noncommercial, as in the academic world. It is valuable to distinguish yore ideas from those of
others.

So to a manufacturer, there is a tension between providing something unique, and still remaining
standard. Some, like .Pyramid, have chosen an astonishing tactic: a "dual universe" machine that will
run both System V and BSD programs. Others offer extensions with plausible explanations (or rational-
izations) for the departure from the standard-and, of course, if there is no written standard, as there has
not been until very recently, the departures are easier to rationalize.

The two-edged nature of software portability is most clearly evident in AT&T’s efforts. Our com-
pany developed the Unix system, and owns it: it is a proprietary product. However, as history worked
out, its market was created by distribution of low-cost software licenses, beginning well before we were
selling hardware. Now that we are a hardware supplier, we find that we are, in effect, competing
against our own software product.

Vol 10 No 4 24 AUUGN

Conclusion
To put matters rudely, what I have said is:

Unix is simple and coherent, but it takes a genius (or at any rate, a programmer) to understand and
appreciate the simplicity.
The tool-using approach is powerful and intellectually economical, but it takes imagination to use.
It may also be more costly to combine simpler, more general tools than to build a more special-
ized one.
Software portability is socially valuable, in some ways is economically valuable, and Unix
achieves it astonishingly well. But for big systems, perfect portability is practically impossible to
realize, mostly for reasons that have nothing to do with differences between hardware.

All these contradictions exist, and should be faced. Rather than attempt a grand synthesis, or
make strong suggestions, I will content myself with some small observations. Portability first: although
it is unlikely that the differences between the various versions of the system will disappear, the trend
does seem more towards convergence than differentiation. Standardization groups like the IEEE P1003
committee should at least expose the issues, and at best may create a politically neutral center towards
which Summit, Berkeley and perhaps now Pittsburgh can gravitate. (At worst, they will create yet
another variant version.) Moreover, even some of the economically active players in the market seem to
be forming technical alliances intended to alleviate variation.

The degree to which Unix can continue to retain its original simplicity and coherence of design is
less certain. There is a real struggle between those who would like to make it the operating system for
the masses and those who like it the way it is. (A quick test on this issue: how do you feel about "rm
*"? Is it too dangerous, or do you accept the logic that makes its meaning inevitable?) There is a
related, but distinct struggle between those who find it necessary to add features and those who strive to
generalize and extend it in ways consistent with its design.

Most other operating systems are bland; opinions on them run the gamut from "ugh" to "it’s
OK." At best, they provide a neutral background in which to work, while Unix makes a statement
about how to program; it has a style. Correspondingly, it attracts strong fans and vocal critics. It is the
only system I know of about which people publish papers arguing that adding features is wrong. It has
true believers: people who argue that the more options a command has, the less its author has thought
about what it should really do.

The existence of such people is the final endearing thing about Unix, but one that can be annoy-
ing, and even dangerously stultifying. It is good, and it is genuinely interesting, to be involved in a sys-
tem in which aesthetic judgments have such an important influence on the design. It is also unnerving
to the populace to be assaulted by fanatics who assert that theirs is the unique road to salvation. One
can be trapped by Unixism as much as by any other philosophy.

References

1. D. M. Ritchie and K. Thompson, Comm. ACM 17 7, (July 1974).
2. B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, Reading Mass., 1976.

3.J. L. Bentley and B. W. Kernighan, "GRAP-A Language for Typesetting Graphs," Comm. ACM 29
8 (August 1986).

AUUGN 25 Vol 10 No 4

Sun, surf and X in California.

Andrew McRae

Megadata Pty Ltd.
2/37 Waterloo Road

North Ryde

andrew@ megadata, mega.oz

1. Introduction.

Xhibition 89 is scheduled for June 25th through to June 28th in San Jose, California. The confer-
ence technical program covers a broad range of topics, with keynote addresses from both Unix Interna-
tional and OSF executives. The program is backed up with a series of tutorial sessions aimed at a range
of X users, from the novice X programmer to developers using X for complex graphic systems. An
~xtensive vendor exhibition area provides attendees the opportunity to view the latest in display
hardware and X applications.

In a related area, a major happening in the Unix world is the specification of a standard ’look and
feel’ graphical interface, which has been embodied as the OPEN LOOK user interface. XView is an
standard toolkit being developed by Sun Microsystems conforming to OPEN LOOK, using Xll as the
underlying graphics system.

I am intending to report on the conference, tutorials and exhibition. In addition I am visiting Sun
Microsystems where I hope to obtain a first hand look at XView and associated development.

2. Xhibition 89
The X Window System stands out from the current crop of double standards (OSI vs TCPflP,

NFS vs RFS, OSF vs Unix International etc. ad nauseum) as one which is universally supported and
accepted by virtually all vendors. The only serious challenger that appeared was Display Postscript, and
similar genre such Sun’s Network Window System (NEWS). The old adage ’that if you can’t beat them,
join them’ comes to mind when we view the current directions of a merged Xll/NeWS server, and a
user interface based on X. In seems that Display Postscript is being strategically repositioned so that it
can be perceived as an ’application engine’, or ’imaging machine’, which runs on top of or beside X,
thereby resolving the direct conflict. It may be that such a compromise will bring out the best in both
systems. Certainly the fact that Display Postscript being discussed at an X conference indicates that it is
likely to survive in the X world.

The Xhibition itself is broken into three sections; a tutorial section, the technical program and the
exhibition. The tutorials are centred around more basic areas of learning such as X Programming, Fun-
damentals of Graphics, Use of Colour etc. I’ll summarize each of the tutorials briefly in the final paper.

The conference proper contains up to four different threads at any one time, thereby making it
extremely difficult to cover all the areas that are of interest. The presentations naturally are more wide
ranging and sophisticated than the tutorial program. Generally the presentations are related to the current
strategic directions being taken by major players in the X game, as well as extensions to X, and Appli-
cation programming issues. Porting the X server and X applications is also an area addressed by a
number of papaers.

Richard Stallman from the Free Software Foundation will be presenting a paper on Look and Feel
Issues, which will be interesting in the light of the current controversies in which he is embroiled. Jim
Fulton from the X Consortium will be giving a paper on X Terminals (where do you draw the line
between an X terminal and a discless workstation?). A colleague of mine is also attending the confer-
ence to cover other threads which I will then be able to report on.

Vol 10 No 4 26 AUUGN

The NeWS window system: A look under the hood

James Gosling

Introduction
With the standards furor over the X11 window system, many people ask "why is Sun bothering with
NEWS?". There are two answers: one is that PostScriptS is an important standard too, although its
importance is concentrated outside of the traditional workstation market. The other is that there are
a number of important technical advantages to NEWS.
This paper starts with a brief overview of NEWS, so that those unfamiliar with it can understand the
rest of the paper. This is followed by a section on living with PostScript that covers the use of ob-
ject-oriented programming and rapid prototyping. Then there is a discussion of the performance im-
plications of downloading programs, followed by a discussion of the advantages of having a close cor-
respondence between the capabilities of a screen and printers. Finally, there is a discussion of one of
the many ways that PostScript can be used to enhance Xll: fonts.

The Structure of NeWS
The NeWS server resembles a self-contained operating system. It contains a set of concurrent process-
es that are independently and cooperatively executing. The server communicates with application pro-
grams through a variety of network connections, and with devices through the usual Unix device driv-
er interface. The processes act as intermediaries between applications and devices, implementing the
various tasks that go toward driving the user interface
The code that is executing in these processes is dynamically loaded into the server either from the file
system or from a client process through a network connection. It is all written in an extended ver-
sion of the PostScript language. The server is missing many of the features found in other window
systems (windows, for example). These are implemented in PostScript, on top of the mechanisms

NeWSServer

DeviceaccessNetwork Connection

t PostScript is a registered trademark of Adobe Systems Inc.

Sun Microsystems, Inc 2550 Garcia Avenue Mountain View, CA 94043 (415) 960-1300

AUUGN 27 Vol 10 No 4

provided by the server. This extensibility is not something that was added on, it is the central
theme. The extension facilities are clean and protected, they provide mechanism, but not policy.
The PostScript language was originally designed for driving printers. For it to be useful in a win-
dow system, we needed to add a few extensions:

~ Multiple drawing surfaces (canvases.) In PostScript, there is only one drawing surface: the
printed page. NeWS creates the illusion of multiple drawing surfaces. These can be com-
posed in hierarchies, reshaped, and moved around. They are the basic building block out of
which windows are built.
Lightweight processes. These are processes that are cheap to create, use relatively little stor-
age, and share the same address space. The processes within NeWS handle requests from ap-
plications, deal with input translation, handle animations like menu highlighting, and per-
form an assortment of other tasks.

x y moveto

Garbage collection. NeWS has a true garbage collector, rather than the simple heap pointer
reset in printer PostScript. PostScript code doesn’t have to worry about freeing unused ob-
jects or placing gsave/grestore pairs appropriately: objects that are no longer referenced disap-
pear automatically.
Input events. Printers only have to deal with output, while a window system has to deal
with input as well. NeWS defines events which are messages that get sent from process to
process. The keyboard an mouse appear as fictitious external processes that generate events
when keys or buttons go up or down, and when the mouse moves.

Encoded input stream. In the original PostScript specification, programs could only be writ-
ten as strings of 7-bit ASCII text. This has significant negative performance implications.
NeWS defines a compressed, pre-compiled, representation for PostScript code that is much
more efficient to read.

One of the major attractions of PostScript is its approach to device independence. There is a lot of
variability amongst displays: B/W bitmap, greyscale, color and an assortment of resolutions. We
wanted to avoid a "lowest common denominator" approach. The PostScript imaging model doesn’t
say anything about pixels, it’s a resolution independent description of the image. It is at a high
enough level of abstraction to be able to make use of high performance displays.
There are two kinds of device independence: In the first, the server defines a high-level model that at-
tempts to cover many different hardware characteristics. Under this kind of model, user programs
are generally oblivious to the hardware characteristics, but they can inquire and adapt if they choose.
In the second kind of device independence, the server defines many low-level models, providing differ-
ent ones for different kinds of hardware. This is simple to implement, but it places a greater burden
on application programs and it restricts the applicability of exotic hardware.
NeWS has been merged with X 11, so that applications written for either window system can be run
concurrently. This easiest way to understand how this works is to think of X11 as an interpreter for
a simple language: the X11 protocol. The NeWS server was restructured to allow multiple interpret-
ers to reside within it. They all sit on top of the same set of graphics and support libraries.

o Classes and Object-Oriented Programming
PostScript is one of the world’s worst programming languages. It was designed as a language in
which programs are written by other programs, not by people. To a large extent, this problem has
been dealt with in NeWS by adding facilities for object-oriented programming, which provide an easy
way to define an manipulate objects in PostScript
The easiest way to understand this is to walk through a simple example:

Vol 10 No 4 28 AUUGN

/ConsoleWatchBag AbsoluteBag []
classbegin

/PaintCanvas { ...
classend def

} def

This defines a class called ConsoleWatchBag to be a subclass of a class called AbsoluteBag. This de-
fines one method: ~aintCanvas (a method is a procedure that "belongs" to a class). ConsoleWatch-
Bag behaves exactly like AbsoluteBag, except that it has this one different procedure. ConsoleWatch-
Bag is a subclass of AbsoluteBag.

/win [ConsoleWatchBag] framebuffer
/newdefault ClassNoticeFrame
send def

This rather opaque piece of code creates a new instance of ClassNoticeFrame (/nowdo f nulL
ZlassNoticeFrame send). This instance creation has a couple of parameters
([ConsoleWatchBag] f~’:araebu5£er). A notice frame is a window that has a client pane with-
in it: in this case, a ConsoleWatchBag.

/mybag /client win send def

/OKBtn [i0 i0
(OK) { pop /unmap win send }
OpenLookButton

] /addclient mybag send

Fin~ly, wecreateanopen-lookbuttonlabeledOKthatwillunmapthe w~dow whenitis ~essed.
Here’s whatthislooksl~eonthescreen:

-~NoticeFrame
a Frame

ConsoleWatchBag
an A~b~so.lute_Bag
in a r~otlcerrame

OKbtn
an OpenLookButton
in a ConsoleWatchBag

o

This example has defined a new kind of AbsoluteBag (a canvas that can be drawn on), that has a spe-
cial method for painting its contents. Then we created a wir~dow that contained one of these, and we
created and installed a button in it. This is essentially the complete implementation of a Macintosh-
style confirmer.

The class paradigm followed in NeWS follows very closely that of Smalltalk. We have made a cou-
ple of extensions. Chief among them are multiple inheritance and method promotion. In multiple in-
heritance, a class can be a subclass of more than one class. This effectively lets you mix together the
behaviors of several classes in one class. In method promotion, the definition of a method can be
moved dynamically up and down the class hierarchy. For example, if we had a method that comput-
ed the area of instances of a class, for any specific instance of that class (an object) we could promote
that procedure to be one that simply returned a constant, rather than performing a computation based
on constant values.
PostScript turns out to be a very nice language in which to implement object oriented programming.
All of the facilities present in NeWS can be implemented in pure PostScript. An instance is just a
dictionary, which contains a reference to its class. A class is just a dictionary that contains an array
of its suberclasses. Entering a class instance (sending a method) just pushes the object, it’s class, and
its super classes onto the dictionary stack.

Classes and Rapid Prototyping
Since PostScript is an interpreted language code can be developed interactively and incrementally.

AUUGN 29 Vol 10 No 4

m

There is a utility called psh (the PostScript shell) that allows developers to interact directly with
the PostScript interpreter, having code executed as it’s typed, with the results visible immediately.
When this is coupled with the class-based approach, for defining objects, new kinds of objects can be
built easily based on others. This encourages an experimental approach that allows interfaces to be
rapidly built up out of standard components.
There is a rich standard set of objects to start from. This includes blank drawing surfaces, menus,
pop-ups, scrollbars, buttons, button stacks, dials, sliders, labels, and text items. There are many
variations of each available.
Many facets of the application and its interface can be separated, allowing a range of changes to the in-
terface which don’t affect the application. By doing this outside of the application, applications writ-
ten in any language can take advantage of it.

Printer Correspondence: making applications easier
For many applications, PostScript language compatibility isn’t nearly as important as compatibility
with the PostScript imaging model. They need to be able to draw a string on the screen and know
that it will match the behavior of the printer. This is necessary for applications that want to imple-
ment WYSIWYG (what you see is what you get).
Applications written for window systems other than NeWS have to go through a rather laborious
process of calculating what the printer would do, calculating what the window system will do, com-
paring the two, and compensating. NeWS removes the burden of ensuring that text on the screen
matches text on the page. This lets application writers concentrate on the task at hand, rather than
on how to reconcile the printer and the display.
Another source of problems is the power of the imaging model. Printers today, primarily PostScript
printers, have a very sophisticated imaging model. They can scale and rotate arbitrary objects, includ-
ing text and images. Many applications put a lot of effort into graphical rendering because the under-
lying system isn’t powerful enough. By supporting the full PostScript model, NeWS applications
avoid this.
Above and beyond the imaging model provided my most window systems, NeWS provides:

¯ Curves. In conventional systems, the boundaries of polygons are restricted to being straight
lines. PostScript allows them to include arcs of ellipses and cubic Beziers.

° Image manipulation. PostScript can apply arbitrary transformations to images and can convert
them from one form to another. For example, a full color image can be scaled by 75%, rotated
45 degrees, and dithered or halftoned to black and white.

¯ Arbitrary transformations. Transformations can be applied to anything. This includes simple
graphics objects like vectors and circles, but also includes text and images.

As a side-effect of having PostScript in the window system it is easy to drive printers. A printed
page is just a large monochrome image. It’s a trivial matter to get NeWS to create such a large mono-
chrome image, render a page to it, and write that page out. There are a number of printers on the mar-
ket that can connect to a SCSI port and will print monochrome bitmap images sent to them. It is a
"simple matter of programming" to write a program to transfer these images out to the SCSI port.
This is made particularly easy by a new NeWS facility that allows an image to be in memory shared
between an application and the server. Using this technique for printing guarantees WYSIWYG.

NeWS helping Xll: fonts
NeWS has a very large standard font library:

AvantGarde-Book
AvantGarde-BookOblique
AvantGarde-Demi
AvantGarde-DemiOblique
Bembo-Bold
Bembo-Boldltalic
Bembo-Italic
Bembo
Bookman-Demi

Lucida-Bright
Lucida-BrightDemiBold
Lucida-BrightDemiBoldItalic
Lucida-BrightItalic
LucidaSans-Bold
LucidaSans-BoldItalic
LucidaSans-Italic
LucidaSans
LucidaSansTypewriter-Bold

Vol 10 No 4 30 AUUGN

Bookman-Demiltalic
Bookman-Light
Bookman-Lightltalic
Courier-Bold
Courier-BoldOblique
Courier-Oblique
Courier
GillSans-Bold
GillSans-Boldltalic
GillSans-Italic
GillSans
Helvetica-Bold
Helvetica-BoldOblique
Helvetica-Narrow -Bold
Helvetica-Narrow-BoldOblique
Helvetica-Narrow -Oblique
Helvetica-Narrow
Helvetica-Oblique
Helvetica

LucidaSansTypewriter
NewCenturySchlbk-Bold
NewCenmrySchlbk-BoldItalic
NewCenturySchlbk-Italic
NewCenturySchlbk-Roman
Palatino-Bold
Palatino-Boldltalic
Palatino-Italic
Palatino -Roman
Rockwell-Bold
Rockwell-Boldltalic
Rockwell-Italic
Rockwell
Symbol
Times-Bold
Times-Boldltalic
Times-Italic
Times-Roman
ZapfChancery-Mediumltalic
ZapfDingbats

From PostScript, these fonts can all be scaled and rotated arbitrarily. In the X1 l/NeWS merge, sup-
port for these sophisticated fonts "leaks over" into X 11. All NeWS fonts, including Folio and user-
defined PostScript fonts are available to X applications as ordinary X fonts under X1 l/NeWS. We
didn’t have to extend X in any way, although we did have to take a few liberties with the definition
of font names.
There is an "underground" X font name standard that we follow: "namesize", where the size is a
string of digits that trail the name. For example, "screenl0" has a name of "screen" and a size of
"10". When we execute the X open font request, we effectively execute:

/name findfont size scalefont

The font is looked up using the standard PostScript findfont operator and is scaled using the Post-
Script operator.
We also support the Logical Font Description (LFD) proposed X 11 extension. According to this pro-
posal, font names are long strings that can be decomposed into many fields. Here is an example of
one:

/-adobe-he ivet ica-medium-o-normal--i 4-i 4 0-7 5-7 5-p-7 8-i s o 8 8 5 9-i

We parse this name and calculate the font family, what encoding to use, and how it should be scaled.
It effectively becomes the PostScript sequence:

/Helvetica-Oblique findfont
[14"75/72 0 0 14"75/72 0 0] makefont
/iso8850-i encodefont

These fonts aggravate a number of generic X11 problems that applications run into.
o Ascent/Descent. X 11 fonts have a pair of fields called their ascent and descent. According to the

protocol specification, it is legal for characters to be taller than the ascent, or to extend lower
than the decent. With many fonts, this actually happens: Applications want the ascent and de-
scent fields to be tight, so that lines aren’t too far apart. But the accents on upper case ch.aracters
can extend rather high (as in the Icelandic spelling of Iceland: ~sland). The X ImageText primi-
tive, which most terminal emulators use, depends on characters fitting within the ascent/descent
of the font. This makes internationalization awkward.
X11 requires that the width of a character be an integer number of pixels, and that it only has an
x component. This makes it impossible to match the printer exactly, since when character widths
are scaled, they are unlikely to be exact integers. We round character widths to integers for X,
but not for NEWS, unless a NeWS application explicitly asks for it. This also makes rotated
text impossible

AUUGN 31 Vol 10 No 4

, Another problem is with XListFonts. This X request is supposed to return to the application a
list of all the fonts available. With scalable fonts, this list is infinitely long. We compromise
by replying with a list of the fonts that have and-tuned bitmaps, and with LFD names with the
size fields set to zero. This use of zero to indicate scalability is currently a "proposed extension
to the proposed extension".

There are a number of extensions to the X text model that we would like to propose and implement.
Based on the mechanisms available through PostScript, these are trivial to implement. We could
overload the size field of an LFD name to indicate both x and y scaling, skew, and rotation. With
the exception of rotation, these fit into X1 l’s existing text model. To implement rotation we’d ei-
ther have to return useless width values, or define a new request that returned x and y values with
subpixel precision.

/-adobe-helvetica-medium-o-normal-- 14x 16s 12r45-140-75-75-p-78-iso8859-1
Height!

11Width
Slant
Rotation

It turns out that we can actually do all of these in X1 I/NeWS today by defining new fonts from the
PostScript side. For example, if we wanted to create a version of Times-Roman that is rotated 90 de-
grees, we could execute the following PostScript code:

FontDirectory
/Times-Roman findfont
[0 1 -I 0 0 0] makefont

/Times-Rotated put

This looks up the Times-Roman font, transforms it by using the makefont operator, and then installs
it into the font directory. This new font, Times-Rotated, now appears like any other X font. Text
drawn with it will be rotated 90 degrees. If the X application inquires the widths of the characters,
it will get 0 for all of them, since their x widths are 0. The y components are non-zero, but there’s
no way to report that to an X application.

Vol 10 No 4 32 AUUGN

Adaptable Text Interfaces *

Michael Paddon
rnwp@munnari.oz.au

University of Melbourne

David Spaziani
davids@mun nari.oz, au

University of Melbourne

July 9, 1989

1 Introduction

1.1 Motivations

In a modern computing environment, an application is required to deal with an
ever widening range of terminals and workstations. This is not a new problem.
In the past, terminal dependencies have been isolated in terminal description
files of one type or another and libraries, such as curses, have allowed the pro-
grammer to use a virtual high-level terminal device.

With the advent of high resolution bitmap displays and the common avail-
ability of alternative input devices, the concepts that served so well in a terminal
environment fall short. While it is still possible to emulate a terminal on today’s
hardware, users expect much more from interfaces running on a workstation.
This leads to the development of new paradigms and systems; Xll 1 and Ne WS2

dominate in this area in the UNIXa environment.
Despite the obvious advantages of workstations, however, it is costly to put

one on everybody’s desk. As a result, many applications are increasingly ex-
pected to provide the full featured f’anctionality possible with bitmap displays
and yet also support the relatively dumb terminals that will be common for
many years to come.

Pr~m a software engineering viewpoint, raaintaining multiple versions of
an application targeted toward the different requirements of both ends of the
interface hardware spectrum is not cost-effective. The ongoing Titan4 database
project at the University of Melbourne has had to address these issues in the
design of its form and text-browsing interfaces.

*This research is supported by a GIRD grant and the University of Melbourne.
1Xll is a trademark of MIT.
2NEWS is a trademark of Sun Microsystems Inc.
3UNIX is a registered trademark of AT&T.
4Titan is a trademark of the University of Melbourne.

AUUGN 33 Vol 10 No 4

1.2 Addressing the Problem

Before attempting to develop a device independent solution to the problems
outlined above, we must narrow our focus slightly. It is obvious that a bitmap
display has a much greater range of capability than a dumb terminal; detailed
line drawings are difficult or impossible to approximate on older hardware. How-
ever, users don’t necessarily want to use these abilities.

The majority of applications (and this is particularly true under the UNIX
operating system) deal exclusively with textual data, and, not surprisingly, all
displays can efficiently handle information in this form. For many users, the
advantage of a bitmap display is that they can run all their favourite programs
simultaneously, side by side, and with facilities such as cut and paste between
windows. Such an environment simplifies job control and allows rapid shifting
of attention from task to task for the user.

Users being users, they soon notice that software written exclusively for their
workstation has a really neat interface; menus, buttons, scrollbars. It is natural,
then, to demand that all software becomes as easy to use when the facilities are
available; but never, of course, at a cost to backward compatibility.

Our solution to this problem focuses on text applications, combined with
the sort of high-level interface controls commonly found in workstation environ-
ments.

1.3 Adaptable Text Interfaces

We have designed a toolkit which lies above the layers of device specific software,
such as curses, Ne WS, Xll, or any other low level interface to the underlying
hardware. It presents a uniform interface model for applications. This software,
known as ATI (Adaptable Text Interfaces), is totally device independent and is
structured so as to always provide a consistent paradigm. See Figure 1 for the
relationships between ATI, application and display library software.

ATI does not, in any way, specify the "look and feel" of the user interface.
This decision is left to the implementation and, in most cases, to the lower layers
of software utilised by the toolkit.

2 Device Independence Through Abstraction

The key to building an interface toolkit that is device independent across the
whole spectrum of output devices, from terminal to bitmap, is abstraction. More
specifically, ATI hides hardware specific information by defining a group of
generic types and objects which the application program manipulates.

Let us pause a moment to define some terms. We call any abstraction which
stores but does not directly represent displayed information a type. An object,
on the other hand, abstracts output data. Both types and objects are opaque

Vol 10 No 4 34 AUUGN

Application

Interface Layer (IFL)

ATI
Device Specific Layer (DSL)

Device Specific Libraries

Figure 1: ATI layered structure overview

AUUGN 35 Vol 10 No 4

in that the application needs no knowledge of the implementation details, only
their functionality.

This section describes all the important abstractions used by ATI. We fo-
cus on the services provided by the types and objects, and the interface they
present to an application. We also examine the most important aspects of how
these abstractions are actually represented on different hardware; usually con-
centrating on the extreme ends of the technology scale (dumb terminals and
high-resolution colour bitmaps) on the assumption that all devices fit a niche
somewhere in this range. Please note that such details are hints only -- the ex-
act way in which objects interact with the user are dependent on the particular
implementation of ATI.

Implementation details will seldom be mentioned. The entire purpose of ATI
is that such issues are of no importance to the application programmer.

2.1 Types

ATI provides three basic types to describe output oriented information:

¯ colours

¯ fonts

o strings

2.1.1 Colours

All colours are specified and stored to 24-bit resolution. Different hardware
takes advantage of this information in diverse ways; typical examples follow:

full colour bitmap
This hardware will accurately reproduce any colour.

colour mapped bitmap
This hardware can only reproduce a limited number of colours at a time
(most commonly 256, ie. 8-bit resolution). ATI will attempt to remove
unused entries from the colour map to make room for the requested colour.
If this is not possible for any reason, then the closest match will be selected
from the table.

monochrome bi~map
ATI will use dithering to approximate the requested colour.

terminal
This hardware supports text-only output in either black or white. Nor-
mally, we will ignore colour information when using such a display and
output all text regardless. As a general rule of thumb, ATI applications
may assume that they normally output black text on a white background.

Vol 10 No 4 36 AUUGN

Therefore, if reverse video facilities are available, text closer to the white
end of the spectrum is output in that style. Similarly, if the terminal sup-
ports half-intensity, some colours of text may output using that feature.

Defining an abstract representation for colour is straightforward. In fact,
two methods already exist and are in wide use -- RGB (red,green,blue) and
HSB (hue,saturation,brightness). ATI uses the former scheme.

2.1.2 Fonts

A font describes the style of type used to output a character. Describing fonts in
a generic way is a difficult task, due to the wide variety of methods in common
use.

ATI requires three pieces of information to uniquely identify a font:

font family
The generic name of the font; for example, "Times", "Helvetica" or
"Courier".

font face
The typeface in which the font is rendered; one of "normal", "italic",
"bold", "underline", "outline" or "shadow".

font size
The size in which the font is rendered, measured in centi-points (see Sec-
tion 2.2.1 for further explanation of this unit).

Choosing a local font family that is equivalent to the requested family (or
at least the most similar available) is a difficult task. Our solution is to define
a mapping of generic font family names to local equivalents in every implemen-
tation of ATI. Note that there is always an entry in the mapping table for a
font family called "default"; used as a last resort if all other mappings fail. The
algorithm in Figure 2 shows, in detail, the process of local font selection.

After a suitable local font family has been located, the toolkit selects the
variation that most closely matches the requested face and size.

This scheme gives the maximum flexibility and portability. Most applica-
tions will only use generic font family names, but if special effects are required,
then local facilities may be used without compromising generality.

Low end hardware has only a few fonts, perhaps as few as one. This does
not affect the mapping algorithm; in the worst case all text is printed in the one
font.

2.1.3 Strings

In general, text consists of an arbitrary number of characters in a particular
sequence. Each character belongs to a particular font and has a specific colour.
A string stores information of this nature.

AUUGN 37 Vol 10 No 4

found = false;
for (all generic font families in mapping table)

if (generic_family == requested_family)
local_family = map_generic_to_local (requested_family) ;
found = true;
break;

if (! found)
for (all local font families)

if (local_family == requested_family)

found = true;
break;

if (! found)
local_family = map_generic_to_local (~’default’’);

use_family (local_family);

Figure 2: Selecting a Font Family

For implementation purposes, two factors aside from functionality must be
taken into account. Firstly, it is desirable for the character information in
strings to be easily and efficiently accessed from the C programming language.
Secondly, storing attribute records for each character is extremely wasteful of
memory resources for most text intensive applications.

We represent a string as shown in Figure 3; a sequence of bytes, delimited
by a null (which is, in fact, what C expects of a string) and a list of ~ext s~yles.
A text style is a record containing:

offset
The offset of the first byte affected by this record.

length
The number of contiguous bytes affected by this record.

colour
The colour of the bytes affected by this record.

font
The font used to display the bytes affected by this record.

Thus, text which contains runs of characters with the same font and colour takes
up minimal resources for attribute storage.

Vol 10 No 4 38 AUUGN

STRING

textfont style

colour
offset
length

Figure 3: Representation of a string

ATI provides some string manipulation functions such as copying, concate-
nation and extraction of substrings. Simpler manipulation may be performed
by standard C library routines.

For the remainder of this document, references to "string" refer to this ab-
stract type, unless specifically stated otherwise.

2.2 Objects

The overriding design criterion for objects is that their facilities degenerate
into usable forms on low-end devices. Their functionality must be easily and
naturally expressible on dumb terminals and, nonetheless, also utilize the power
of more capable hardware.

The three basic objects classes are:

Windows

Menus

, Items

The class item subsumes all objects which can (and, in general, must) exist
inside a window. The currently defined items are:

Buttons

Selections

Text boxes

Fields

AUUGN 39 Vol 10 No 4

® Icons

All item objects share the same top level interface, with the subclass itself
defining functionality. This makes it easy to add new item classes to ATI in a
controlled fashion as they become necessary.

2.2.1 Windows

An ATI application performs all user interaction via windows.
Each window is a logically separate item space. The location of each item in

a window is specified in terms of that window’s coordinate system; origin at top
left hand corner, with x values increasing to the right and y values increasing
downwards.

The basic unit of measurement used within ATI is the centi-point, (ie. 1/100
of a point, or 1/7200 of an inch). This value was chosen for three reasons:

1. An absolute system of measurement aids portability and device indepen-
dence.

2. The point is used as a fundamental unit due to the text based nature of
the toolkit.

3. The positional accuracy of all measurements is far greater than the un-
aided eye can detect, and far beyond the resolution of most devices.

Figure 4 summarizes the available window attributes:

item llst
The set of items that exist in the window space.

message strings
There are three areas for application defined messages.

scroll flags
The item space represented by a window may be larger than then win-
dow’s physical area. If the appropriate scroll flags are set, mechanisms are
activated which allow the user to pan a window either horizontally, verti-
cally or both. Such mechanisms (generically known as scrollbars) work in
a way analogous to button items (see Section 2.2.3). On bitmap displays,
an actual scrollbar is displayed showing roughly where the current view is
in the window space.

icon
A window may have an icon associated with it (see Section 2.2.7 for a
definition of icons). If so, the window may be closed into a compact
representation. Note that an icon is an item; therefore, it may exist in the
space of another window. This permits a pseudo-hierarchy of windows.

Vol 10 No 4 40 AUUGN

menu
A window may have an application defined menu associated with it (see
Section 2.2.2 for a definition of menus).

background colour
The background colour of the window.

A window maintains a list of items; each of which has a location relative to
the top left corner of the bounding box of the item. An item’s size is determined
by itself and depends on the particular ATI implementation; the window has
no knowledge of this information. This raises a problem. If a window layout is
moved between devices, items may overlap visually if their sizes change radically.
The easiest way to solve such problems is to ignore them. All items may be
dynamically moved around their window by the user, allowing layouts to be
adjusted as needed. ATI provides code for an application to portably store a
window layout (which items, their location and any other item-specific data) in
a file for later use.

As mentioned, each window has three message strings associated with it:

title
Description of window, usually displayed at top and centre of window.
Information of a permanent nature should be placed here.

status
Temporary status messages, usually displayed at bottom left corner of
window.

mode
Some indication of application’s mode, usually displayed at bottom right
corner of window.

These message strings are displayed outside the window’s item space and are,
therefore, always visible.

A window abstraction implies and requires the concept of a cursor to use as
a selection mechanism and keyboard focus arbiter (where multiple windows are
visible at one time). On a terminal, the screen cursor suffices; manipulated by
arrow keys or control keys. A bitmap screen’s cursor ~s usually controlled by a
device such as a mouse or trackball, with one of more buttons; such differences
are easily and transparently hidden.

On a terminal, only one window may ever be visible at a time. There is a
global menu (by title) of windows that the user may call up at any time that
allows a new one to be displayed. Bitmap displays allow more than one window
to visible at any instant; these may overlap. The position and size of a window
is fixed on a terminal; on a bitmap it is completely under control of the user.
The application has no need of such information.

AUUGN 41 Vol 10 No 4

W
I
N
D
O
W

--~ icon

mode

scroll flags

--~~attributes (bg-color, etc)l

~1 item H item

Figure 4: Structure of a window

Vol 10 No 4 42 AUUGN

2.2.2 Menus

A menu is simply a list of options that the user may select. Each menu has a
name and a list of choices, each comprised of:

label
A string describing the choice’s functionality.

keystroke sequence
An optional sequence of characters that may be typed at the keyboard to
accelerate selection of a choice.

active flag
A choice may be deactivated, so that the user cannot select it.

marked flag
When this flag is set, the item is visibly marked.

handler
A pointer to the function to be executed when this choice is made. The ¯
handler function is passed a pointer to its calling object, allowing many
objects to share the same action code.

Menus on a bitmap display may either pop up under the cursor or be pulled
down from a menu bar, depending on the particular "look and feel" that the
implementation espouses. In the former paradigm, the particular menu popped
up depends on the context of the cursor at the time of invocation, ie. which
window or item the cursor resides in. A choice may be made by pointing with
the cursor. Accelerated choices may also be made (at any time)by using the
optional keystroke sequence that may be asso¢:ia~ ~. with any menu option.

On a terminal,, a menu screen is: d’ispIayed afte~ being invoked by a s~andard;
key. Again, cursor context de~ermines the: specific- menu. Otherwise, operation
is exactly the same as for the b[tm~p~ implementatiom

2.2.3 Buttons

A button provides a means for the user to initiate a user
attributes are:

label
A string describing the button’s functionality.

keystroke sequence
A sequence of characters that may be typed at ~he keyboard to actiw~e
button. Note that, unlike: menu choices, this is not an optional attribute.

active flag
A button may be deactivated at request of the application.

AUUGN 43 Vol 10 No 4

handler
A pointer to the function to be executed when the button is "pressed".
Semantics such as mutual exclusion between a number of buttons can be
provided simply by writing an appropriate handler.

On a terminal, button activation, is bound to a specified sequence of
keystrokes. Nothing appears in the window at the button’s coordinates, but
ATI may display a line describing active button key sequences at the bottom of
the screen. In any case, the user can request, at any time, a list of buttons and
their trigger sequences.

On a bitmap display, a button consists of a region, containing its label,
which may be activated by depressing a mouse button while the cursor is inside
it. If desired, buttons may still be activated by using the keystroke sequences
described above. This gives a user a consistent way of using buttons on all dis-
plays, as well as keyboard shortcuts for the experienced user even when bitmap
technology is available.

2.2.4 Selections

Selections are a subclass of buttons with the following differences:

¯ They represent binary selection, ie. they take on a value of true or false.
Their value may be set either by the user or by the application.

¯ They always have a visible representation. On a bitmap they may be
displayed as labelled checkboxes; terminal representation is similar, using
a special character (eg. ’#’) as a check.

¯ Additional semantics such as mutual exclusion can be enforced as for but-
tons.

2.2.5 Text Boxes

The text box is probably the most important item supported by ATI, providing
facilities for input and output of textual data. In effect, a text box defines a
text space, with certain attributes that affect the layout of lines of text in that
space.

Figure 5 summarizes the available attributes:

text lines
The information content of a text box is stored as a sequence of lines.
Each line of text is represented as a string and may be of arbitrary length.

text attributes
Text may be left or right adjusted, or centered in the box. Line wrapping
may be requested, either at word of character boundaries. The text box

Vol 10 No4 44 AUUGN

itself may be defined as read-only or read-write; this is useful for display
only purposes.

maximum number of lines
An application can fix the maximum number of lines allowed within a
text box. This is useful for limiting the amount of information a user can
input. If this is not specified, then the text box can hold an arbitrary
number of lines.

background colour
A text box’s background colour may be specified -- normally it is white.

menu
A text box may have a menu associated with it.

The text box item implies the existence of a caret, showing the current text
insertion point. A caret may be either active or inactive, the state of which is
set by the application. There can be only one active caret (and, thus, one active
text box) in each window. Which caret is active, and where it is positioned
in its text box are controlled by user manipulation of the cursor. The exact
mechanics depends of the device -- clicking the mouse button for a bitmap, or
simply moving the cursor to the desired place on a terminal.

An application can read the contents of a text box at any time. Usually, it
will wait until the user presses a button or makes a menu selection indicating
that processing may occur.

In general, a text box is a rectangular region in a window; the size of which
is dynamically adjustable by the user without affecting the application. On
both bitmap displays and terminals, text boxes may always be scrolled (using
the same mechanisms that windows use). Most device dependencies are already
handled by the definition of strings; text is simply represented as faithfully as
possible.

ATI implementations on bitmap displays are expected to provide a cut and
paste facility between text boxes. It is possible to provide such services on a
terminal, but their operation would probably be awkward.

2.2.6 Fields

Fields are a subclass of text boxes. They provide a prompt string as an extra
object attribute. The prompt is displayed at the immediate top left of the text
box proper.

The field abstraction is useful for form-based applications.

2.2.7 Icons

An icon is a compact representation of a window, used to preserve screen real
estate whenever the contents of that window are uninteresting to the user.

AUUGN 45 Vol 10 No 4

text line

TEXT BOX

Figure 5: Structure of a text box

Vol 10 No 4 46 AUUGN

An icon has the following attributes:

label
A short string describing the window.

glyph
A short string, usually in a special "glyph" font that provides pictures. If
that font is unavailable, then this attribute is ignored.

keystroke sequence
A sequence of keys that may be typed to open the window.

On bitmap displays, icons may be opened by using the cursor and a mouse
button. Alternatively the accelerator keyboard sequence may be used. Both
these methods are adaptable to terminals.

On a terminal, icons are represented by their label, specially marked with
some characters. On bitmap displays, they are square or rectangular regions
with room for both label and glyph.

Icons are special in that they are the one item subclass that may exist outside
of a window (ie. no associated window specified).

3 Implementation

The prototype ATI implementation is being developed over the NeWS window-
ing system. At the time this paper was written, many parts of the toolkit had
been fully or partially coded and tested, including windows, menus, most items
and all types.

It was our experience that a large proportion of ATI could be implemented
in a device independent fashion. Therefore, the toolkit has been split into two
parts; the interface layer (IFL) which provides the application interface to ATI’s
abstractions, and the device specific layer (DSL) which actually communicates
with the lower level display software.

The standard NeWS life library did not provide the sort of facilities we
required, ’so we implemented a low level PostScript5 library, somewhat based
on the OpenLook6 "look and feel" to support ATI. This was a non-trivial, but
by no means overwhelming task, and gave us some idea of what sort of porting
effort would be required given only primitive facilities to build on..

Table 1 shows the current and expected size, of the prototype ATI code.
Given that there is is good level of existing software support for a device (for
example the X toolkit), the effort of porting ATIis reduced to re-writing the
device specific layer. As can be seen, this effort involves only a few hundred
lines of code; most of which simply massages and passes data between IFL and
the underlying layers.

5PostScript is a registered trademark of Adobe Systems Inc.
6OpenLook is a trademark of AT&T.

AUUGN 47 Vol 10 No 4

Module Current Size Expected Size
(lines of code)

IFL 1842 .2500
DSL 281 400
PostScript library 1276 1500

Table 1: Current and Expected Implementation Sizes

3.1 Shared Libraries

The ability of having a single application drive a number of devices is limited in
use if the user must choose an appropriate binary for his/her display. Ideally,
we want the correct DSL code to be loaded dynamically at execution time. This
has the dual advantage of allowing a single binary, while minimizing the disk
space that the application consumes.

This is made possible by dynamic loading of shared libraries. At execution
time, appropriate directives are given to the dynamic loader to choose the de-
sired library. At worst, this may involve using a front-end shell script to set
up the correct environment to execute the application. Usually, however, it is
sufficient to set an environment variable.

Alternatively, incremental loading is being investigated as an option. In this
scenario, the application locates and loads the correct library itself. This is
difficult to implement portably.

At worst, separate binaries must be maintained, with a front end script
deciding which version is suitable.

3.2 Future Work

Our highest priority task, following the completion of of the prototype imple-
mentation, will be to be to write a DSL library for a dumb terminal version of
ATI. We expect this to layer over the standard curses library, with a moderate
amount of effort.

New and modified items will be added to ATI to support abstractions such as
sliders (for range setting), numeric fields and pins for menus. A more compact
version of selections needs to be developed for cycling through a number of
mutually exclusive settings.

We intend to support an image object which understands data in a number
of standard bitmap formats. Naturally, this feature will only work on high
resolution displays.

Vol 10 No 4 48 AUUGN

4 Conclusion

User interface programming can be a very expensive process in terms of time
if appropriate high level tools are not available. Many such libraries exist for
specific target displays. ATI is an effort at bridging the gap between all these
partial solutions for a specific, narrow domain of application.

With ATI running under NEWS, Xll and curses environments, any text
based application that uses our toolkit will be able to move between a wide
variety of UNIX machines. This allows interface code to be much more cost-
effective simply by removing the problems of maintaining multiple versions of a
product.

AUUGN 49 Vol 10 No 4

Strategies for Writing Graphical UNIX~- Applications Productively and Portably.
Janet Dobbs

Hewlett-Packard
1000 NE Circle Blvd. Corvallis, Oregon 97330

ABSTRACT

Writing applications with friendly, graphical user interfaces is discussed. A reference model for user
interface is given, and productivity/portability issues are reviewed at each reference model level. The X
Window System1 and associated user interface toolMts are covered as the likely basis for creating these
applications. Two technologies that are likely to assist in expanding the number of applications with
graphical user interfaces for UNIX2 are outlined.

The ease with which portable software has been developed for the UNIX operating system has long
been one of its major benefits to software developers. This process consisted of writing disciplined C
code; using libraries such as stdio and libc to insulate programs from the hardware on which they ran.
The user interfaces for these applications were based on command line switches and tty’s.
Programmers were able to concentrate on the meat of an application, because little was expected when
it came to user interface. This kept programmers productive, and generated a great deal of portable
code, but also left UNIX open to its most common criticism: UNIX is hard to learn and use.

Today, as the market for UNIX expands, many users are demanding applications that are easier to use.
In response to this demand, many vendors selling UNIX systems are providing new technologies to
develop applications with graphical user interfaces. Witness the number of vendors providing the X
Window System (X) with their platforms. Unfortunately, technologies (such as X) have not yet turned
into solutions for end users. One of the reasons for this is that writing applications for environments
such as X can be an order of magnitude more difficult than the stdio/libc environment described
earlier. Taking the steps necessary to be more productive when writing applications based on X can
endanger the portability and vendor independence so cherished in the stdio/libc environment.

This paper will concentrate on strategies for programming in the increasingly complex environments
todays UNIX user is demanding. First, a reference model for user interface is presented. Next each
level of the model will then be reviewed with respect to portability and productivity. Then, two
potential solutions for creating more applications with graphical user interfaces will be explored.

1. A Reference Model for User Interface

People working in the networking discipline have enjoyed an advantage for years if only because of
their ability to reference the ISO OSI model. Granted, the model isn’t a perfect one, but it at least
gives network researchers a common basis for discussion.

The time has come for a similar model to emerge in the area of window systems and user interfaces. A
proposal is depicted in Figure 1.

As with the OSI model, this user interface (UI) reference model contains several layers of functional-
ity, each distinguished by unique services and interfaces. The UI model departs from the OSI

1. X Window System is a trademark of MIT.
2. UNIX is a trademark of AT&T

Vol 10 No 4 50 AUUGN

USER INTERFACE REFERENCE MODEL

Poll©y

Component

Trsnsport

Physl©sl

APPUCATION SYSTEM UI

UI TOOLKIT

WINDOW SYSTEM

HARDWARE

Figure 1. User Interface Reference Model

networking model, however, in that each of its levels does not necessarily represent a unique layer of
abstraction. Rather, the higher one goes in the model, the more strictly enforced the user interface
policies are.

1.1 Hardware Layer

The hardware (physical) layer of the UI model provides for such input and output devices as displays,
keyboards, and mice. Flexibility is a key attribute at this level, inasmuch as voice and gesture recogni-
tion hardware may eventually become common options for data input, while live video and sophisti-
cated imaging may become output norms. Without the ability to accommodate these capabilities, we
could easily find ourselves cemented in outmoded technology. Consider, for instance, what’s resulted
from the coupling of the UNIX interface to teletype technology:, in a computing era symbolized by
icons and pop-up menus, an interface that’s both terse and line-oriented stands out as an anachronism.

1.2 The Window System Layer

Up a level from the hardware level of the UI model, in the window/graphics (transport) layer, we find
the mechanisms (windows) that makes it possible for multiple applications to share the same hardware.
This layer also provides the primitives needed for drawing in windows and for receiving window input
events. In a nutshell, the window system’s role is as a resource manager concerned with a machine’s
display, color maps, and keyboard. It also is at the window/graphics layer that portability across
different hardware implementations is achieved. Three basic rules apply: first, all of a window system’s
mechanisms should be low-level so as to ensure flexibility; second, all of a window system’s mechanisms
should operate across machine boundaries (network transparency); and third, no user interface policy
decisions should be made at the window/graphics layer.

1.3 The Toolidt Layer

One level higher, in the toolla’t (component) layer, we find the interactive graphical objects--including
menus, scroll bars, and push buttons--that can be used to create a pleasing user interface. Generally
speaking, few user interface policy decisions should be made at this level, but when the time comes to

AUUGN 51 Vol 10 No 4

implement policy, the toolkit layer inevitably emerges in an instrumental role. As an example, a toolkit
might provide both pull-down and pop-up menus and let a higher layer decide which is appropriate.
Notice that several valid toolkit implementations can peacefidly coexist so long as side-by-side toolkits
rely only on the window/graphics layer, they can share a system’s display--as well as other resources--
without problem.

1.4 System User Interface Layer

Finally, we come to the system user interface (policy) layer of the reference model, where we find the
mechanisms and utilities for connecting computer users with the applications and system resources
they desire. It is here that the policy that determines how a system "looks and feels" is shaped. Iconic
desktops, clipboards for moving data between applications, and graphics system configuration tools are
among the end user facilities found on this level. It is also on the system user interface level that
software developers can find tools and protocols for creating windowed applications that abide by the
given user interface policies and can thereby be neatly integrated together. The result is a whole inter-
face structure that’s truly greater than the sum of all its assorted parts.

Indeed, for any user interface environment to realize its full promise, it must support and provide func-
tionality at each level of the UI reference model. Programming in the environment should encourage
productivity and portability, and the rest of this paper will examine these two issues as they relate to
user interface environments for UNIX.

Figure 2 shows how current user interface environments fit onto the reference model.

CURRENT STANDARDS

Applications

System UI

UI Toolkit

Window System

Large B ’

Presen ’
M,n,ger/ / i /

,s w . ow. / i / \
Xt Intrinslcs

:

~ Xll \

PC Workstation

Figure 2. Current Environments

The dotted lines outline areas representing the breadth of functionality software developers require at
each level of the user interface reference model. Compare this with the areas enclosed in solid lines,
which indicate the fraction of the necessary functionality actually available today in the OS2/MS-DOS3
based PC domain and the UNIX-based workstation domain.

Vol 10 No 4 52 AUUGN

Notice that on the PC side of the illustration, functionality is shown to be best at the highest level; the
lower levels, by contrast, are not nearly so robust, nor are they well separated. The window system
primitives at the lowest level don’t allow for easy creation of applications with distribute~! user inter-
faces, and portability across hardware and operating systems is not supported. The domain of potential
applications may be unacceptably restricted as a result, but the PC domain does appear to have reason-
able functionality at all levels, with the greatest concentration of offerings being at the level closest to
the user.

On the UNIX side of the illustration, meanwhile, X version 11 and the X toolkit provide reasonable
functionality at the window and toolkit levels but until recently left a gap at the system user interface
level. The separation between UNIX levels is good, and a wide array of applications is provided for, but
these advantages did not make up for the lack of suitable range at the highest level. Because of this
need for a better user interface for workstations, the first request for technology from Open Software
Foundation’* was for graphical user interface. After consideration, OSF chose Motif--a combination of
technologies as shown in the following table.

TABLE 1. OSF/Motif

OSF/Motif
Component i Accepted Technology
Style Guide HP/Microsoft Style Guide
AppearanCe HP 3D (Bevelled) Appearance

Window Manager HP Window Manager
Toolkit (Widgets) DEC XUI/HP CXI *

UI Language DEC UIL

2. X and the UI Reference Model

The lowest software level in the UI reference model is the one responsible for supplying window and
graphic primitives. In the case of X, this is the role of the window system itself, as shown in figure 2.
By means of the X protocol and the X binding for C (Xlib) programmers are able to gain access to a
robust set of capabilities for managing windows, drawing in them, and receiving those events which
occur while an application is running. A detailed description of these features appears in "Xlib--C
Language X Interface" [2] and "X Window System Protocol" [3], two documents bundled into. the X
Version 11, Release 2 distribution. To date, Xlib is the only language binding to have been adopted by
the X Consortium.

The task at hand is to look at programming the X window system from a portability and productivity
standpoint, and determine if it makes sense to program at that level.

2.1 X and Portability

Portability is largely a question of availability. To write applications that are portable, libraries being
used must exist on many, if not all, platforms of interest to the programmer. This issue, in the case X,

3. MS-DOS is a trademark of Microsoft.
4. OSF, OSF/Motif and Motif are tradmarks of the Open Software Foundation, Inc.
* DEC is a registered trademark of Digital Equipment Corporation.

AUUGN 53 Vol 10 No 4

would appear to have been answered by the large number of companies who have joined the consor-
tium at MIT that supports X, and by those that have announced X products. As of August 1988, the
following companies were Members and affiliate members of the X consortium:

X Consortium Members

¯ Apollo Computer, Inc.

¯Apple Computer, Inc.

° AT&T

° Bull

° Calcomp

¯Control Data Corp.

° Digital Equipment Corp.

¯ Fujitsu

o Hewlett-Packard

¯ IBM

° NCR Corp.

¯Sequent Computer

° Sony Corp.

¯ Sun Microsystems, Inc.

¯ Tektronix, Inc.

¯Wang Labs

° Xerox Corp.

X Consortium Affiliate Members

° Adobe Systems

¯Ardent Computer

¯ Carnegie Mellon Univ.

° Evans & Sutherland

¯Integrated Solutions

° Interactive Systems Corp.

° Interactive Development Environments

° Integrated Computer Solutions

° Locus Computing

¯ Stellar Computer

This impressive list means that most, if not all, vendors in the list will provide Xlib as part of their pro-
ducts. Add X/Open, the Open Software Foundation, ANSI, and other standards bodies endorsing X

Vol 10 No 4 54 AUUGN

and portability at the window system level would seem assured.

Several of X’s design goals are aimed directly at portability issues. Reference [1] gives these as a few of
X’s design goals:

¯It should be possible to implement X on nearly any and all bitmap displays, as well as a variety of
input devices. A walk through almost any UNIX-oriented trade show will attest that this objective
has already been achieved. Notice, though, that the emphasis is on bitmap displays. X doesn’t run
on character-cell displays. Higher levels do provide terminal emulators however, to leverage exist-
ing terminal based software.

XApplications must be device-independent. It’s essential that developers not be required to rewrite,
compile, or even relink applications for each new hardware display. No device dependent code is
included with X applications, and therefore applications are not tied to a particular piece of
hardware. Independence of this sort is as important to software vendors as it is to users. After all,
nobody wins when customers are forced to relink in order to use new display hardware.

2.2 X and Productivity

In reference [4] David Rosenthal writes: Ideally, a window system should provide facilities at three lev-
els. At the lowest of these, clients need the ability to create and lay out windows, to draw in them, and to
obtain input events from them. This is the "system call" level of window systems.

Programming every client at this level would be tedious, so the system should also provide a higher "stan-
dard I/O" level consisting of a toolkit of user interface components, such as menus and text panels.

Several of the design goals for X also impact the productivity of those writing programs using only Xlib.
They are:

X should be capable of supporting different application and window management interfaces. No sin-
gle user interface is "best", as evidenced by the fact that different technical communities seem to
have adopted radically different ideas about what constitutes an ideal user interface. By not dictat-
ing policy, X has a better chance to move along with technology, even as new user interface para-
digms grow in popularity.

¯X should provide high-performance, high-quality support for text, 2D graphics, and imaging. Notice
that no user interface tools such as menus or buttons are described in this goal.

These design goals show that at the window system level, X and Xlib were optimized for flexibility
rather than ease of programming. Xlib contains hundreds of function calls and parameters and the
documentation for it runs hundreds pages. There are no tools that deal with user interface directly,
these are left as an exercise for the reader.

2.3 Conclusions at the Window System Level

It would seem obvious from the material presented that writing programs at the Window System level,
or Xlib in the case of X is very portable. However, even the designers of X grant that little user inter-
face programming should be done at this level directly. This type of programming should be done at
higher levels for productivity reasons.

3. Toolkits For X

While most X experts agree on the strengths and weaknesses that characterize Xlib and the X protocol,
there is less agreement at the Toolkit level for X.

The significance of this problem is evidenced by the fact that one of the most persistent problems with
X has to do with the difficulty of writing X applications. As described above, many of the problems
stem from the design decision to leave Xlib flexible and devoid of policy. For all the freedom this
offers programmers, it also implies a great deal of knowledge and work be done to write even a simple

AUUGN 55 Vol 10 No 4

application properly. Fundamentally, the choice to retain flexibility at the Xlib layer was predicated on
the assumption that policy issues and ease of programming would be resolved through the use of user
interface toolkits.

The toolkit for X covered in this paper is called the X Toolkit or Xt. It is very closely tied to Xlib, mak-
ing heavy use of windows. A client created with the X Toolkit, for instance, might contain hundreds of
windows. Xt also uses X’s resource data base heavily, allowing users to change things like colors, but-
ton strings, and more at the time an application runs. There are two layers within the X Toolkit: one
consisting of intn’nsics and the other being made up of widgets. Widgets are the graphical objects
(menus, scroll bars, and such) that are key to the toolkit portion of the reference model. Intrinsics,
meanwhile, are what glue the widgets and Xlib together. Applications communicate with Xt through
the use of Callback Functions implying the toolkit extolls a don’t call us, we’ll call you communication
model.

3.1 Portability at the Toolkit Level

As with the window system level, portability at the toolkit level is largely a question of availability. To
write truly portable code, the toolkit Application Programmers Interface (API) must be available on a
wide variety of systems.

The Xt Intrinsics are gaining widespread support in the industry. They are in the public domain and
have the support of the following companies and standards bodies:

¯ Hewlett-Packard

¯ DEC

° AT&T

° MIT X Consortium

¯X/Open
If all programmers needed to write applications were the Xt Intrinsics we’d be home free. Unfor-
tunately, widgets are also required. A single standard would not seem to be forthcoming. As there
may be two UNIX standards, at least two sets of widgets are likely. Motif from the Open Software
Foundation, and OpenLook from AT&T.

At the time of this writing, Hewlett-Packard, Sony, an MIT have developed widget sets and placed
them and their source code in the public domain. Up until now, if a programmer wished to write a
portable program with the Xt intrinsics and widgets, using one of these public sets was an attractive
option.

3.2 Productivity at the Toolkit Level

The main reason to use a toolkit is productivity. The best reference showing the productivity benefits
of using a toolkit are shown in [5]. This article [5] compares the code required to write a "proper" pro-
gram that prints Hello World into a window following reasonable X programming conventions. In the
summary of the article the following data is given: In the case of "Hello, World’; a program that took 40
executable statements to program using the basic Xll library took 5 statements to program using the Xll
toolkit. In addition, the toolkit version had more functionality ad better repaint performance than a library
version with 60 statements.

This demonstration shows a significant decrease not only in the amount of code written, but also in the
knowledge required to write code for X. Since less code is written, fewer bugs are expected and we
move back down the complexity curve. This moves us back towards the simple environment we once
had when programming with libc and stdio. Plus, our users live in a more hospitable environment.

Vol 10 No 4 56 AUUGN

3.3 Conclusions at the Toolkit level

Much programming productivity is to be at the toolkit level. James Foley of George Washington
University claims a 50%-80% gain in productivity when using a toolkit. The numbers given in [5]
would seem to bear that out. Unfortunately, some portability would seem to be lost at the
toolkit/widget level at the time of this writing. Using public domain widgets is an option, but hopefully
one or two sets of widgets will emerge in the near future to give programmers a stable base for writing
programs productively.

4. System User Interface.

For end users, SUI provides tools to control their computing environment, and the model for thinking
about their environment in general. For programmers, SUI provides conventions and utilities for writ-
ing applications that work together. Having established that an X-based application can be developed
more productively using a toolkit, we must look at other aspects of the programming environment that
may affect productivity and portability. Unfortunately, the SUI level is the least understood part of the
reference model.
Of the many components that make up a system user interface, the following have the greatest effect
on the programmer:

¯ Inter-Client (Application) Communication [4]

° Look and Feel (Style Guide)

The following sections give examples of how programmers deal with programming at the system user
interface level.

4.1 Inter-Client Communication

With several applications able to run concurrently on the same display, the usefulness of a mechanism
for moving data between applications should be obvious. For instance, situations often come up where
it would be helpful to be able to copy the value of a spreadsheet cell (or the value of a range of cells) to
a text editor. To assist in such instances, X provides a facility called Selections, to assist in inter-client
communication. In the following spreadsheet/text editor example, the selection mechanism is used to
share data.

Step #1. If an end user were to move the mouse cursor to the spreadsheet client and select a range of
spreadsheet cells, the spreadsheet client would highlight the cells as feedback to the user. Since the
user may which to copy these values to another client, the spreadsheet would request, and receive, own-
ership of the current selection from the X server.

Step #2. The user could then move the mouse cursor to the text editor and perform some action--
perhaps picking a "paste" item in a menu as an indication that the current selection, (the highlighted
range of spreadsheet cells) should be pasted into the text editor. This would cause the text editor client
to request the contents of the current selection from the spreadsheet client--thus indicating not only
what type of data the text editor would like (probably a string), but also including its own window id.
This would cause the spreadsheet to store the selected data as an X property on the text editing win-
dow and send the text editor an event indicating a successful transfer. The text editor would then be
free to get the spreadsheet data and show it in its window. Thereafter, the primary selection would stay
with the spreadsheet client until requested by some other client.

This example shows two responsibilities on the part of X clients: First, they must use the selection
mechanisms to share data easily with other clients. Second, they need to give some feedback to the end
user to show how to share the data.

The example given above shows one of many responsibilities given the programmer when writing an X
application, some help in following the environment programming conventions would be welcomed by

AUUGN 57 Vol 10 No 4

most programmers.

4.2 Look and Feel/Style Guide

The look and feel of a system is a conglomerate of all aforementioned system user interface com-
ponents, and applications. Having a consistent system look-and feel provides large benefits to end
users. Positive transfers of learning occur when applications used have similar interfaces. Reduced
training costs and frustration (for end users) are but a few of the results of a well organized and con-
sistent system look and feel.

Some users also need to use a variety of operating systems and hardware. A user familiar with the
Presentation Manager* on OS/2, or Microsoft Windows6 on DOS is quite happy to see that look and
feel moved to UNIX applications with Motif. Other users may prefer yet another interface.

For this reason, the designers of X did not choose a standard look and feel. X’s resource database,
providing run-time modification of Colors, Fonts, and other resources, together with X’s toolkits pro-
vide the mechanisms by which system look and feel will be implemented.

4.3 Portability at the System User Interface level

There is some significant work in progress at the system user interface level. Witness the announce-
ment of Open Look7 from AT&T and Sun Microsystems, a look and feel/widget set whose first imple-
mentation will be on X and the X toolkit. The Presentation Manager is another logical look and feel
candidate. Hewlett-Packard has announced its intention to move the NewWave environment from the
personal computer world to UNIX and X. NewWave provides an iconic office desktop metaphor, and
is an example of a system user interface that could be used by a computer novice. NewWave also pro-
vides an object system, that keeps track of a users data relationships, and an automated record & play-
back mechanism to generate shell scripts for users without shell programming. As a result of New
Wave, HP will be providing the same user interface on its personal computers and UNIX systems.
Digital Equipment Corporation is also providing significant technology at the System User Interface
level.

Fortunately, for portability sake, all these vendors are committed to follow the Inter-Client Communica-
tion Conventions referenced in [4]. Writing programs that communicate with each other is a matter of
following the conventions. Writing portable code at the application communication level should be
possible.

It isn’t as good a story as far as style guides are concerned. Each vendor is expected to "add value" to
their implementation, and this is bound to cause programmers headaches. The best solution may be
the adoption of a style guide from the PC world, such as the Presentation Manager so that at least one
standard interface exists in the computing world. Following style guides for various computing plat-
forms is going to cause problems as far as portability is concerned.

4.4 Productivity at the System User lnterface Level

Inter-client communication and user interface style guides are one place where real trouble begins for
programmer productivity. Thick documents explaining the rules for programming conventions and
style guide conformance will proliferate. Unfortunately, the training required to learn rules such as
these do not add functional value to an application. Therefore, a software vendor must make a choice
as to whether new features should be added to an application, or programming conventions and style
guides should be followed. Apple has already experienced trouble moving Macintosh applications to

6. Presentation Manager and Microsoft Windows are trademar’ks of Microsoft.
7. Open Look is a trademark of AT&T

Vol 10 No 4 58 AUUGN

AUX because programmers either refused to follow, or did not understand Mac programming guide-
lines.

Expect similar problems down the line for UNIX environments unless some type of help for program-
mers is forthcoming. The rest of this paper will discuss two potential solutions to this problem.

5. Interactive interface builders

Much of the software development in the near term for X will be widgets. Expect to see spreadsheet
and WYSIWYG text widgets in the future. The development of libraries of widgets will make pro-
gramming interfaces much like laying out a board using a q’q’L data book.

The programming productivity gains realized by using a toolbox are large, but a quantum leap can be
made with the development of tools that support the use of toolkits. It can take hours to lay out widg-
ets in an applications window, for instance. Likewise, any radical changes to a finished layout can con-
sume hours. To reduce the hours to minutes, we have an opportunity to develop interactive interface
builders that can be used to edit windows. These tools will allow an interface to an application to be
developed as easily as a text file is created using vi, or emacs. Using such tools, programmers will be
more likely to try several user interfaces, rather than using the first one developed, and thereby pro-
duce superior products.

Interactive tools should be used to assist the programmer in several areas:

¯ Window Layout

¯ Environment programming conventions (i.e. Inter-Client Communication)

¯ Style Guide Conformance

¯ Application Internationalization

Humans should write less and less code, not more as is the case with the environments being pushed
today. An interactive builder could help a programmer follow environment programming conventions
and style guides without reading huge documents. Writing code for the increasingly global community
in which we live should also become easier.

Eventually it should become possible even for non-programmers to construct the user interface for a
new application, or to add a graphics interface to awk, grep, or mail. We will all be much better off
when human factors specialists create user interfaces as opposed to software engineers. Interface
builders are not yet a requirement at the toolkit level, but they probably will become a requirement
soon enough.

UIMX from Visual Edge Software Ltd. provides the best combination of productivity gains in conjunc-
tion with portability concerns in the authors opinion. It (UIMX) is an interactive tool that helps create
application interfaces in accord with the goals stated above, and is implemented on the Xt Intrinsics,
and the HP X Widget Set. Expect to see other such tools to be available in the near future.

6. API’s From Other Environments

Another solution that could help programmers be more productive is to have common programming
interfaces between operating systems. Moving the Presentation Manager API to UNIX would help
UNIX programmers if only because of the expected proliferation of training and books for the PM
environment.

The difficulty here, will be to move the API to X and UNIX without sacrificing performance, and com-
patibility. This will be an expensive and time consuming effort but the dividends paid, if successful,
would be great.

AUUGN 59 Vol 10 No 4

7. Summary

The world has become a complex place in which to program. The tradeoffs between .writing portable
code to standards versus productivity concerns are difficult to underst.and. Our best hope is to minim-
ize the number of standard programming environments, and the amount of code written by humans.
Perhaps by pursuing these two goals, we may avoid constantly rewriting existing code and be able to
concentrate on more productive tasks.

Vol 10 No 4 60 AUUGN

8. References

[1] Robert W. Scheifler and Jim Gettys, "The X Window System", ACM Transactions on Graphics, Vol.
5, No. 2 (April 1986).

[2] Jim Gettys, Ron Newman, and Robert W. Scheifler, "Xlib--C Language X Interface", X Version 11,
Release 2 (September 1987).

[3] Robert W. Scheifler, "X Window System Protocol", X Version 11, Release 2 (September 1987).

[4] David Rosenthal, "Inter-Client Communication Conventions Manual", draft (February 1988).

[5] David Rosenthal "Going For Baroque", UNIX REVIEW, June 1988 pp. 71-79

[6] Ed Lee "Window of Opportunity", UNIX REVIEW pp. 46-61

AUUGN 61 Vol 10 No 4

ABSTRACT

Open Electronic Messaging
and its role in EDI

AUGUST 1989

Ian Sharrock
Open PlaO orms Consultant

ICL Australia
ian @ icl.oz

The evolution and acceptance of the X400 international standard for electronic
messaging has progressed more rapidly than might have been expected.

X.400 initially defined a set of standards for the structure and a message medium
for the transmission of text and data of any length as documents, document images
and letters in the form of electronic messages. More recent international efforts to
explore the convergence of X.400 Message Handling Systems (MHS) and Electronic
Data Interchange (EDI) have begun. Resulting EDI traffic will considerably increase
the size of the messaging market, and the availability of a communications backbone
such as MHS will speed the growth of EDI.

This paper represents research on understanding,

¯

X.400 and its relationship with EDI,
the current status of EDI and X400 as a standard and the
relevant influences on the standards,
the role of Unix,
the responsibility and challenges to Unix vendors in
introducing X.400 messaging architecture to their users.
the relevant strategies and offerings from newly established
VAS (Value Added Service) suppliers in Australia,

Whilst technically speaking a "global public messaging system" is achievable and
desirable in today’s climate, there are a number of commercial constraints preventing
this from happening. The paper endeavours to explore a number of these constraints.

1. Electronic Data Interchange

Over a period of 20 years EDI (Electronic Data Interchange) has evolved to the state
where it can be described as "paperless trading", in the same sense that EFT and EFT
at Point of Sales (EFTPOS) can be described as "paperless payment". The basic .principle
of EDI is that computer- generated trading documents, such as purchase orders and
invoices, are transmitted directly to a company’s trading partner’s computer via an
appropriate medium. In today’s ruthlessly competitive commercial environment, EDI
represents an efficient, reliable, more effective manner to conduct business.

Vol 10 No 4 62 AUUGN

EDI involves the transmission from one electronic processing node to another of any common
business document e.g. purchase order, invoice, payment instructions, manifests, schedules, etc.
in accordance to a set of established dialogue rules. These documents can be generated
automatically as the result of a trigger to an application, or manually according to a defined
procedure.

EDI has already been taken up and is being used extensively by complete industries, such
as banks, airline booking, automotive manufacturer etc. or by powerful retailers wishing to
wade with the suppliers or sales outlets (eg Coles/Myer). In fact most of today’s EDI usage
comes from such sources. A number of International Organizations have also been established
specifically aimed to market EDI services in the countries with large established commercial
bases. (eg INS in UK focus on the manufacturing, pharmacy and insurance markets.)

A classic and basic example of a business cycle which does
have standards in place is what is referred to as the business
supply cycle. This cycle is characterised by a number of
defined steps and procedures;

Request for quotation.
Issue Order.
Despatch Acknowledgement.
Invoice.
Statement.
Payment.

With EDI, this business cycle compacts from weeks to possibly hours, with benefits for both
the supplier and customer.

2. EDI Standards

The structure and format of any business documents and the manner in which they flow
within a specific business transaction amongst trading parmers, relates to the nature of the
transaction and is the result of long-established business rules, procedures and protocols. In
today’s modem "paper oriented" trading, the protocol and structure of documents or forms
that are exchanged during the business cycle has evolved with time. The forces at play on
the evolutionary process are many and varied and are very much affected by the manner
in which that specific business operates. What can be said, however, is that the evolutionary
process that continues to reshape a specific business cycle, has always continued to embrace
technology, is "forms oriented", is aimed at efficiency and expediency but does not impact
underlying legal requirements.

EDI is a generic term which loosely covers the structure and electronic interchange of
business documents.

AUUGN 63 Vol 10 No 4

EDI standards for specific industries or business transacuon types have evolved from various
special inter~ groups throughout Europe and North America. (eg, Grocery Manufacturers of
America, American Iron and Steel Institute, British Department of Trade and Industry).
Rationalisation and consensus amongst North American special interest groups saw the
formation of the ANSI X.12 committee in 1978, whose charter is to focus on the development
of generic transaction types of message and data exchange.

The number of American document standards that have been developed since the initial
codification of X12 has grown and these standards have gone on to influence most EDI
implementations in use today.

Under the aegis of the United Nations, ISO (International Standards Organization), has a key
activity to liai.~e with the ANSI X12 committee and other similar bodies world-wide to specify
EDIFACT (Electronic Interchange For Administration, Commew~ and Transportation). The role
of EDIFACT is to specify terminology, syntax, trade data directories and message types. By
1990, ISO anticipates that in excess of 1000 message types will be standardized, covering
over 80% of the world trade.

For example;

Set No. Description

110 Freight Details (Air)
314 Shipment Details (Rail)
843 Response to RFQ
875 Purchase Order
905 Remittance Advice
943 Warehouse

The requirement for a reliable EDI message tranfer and handling system was identified early
by the various driving forces on EDI standards. With the growing popularity of EDI there
is considerable interest in using X.400 as the message handling system for EDI data. In
theory, because X.400 was set up to handle files of any type, it should be a strong marriage.

Figure 1. The Evolution of Standards

North America Europe

DISA ,

"----" TDCC

, ANSI (X12)

COMECON ,I

Int’l Trade

Industries
SITPRO

l

"/

GTDI

JEDI ~

1
ISO ROW

EDIFACT

OSI

I

Vol 10 No 4 64 AUUGN

3. X400

Ever since computers moved from being batch driven to user interactive systems, a suitable
environment has existed for developers to introduce schemes whereby messages can be
passed from one interactive user to another. Various mail regimes have been introduced by
different vendors to accommodate interactive messaging systems.

Unix mail has evolved from a similar requirement and is characteristic of these proprietary
architectures. There have been many successful attempts to extend the standard Unix mail
and to overcome some of the shortcomings in traditional mail systems. Products like MH-Mail
have been aimed at improving the user interface. Similarly other products such as MHSnet
and UUCP have had mail successfully integrated to provide the mechanisms for distribution
over a wider network of Unix systems. Unix Office Automation (OA) product developers,
not satisfied with standard Unix mail, have introduced their own proprietary electronic mail
regimes to make mail more commercial and allow for integration into relevant OA modules.

Basic e-mail messages are text-based and for a Unix user, the choice of mechanisms to
present and manage standard text messages are limitless. To achieve a global electronic
messaging system with true compatibility between different e-mail systems, there needs to
be consensus on the manner in which messages are routed, transferred and controlled within
a mail network. That is, there needs to be consensus on the network wide message handling
system (MHS).

In 1984, the CCITT approved the results of collaborative work undertaken by a number of
companies interested in developing a comprehensive set of technical specifications for the
interconnection of e-mail systems. The eight documents that resulted from their efforts are
referred to as the X.400 Series recommendation.

Since 1984, the initial X.400 recommendations have steadily achieved acceptance throughout
the wider e-mail industry. Most office equipment vendors, computer manufacturers, and
Value-added Service providers are implementing or offering X.400 interconnect capability.

In 1985 CCITT began work on several key extension to X.400 that enable, for example,
secure messaging, user friendly naming and distribution lists. In Melbourne, CCITT’s Plenary
Assembly ratified X.400 (1988)second edition.

The Message Handling System.

The MHS (Message Handling System) model serves as a tool to aid in the explanation of
the standard. The model uses the techniques of the OSI reference model to formally define
the layered communications structure.

In the case of interpersonal messaging (IPM), a user prepares messages with the assistance
of an IPM User Agent (UA). A UA is an application process that interacts with the Message
Transfer System (MTS) to submit or take delivery of messages.

AUUGN 65 Vol 10 No 4

Message handling I Liar I Denotes an interaction
environment [--- [< ;

MHS

T

Fig 2. The MHS Model

,

Application

Presentation

Session

Transport
Network

Data Link
Physical

Media

P2

MTA MTA MTA
-- P1- -P1-

RTS RTS RTS

RTS RTS RTS

BAS BAS BAS

Network #1 Network #2

WP/text editor

user agent

dispatcher

Reliable
Transfer
Service

Session

Data
Communications
Protocols

Fig 3. The Relationship between OSI and X.400

Vol 10 No 4 66 AUUGN

The MTS consists of a number of MTAs (Message Transfer Agents - sometimes referred
to as post rooms) operating together. The MTAs relay messages and deliver them to the
intended recipient UAs, which in turn make the message available to the intended recipients.

A collection of UA’s and MTA’s is referred to as a message handling system (MHS).

The CCITT has defined a common message transfer protocol referred to as "PI", that is
used to transfer messages between MTAs. For interpersonal messaging (IPM), another protocol
"P2" is used. "PI" defines the electronic message envelope while "P2" specifies the envelope
contents in terms of an interpersonal message.

For reliable transfer of messages between MTAs, OSI implementations of X.400 provide a
Reliable Transfer Service (RTS). Most RTSs utilizes the OSI Transport service subset and
guarantee delivery of complete messages between MTAs by providingcheckpointing, and
restart of data transfer after transport connection failure.

Naming and Addressing Conventions

Within an IPMS, each MHS user is assigned a unique hierarchical O/R name. The prefix
"O/R" recognises that a user can either be a recipient or an originator of a message . An
O/R name distiguishes one user from another user address, and it enables the MHS to
locate a user to deliver a message to a users UA.

An O/R name is a collection of one or more name attributes whose syntax is defined. Some
of the attributes are used to unambiguously identify the "management domain (MD)" to
which the user is attached. These "base attributes" are important to the MTA so it knows
how much of the O/R name to consider when transferring a message to the next MTA.

The base attributes are:

Country
Administrative Mail Domain
Private Mail Domain

AU Australia
in Telecom "Telememo"
ICL

Other attributes can include

Organization
Unit
Personal Name

Example: I.S harrock/A USO7A/ICL/Telememo/A U

AUUGN 67 Vol 10 No 4

4. The Vendors

Tactically, X.400 can be seen as a gateway specification, as a technology base ~or connecting
one proprietary e-mail system (or component) to another, that is a common ground. This
position is characteristic of the first generation of X.400 offerings from manufacturers of
end-user commercial products (both hardware and software). As a result of market
requirements and user pressures, one of the first areas to move into X.400 messaging is
Office Automation (OA). Manufacturers of products such as Officepower, Uniplex, All in
One, Quadratron, CEO and Wang Office offer or plan to offer X.400 gateways, while
continuing to interwork internally with their proprietary messaging system.

The shortcoming of such products is that they can only interwork with other products built
by another vendor to a limited degree. Users can not exercise all the features of both. Such
imperfections, intrinsic to the gateways, result from architectural differences between the
product and the gateway specification to which it can only approximately conform.

From a strategic point of view, X.400 can be considered as the chosen architecture for a
messaging system. Products characterised by a native X400 MHS are now starting to appear
on the market. Products, such as OfficePower from ICL and Retix Mail from Retix Corp
California USA, do not have features that depart from those described by X.400; thus, being
architecturally aligned to X.400, have a high level of interworking.

Computer product vendors or software solution houses in the EDI market have, up till now,
been offering some form of proprietary EDI. From the vendors point of view the use of
X.400 messaging as the basis of EDI is a relatively new phenomen and it this stage no
clear direction appears to be apparent.

However, because EDI, when applied as an "open" solution requires participation from a
number of hardware vendors, software solution houses and network providers, and because
X.400 will have to fit into established defacto standards such as TCP/IP, MSDOS and VMS
as well as established standards such as OSI and UNIX, the trend towards collaborative EDI
solutioning has evolved. Examples of collaborate efforts between what have been, up till now,
traditional network providers and software houses whose services cover complete industries,
have started to appear under the generic term of Value Added Services (VAS) Providers.
Possibly the most visible examples of VASs are those that have been established by OTC
and Telecom. Telecom and OTC are fiercely competitive in this area and in conjunction
with their respective partners can offer today a number of X.400 based EDI solutions.

5. The VAS Provider position

Australia Telecom

Telecom, through their Value-added Services (VAS) operation known as Telecom Plus, offer a range
of messaging and EDI services. Telecom’s messaging system is an extension to the familiar "Keylink"
service and is based on a commercial messaging product from the USA called Telemail. Telecom
claim this messaging system is X400 compliant.

Vol 10 No 4 68 AUUGN

Telemail distribute their products and services through a number PTT’s throughout the world;
of Telecom Australia is one. The Administrative Management Domain naming attribute for
Telecom’s Telemail electronic message service is "telememo".

The two current messaging services being offered by Telecom Plus are:

1 Connection of Private Management Domain Messages Transfer Agents to
Telememo via X.25.

Users wishing to connect to the "Telememo" must have
X.400 compliant MTA’s.

Proposed
Tariff: 85 cents per k/char international.

40 cents per k/char local.

Keylink is a public, user interactive message processing system based on
telemail X.400 messaging service. Users connect to the Keylink User Agent
via character modeinteractive terminals and an X.25 PAD.

Proposed
Tariff:

plus

46 cents per k/char local.
86 cents per k/char international.

20 cents per minute connect time.

Telecom have commercial arrangements with other Telemail based message service vendors
throughout the world. Telecom claim to offer not only an integrated service between Keylink
and their X.400 ADMD public service but also an almost global integration between both
services and a LIMITED NUMBER OF SIMILAR SERVICES that are predominantly
Keylink-based throughout the world.

Telecom Plus have two EDI service offerings based around X.400. The two facilities, one in
Sydney and the other in Melbourne, represent collaborations with partners and offer services
that focus on two specific market requirements.

TRADELINK is a collaboration between Telecom and ACI computers. TRADELINK
offers solutions to and is focused at the commercial supply cycle of particular
industries. It consists of consulting services that offer solutions to particular
business needs based on Telecom’s X.400 messaging service.

So far, only one TRADELINK-based solution is up and running. The solution
provides the ability for Automotive manufactures to order electronically on
their suppliers.

AUUGN 69 Vol 10 No 4

T-NET is a collaboration between Telecom and P&O shipping. T-Net offers
a range of services designed specifically for Transport and Shipping and
allied industries. T-Net is a spin- off from the successful collaboration with
ACI with a different focus. Once again the EDI solutions being offered by
T-Net are X.400 messaging based.

So far, the only T-Net solution being offered is WoolCom, an industry-specific
product aimed at businesses specialising in the preparation, storage, export
and shipping of wool.

OTC Australia

OTC Australia offer a range of EDI services through joint arrangements with a number of
complementary companies, including NEIS and Computer Power. In addition, OTC in
conjunction with British Tdecom offer X.400 and X.400-based EDI services through a joint
venture company known as Network Innovations.

Network Innovations based in Sydney offer competitive services to those offered by
TelecomPlus.

Users with X.400-compliant MTAs can connect their private mail domains to
OTC’s mps400 service. The mps400 service consists of two distinct elements
or systems. Whilst each dement has a different origin, OTC claim that a
seamless interface of services exists between both elements and market mps400
accordingly. Users of mps400 can be identified as having as having the
ADMD name of "otc".

The Elements are;

X.400 MHS software developed by the University of British Columbia referred
to as Messager 400 and running on a VAX provides the backbone to OTC’s
EDI oriented services. In having a source license to Messager 400 OTC are
able and willing to tailor their X.400 offerings to suite user EDI requirements.

A recent example of this is the service developed in conjunction with Colonial
mutual. This service provides a means for Field Representatives to forward
and receive insurance proposals and documentation on portable personal
computers.

For users that have a more "generic" IPMS requirement, OTC will hook
into OTC’s Dialcom service. Dialcom 400 is a worldwide competitive, product
to Telemail and is distributed and marketed under similar arrangements.
Dialcom is US based but owned by British Telecom.

Vol 10 No 4 70 AUUGN

OTC’s public user interactive message system is also known as Dialcom and
competes with Telecom’s Keylink. Once again, Dialcom products are utilized
to provide this service. Users of the service have access to the "closed"
worldwide base of Dialcom’s interactive users. OTC will open up Dialcom
and plan to integrate the "Dialcom" public message system into mps400 in
the foreseeable future.

Tarfifs are not available from OTC on either of these products.

Possibly the most well known EDI implementation in Australia is EXIT. EXIT is the result
of OTC’s successful bid for Australia’s Customs Service’s requirement for a fast and accurate
tracking of exports. EXIT is designed to be taken up by those parties in the import-export
cycle and is specifically intended to improve Australian Custom’s efficiency in this area. It
is anticipated that EXIT will ultimately track 360,000 consignments shipped by more than
3000 shipping agents.

The EXIT EDI requirents have been met by tailoring OTC’s standard X.400 product to
adapt to the EDI application. OTC consider that in having source and hence control of their
own X.400 product, they can offer more flexible EDI solutions and can respond more quickly
to market requirements. Whilst OTC are not prepared to disclose their future EDI strategies
they do see a distinct advantage over their competition by being in such a position.

6. Global Messaging Systems

Being able to transmit text and data of any length as a document, letter or message almost
instantly anywhere in the world is a powerful facility. But to work, it is essential that all
message carriers conform to the X.400 international standard.

The X.400 standard has come a long way in its four short years. To achieve a global
messaging system, connectivity between relevant ADMDs for public traffic needs to be
established. Given the commitment of telecommunications providers, network value added
service providers (VAS) and computer companies to the standard, you would not be mistaken
in thinking that this connectivity is achievable today.

Whilst technically it is possible, a number of commercial influence are stalling the process.

The competitive climate that exists between OTC and Telecom is not unique to Australia.
In such a climate, where two or more rivals are competing for dominance in the
EDI/Messaging market, vested interest is first before consensus on dialogue towards
connectivity.

AUUGN 71 Vol 10 No 4

Further, for a message to pass from one side of the world to the other, it may be required
to transit a number of message carders. Calculating the tariff levied on the originator would
involve all the carriers responsible for transitting the message. Todate, agreement on charging
has not been reached.

7. Xo400 and EDI Convergence.

Whilst X.400 is oriented towards Inter Personal Messaging most of the message handling
features of the X.400 Message Handling System are applicable to an EDI message handling
system.

A new international effort to explore the convergence of X.400 MHS and EDI has recently
begun. MHS and EDI seems likely to be a powerful combination. EDI traffic will considerably
increase the size of the messaging market, and the availability of a communications backbone
such as MHS will speed the growth of EDI.

Although X.400’s architecture is set up so that it can transfer EDI documents, such as
purchase orders and invoices, the. specific service elements for an EDI application do not
exist yet.

example: While the X.400 IPM service element identifies sender and recipient(s), they
do not recognize that either of the communicating parties have a multiple
trading arrangement together. Instead, X.400 assumes that a sender and recipient
have a single relationship (mailbox) that receives all messages. To be suitable
for a EDI application level service, X.400 would have to recognize that one
company could have multiple trading relationships involving separate trading
agents.

8. Summary and Conclusion

X.400 as an international accepted standard has achieved rapid success. Major administration and service
providers have launched their X.400 service - while major suppliers have produced their end-user systems
or X.400 gateways from their proprietary product offerings.

In addition, it must be remembered that X.400 is not restricted to electronic mail, ie. interpersonal messaging.
It also offers a common Message Transfer Service, that can carry all sorts of electronic data. One of the
most important candidates is the electronic business trading data in the form of EDI.

However, for X.400 to succeed as a cartier of EDI messaging, X400 will have to be extended to overcome
the philosophical division between IPMS and EDI. X.400 is designed for passing messages between parties
that have a messaging relationship while EDI has a requirement for a MHS to pass messages between
parties that have a trading relationship.

Before X.400 can achieve the status of "global electronic messaging system" a worldwide agreement on the
connectivity of Value Added Service (VAS) providers and Administrative Mail Domains (ADMD) must be

Vol 10 No 4 72 AUUGN

reached. Apart from the agreement on tariffs, the biggest single influence working against
this connectivity is the commercial competitiveness of parties offering such services in their
respective regions.

For organisations strategically adopting X.400 as their native messaging architecture, numerous
products are and will soon be available. Most products available are tactically based, for
example offer gateways to X.400 but others are strategically based, and X.400 as the native
messaging architecture. Hence organizations adopting X.400 will have to choose products
carefully to fit in to their overall strategy. For such organisations the benefits of uniform
messaging and a fixed interface between system components will be similar to those gained
by organiations which have chosen to adopt Unix as the basis of it being an "open"
operating system.

X.400 is a working commercial example of an OSI Layer 7 application. After nearly a decade
of standardization, global e-mail is now clearly on the horizon. Unix is a product that is
competing successfully to win business as a DeparUnental System from its acceptance as a
major industry standard. To cement X.400’s position as a major industry standard, UNIX
vendors and UNIX users should be considering X.400 as the first major application of Open
Systems Interconnection within its repertoire of communications capabilities.

9. References

CCITT Red Book Volume Vlll - Fascicle
Data Communication Networks Message Handling Systems

OSN Newsletter Volume 2 Issue 7
CCITT Takes First Steps To X.400 and EDI Convergence

The A to Z of EDI Paul Kimberley

Article - X.400 Standardized As An Interconnector Of E-Mail
James White

AUUGN 73 Vol 10 No 4

UUL - UNIX User Limits

Ray Loyzaga
yar@cs.su.oz

Rex di Bona
rex@cs.su.oz

Basser Department of Computer Science
The University of Sydney

1. INTRODUCTION

The Basser Department of Computer Science has recently moved its undergraduate
teaching workload from a single Vax 11/780 running AUSAM to four Mips M120’s
running UNIX~" System V.3. The improvement in response time has been tremendous,
but the loss of a secure, manageable environment has had quite an impact on the
department’s programming resources.

1.1 Problems with Unlimited UNIX

Students within our environment have an unfortunate tendency to write incorrect
programs. Some of these students make demands on the system that have the
potential to bring any system to its knees. Runaway programs can completely devour
disk space, provoke massive amounts of swapping or just soak up so much CPU time
that other students suffer. Obvious areas that require attention are:

Disk usage limits

CPU usage limits

Process limits

¯ Memory limits

1.2 Anecdotal Student Incidents

It is not just run-away programs that cause problems. Some students are amazed by
the speed of the machine, and correspondingly their finesse at writing efficient
programs has decreased. One example of this is a program written by a student as an
alarm clock. It was a shell script that continually calculated the time and compared the
result with the requested time (Figure 1).

#!/bin/sh
while true
do

if [
then

fi
done

’date I cut -c12-20’ = $~]

echo $2
exit

Figure 1. Alarm Program

UNIX is a trademark of Bell Laboratories.

Vol 10 No 4 74 AUUGN

2. RELATED WORK

Several other systems have been developed that encompass parts of the I.V!JL system.
Each of these have had certain advantages and disadvantages.

2.1 AUSAM

AUSAM was developed at the universities of Sydney and New South Wales, with
input from elsewhere. It is a comprehensive package designed to provide a secure run
time environment for student teaching based upon UNIX machines. It provided control
over virtually all aspects of a users ability to use the system. Amongst it features were;

¯ Disk limits

¯ Memory limits, and Memory working set limits

. Process limits

® Printer limits

¯ Terminal Access control

. CPU fair sharing

o Flags for controlling resource access

. Connect time limits

® Automatic Account expiry

® A umask mask to restrict file permissions

The AUSAM system required major changes to both the kernel and to user programs.
It worked by adding a per user structure to the kernel. This structure, called an lnode,
contained all the information that the kernel required to perform limit checking, and
resource accounting. When not active user lnodes were stored in the password file,
which was extensively modified to allow for the additional data.

The password file was changed from a simple random indexed ASCII file to a hashed
binary data base. The entry for each user contained not only the information required
by the kernel, but also information that was used by user programs. The printer limit
was an example of this; the number of printer pages allowed, and the number used,
were both stored in the password file but only updated by the printer daemon software.
This change to the password file was a significant advantage for a system which had a
large number of users, as it provided fast accessing due to its hashing scheme, but was
a major disadvantage as programs that expected a simple linear ASCII file would no
longer work1.

AUSAM has several major disadvantages. It performed all charging based on the lnode
of the invoking program. The lnode was only changed by an explicit system call.
Setuid programs (e.g. mail, hack, Ipr, sendfile) did not change the Inode, but did
change permissions and ownership of created files. Use of setuid programs could

1. This disadvantage was removed in a version of AUSAM which used a mounted process to simulate
an ASCII file for/etc/passwd.

AUUGN 75 Vol 10 No 4

create a situation where the invoker of a program is charged for files that are owned
by the owner of the setuid program. These files, in most cases, are removed by a
daemon, such as the printer daemon, that is started as boot time. This results in the
invoker having a higher than real disk charge, and the daemon owner having a lower
than real disk charge. The solution to this was to run, each night, a daemon that
corrected the real disk charge of each user.

2.2 Quotas

The popular BSD variant of UNIX includes an optional piece of code that performs
quotas for disk usage limiting ~9, Su~86. A user is given a per-filesystem limit on the
amount of disk available. An attempt to use more than this results in an error, and the
operation is not performed.

The quotas system does not attempt to limit anything other than disk usage. It has the
drawback of increased administration, as a limit has to be allocated for each user for
each filesystem that is to be quotaed. The quota system also slows down a system
reboot by doing a complete scan of each filesystem which have quotas to calculate the
real disk usage for each user before the system allows logins.

2.3 Ulimit

System V provides for a very simple limiting of file length on a per-file basis. The
ulimitO system call provides a simple user changeable limit for maximum file size
~ps88. This allows a maximum file size to be set per user by having the login program
set the limit to the maximum possible value. A user other than the super user can
only decrease this limit.

2.4 Share

Developed at The University of Sydney in conjunction with the AUSAM package was
Lau80 Kay82a faxr share scheduler ’ , ~:ay88. This system allows for a per-class user share of

the machine. Share only tries to share out the CPU, it provides no other limit services.
The standard UNIX scheduler is based upon a round robin system Bach86 which does not
perform fair scheduling as a single user with many processes ready to run receives
proportionally more CPU time than a user with only one process ready to run.

2.5 Summary

Each of the present systems aim at providing UNIX user limits, but all fail at providing
a general and comprehensive limits system. The closest current system is the AUSAM
system which has shown major flaws during its lifetime here at Basser. The UUL
system is based upon AUSAM, but corrects the discovered flaws. UUL also being
extended to provide a limits system for multiple kernel systems.

3. DESIGN OVERVIEW

The system described is a descendant of AUSAM, many ideas have been extracted
from the AUSAM implementation running at Basser.

A difference between AUSAM and UUL, and an influencing factor on the design of
UUL, is that the department must ensure that a student has a certain minimum level of
resources available, mainly in the form of CPU, connect time and an amount of disk
space. On a totally uncontrolled system this requirement cannot be guaranteed to be
met.

Vol 10 No 4 76 AUUGN

3.1 Philosophy

The philosophy of UUL is to provide an efficient method of controlling the amount of
system resources available to individual students. One of the major restrictions that
we imposed on this development was that the system changes should not require the
modification of any existing user sources, including/etc/init and/etc/login.

The major design decision of the UUL system is the strict enforcement of a "User
requested" policy. A user process is defined by its real, not its effective, user id. It is
this user id that references the lnode that is charged for all resources the process
consumes. One major exception to this is disk accounting. All disk storage charges are
accrued to the lnode of the owner of a file. This way setuid programs and publically
writable files behave as a-priori expectation would suggest. We believe this to be a
more natural model. It is thought that the owner of a setuid program is willing, by the
chmodding to setuid, to be accountable for all disk charges that the program accrues,
but the CPU charge is a more difficult problem. It is the invoker who should be
charged for this as it is the invoker who requested the program to be executed.

3.2 Lnodes

As with AUSAM, the major data structure associated with the limits of each user is an
lnode. A unique lnode structure is associated with each user id. This structure
contains values that define the various user limits and any usage information. Each
process entry also contains a pointer to the associated lnode structure. Each inode also
contains a pointer to the Inode for the owner of the file if the file is open for writing.
This is changed only when a successful setuid() system call is made to change the real
user id of the invoking user.

A limits file exists to store this information. The name of the limits file is provided
via the system call which enables limits accounting. This system call is analogous to
the SysV acctO system call. The use of a limits file differs from the AUSAM method
of a merged binary password/limits file. This conforms with the design goal of
minimum system impact, and with no changes to user programs other than those
specifically dealing with limits.

3.3 Changing Lnodes

An Inode is accessed via the real user id rather than the effective user id of a process,
this means that the setuidO system call provides the means for transferring to a new
lnode structure. An advantage of this system is that the AUSAM style limits() system
call is no longer required, this call was used by login to set lnode structures, and by
init to reap and adjust lnodes for non-active users. An lnode is not transferred when a
setuid program is exec’ed.

A lnode can now become active through two different methods. The first, and most
common will be through the setuid() system call when the real user id of the owner of
a process changes. The second method is through system calls such as write, close,
unlink, truncate; any system call which either allocates or deallocates disk space. The
lnode which is used is the lnode referenced by the user id of the owner of the file.
This preserves the semantics of the "Disk Usage" field of the Inode structure, and
removes most of the need for the dlscan program required in AUSAM for disk
resynchronisation.

AUUGN 77 Vol 10 No 4

A lnode becomes retired when two conditions are met. Both the last process that
referred to the lnode has died, and been wait’ed upon; and there are no files open
belonging to the user id that the lnode is referenced by.

3.4 Limit Accounting

System areas that required changing are:

¯ Process Creation

¯ Process Reaping

¯ File Opening

¯ File Deletion

¯ File Expansion or Contraction

¯ Other Operations that affect charges which have limits

There would also have to be provided means whereby the current limits of a particular
user may be modified by an authorised user, mainly the super-user, because of a
change in a particular limit. Provision also has to be made to both enable and disable
limit accounting.

4. IMPLEMENTATION

Changes are required in several parts of the kernel. The most extensive are required in
process creation and deletion, and file extension and contraction. The interface to the
limits operations is now a side effect of the requested system calls. This provides an
automatic checking of limits whenever a system function that might modify the charge
is performed.

Other limits functions; starting, stopping, and on the fly modification, are all
performed through two added systems calls, the limits system call, and the limctl
system call. These system calls, and their functions will be described below.

4.1 The Limits File Structure

The limits file contains an entry for each user on the system detailing current limits
and usages. This file is a sparse file, users who do not exist are represented as "holes"
in the file. This file is indexed by the associated real user id.

To ensure easy access for the kernel to an lnode entry the limits file is organised so
that an lnode entry is guaranteed not to cross a block boundary. Since an lnode entry

¯ is now always contained within a single block only one block fetch is required by the
kernel to retrieve the entry. This decreases the access time for lnode retrieval, speeding
up access and also reduces the number of blocks in the buffer cache used by the UUL
system. If the disk has sufficiently large blocks multiple lnode entries are stored on
one disk block.

The actual lnode entry in the limits file contains two parts. These are the kernel data
and the user data. The kernel is not interested, and does not track charges that are of
interest to user level programs. The printer system is an example of this. A printer
daemon only modifies that section of the limits file structure that contains the printer
charge. The kernel only modifies that section containing kernel charges and so no
mutual exclusions are required to control update accesses.

Vol 10 No 4 78 AUUGN

4.2 Booting Limits

The limits system could start automatically upon kernel boot, or it could be started
explicitly (cf. accO by a process in one of the boot files. Having limits start at boot is
advantageous in that correct information is kept even for root. Having limits started by
a system call has the advantage that it is a minor change to allow limits to be disable
by the same system call.

A combination of these two is the best solution. The kernel keeps track of accounted
charges from boot time, but only starts enforcing limits when limits are explicitly
enabled by the limits system call. Before the limits system call is executed all charges
are accrued as normal, but since no actual limits are known it becomes impossible to
decide when a charge has exceeded its limit, so it is assumed that all users have no
limits. When limit enforcing is enabled by the limits system call any change to a
charge will result in a comparison with the associated limit being done, and having an
excessing charge will result in the appropriate action; either a warning, or failure of
the change.

If limits enforcing is kept off then it is possible that the number of active Inode
structures exceeds the kernel data structure to hold them. If this occurs then data loss
will occur, as lnodes will be discarded using an LRU scheme r~,75. It is possible to
actively control whether enforcement is to be carried out on a per-system basis. It is
unclear currently whether a finer grained control is needed.

4.3 Kernel Changes

4.3.1 Additional Routines Four main routines are required to be added to a kernel to
implement the limits system, these are the creation or reading of an lnode, the closing
or writing of an lnode, and the external interface handlers. To interface with the
external world two additional system calls are added, these are the limits system call,
and limctl system call. The limit system call is used to enable and disable limits
enforcement. The limctl system call is used to query or modify the incore lnode
structures. Two internal routines need to be written; these are lget and lput. Lget
retrieves an lnode if necessary and increases the reference count for that lnode. Lput
reduces the reference count and writes the changes back to the lnode file when the
reference count reaches zero.

4.3.1.1 Limits system call The limits system call is used to enable or disable limit
enforcement. The semantics are similar to those for acctO in System V;

int limits (path)
char *path;

If path is non-zero, and points to the name of a valid limits file, and limits
enforcement is not already turned on, and the caller is the super user then limits
enforcement is enabled using the stated limits file for limits information. If the name
is a zero pointer, and limits enforcement is enabled, and the user is the super user then
limits enforcement is disabled.

4.3.1.2 Limctl system call When a change has to be made to an lnode the avenue
taken is through the limctl system call. The semantics for limctl are;

AUUGN 79 Vol 10 No 4

#include <limits.h>

int limctl(func,
int func;
limit *limptr;

limptr)

The parameter func is used to select whether the call is requesting the .current data on
a particular lnode, or whether the limptr field points to data which will be used to
modify either the charge or the limit of a particular user. This is used a£ter a system
crash to correct disk usage and by the query program to obtain current kernel charge
information. Only kernel specific information is returned by this system call. The
query program must also read from the limits file to obtain the charges for user level
programs.

4.3.1.3 Lget routine The lget routine is used by other kernel routines to ensure that
an lnode is available for updating. If the requested lnode is not available the requesting
process waits upon a disk read for the lnode and then is woken up. When the
requested lnode is located its reference count is incremented, and a pointer to the
lnode is returned.

If limit enforcement is not activated Iget will return the lnode if available, otherwise
an empty lnode will be returned with all limits disabled. If enforcement is
subsequently turned on a call to lget will detect this, read in the limits file lnode and
update it with the changes that have occurred.

4.3.1.4 Lput routine For every lget that is performed a corresponding lput must be
executed when the lnode is no longer needed. A call to lput will decrement the
reference count. When the reference count reaches zero the lnode is written out to the
limits file, and then placed onto the retired free list. A subsequent call to lget will
return the lnode from the retired list if it is still available. This caching of recently
used lnodes reduces the number of disk accesses required by the UUL system.

When limits enforcement is disabled an lnode will not be written to the limits file
when its reference count reaches zero. Instead it is placed on the end of a history
queue, and will be retrieved by lget if limits enforcement is enabled.

4.3.2 Modification of Routines Several kernel routines need changing. These routines
are divisible into two broad groups. The first group of routines are those associated
with Inode activation and retirement; those which affect the existence of a particular
Inode. The second major group are those routines which affect the data within the
lnode itself.

4.3.2.1 Lnode activation and retirement There are two main ways in which an Inode
can become activated. The first, that associated with the establishment of a new lnode
for a process, is within setuid() (and setreuidO) which transfer the process from the
active Inode to the lnode of the new real user id. The setuid() (setreuid()) system call
uses Iget to obtain a pointer for the new lnode, and also calls lput after reducing the
number of active processes that refer to the old lnode. This call to lput might retire the
old lnode if the calling process was the only process referring to the lnode, and no
files owned by the lnode owner are open for writing.

The second method by which an Inode can become active is through a system call
which modifies the value of some kemel parameter in the lnode structure. For
example, a call to one of chownO, close(), open(), rmdir(), unlinkO, write(), (and on
BSD systems truncate()), could change the disk charge of a user other than the current

Vol t0 No 4 80 AUUGN

lnode’s user. If the current lnode is different to the real user id of the executing
process then one of bind(), creatO, link(), mkdirO, mknod(), open(), or symlinkO could
also cause an lnode to become active.

It is questionable whether the lnode should be modified at the low level block
allocation and block freeing routines, or at a higher level. It appears tha.t some actions,
such as write(), benefit most from doing limit checking at a low level, but some
functions, such as chownO, operate at a higher level. In the final decision each
operation has to be examined and a decision made whether to alter at a low or high
level based upon the semantics of the actual operation.

An lnode can become retired when either the last process closes, or the last charge
change has occurred. Processes die completely when a wait() system call is executed
which reaps the zombie of the process. Files open for writing stop affecting the
referenced lnode upon a close of the last file descriptor open for writing on that file.

System calls such as unlinkO, (truncate() on BSD), mknodO, mkdirO, and rmdirO;
system calls which affect files based upon their PATHS must do an explicit lget at the
beginning of the operation, and an lput at the end of their operation to ensure that the
Inode is available to be adjusted for the change in charge that may occur.

4.3.2.2 Lnode modification Lnodes are modified by many routines, the disk
modifying routines are outlined above. For changes of other charges similar code
would be wrapped around the required system functions. For system functions that can
guarantee the required lnode is available no additional call to lget and lput are
required. For other routines (as above, routines that referred to files by name, not file
descriptors) a call to lget must be made on routine entry, and a call to lput at routine
exit.

4.4 User Level Changes

One of the design goals was to remove all user level changes, other than those directly
associated with limits and the like. The only user level program directly affected is
the super user command, su, which used to change both the real and effective user id
to the super user id. This caused problems with the share scheduler as the scheduler
gives priority to super user processes. This is corrected by running with only an
effective user id of the super user, not a real user id of the super user. All permissions
are still checked as super user, but scheduling is now done on the lnode of the
invoker. As a side benefit setuid programs can now no longer trap unwary persons
running as the super user by calling setuid() (setreuid()) to change their effective user
id to their real user id.

The current version of su was moved to a new name and a new program written as
outlined above. The old version had to be kept, as there are situations in which having
a real user id of the super user is required. During catastrophic system behaviour is
one example, another is for programs that check the real user id.

5. PROBLEM AREAS

The scheme outlined above would have been a great improvement over the AUSAM
scheme used on our VAX. Unfortunately we have replaced the undergraduate VAX

, . Sun89 ¯with four machines all running NFS, Sun s Network File System , with students
encouraged to load balance by switching machines. Each machine presents an identical
file system view to the students. This similarity raised problems that are not

AUUGN 81 Vol 10 No 4

encountered on a single kernel machine, the problem of trying to coordinate the
kernels.

5.1 Multiple Machine Limits

Each of the .four M120’s run an independent kernel and this leads to problems of
keeping the limits files consistent. How do we set limits in such a way that no user
can exceed them by just moving to another machine? A single limits server could
achieve this, but would necessarily require network I/O, and would have a grave
performance impact on process and file creation times. A call to lget could
conceivably require a network transaction to fetch the required lnode. Having separate
servers on each machines is a better system, but has synchronisation problems.

5.2 NFS Disk I/0.

The use of NFS on multiple hosts leads to the question of where (which machine?) is
the right place to modify the lnode? Does the use of different machines allow the user
to exceed his disk limits? The approach that we have taken will only account for local
disk blocks. NFS disk usage will be accounted on the lnode on the remote machine.
This means that a users’ limits should be different on the machine that contains the
users home directory. All other machines should have limits that would allow the
creation of files on the local filesystems such as /tmp so that the users can function
normally on hosts that are remote to their home directory.

6. CONCLUSION

User limits are both a practical and possible extension to the UNIX operating system.
It is possible to create a system which is robust enough that users cannot, either
maliciously, or accidently, destroy charging information. This system provides a
flexible method to allow system administrators to allocate resources based upon local
criteria. Its one current drawback is its inability to easily provide shared limits
between machines. This inability is the subject of ongoing work at The University of
Sydney.

7. REFERENCES

Bach86. Bach, M.J. The Design of the UNIX Operating System, Prentice-Hall,
Englewood Cliffs.

Kay82. Kay, J., Lauder, P., Maltby, C., and Tollasepp, S. "The Share charging and
scheduling system". Technical Report 174. Basser Department of Computer
Science, The University of Sydney, Australia,

Kay88. Kay, J., Lauder, P. "A Fair Share Scheduler" Communications of the ACM,
31(1), pp. 44-55 (January 1988).

Lau80. Lauder, P. "Share Scheduling Works!", Internal Documentation, Basser
Department of Computer Science.

Lef89. Leffler, S.J, et al., The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley.

Knu75. Knuth, D.E. The Art of Computer Programming, Volume 3, Sorting and
Searching, Addison-Wesley, pp. 478-479.

Vol 10 No 4 82 AUUGN

Mips88. MIPS Computer Systems, Inc. Programmers Reference Manual, Part Number
84-00136, MIPS Computer Systems, Inc. Sunnyvale, CA.

Sun86. Sun Microsystems, Inc. UNIX Administrators Guide, Revision B 17th Feb
1986, Sun Microsystems, Inc. Mountain View, CA.

Sun89. Sun Microsystems, Inc. NFS: Network File System Protocol Specification, SRI
Network Information Center, Menlo Park, CA (March, 1989).

AUUGN 83 Vol 10 No 4

UNIX and Internationalisation
Andrew Tune
adt@teehnix, oz

TechNIX Consulting Services Pty. Ltd.

ABSTRACT

This paper is a summary of recent developments in the area of the internation-
alisation of UNIXTM. There’s some very interesting work being done in the area
at the moment, and some of it has some far-reaching technical implications. In-
ternationalisation is viewed as one of the "hot topics" in the UNIX industry at
present.

The interest in this area in the UNIX world is only a relatively recent phenomenon,
but despite this, it is one of the areas in which UNIX is far ahead of most propri-
etary operating systems. The drive towards this area has come from three sectors:
from Europe, which needs eight bit character support for non-ASCII characters;
from the East, where multibyte character support is needed and is being pushed
by people such as SIGMA; and from the vendors, some of whom have smelt a
market which is currently under-serviced, and growing. (Actually, the response of
vendors to the need for internationalisation has varied from strong and pro-active,
on the part of DEC and HP, amongst others, to some who have been dragged
along, kicking and screaming by their clients).

For Australian companies, especially systems integrators, vendors, and software
houses, the international market should be of particular interest. Few companies
in the Australian computer industry produce solely for the local market, and our
proximity to the multibyte market makes the issue even more important.

The recent efforts of some of the major players in the area, including the vendors
and the various standards committees, are covered, along with a little of the work
of the SIGMA group, and the software industries in Asia, particularly China,
Japan, Singapore, Korea, and Taiwan.

Finally, some of the technical issues are covered in some depth, including the
questions of

[] C support for multibyte characters

[] Collating problems (and why half a job can be worse than none)

[] Multi-byte character set standardisation

[] Regular expressions and multibyte characters

[] Hardware Support (how to go about typing a multibyte character)

TM UNIX is a Trademark of AT&T in the U.S. and other countries.

Vol 10 No 4 84 AUUGN

Introduction

Internationalisation is a relatively recent trend (there was virtually no activity before 1985), and is still quite
restricted. The standard of localisation available in off-the-shelf software for the UNIX environment is still
poor, but getting better. In recent years many of the standards bodies have put effort into this area, and after
a few false starts, real, working implementations of useful software are emerging. The trend will continue
as the market gets larger, and as more vendors become aware of the possibilities which internationalisation
presents.

In order to resolve the inevitable ambiguities which will arise, the following definitions are offered:

Locale

Internationalisalion

Localisalion

A combination of native language, local customs, and conventions for
representation of data.

The capability within a computer system component (operating system,
application, peripheral, etc) to support the language dependent require-
ments of many countries.

The process of tailoring a system component to fit the needs of a particular
locale.

Locales

What constitutes a locale? Locales can be specified as a combination of the following:

[] Character typing

[] Collation

[] Conventions for the representation of

® Dates and Times

¯ Numbers and Currency Amounts

¯ Yes/No strings

Character Typing

Character typing used be one of those areas which was regarded as simple - no-one who has looked at
_ctype [] could be left with any other impression. In the light of internationalisation, this can no longer be
considered true. Consider the case of characters. Upper case is not difficult to distinguish from lower case in
English1. However, many of the Asian languages are caseless, other languages provide characters which are
the same in upper and lower case, and Arabic and Greek provide several lower-case versions of some letters
- the choice amongst them to depend on the position within the word.

In terms of binary representation, the n~ive user will see one language’s punctuation character as another
languages’s control character,’and the issues of character typing of non-alphabetic languages (such as Chinese)
are complex.

Collation

Collation (or sorting) is harder now, as well. The equivalence relationship between character weight and
native character code which works so nicely for ASCII~ is inadequate for almost any other language, although
the problems are different.

Nor is it difficult to convert from one case to the other. Compare this with French vs. Canadian French!
Canadian French upshifts "d" to "~", whereas in French, ’%" becomes simply "E".
Well, almost. ASCII never was in real dictionary order. The discrepancy is in the area of case folding.

AUUGN 85 Vol 10 No 4

European Languages

For a start there are accents to worry about. Europeans are used to seeing accented characters collating
with their non-accented versions.3 Thus the sorting

/ ¯epzce
@ic~
dpicda
epzcene
dpicenlre

is correct in French, but not what some European codesets give you.

To further complicate things, there are three other special types of characters to worry about: two-to-one
characters, one-to-two characters, and don’t-care characters. An example of a two-to-one character is the
Spanish "ch", which collates as a single character immediately after the "c". The Spanish "ll" is similar.
The German "if’ is a one-to-two character, since it is supposed to collate as a "ss". Don’t-care characters
are characters such as hyphens, where "dis-able" and "disable" are meant to collate identically.

Additionally, some languages require a two-pass collating algorithm in order to deal with accenting.

Asian Languages

Collation in Asian languages ranges from relatively simple (e.g. Indonesian) to several orders of magnitude
more complicated than for 8-bit languages. First of all, there are multibyte collation units to cope with.
Secondly, there are several collation methods in use, for example:

[] Binary

[] Phonetic

[] Radical content

[] Stroke count

[] Local custom

[] User defined

Binary collation is, of course, almost meaningless4. The other methods are difficult, and, depending on the
character size, can chew up quite a bit of memory and disk space5. But the real problem is determining
the correct collation sequences. The collation sequence used, for example, in Chinese telephone books is, in
descending order, Phonetic, Radical content, Stroke Priorities6, and finally Binary.

There is, however, a different sequence used in dictionaries, another method used in older dictionaries, and
a fourth used in lists of people’s names7.

Other Conventions

The differences in conventions used for the representation of numeric and monetary values are well known,
and the various alternatives are pretty simple. They revolve around such things as what the currency
symbol is, whether it precedes or follows the amount, how the amount is represented (the radix character
and the thousands separator), and so on. Examples include DM1,000.00 (German), 1 000,00FF (French),
and 1.000500 (Portuguese).

Other conventions include the representations of date and time, as well as the names of the days of the week
and the months of the year. In some countries, date and time are represented relative to local historical
or astronomical events. In others, time may not be easy to relate to timezone information. Much of the
Middle East and Africa, for instance, uses Solar Times. In the east, times may well be expressed in terms

This is generally, but not always true. In Finnish, the "£" character collates after "z"!
There are actually government-provided standards, so it’s not quite meaningless.
The new ISO 10646 pending standard is a 32 bit character set. So collation tables could be up to 16 Gbytes
each!
In descending order: horizontal strokes, vertical strokes, left, then right slant strokes, and then others.
In Japanese society, names are often sorted in descending order by importance!
Also know as WYSIWYG time!

Vol 10 No 4 86 AUUGN

of Emperor/Era name and year.9

Even the issue of answering "Yes" or "No" to questions is not simple. There are, of course the obvious
problems of having to realise that "o/n" means more to a French user than "y/n", but in Asian languages
it’s more difficult again. In Chinese there are a number of ways, but the most common ways for each are
represented in any case by two-byte quantities! See Figure 1.

Character Hex Entry

Number Value Keystrokes

2508 BBE1 AMYO

Character Hex Entry
Number Value Keystrokes

0694 A8C5 MFR

Figure 1. "Yes" and "No" in Chinese

Technical Issues
The technical issues involved in the use of non-ASCII character sets are centered around the following areas:

[] Code and Character sets

[] Bytes per character

m Directionality

[] Regular expressions

Code and Character Sets

A code set and a character set are not the same thing. A character set is just that - a set of characters
which are used to make up the’ words of a language. A code set is a set of unambiguous rules which specify
the representation of characters and a one-to-one mapping of binary codes to characters.

There are a number of standard codesets for eight bit languages, mostly being attempts to cover the European
market in one go. The sixteen-bit codesets (and their market) are a little more complicated, and a number
of standards exist for each language in the area. Beyond that, there are a number of larger codesets, and a
number of compliant implementations available from, and supported by, various vendors.

Hewlett-Packard is presently pressing X/OPEN to add Emperor/Era support in the X/OPEN Portability
Guide, Issue 4 (XPG4).

AUUGN 87 Vol 10 No 4

There are basically two means of representing characters from different codesets in the same stream of bytes:
single-shift and locking shift. Single shift is the use of a trigger to say "the next n bytes are from the other
character set". An example of this is the Hewlett-Packard HP-15 character set, which represents a two-byte
character as an initial byte with the top bit set, and a following byte with the top bit not set. Thus characters
from HP-15 can be intermixed with ASCII characters, and the immediate context will always distinguish
between the two. Hence the byte stream

<start> 00101011 01011101 I0011101 00101101 01011101 <end>

can be unambiguously interpreted as two ASCII characters, followed by one two-byte character, followed by
a final ASCII character. The byte before the current byte must always be accessible in order to distinguish
between an ASCII character and the second half of a sixteen-bit character. This is, of course, no longer
possible when eight-bit characters are mixed with sixteen-bit, and the second method, locking shift, is often
used here. The meaning is obvious:

... <startseq> chars from new code set <endseq> ...

The obvious problem is the context sensitivity of this system - an arbitrary amount of context is required
in order to determine codeset.

The main players at the moment are:1°

[] ISO 8859/1 - All characters and symbols needed for Western European languages - the
full name is ISO 8-bit Single Byte Coded Graphic Set Part 1: Latin Alphabet No 1. Also
known as DIS 8859/1.

[] EUC - Extended UNIX Codeset from AT&T - this is a codeset, or more accurately, a
codeset template, consisting of a Primary and three Supplementary Codesets which is based
on ISO 2022. EUC can support JIS-C6226.

[] JIS-C6226 - Another ISO standard for supporting Japanese - a sixteen-bit codeset which
contains both the hiragana and katakana alphabets and about 7000 kanji ideograms.

[] Shift JIS - Defacto standard for PCs in Japan.

[] ISO 10646 - Single multibyte code set which simultaneously supports all the characters of
all the languages in the world.

AT&:T’s JAE codeset, (EUC defined for AT&:T’s JAE product), is currently in use by just over half of the
UNIX vendors in Japan. It’s based on ISO 2022 and JIS-C6226. However, despite its wide acceptance, there
are problems with EUC-based codesets.1~ In particular, they cannot support:

[] The Shift-JIS codeset (see above)

[] The packed Hangul codeset used in Korea

[] The Big 5 codeset used in ROC and Taiwan

[] The Chinese Code for Data Communications used in ROC

Directionality

Most languages, fortunately, work in what we regard as the "conventional" manner, i.e. from left to right,
from the top of the page to the bottom. This is not the case for all languages, in particular the MEA (Middle
East and African) languages. Obviously the difficulty of supporting languages which work bottom to top,
right to left, is increased by the dearth of hardware support (how many terminals will wrap from the left
margin to the right margin of the previous line?), but the issue appears in many areas. An example from
the user-interface area is the use of pull-right menus: pull-left menus are apparently more intuitive for those
who write right-to-left.

Note that ISO 10646 is still under development (i.e. not yet an ISO standard), and it remains to be seen
how many vendors will be willing to pay the costs associated with its increased functionality.
Despite these and other problems, AT&:T has been lobbying X/OPEN for acceptance of EUC as the rec-
ommended codeset for transmission and internal use in conforming systems. At the time of writing, they
have been unsuccessful, and X/OPEN appears to be leaning more strongly toward a position of codeset
independence, even to the point of removing current references to ASCII and ISO 8859/1.

Vol 10 No 4 88 AUUGN

Regular Expressions

Writing regular expression code for multibyte languages is not easy, but for better (or for worse) the X/OPEN
specification now includes some useful extensions to regular expressions12, including the concept of collation
elements, equivalence classes, and character classes13.

Concept Representation Meaning

Collation Element [.ch.] A multi-character collating element, such as the German "ss"
and the Spanish "ch".

Equivalence Class A set of collating elements whose primary collation weight
is the same as the specified collation element. For instance,

[=a=] will match all forms of the character "a", such as
"a", "A", £, £, ii, and so on.

Character Class [:class:] The set of characters belonging to the ctypei3) class class

ofcharacters. Valid alternatives are alpha, upper, lower,
digit, alnum, space, print, punct, graph, cntrl,

and xdigit.

Thus, for example, if "a", "a", and "A" all belong to the same equivalence class, the regexp:

"~ [=a=] [:alpha:] +"

will match any one of these characters, followed by an alphabetic character, all at the start of a line.

The Solution
The problems associated with producing software which is internationalised, i.e. easily localisable, can be
broken down into the following:

[] Working out where you are

[] Communicating information to the user

[] Getting information from the user

[] Internal processing

[] Producing externally comprehensible output

[] Dealing with multiple languages

Finding The Current Locale

Before anything else can be done, the current effective locale has to be established. This may be nothing
to do with the physical location, and is determined, according to X/OPEN and POSIX14, by the contents
of your LAI~G environment variable; nothing new there. But it’s not as simple as that. Where appropriate,
LAI~G can take the representation:

LANG=language [_territory] [. codeset]

Regular expressions which provide these facilities are known as Inlernationalised Regular Expressions, to
distinguish them from Simple and Extended Regular Expressions
The usefulness of character classes is obviously limited in those languages in which some of the classes make
no sense, such as caseless languages.
Published by, and available from the IEEE.

AUUGN 89 Vol 10 No 4

Values of LtNG, somewhat sadly, are often given in English, although the X/OPEN standard specifically
leaves this to the implementors. It seems contrary to the spirit of internationMisation to have German-
speaking users have to specify LtNG=german, when LtN6=deutsch is so little extra work15, although this
does of course bring up the question of whether the French user should be able to say LtN~=allema_nde! So
much for a perfect world!

On top of this, Hewlett-Packard is currently implementing support for a LtNGOPTS environment variable, for
specifying latin versus non-latin mode, and keyboard versus screen data order. Whether this will be adopted
by anyone else remains to be seen.

For specifying locale details to a finer resolution, aspects of the locale can be specified individually. The
following environment variables:

[] LC_COLLATE - collation sequence

[] LC_TYPE - character typing (£ la ctype(3))

[] LC_MONETARY - monetary conventions

[] LC_NUMERIC - numeric representation conventions

[] LC_TIME - time and date representations

are all specified as follows:

LC=language [_territory] [. codeset] [@modifier]

For example, to interact with a system in Dutch, but sort German files, using unfolded collation, the user
could specify:

LANG=dutch
LC_COLLATE=german@nofold

At runtime, these values are bound to a process’s locale by the setlocale(3) function, which can be found
in XPG316, POSIX.1, FIPS 151-117, and the ANSI C standard18:

~include <locale.h>

char *setlocale(category, locale)

const int category;

const char *locale;

The category is one of the LC alternatives, or LC~LL for the whole of the locale information. There are
three alternatives for the locale name. The NULL string allows defaulting to the settings of the environment
variables, and will be the most common. The argument ,,¢,,19 enforces use of the default values2°, and
legitimate locale names do as expected21. For almost all purposes the use of

setlocale(LC_ALL, "");

will suffice. The application must remember its locale - there seems to be something of a hole in the standards
in that there is no specified way to get the current locale.

15 Ideally, it should be SPRACHE=deutsch, but that would leave the application program in a somewhat difficult
position!

16 X/OPEN Portability Guide Issue 3
17 FIPS stands for Federal Information Processing Standard, as defined by the National Institute of Standards

and Technology (NIST). FIPS 151 has been approved by all the appropriate U.S. government bodies, and
FIPS 151-1 is coming out sometime late this year.

18 X3Jll, X3.159
19 The proponents of Ada are apparently complaining about the choice of "C", so this may change. Watch this

space...
20 The default locale cultural data contains some surprises, in particular the absence of a currency string.
21 Timezone information can be more finely specified again, to cope with local rules.

Vol 10 No 4 90 AUUGN

User Communication

The issue of user communication is of primary importance. Having things such as:

pr±n~("¢u~om~r number ±~ ±nval±d. Pl~a~ ~-~n~r\.");

in source not only makes localisation very difficult, but in the international environment, it’s somewhat n~ive
to expect that the eventual user will understand you. Asking questions and expecting ’~" or "N" as the
answer falls into the same category. The thought of extraction, translation, and replacement is rendered
unattractive by the difficulties of extraction (it’s not easy to do so programmatically), and the problems with
maintenance. And yet it’s universally recognised that a solution to the localisation problem which requires
recompilation of the source of the program concerned is no solution at all.

The solution is almost obvious - keep the messages in files known as Message Catalogues22. This was a
solution developed by Hewlett-Packard, and subsequently adopted by X/OPEN. ea~;open() opens a message
catalogue and returns a catalog descriptor (of type hi_card). Subsequently, ea~;ge~;msg() and cavgo~;s()
are used to extract the messages appropriate to the current locale, and ea’~elono() to close the catalogue.

Not all user communication is in the form of set messages. POSIX or X/OPEN conforming systems nowadays
produce, among other things, locale-appropriate messages from p~rror().

Support has been added to print:f () and family, allowing conversions to be applied to the nth argument,
rather than to the next, as was traditional23. This is done by using "7,nSd’° (for instance) instead of 7.d. This
enables support of such things as date and time represntations, whose ordering changes according to locale.

A new routine, str:ftime(3), is specified by XPG3 and ANSI C. It converts the contents of a tm structure
(as returned by ct±rae(3)) to a formatted string. This is done according to the program’s locale, passed
parameters, and the contents of the TZ environment variable. Thus with the use of the same format string,
a date and time of the format:

Sunday, July 3rd, 10:02

would be produced for American usage, whereas for German usage, the output would be:

Sonntag, 3 Juli, I0:02

This removes from the programmer many of the headaches associated with this type of low level and probably
foreign date/time formatting.

For conversion of ASCII strings to doubles, strtod(3) has been enhanced to recognise the appropriate radix
character24 for the locale, and the locale’s appropriate definition of "white space".

Internal Processing

In terms of the normal day to day processing of strings, multibyte characters throw something of a spanner
in the works. In processing (for instance), strings built from a sixteen-bit character set, a string seven bytes
long makes little sense. The last byte is presumably half a character. The problem is further complicated by
the presence of character sets which are four and three-byte. Enhancements to the old, faithful str±ng(3)
library have been specified by XPG2, XPG3, POSIX.1, FIPS 151-1, and ANSI C, to provide support in this
area. There is a slight disappointment here though - not all of these support multibyte character sets. This
is helpful in a sense, one expects by now that strlen() will return the number of bytes in a string, not
half, a third, or a quarter of that number for a multibyte character set.

Day to day processing for most applications will remain the same - fortunately no-one seriously expects
character sets which include NULL bytes to be used successfully in the UNIX and C environment! Much
of the difficulty is, as mentioned, in communicating with the user - reading input and producing output.
Strings of bytes, no matter what code set they are, can still be treated as strings of bytes provided a little
thought is given to them.

A misnomer, really. These can be used to store many things other than just messages.
This is supported by SVID, XPG2, XPG3, POSIX.1, FIPS 151-1, and ANSI C.
But sadly, not the appropriate thousands separator.

AUUGN 91 Vol 10 No 4

Wide Characters

The concept of a wide character as discussed here is that first introduced in ANSI C. A multibyte character
consists of one or more bytes that represent a "whole" character. A wide character is composed of a fixed
number of bytes (type of wchar_t) whose value can represent any value in a character encoding. It’s much
more convenient from the programmer’s point of view, in dealing with characters internally, if they can be
viewed as being of a fixed width.
The relevant routines are as follows; note that their behaviour depends on the L¢_CTYPE category of the
current locale.

~include <stdlib.h>

int mblen(const char *s, size_t n);

int mbtowc(wchar_t *pwc, const char *s, size_t n);

int ~ctomb(char *s, ,char_t ~char);

size_t mbstowcs(wchar_t *pwcs, const char *s, size_t n);

size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

The mblsn() function returns the number of bytes in the multibyte character pointed to by s if the next
n or fewer bytes form a valid multibyte character. The mbtowc() function converts a multibyte character
pointed to by s, and up to n characters long, into a wide character, pointed to by pwc. wctomb() performs
the reverse operation, and mbsto~cs () and wbstombs () perform similar operations on strings.

The relevant header files to be aware of are <stddef .h>, which defines wchar_t, which is an integral type
whose range of values can represent distinct codes for all members of the largest extended character set
specified among the supported locales; <limits.h>, which defines I~B_LEN_I~AX, which is the maximum
number of bytes in a multibyte character for any supported locale; and <stdlib. h>, which again defines the
type ~char_t, as well as ~4B_¢UR_I~hX, which is the maximum number of bytes in a multibyte character for
the extended character set specified by the current locale. This value will never be greater than I~B_LEN_HAX.

Producing Externally Comprehensible Output

The remaining problem in using non-ASCII code and character sets is the difficulty in communicating
externally. How do you write tapes? What will other people be able to understand?

There is an X/OPEN-specified utility called iconv(1), which exists precisely for the purpose of fixing this
problem.

iconv -f fromcode -t tocode [file ...]

converts input (from file if specified, otherwise stdin), from the fromcode codeset to the to�ode codeset.

The other problem in this area is the problem of what to use as a portable character set. The POSIX.1
Portable Filename character set25 seems widely agreed upon as suitable for this purpose, although there
are some obvious further restrictions that would need to be put in place for portability to other common
environments.

Dealing with Multiple Languages

The question of dealing with multiple languages and their attendant problems is really part of the problem,
more than part of the solution. On the first level, there is the difficulty of dealing with German data if you
speak Chinese. The interaction with the system itself must be in Chinese, but the treatment of the data
and its representation must be all in German. The concept of User Languages and Data Languages has been
proposed, and seems to solve the problem reasonably well.

Vol 10 No 4 92 AUUGN

But there is a whole class of problems more difficult than this - the question of multiple language data access.
Take the situation of two users of the same machine, accessing an ISAM file keyed on a string value. One
user is using German and wishes to insert a record. The other is using French and wished to retrieve a range
of records. The potential for surprise is obvious, but all solutions so far seem to involve either unexpected
behaviour, or significant overhead.

Why Bother?
The final question is, of course, "Is it worth all the effort?" The answer has got to be ’~[es!" For too long
now, the computer industry as a whole has continued along the straight and traditional but nonetheless
very narrow path of ASCII and English. The majority of the world does not speak English, and ASCII is
woefully inadequate for most languages other than English. Many of the technical difficulties have already
been addressed - others are being dealt with at present. It’s a new area, and not without its technical
challenges. But the amount of investment required to internationalise a product, and, more importantly, to
lay the groundwork for the incorporation of internationalisation techniques in future development is small
compared to the potential gains. A few things about the Asian market are worth pointing out here.

Japan

The Japanese market has been recognised from the start as the obvious Eastern market with the most
potential, at least in the short term. Of particular interest is the SIGMA project. SIGMA stands for
Software Industrialised Generator and Maintenance Aids. The aim of the SIGMA project is to produce
"high quality software" in "great quantities" by making software production more efficient and rational. To
this end, the official SIGMA workstation and the SIGMA OS have been specified26.

Some points of interest:

,, Funding: 25 billion Yen ($A 235 Million at the time of writing).

[] Several hundred corporate members, including foreign and local computer vendors, software
vendors and other manufacturers.

[] Current schedules call for commercial operation in April of 1990.

[] SIGMA has specified a code set, called "UJIS’, which uses AT&T’s EUC code set encoding
scheme, but does not define use of the third plane.

[] SIGMA specifications translated to English should be available "soon".

[] SIGMA has defined the following extended internationalization functions:
® ge~;wc (), getwcha.r (), ~g~t~c (), ung~t~c (), put~c (), put,char ().
® ~putw¢(), get.s(), ~get~a(), putws(), ~put~s().
® Extensions to printf() and scanf().
® New "japanized" functions jconv (like iconv), jcod~() (like toupper),

j ctype () (like isalpha).

SIGMA has specified one of the primary deficiendes of UNIX to be the lack of support for Japanese language
processing, and is working at present to address this.

Of great interest to software houses should be the fact that in Japan, customised software comprises about
94% of the market, as opposed to the corresponding figure in the US of 35%.

China

The Chinese market is almost non-existant, but, of course, has the potential to grow to be huge. It is,
however, starting from behind the eight-ball, since there was no computer science activity in China from
1966 to 1976, due to the cultural revolution. However, there is now a national plan in place for software
development, as well as national standards for software development, documentation, requirements analysis,
project management, and cost control.

Curiously, the SIGMA OS has been described as UNIX SVR2.0 plus those parts of BSD "which are beneficial
to software development" - basically the networking.

AUUGN 93 Vol 10 No 4

Recent developments in China include:

[] First National Software Technology Exchange Fair held March 1988.

[] First Joint Conference for Computer Applications held February 1988.

[] First National Software Working Conference held December 1988.

In summary, it would have been fair to say that China was a fair way behind the rest of the world, but
advancing quickly. The repercussions of recent events in China are at this point unknown - it remains to be
seen how much harm has been done.

Singapore

The computer industry in Singapore is recognised by the government as being of great strategic importance
to the economy. As a result of this the government is offering all sorts of benefits to both local and foreign
countries which set up software divisions in Singapore (including tax holidays of up to ten years!).

Several large vendors have set up operations in Singapore, including Data General, Ericsson, Hewlett-
Packard, IBM, NEC, and Nixdorf. The work being done there includes (not surprisingly), the "asianisation"
of software, development of multibyte software and localisation efforts, as well as UNIX system software
development, office automation, networking, communications, knowledge-based systems, and real-time sys-
tems. Private-sector investment in software R&D in Singapore is expected to grow by $US 100 million per
year over the next three years.

Taiwan

The Taiwanese software industry is another example of an industry which is small, but growing fast. Most
products produced so far are for PCs (hardly surprising), but the number of UNIX products is increasing. The
Taiwanese Institute for Information Industry has produced a series of CASE tools for the UNIX environment,
which are marketed under the unlikely name of "Kanga Tools".

The government has launched a project known as "SEED" (Software Engineering Environment Develop-
ment), which aims to offer local industry not only consulting services and standardisation, but also the
specification of workstations for Taiwanese use.27 The workstation plans at present are for 80386-based
systems running SYSV and X. Current areas of interest in research include AI and expert systems (with
an emphasis on such things as image analysis, optical character recognition, Chinese syntax analysis, etc),
software automation, CAD, and CAE.

Korea

Industry in Korea is small and weak, but growth is very strong (40% p.a.) at present. As is not unusual
in Asian countries, most activity taking place in nationally funded projects. It is interesting to note that in
1986, 45% of software demands were met by foreign products, despite lack of support for Hangul processing.

The Koreans are hard at work on automated language translation:

[] Korean ~ Japanese - working.

[] Korean --+ English - in place soon.

[] English ~ Korean - under development.

There are problems in finding appropriate personnel in Korea, due to the high social value placed on being
a teacher. This makes it very difficult to get people to leave university teaching posts and enter private
industry.

Europe

The European market is of course huge, and is accustomed to using English-language products. This does
not mean that there is no demand for localised products. The size of the European localised market has
not to my knowledge been reliably estimated, but is certain to be large and growing, and will be stronger in
some countries (Italy, for example) than in others.

Shades of SIGMA!

Vol 10 No 4 94 AUUGN

What the Vendors are Doing
Many vendors are now actively involved in internationalisation, and standards meetings routinely include
representatives from AT&T, Bull, DEC, Fujitsu, HP/Apollo, Hitachi, IBM, NCR, NEC, Nixdorf, Olivetti,
Prime, Siemens, Sun, Toshiba,2s Unisys, and UNIX International. In addition, the OSF members meet
separately over internationalisation. In terms of individual contributions:

[]

[]

[]

[]

Hewlett-Packard stands out as having had their system form the base of the original
X/OPEN system, and having put forward new proposals (once again to X/OPEN) for the
handling of multibyte characters. HP also has the Emperor/Era proposal before X/OPEN.

IBM has implemented wide char and multibyte libraries, and offered these to OSF.

Sun is working on a 16 bit universal code set which they refer to as "Uni-code". In order to
squash this into sixteen bits there will have to be some rationalisation to only "frequently-
used" characters. They are trying to get one ISO 10646 plane (possibly the first) reserved
for their codeset.

Apple is working on Sun with the above, and seems to be quite serious about the area.

AT&T has stated that SYSV.4 will be ANSI C, POSIX.1 and XPG3 conformant. POSIX.2
is scheduled for V.4.1, in the third quarter of 1990. System V.4 supports a "number" of
multibyte commands and SIGMA (not truly multibyte) regular expressions.

Fujitsu has (understandably) expressed concern about the multibyte market and is quite
active in the area.

DEC appears to have significant concerns in the area of directionality, and wants the facility
for applications to be written in a directionality-independent manner. AT&T appears to be
approaching this from a different direction.

Hardware Support
Some of the difficulties of hardware support have already been mentioned, and the list is by no means
complete. The eight-bit area has been handled well for some years, and now several manufacturers are
producing terminals and printers which support multibyte characters. This type of hardware is especially easy
to get in the PC market, and the use of PCs to interface to larger systems because of the internationalisation
support offered by PC hardware will probably continue.

The practical difficulty is that of typing a multibyte character. Provided you can understand them and your
hardware supports them, they’re easy enough to read, but normal keyboards don’t cope at all well with
non-alphabetic languages. A number of schemes have been devised, but none of them is totally satisfactory.
Systems typically allow the specification of a multibyte character by entering the radicals one by one (since
the radicals will, typically, fit on a keyboard), by entry of the standard hexadecimal code for the character,
or by selection from a menu29 based on statistical distribution of characters. The mechanics of this are
invisible to the application, of course, but make an interesting challenge for the hardware designer, and the
writer of the firmware!3°

The Revolution So Far
One of the interesting things about internationalisation is that it’s a quiet revolution- for some years now it’s
been happening "under our f~et", so to speak. It’s possible right now to go out and buy an internationalised
UNIX system from a number of vendors, and there are also several new releases waiting in the wings.

~s Mainly through their involvement with the SIGMA project.
29 Normally a small, status-line menu.
30 One of this issues which has been skirted here is the right place for implementation. This has been substan-

tially decided by the standards, although there are still places where the "put it in the kernel" crowd and
the "keep the kernel small" people will have to fight it out. One of these is the area of support for different
directionality.

AUUGN 95 Vol 10 No 4

The effect on the normal user isn’t great, but if you alter your r.AIIG environent variable, you may find some
surprises in store:

7. is -i fred
-r--r--r-- I adt tech
7, LANG=french
7. ls -1 fred
-r--r--r-- 1 adt tech
7. date
lun 03 juil 1989 17h45 58
7. LANG=german
7. date
Mo., 03. Juli 1989 17:46:04 EST
7. LANG=finnish date
03-07-1989 17:46:42

11861Jul 3 17:45 fred

11861 juil 3 17:45 fred

X/OPEN conformant systems have a minimum of sixty-nine fully 8-bit internationalised utilities, and XPG4
is going to specify more, as well as multibyte internationalisation requirements.

Conclusion
Internationalisation is one of the areas of greatest flux and greatest interest in the UNIX world at present.
Many of the vendors are working hard, and often working closely with standards groups to provide open,
flexible, and powerful systems for the writing of internationalised software.

The result will hopefully be a better UNIX system, especially for end-users, who have in the past always
been trapped in the mould of ASCII and English, whether they liked it or not.

The next several years should see the emergence of an almost completely new look for software from the
perspective of the non-English speaker. There are efforts to localise significant pieces of software under way
at present, and this trend will only get stronger as more and more software is built with localisation in mind,
and as more vendors realise that the incremental investment required is small in comparison to the gain to
be made.

From the technical view there are some challenges, and the size of the challenges depends on your target
system, since some vendors have done most of the work already. Beyond that, though, there are still
difficulties and uncertainties. Issues like support for ISO 10646 are still be be resolved, and it will be
interesting to see what happens. Whatever happens, however, from the user’s point of view, as well as from
the programmer’s, UNIX will not look the same. It seems we’ve finally reached the stage where:

main()
{

printf("hello, world\n");

isn’t good enough any more!

Vol 10 No 4 96 AUUGN

UNIX and Artificial Intelligence in the "90s

James Catlett
Basser Deparment of Computer Science

Sydney University

Abstract

Artificial Intelligence is a collection of computing technologies, some of which offer a treasure-trove of
opportunities for innovative applications software. Getting to this treasure will be an important goal for
most large companies in the ’90s, and a few have reached some. But many captains have set sail into
the newly-charted waters of AI with a ragged crew, a faulty course, and poor equipment. I hope this
talk will help the audience reduce the risk of shipwreck in future AI projects, especially for those sailing
in a UNIX-powered ship. I will address four questions: what is AI, where is it going commercially,
what do we need to make it work, and is UNIX the fight choice as an AI software environment.

First, what is AI? This will be answered both in terms of its fields of research, and its areas of
commercial application. I will concentrate on its most popular field, Expert Systems, although other
such as vision, robotics, and natural language processing will be briefly addressed.

Secondly, where is AI as a commercial technology up to, and where is it going? Many large companies
are reporting big successes with AI, while specialist suppliers of AI software tools are having difficulty
keeping their heads above water. This shows similarities with the markets for other software
productivity tools, such as 4GLs. I will broadly characterise the currently available AI tools and their
suppliers, with emphasis on their availability on UNIX versus other platforms. The question of where
the customers are and what applications they have built will be answered with respect to both Australia
and the world. Applications are found in almost every industry and country, but the numbers lean
towards each nation’s high-leverage industries, such as manufacturing in Japan, and banking and mining
in Australia. I will sketch a few success stories, and characterise the attributes of the problems that
make them suitable for the most popular AI techniques.

Finally, what can companies do to make the sailing through the seas of AI smoother, and is UNIX the
right ship to choose? Obviously the answer depends on the particular destination, but in general UNIX
is looking good. Much of the range of off-the-shelf AI software is already available on UNIX. Two
important factors for most AI projects, integration and portability, are well satisfied by UNIX’s
capabilities across a diverse range of hardware and software products. Rapid prototyping, a now
watchword in AI and Expert Systems, has always been a strength of UNIX developers. One area where
UNIX’s offering has only more recently come up to speed is the user interface (for novices) and
graphics. There is also a favourable coincidence for UNIX in the demographics of new graduates, since
they now commonly have some education in both AI and UNIX. Unfortunately the shortfall of very
skilled people in both these areas remains a major bottleneck.

As to the question of whether anyone will get fired for buying UNIX for AI, I couldn’t answer no
because AI will remain a high-risk area for some time, so even the lowest-risk choice can still blow up.
But failure to make adequate preparations for the AI opportunities of the 90’s could have much greater
costs. But as the saying goes, "chance favours the prepared mind", and I think it will favour the well-
prepared software environment too.

AUUGN 97 Vol 10 No 4

Storage and Retrieval Methods for an
Interactive Spelling Correator

Sunil K Das and Philip M Sleat

City University London
Computer Science Department
ECIV 0HB, United Kingdom

Email: { sunil,phils } @cs.city.ac.uk

Abstract

The size of a data file and its speed of access are two important proper-
ties to be considered when designing information processing applications.
The design of a software tool to perform interactive spelling correction ne-
cessitated an investigation into various storage methods for large data files
and a comparison of retrieval techniques for individual records. Primary
goals included efficiency of dictionary storage, efficiency of dictionary ac-
cess and ease of use. The most appropriate data structures were adopted
for the compression of a dictionary file. Techniques were developed to re-
duce the size of file even further, thus enabling it to be completely stored
in main memory. This resulted in very f~st record access when compared
to dictionary files which are so large that they have to be stored on disc.
The compacted dictionary was used to implement a user-friendly, spelling
corrector for UNIX and PC based systems. Careful consideration was
given to the Human Computer Interface, the screen display and user in-
put. Provision was made for a user to create an addenda dictionary for
proper names and acronyms.

1 Introduction

The UNIX software tool spell compares words from the named text file with
those found in a spelling list. The output is those words which are not in the
dictionary and hence assumed to be misspelled. Thus spell is a non-interactive,
spelling checker which can prove cumbersome to use. The user must take the
generated list of misspelled words and use a standard text editor to locate each
one in the text file to correct them. The spelling checker does not supply a list

Vol 10 No 4 98 AUUGN

of suggested correct spellings; if the user is unsure of the correct spelling of a
word, it must be looked up manually.

A useful tool to help with document prepaiation within the UNIX program-
ming environment would be an interactive, spelling corrector. Amongst other
facilities, the tool would open the named text file, enable simple access to mis-
spelled words (typically via cursor keys), offer suggestions for correct spellings,
permit alterations to the file and allow the adding of words to a user’s addenda
dictionary file.

This paper describes the development and implementation of a spelling cor-
rector for UNIX and PC based systems which incorporated the following tasks:

¯ investigate and extend tree storage techniques to facilitate the compression
of a dictionary file and speed up word access; and

study the design of human-computer interfaces [Shneiderman 1987] to pro-
duce a ’user-friendly’, interactive spelling corrector using the compressed
dictionary tree.

2 The Data Structures

Files for interactive, information processing applications are often large. Ideally,
a file should hold data in as compact form as possible. It is desirable that the
structure of a file helps efficient searching to extract pertinent data. Access
times should be as small as possible so that a given record in a file may be
retrieved quickly. Moreover, its organisation should facilitate adding new data.
Very often, a trade-off is made between the compactness of a data file and
the speed with which records can be accessed. Generally highly compact data
files have slow access.times; the compresse.d nature of the file making searching
algorithms complicated.

Linear, binary and hashing techniques have been investigated [Knuth 1973]
for storing and accessing data files. Of these, only binary techniques use the
underlying structure of the data file to improve access times. However, whilst
the advantages of record ordering is exploited, there is no compression of the
data file and only small files can be in main memory for searching. If a large file
is to be accessed, the search would have to take place externally or be hampered
by swapping parts of the file into main memory for scrutiny. A method based
upon tree structures [Sussenguth 1963] out-performs other techniques in terms
of data file economy of size and speed of access [Stanfel 1970]. It permits a more
compact file, thus making it possible to store the entire data structure in main
memory which yields very quick file access.

2.1 Tree-structured Files

Figure 1 introduces the tree terminology [Iverson 1962] used in this paper. A to
K represent nodes, with A as the root. A-E-G-H is a path connected by three

AUUGN 99 Vol 10 No 4

branches and therefore, has a length of three. 12 and D are examples of a leaf.
The filial set of E is the set of nodes one path length away from E, namely the
three nodes F, G and I.

A B C

E

G

Figure 1: Tree Terminology

Compression of the ’flat’ data file of Figure 2 into the tree,structured file
Figure 3 can be illustrated by using information about some fictitious students.
The primary key to each record is the course code -- CS stands for Computer
Science. Successive keys are a student’s year of study, surname, initials and
other information.

CS,I,Kernighan,BW,....information for Brian Kernighan
CS,I,Lesk,ME,. information for Michael Lesk
CS,2,McIlroy,J, information for Joe McIlroy
CS,2,McIIroy,MD,. information for Doug McIlroy
CS,3,Thompson,K,. information for Ken Thompson
CS,3,Ritchie,DM information for Dennis Ritchie

Figure 2: A Data File of Student Records

In the tree-structured file, the course code is placed at the root of the tree.
The second level of nodes represents the year of study. Student names and
initials are on the next two levels with information on each student stored at a
leaf of the tree.

Vol 10 No 4 100 AUUGN

cs Kernighan ___ BW ___

Lesk ME ___

information for Brian KerniEhan

information for Michael Lesk

McIlroy information for Joe McIlroy

MD ___ information for Doug McIlroy

3 ___ Thompson

Ritchie

K ___ information for Ken Thompson

DM ___ information for Dennis Ritchie

Figure 3’ A Tree-structured File of Student Records

The tree representation of student records is more compact than the ’flat’
data file since the same information is never stored twice or more. For example,
the name ’McIlroy’ is stored once only in the tree.

A search of the tree-structured file is straight forward. It begins by finding
the tree with the root that matches the primary key. The filial set of this node
is then scanned linearly to find the node which matches the secondary key. This
process is repeated for all keys until leaf information is reached. Tree searching
in this manner can be seen to be very fast.

2.2 Dictionary Trees

How can tree structures be used to store an English dictionary? Figure 4 shows
a sample of a typical dictionary file.

I
IMMACULATE
IMMENSE
IMMIGRANT
IN
INSERT
INSERTED
INSERTING

Figure 4: Part of a Dictionary File

A convenient way to store an English dictionary using a tree structure is
to have each letter of a word at a different node. Each of these letters then
becomes one of the keys on which the words are scanned when checking if a
given word is in the dictionary.

There is a subset of nodes which can be both at the end of a word and
part way through a word. For example in the dictionary tree of Figure 5, the

AUUGN 101 Vol 10 No 4

node ’T’ in the word ’INSERT’ belongs to this subset. The word ’INSERT’ is
both a word in its own right, as well as a prefix for the words ’INSERTED’
and ’INSERTING’. Thus, to represent the end of a word diagrammatically, an
asterisk has been used to flag the terminal letter of a word. All leaf nodes
represent the end of a word.

I*_ M E*_M_ A_ C_ U_ L_ A_ T_

I__ E _ N _ S _ E~

I__ I _ G _ K _ A _ N _ T~

N*_S_E_R _ T*_ E _ D*

Figure 5" Dictionary Tree Representation

The word ’IMMIGRANT’ can be used to demonstrate a tree search to see
if it is in the dictionary and hence spelled correctly. Starting at the root ’I’ the
filial set ’M’ and ’N’ would be scanned. Since ’M’ is the first letter in the filial
set, this node’s filial set is scanned looking for a match to the third letter in
’IMMIGRANT’, i.e. ’M’. The filial set of t~his ’M’ node is ’A’, ’E’ and ’I’ so the
’I’ node is eventually located. From this point, the letters in ’IMMIGRANT’
can be checked off from the ’G’ onwards until the leaf at the end of this path is
reached.

If the word beingsearched for is misspelled as ’IMJIGRANT’, it would be
found that ’J’ was not in the filial set of the ’M’ node. Hence, the word is not
in the dictionary tree and is potentially misspelled or requires adding to the
addenda dictionary file.

2.3 Common Word Endings

In many tree structures, there are common subtrees which are stored many
times, thus wasting space. For an English language dictionary tree, these sub-
trees manifest themselves as common word endings. For example, many English
verbs can end with the suffix ’ING’. Other common word endings are ’ATE’,
’TION’, ’ED’. All of these common word endings are stored at the end of a path
in the tree representation of a dictionary. The space occupied by a dictionary
tree can be considerably reduced by replacing common word endings with a
pointer into some predefined table as displayed in Figure 6.

Vol 10 No 4 102 AUUGN

I*_ M _ M _ A _ C

I__ N~_ S _ E _ ~

U L #3

S E*

Common Word
Ending Table
#I ANT

o..

K #I #3 ATE
.o.

_ T*_ #7 #6 ING
I #7 ED

Figure 6: Common Word Ending Table

The algorithm of Figure 7 was devised to build up a frequency table of word
endings of up to four characters in length from the ’fiat’ dictionary file. It could
be used going forward in the dictionary file followed by going backward in an
attempt not to ’lose’ a common word ending.

for (each word in the dictionary)
if (word length > 4 characters)

/* x is the character length of the word ending */
for (x = 2; x <= 4; x++)

if (word ending is in frequency table)
frequency count ++;

else if (there is space in the table) {
insert word ending;
frequency count := I;

} else {
locate word ending with lowest frequency count;
use this location for the new word ending;
frequency cotmt := I;

};
Figure 7: Building a Frequency Table of Common Word Endings

Having generated a frequency table of common word endings, the most pop-
ular four letter word endings were chosen, followed by three and two letter word
endings to give the best compression of the final dictionary tree. The frequencies
for the three and two letter word endings had to be adjusted dynamically to
reflect the fact that we had chosen some four letter word endings. For example,
consider the word endings ’TING’, ’ING’ and ’NG’. Having selected ’TING’ to
enter into the word ending table, the frequencies of ’ING’ and ’NG’ had to be
adjusted because of the overlap.

A further possible source of space saving would occur if there are more com-
mon word beginnings than there are common word endings, and the words were
stored backwards. A brief investigation into the English language established
that there are more common word endings than beginnings. For the English
language, it is sensible to store the words forward.

AUUGN 103 Vol 10 No 4

2.4 Filial Set Node Ordering
A major source of inefficiency in tree-based dictionary Storage is the need to
search the filial set of a node in a linear manner to see if a given character is
included. Using the principle of Zipfian distribution on the nodes of filial sets
would speed up this search. Zipfian distribution arranges the nodes of a filial
set in order of greatest frequency. For example, suppose the most common and
uncommon letters following the letter ’A’ in the English language are ’N’ and
’J’, respectively. The node ’N’ would be the first node in the filial set of ’A’
so that it would be checked first. The least frequently occurring letter ’J’ will
be stored last in the filial set of ’A’. In this way, the most common letters are
checked earliest to speed up the process of searching the filial set. For example
in Figure 8, a sorted subset of words is shown with their corresponding Zipfian
sorting. The ordering is caused because more words begin with ’AB’ than ’AA’
and more words begin with ’ABO’ than ’ABL’.

A A

AARDVARK ABOUND

AARDVAKKS ABOUNDED

ABLE would generate ABOUT

ABOUND ABLE

ABOUNDED AAKDVAKK

ABOUT AARDVARKS

Figure 8: Zipfian Distribution

However, there is an inherent disadvantage associated with Zipfian distri-
bution. If the filial set is stored alphabetically and the current letter in the
filial set is higher in the collating sequence than the letter being searched for,

then it is known that the letter is not in the filial set. With a filial set ordered
according to Zipfian distribution, a search to the end of the filial set is necessary
to discover that a given letter is not included. Therefore, using Zipfian distribu-
tion will be slower than alphabetic ordering for checking misspelled words. For
correctly spelled words, a Zipfian based dictionary tree can be searched faster.
This is acceptable however, because locating a misspelled word will occur much
less often than locating a correctly spelled word.

An algorithm was devised to sort an English dictionary according to a Zipfian
distribution.

1. Construct a dictionary tree from the dictionary file. As each node in the
tree is pa~sed through, increment a count associated with the node. This
count is the frequency of use of the node.

2. Visit each node in the tree in turn (using a pre-order search). Sort the
filial sets of each node according to the frequency counts.

AUUGN
Vol 10 No 4 104

3. Perform another pre-order search of the whole tree to re-construct the
words in the tree. Write these words out to the Zipfian sorted dictionary
file.

2.5 Inherent Spelling Correction

There is no inherent spelling correction when using a dictionary file. It is possible
to determine whether or not a word is in the dictionary, but there is no ’pointer’
to where the correctly spelled word of a misspelled word is located.

One of the advantages of tree-based dictionary storage is that there is an
element of spelling correction built into the structure of the dictionary tree.
Suppose a dictionary tree is being searched for a word. For example, let the
first four letters be valid but the fifth letter be invalid. Therefore, the fifth let-
ter will not be in the filial set of the fourth. A pre-order search of the tree can
be performed from the fourth letter’s node. In this way, all legal words begin-
ning with the first four letters of the word being checked can be reconstructed.
Hopefully, the correct spelling of this incorrect word would be amongst those
generated.

Clarification of the idea can be achieved by recalling the dictionary tree of
Figure 5. Suppose the word ’INSERTING’ has been misspelled ’INSERQING’.
A path could be followed in the tree"as far as ’INSER’. If a pre-order search
from this ’R’ node is performed, the words ’INSERT’, ’INSERTED’ and ’IN-
SERTING’ could be found. Hence, a list of possible correct spellings can be
generated.

This method of spelling correction, although very fast, suffers from one major
drawback. Suppose the word ’INSERTING’ was misspelled as ’IMSERTING’.
Trying to generate correct words would yield ’IMMACULATE’, ’IMMENSE’,
and ’IMMIGRANT’. A totally incorrect part of the tree has been traversed.
This inherent spelling correction works well when the spelling mistake is toward
the end of the word, but can fail badly when the mistake is near the beginning
of the word. A solution to this drawback is discussed next.

2.6 Reversing the Dictionary

Assume the word ’INSERTING’ has been misspelled as ’INSTRTING’. In sug-
gesting a list of correctly spelled words, the wrong path of the dictionary tree
would be examined. For example, words like ’INSTRUCT’ and ’INSTRUC-
TION’ instead of the correct word ’INSERTING’ would be retrieved. All of the
letters up to and including the incorrect letter form the start of a legal word.
With the misspelled word ’IZSERTING’, no suggested list would be generated
at all. Therefore, when the letter in error is near to the end of a word, it is more
likely that the correct spelling will be suggested.

If storage space is less of a constraint two copies of the compact dictionary
tree could be retained. In the application described, this would still take up less

AUUGN 105 Vol 10 No 4

space that the original dictionary tree. The first dictionary would be stored as
a dictionary tree. The second dictionary would have all the words of the ’flat’
dictionary file reversed and re-sorted before compression. In this way, the words
are stored in the dictionary tree backwards.

With words such as ’IZSERTING’, the position of the incorrect letter is
known exactly. So, if a spelling mistake occurs at the beginning of a word, the
word can be reversed and the backwards dictionary examined to generate a list
of suggested correct spellings. When a spelling mistake occurs toward the end
of a word, the normal copy of the dictionary tree can be examined whereas
if it is near the middle of the word, the best strategy would appear to be to
generate two lists of suggested correct spellings. The first list comes from using
the misspelled word and the forwards dictionary while the second from using the
reverse word and the backwards dictionary. These two lists can then be merged.
This process should generate the correct spelling in the majority of cases.

3 Implementation Details

The method chosen to represent a dictionary tree in main memory allowed each
node to use two pointers. Each node points to the node which begins its filial
set and to the next node of the filial set of which it is a member (if one exists).
Figure 9 represents the transformed dictionary tree of Figure 5. Note that the
first letter ’A’ in ’IMMACULATE’ points at ’C’, the first and only member of
its filial set and to ’E’, the next member of the filial set it belongs to.

M _ M _ A _ C _ U _ L _ A _ T _ E*

1 E _ N _ S _ E*

I I _ G _ K _ A _ N _ T*

N*_ S _ E _ K _ T*_ E _ D*

I N G*--

Figure 9: A Dictionary Tree with Two Pointers

This can be represented in tabular form as shown in Figure 10. One of the
most notable things is that the first member of the filial set of a node is always
irmnediately after it in the table. Note that the first ’A’ in ’IMMACULATE’ is
at index 4 and ’C’ is at index 5. Therefore, if the filial set of a node is always
assumed to follow immediately after the node itself, the pointer to the filial set
field is redundant.

Vol 10 No 4 106 AUUGN

1

3
4

6
7

9
lO
11

13
14
1,5
16

-- Pointer to next member of the
same filial set.

-- Node
I
I -- Ptr to start of filial set
I I
v v

21

11

15

I* 2
M 3
M 4
A 5
C 6
u 7
L 8
A 9
T 10
E*
E 12
N 13
S 14
E*
I 16
G 17

17
18
19
20
21
22
23
24

26
27
28
29
30

R 18
A 19
N 20
T*
N* 22
S 23
E 24
R 25
T* 26

28 E 2’7
D* 28
I 29
N 16
G* 17

end of word

Figure 10: Tabular Representation of a Dictionary ~ee

Two bytes could be chosen to represent each table entry. Only five b’~s,
are needed to store the 26 letters of the English alphabet, thus three bits were
available in each byte for control. The first of these three control bits was used
as a flag indicating whether the current node is the end of a word (1) or within
a word (0). Nodes which are both at the end of a word and within a word have
this field set to 1.

3.1 Variable Length Pointers

After analysis of a 20,000 word dictionary, it was found that the average value
held in tl,~e pointer byte was 19 with the largest value being 3.237. Approx-
imately,, only one percent of pointer values are greater than~ 255. Using th,is
information, the surplus two, control~ l~i~s~ ih~ ~he byte hold%g., ~ l~etter were used
to, i,ndicat¢ the number of bytes t~edi t;o~ l~’oi:d! ~l~’e’ l~e-i~ter value. N-’o~ pointer w~

AUUGN 107 Vol 10 No 4

coded as (00), a one byte pointer as (01) or a two byte in pointer as (10). Us-
ing this method of variable length pointers, there is provision to have a pointer
value up to 64K. (11) was reserved for future use.

3.2 Common Word Endings

The common word ending table was considered next. The range of values in
use were from ’00000xxx’ (representing ’A’) to ’ll001xxx’ (representing ’Z’). It
was decided to use values in the range ’11100000’ to ’11111111’ to represent a
pointer to the word ending table. This gives 32 common word endings, so the 10
most common four and three character word endings, and the 12 most common
two character word endings were selected for inclusion in the table.

The following is a summary of the field meanings as used by the final dic-
tionary tree storage method:

00000xxx The node represents the letter ’A’.

ll001xxx The node represents

010001xx The node represents

00001x01 The node represents
the next memory location.

the letter ’Z’.

the letter ’I’ and this is the end of a word.

the letter ’B’. There is a one byte pointer in

00001xl0 The node represents the letter ’B’. There is a two byte pointer in
the next two memory locations.

11100000 The node represents the first entry into the common word endings
table.

11111111 The node represents the last (32nd) entry into the common word
endings table.

Using these storage representation techniques, together with the use of com-
mon word endings, filial sets based on Zipfian distributions, and variable length
pointers, etc the sample dictionary is shown in Figure 11.

Vol 10 No 4 108 AUUGN

I
IN
INSERT
INSERTED
INSERTING
IMMACULATE
IMMENSE
IMMIGRANT

Word endings table

13 ING
14 ATE
15 ANT

1 I* 01000100 15 20 00010100
2 N* 01101101 16 C 00010000
3 12 00001100 17 U 10100000
4 S 10010000 18 L 01011000
5 E 00100000 19 218 11101110 ATE
6 R 10001000 20 E 00100001
7 T* 10011100 21 25 00011001
8 E 00100000 22 N 01101000
9 11 00001011 23 S 10010000

10 D* 00011100 24 E* 00100100
11 217 111011011NG 25 I 01000000

12 M 01100000 26 G 00110000
13 M 01100000 27 R 10001000
14 A 00000001 28 219 11101111 ANT

Figure11: Complete Representation of a Dictionary Tree

3.3 Searching the Dictionary Tree

How is this dictionary tree searched to find the presence or absence of a word?

The method to search the tree is illustrated in Figure 12.

AUUGN 109 Vol 10 No 4

Suppose we are scanning the dictionary to see if the

word made up of characters AI..An is in the dictionary.

Go to the tree whose root matches AI

set a counter c to 1

repeat

if current letter is An and the current node has the

end of word flag set then
word AI,A2,A3...An is correctly spelled

else if current letter is a common word ending pointer then

if Ac..An match the word ending then
word AI,A2,A3...An is correctly spelled

else

add one to c to point to the next letter in A1..An

if there is a pointer from the current node then

add x to the current pointer where x is the
size of the pointer (I or ~ bytes). This takes

us to the start of the filial set of the

previous node.

while current node isn’t the same as Ac and there

is a pointer from the current node

follow down the pointer

endwhile

if the current node is not Ac then
word is incorrectly spelled

until .we know if the word is correctly spelled or not

Figure 12: Searching the Compacted Dictionary Tree

As an example of a correctly spelled word, the following steps would be
undertaken in searching for the word ’IMMENSE’ with reference to Figure 12.

1. The first letter ’I’ will be compared with the root of the tree. The two

letters are the same.

2. The second letter ’M’ will be compared with the ’N’ at location 2. They
do not match but the ’N’ contains a pointer to the next member of its

filial set (i.e. at location 12).

Vol 10 No 4 110 AUUGN

3. The second letter ’M’ will be compared with the ’M’ at location 12. They
match.

4. The third letter ’M’ will be compared with the ’M’ at location 13. They
match.

.

,

0

10.

The fourth letter ’E’ will be compared with the ’A’ at location 14. They
do not match but the ’A’ contains a pointer to the next members of it’s
filial (i.e. at location 20).

The fourth letter ’E’ will be compared with the ’E’ at location 20. They
match.

The fifth letter ’N’ will be compared with the ’N’ at location 22 (not
location 21 since this contains a pointer). They match.

The sixth letter’S’ will be compared with the ’S’ at location 23. They
match.

The seventh letter ’E’ will be compared with the ’E’ at location 24. They
match.

The seventh letter ’E’ is the last letter in the word and the last letter
matched from the dictionary (’E’ at location 24) has the end of word
pointer set so the word ’IMMENSE’ is in the dictionary.

3.4 Detection of Word Boundaries

There is a problem with the algorithm given in Figure 12. The algorithm as it
stands does not detect the end of word boundaries and hence, for example, the
word ’INSERTEDING’ will not be flagged as being incorrect. The solution to
the problem is however relatively easy to implement. During the scan through
the dictionary, a record must be kept of the smallest pointer that is ’jumped
over’. In the above example using the word ’IMMENSE’, the pointer to location
25 which was at location 21 was jumped over. The smallest of these pointers that
is jumped over in searching for a word is the end of word boundary, and it must
be ensured that any of the dictionar’y beyond this boundary is not considered.
For the word ’INSERTEDING’ the smallest of the pointers jumped over is to
location 11. If location 11 is reached when considering the word (which is the
case for ’INSERTEDING’) then the word is incorrect.

4 The Spelling Corrector

The following C programs have been written"

o zipdicLc -- This program will take a ’flat’ dictionary file and re-sort it
according to the Zipfian distribution.

AUUGN 111 Vol 10 No 4

supcom.c -- This program will take a file sorted ,.according to a Zipfian
distribution and compact it according to the principles of the tre,e based
storage method with common word endings, variable length pointers and
Zipfian sorted filial sets.

examine, c -- The algorithm to search the compact dictionary tree and
detect the end of word boundaries has been implemented as a set of C
functions which are in the program examine.c.

To use the functions, an initial call must be made to set_up_dictO. This sim-
ply reads the dictionary tree into memory from the file specified by the string
’DICTANAME’.

When the dictionary has been set up, the function correctly_spelt() can be
used. This function is passed a string of up to 30 characters representing the
word in upper case to be checked; e.g. correctly_spelt("HELLO’). The function
returns TRUE if the word is correctly spelled, otherwise FALSE.

The spell correction algorithm also appears in the file examine, c as a function
find_correct_spelling(). Three parameters are required: a string representing the
incorrect word; a pointer into an array of strings to hold the suggested spellings;
and the size of this array. For example the statement:

fin d_correct_spelling("HELL J", sugg_spell, 30)

would fill the array sugg_spell with up to 30 suggested spellings.

4.1 The User Interface

The spelling corrector has a full screen presentation of the user’s document.
The document is displayed a page at a time under the control of the user.
Each word that is unknown to the spelling corrector (i.e. those that are not
in the dictionary), is displayed in reverse video. Therefore, the user can locate
misspelled words quickly and decide upon the correct spelling based on the
context of the complete sentence.

The page from the user’s document is displayed in the middle 23 lines of the
screen. The top line contains a copyright message. The bottom line contains
a function bar giving a summary of the current keys that can have effect. The
function bar changes according to the operation mode of the spelling corrector.
The first mode is word select mode in which the cursor keys are used to move
around the screen. The second mode is word correct mode in which the user can
correct a word based on suggested correct spellings from the.program. There are
two function bars, one for word select mode and one for word correct mode. In
word correct mode there are two ways in which a misspelling can be corrected.
The first of thgse is where the user types in the correct spelling directly. The
second is where the spelling corrector displays a list of suggested correct spellings
from which the user can select the appropriate word.

Vol 10 No 4 112 AUUGN

4.2 Addenda Dictionaries

In a single user PC type environment, each user would have his or hhr own
copy of the compact dictionary tree. Each user would be responsible for the
maintenance of the dictionary. However, in a multi-user UNIX environment it
makes no sense for each user to have a separate copy of the dictionary. Multiple
copies of the dictionary would waste storage space.

Using a common dictionary implies its maintenance must be the responsibil-
ity of one person. Therefore, the interactive spelling corrector does not contain
a facility for the user to add words to the main dictionary. If anyone could
add words to the dictionary, there would be a danger that it could eventually
contain misspelled words. Instead a user can invoke the spelling corrector with
an optional addenda file. This will contain correctly spelled words not in the
dictionary, for example names or acronyms. The spelling corrector will then
check this addenda dictionary as well as the main dictionary. At any point the
user may add a misspelled word to the current addenda dictionary by moving
the cursor to the word and pressing the ’A’ key. Any future occurrence of this
word in the document will not then be flagged as incorrect.

5 Conclusions

Techniques for file storage and record retrieval based on trees are definitely useful
for certain types of file. The English language dictionary is a prime candidate
for compression in this manner. Indeed any file that has many records with
repeated keys would be suitable for storage in a tree. Improvements to the tree-
based storage method such as the grouping together of all common subtrees
and ordering of the keys within the filial sets were considered. Both of these
additions gave significant improvements over the original tree structure.

As a practical example, an efficient implementation to compress an English
language dictionary has been coded. A 36,000 word English dictionary file was
compressed from 320K to a dictionary tree of 117K; this compact file being
just over one third the size of the original file. It has been shown that this
storage method was more suitable for dictionaries than other methods. The
dictionary tree is extremely quick to access; on an IBM PC, the presence or
absence of a given word can be checked in 0.006 seconds (this is an average
access time per word). Also, the generation of correct spellings was easy since it
was discovered that the nature of a dictionary tree has an element of ’built-in’
spelling correction.

This compact dictionary was used as the basis of a fully interactive, user-
friendly, spelling corrector for UNIX and PC based systems. It is written in 6’
and the UNIX)ersion has been termcapped.

The primary goals of the spelling corrector were efficiency of dictionary stor-
age, efficiency of dictionary access and ease of use. The first two were achieved
by extending the tree structured techniques mentioned above. The latter was

AUUGN 113 Vol 10 No 4

achieved by careful consideration of the human-computer interface, the screen
display and user input.

6 References

Iverson, K
A Programming Language Wiley, New York, 1962

Knuth, D
The Art of Computer Programming Volume 3: Sorting and Searching,
Addison Wesley, Reading, Massachusetts, 1973

Shneiderman, B
Designing the User Interface Addison Wesley, Massachusetts, 1987

Stanfel, L
’Tree Structures for Optimal Searching’ Journal of the A CM, Vol 17, No
3 July 1970

Sussenguth, E
’Use of Tree Structures for Processing Files’ Communications of the A CM,
Vol 6, No 5 May 1963

Vol 10 No 4 114 AUUGN

Interprocess Communication
in the Ninth Edition Unix System

D. L. Presotto
D. M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

When processes wish to communicate, they must first establish communication,
and then decide what to say. The stream mechanisms introduced in the Eighth Edition
Unix system,1 which have now become part of AT&T’s Unix System V,2 provide a flexi-
ble way for processes to speak with devices and with each other: an existing stream con-
nection is named by a file descriptor, and the usual read, write, and I/O control requests
apply. Processing modules may be inserted dynamically into a stream connection, so net-
work protocols, terminal processing, and device drivers separate cleanly.

Simple extensions provide new ways of establishing communication. In our sys-
tem, the ~aditional Unix IPC mechanism, the pipe, is a cross-connected stream.

A new request associates a stream with a named file. When the file is opened,
operations on the file are operations on the stream.

Open files may be passed from one process to another over a stream.

These low-level mechanisms allow construction of flexible and general routines for
connecting local and remote processes.

Introduction
The Ninth Edition version of Unix® operating system is used in the Information Sciences Research

Division of AT&T Bell Laboratories, and at a few sites elsewhere. It is named, by our custom, after its
manual.

The work reported here provides convenient ways for programs to establish communication with
unrelated processes, on the same or different machines. The communication we are interested in is con-
ducted by ordinary read and write calls, occasionally supplemented by I/O control requests, so that it
resembles--and, where possible, is indistinguishable from--I/O to files. Moreover, we wish to commence
communication in ways that resemble the opening of ordinary files, or at least takes advantage of the pro-
perties of the file system name space.

In particular, we study how to

1) provide objects nameable as files that invoke useful services, such as connecting to other machines
over various media,

2) make it easy to write the programs that provide the services.

Unix is a trademark of AT&T.

AUUGN 115 Vol 10 No 4

Recapitulation
The Eighth Edition system introduced a new way of communicating with terminal and network dev-

ices,1 and a generalization of the internal interface to the file system.3,4 Because the new mechanisms build
on these ideas, we review already-published nomenclature and mechanisms of our I/O and f’de systems.

Streams

A stream is a full-duplex connection between a process and a device or another process. It consists
of several linearly connected processing modules, and is analogous to a Shell pipeline, except that data
flows in both directions. The modules in a stream communicate by passing messages to their neighbors. A
module provides only one entry point to each neighbor, namely a routine that accepts messages.

At the end of the stream closest to the process is a set of routines that provide the interface to the rest
of the system. A user’s write and I/O control requests are turned into messages sent along the stream, and
read requests take data from the stream and pass it to the user. At the other end of the stream is either a
device driver module, or another process. Data arriving from the stream at a driver module is transmitted to
the device, and data and state transitions detected by the device are composed into messages and sent into
the stream towards the user process. Pipes, which are streams connecting processes, are bidirectional; a
writer at either end generates stream messages that are picked up by the reader at the other.

Intermediate modules process messages in various ways. They come in pairs, for handling messages
in each of the two directions, and each pair is symmetrical; their read and write interfaces are identical.

The end modules in a device stream become connected automatically when the process opens the
device; streams between processes are created by a pipe call. Intermediate modules are attached dynami-
cally by request of the user’s program. They are addressed like a stack with its top close to the process, so
installing one is called ’pushing’ a new module.

For example, Figure 1 shows a stream device that has just been opened. The top-level routines,
drawn as a pair of half-open rectangles on the left, are invoked by users’ read and write calls. The writer
routine sends messages to the device driver shown on the right. Data arriving from the device becomes
messages sent to the top-level reader routine, which returns the data to the user process when it executes
read.

user
write>"

user
< read

device
out

device
.
in

Figure 1. Configuration after device open.

Figure 2 shows a stream with intermediate modules. This arrangement might be used when a termi-
nal is connected to the computer through a network. The leftmost intermediate module carries out process-
ing (such as character-erase and line-kill) needed for terminals, while the rightmost intermediate module
does the flow- and error-control protocol needed to interface to the network.

user
write’-
user

< read

tty out

tty in

proto out

proto in

device
out

device

Figure 2. Configuration for network terminals.

Finally, Figure 3 shows the connections for a pipe.

Vol 10 No 4 116 AUUGN

user

~

user
write> "<write
user user

<: read read-

Figure 3. A pipe.

File Systems
Weinberger3 generalized the file system by identifying a small set of primitive operations on files

(read, write, look up name, truncate, get status, etc.: a total of 11) and modifying the mount request so that
it specifies a file system type and, where appropriate, a stream. When file operations are requested, the
calls to the underlying primitives are routed through a switch table indexed by the type. Where the standard
file system type performs operations directly on a disk, a second type generates remote procedure calls
across the associated stream. At the other end of the stream, which usually goes over a network to another
machine, is a server process that answers the calls to read and write data and perform the other operations.
This scheme thus provides a remote file system. In general structure, this arrangement is analogous to that
used by AT&T’s RFS and Sun Microsystems’ NFS.

Pike5 took advantage of the remote file system type, but his server simulates a disk containing
images classified by machine, person’s name, and resolution.

Killian4 added a file system type that appears to be a directory containing the names (process ID
numbers) of currently running processes. Once a process file is opened, its memory may be read or written,
and control operations can start it or stop it. This simplifies the construction of sophisticated debuggers, for
example Cargill’s process-inspector pi .6

Establishing Communication
Traditional Unix systems provide few ways for a process to establish communication with another.

The oldest one, the pipe, has proved astonishingly valuable despite its limitations, and indeed remains cen-
tral in the design we shall describe. Its cardinal limitation is, of course, that it is anonymous, and cannot be
used to create a channel between unrelated processes.

More recently, AT&T’s System V has offered a variety of communication mechanisms including
semaphores, messages, and shared memory. They are all useful in certain circumstances, but programs that
use them are all special-purpose; they know that they are communicating over a certain kind of channel,
and must use special calls and techniques. System V also provides named pipes (FIFOs). They reside in
the file system, and ordinary I/O operations apply to them. They can provide a convenient place for
processes, to meet. However, because the messages of all writers are intermingled, writers must observe a
carefully designed, application-specific protocol when using them. Moreover, FIFOs supply only one-way
communication; to receive a reply from a process reached through a FIFO, a return channel must be con-
structed somehow.

Berkeley’s 4.2 BSD system introduced sockets (communication connection points) that exist in
domains (naming spaces). The design is powerful enough to provide most of the needed facilities, but is
uncomfortable in various ways. For example, unless extensive libraries are used, creating a new domain
implies additions to the kernel. Consider the problem of adding a ’phone’ domain, in which the addresses
are telephone numbers. Should complicated negotiations with various kinds of automatic dialers be added
to the kernel? If not, how can the required code be invoked in user mode when a program calls 4.2 BSD’s
connect primitive?

Ano_ther problem with the socket interface is that it exposes peculiarities of the domain; various
domains support very different kinds of name (for example, Internet address versus character string), and it
is difficult to deal with the names in a general way. Similarly, the details of option processing and other
aspects of each domain’s protocols complicate an interface that attempts generality.

AUUGN 117 Vol 10 No 4

New System Mechanisms

Two small additions to the operating system allowed us to build a variety of communication mechan-
isms, which will be described below.

Generalized Mounting

Traditionally, the mount request attaches a disk containing a new piece of the file system tree at a
leaf of the existing structure. In the Ninth Edition, it takes the form

mount(type, fd, name, flag);

in which type identifies the kind of file system, fd is a file descriptor, name is a string identifying a file,
and flag may specify a few options. Like its original version, this call attaches a new file system structure
atop the file name in the existing file hierarchy. The operating system gains access to the contents of
newly-attached file tree by communicating over the descriptor fd, according to a protocol appropriate for
the new file system type. For example, ordinary disk volumes have type ordinary, and the file descriptor is
the special file for the disk, while remote file systems use type remote, and the descriptor refers to a stream
connection to a server that understands the appropriate RPC messages. Some types are handled entirely
internally; for example, the ’proc’ type does not need the file descriptor.

Recently, we added a new, very simple, file system type. Its mount request merely attaches the file
descriptor (which must be a stream) to the file. Subsequently, when processes open and do I/O on that file,
their requests refer to the stream mounted on the file. Often, the stream is one end of a pipe created by a
server process, but it can equally well be a connection to a device, or a network connection to a process on
another machine. The effect is similar to a System V FIFO that has already been opened by a server, but
more general: communication is full-duplex, the server can be on another machine, and (because the con-
nection is a stream), intermediate processing modules may be installed.

Passing Files

By itself, a mounted stream shares an important difficulty of the FIFO; several processes attempting
to use it simultaneously must somehow cooperate. Another addition facilitates this cooperation: an open
file may be passed from one process to another across a pipe connection. The primitives may be written

sendfile(wpipefd, fd) ;

in the sender process, and

(fdl, info) = recvfile(rpipefd) ;

in the receiver. By using sendfile, the sender transmits a copy of its file descriptor fd over the pipe to the
receiver; when the receiver accepts it by recvfile, it gains a new open file denoted byfdl. (Other informa-
tion, such as the user- and group-id of the sender, is also passed.) The facility may be used only locally,
over a pipe; we do not attempt to extend it to remote systems.

A similar facility is available in the 4.3 BSD system,7 but is little-used, possibly because in earlier
versions the related socket facilities were buggy.

Simple Examples

A graded set of examples will illustrate how these mechanisms can solve problems that vex other
systems.

Talking to Users

When a user logs in to traditional Unix systems, an entry is made in the/etc/wtmp file, recording the
login name and the terminal or network channel being used. Although this file is often used merely to
show who is where, it is also used to establish communication with the user. For example, the write com-
mand, and a variety of mail-notification services, find a user’s terminal by looking up the name, and send a
message to the terminal. This simple scheme does not work well with windowing terminals, because the
messages disturb the protocol between the host and the terminal, and because there is no obvious way to

Vol 10 No 4 118 AUUGN

relate the terminal’s special file to a particular window. Even without windows, there are security problems
and other difficulties that follow from letting users write on each other’s terminals.

Instead, we use stream-mounting to interpose a program between a terminal special file and the ter-
minal itself. The program, called vismon, mounts one end of a pipe on the user’s terminal. Normally it
occupies an inconspicuous window, displaying system activity and announcing arriving mail. When some
other process opens and writes on the special file for the terminal, the mounted stream receives the data;
vismon creates a new window, and copies this data to it. The new window has a shell, so that if the mes-
sage was from a write command, the recipient can write back.

Ordinary communication between the terminal and the windowing multiplexor on the host is not dis-
turbed; it continues to flow to the terminal itself, not to vismon, because that connection was already in
place at the time the mount was done.

Network Calling: Simple Form
Making a network connection is a complicated activity. There is often name translation of various

kinds, and sometimes negotiations with various entities. With the Datakit® VCS network,8 for example, a
call is placed by negotiating with a node controller. When dialing over the switched telephone system, one
must talk to any of several kinds of automatic dialers. Setting up a connection on an Internet under any of
the extant protocols requires translation of a symbolic name to a net address, and then special communica-
tion with the remote host. These protocols should certainly not be in kernel code. It is usual to put setup
negotiations in user-callable libraries, but it is better to have all the code for each network in a single exe-
cutable file. In this way, if something in the network interface changes, only one program needs to be fixed
and reinstalled.

With our primitives, it is straightforward to move most parts of network-connection algorithms to a
single program. A program desiring to make a connection calls a simple routine that creates a pipe, forks,
and in the child process executes the network dialer program. The dialer either returns an error code, or
passes back a file descriptor referring to an open connection to the other machine. The pseudo-code for the
library routine, neglecting error-checking and closing down the pipe, is:

netcall (address)
{ int p[2] ;

pipe (p) ;
if (fork() !=0)

execute ("/etc/netcaller",
status = wait() ;
if (bad(status))

return (errcode) ;
passedinfo = recvfile(p[l]) ;
return (passedinfo. fd) ;

address, p[O]) ;

The /etc/netcaller program can be arbitrarily complicated, but does not occupy the same address
space as its caller. Its job is to create the connection and either fail, returning an appropriate error code, or
succeed, and pass its descriptor for the open connection; it then terminates, and is no longer involved in the
connection. Along the way, it may negotiate permissions and provide the caller’s identity reliably, because
it can be a privileged (set-uid) program. Thus, the segregation of the program that does the actual call setup
from its client is important. There are techniques, for example shared libraries, that can reduce the code
included with each program that makes network connections, but such libraries run in the protection
domain of the person who executes them. This means that in library-based implementations, the operating
system must know enough about the call setup protocols to authenticate the caller to the target system. In
the method described above, this task need not be done in kernel code.

AUUGN 119 Vol 10 No 4

Process Connections

Suppose you are writing a multi-player game, in which several people interact with each other. One
solution uses a controller process that is prepared to receive asynchronous connection requests from new
players and coordinates the play of the game. In this scheme, there are two programs: the controller, set up
initially, and a player program, executed by users as they enter the game. When the controller starts, it
creates a conventionally-located file, stream-mounts one end of a pipe on this file, and waits for connection
messages to arrive.

When the player program is run, it opens the communication file, and creates its own pipe. It starts
communication by sending one end of this pipe to the game controller over the communication file.

When the controller notices that there is input on its connection stream, it accepts the connection with
recvJile. The player program can then close the communication file, and thereafter transmits moves and
receives replies over its end of the pipe; the controller reads the player’s moves and transmits replies over
the end it received.

The Connection Server

The final example illustrates a general connection server that we have recently installed. It combines
ideas used by the initial network-calling scheme and the game-master design, described above, to create a
flexible switchboard through which programs can connect.

Two things are necessary for handling server-client relationships: first, some program must establish
itself as a server, and wait for requests for the service; and second, programs must make requests. We will
first describe the external appearance of the scheme (the library entry points), then the addressing and nam-
ing, and then the implementation.

A program like rlogin or cu makes a connection by calling the routine ipcopen, passing a string of
characters that specifies the address and the desired service at that address.

fd = ipcopen (service) ;

The ipcopen routine returns a file descriptor connected to the requested server. If it fails, a string describ-
ing the error is available.

In order to announce a service, ipccreat is used; its argument is a string that names the service. The
return value is a file descriptorfd that is a channel on which connection requests will be sent.

fd = ipccreat (service) ;

To wait for requests, the server uses the ipclisten routine. Its argument is the same fd returned by
ipccreat:

ip = ipclisten (fd) ;

Ipclisten returns when some program calls ipcopen with an argument corresponding to the service, in a
way discussed below. The return value is a structure containing information about the caller, such as the
user name, and, where relevant, the name of the machine from which the call was placed. This new con-
nection may be accepted:

fd = ipcaccept(ip, cfd) ;

or it may be rejected:

ipcreject(ip, errcode) ;

The ipcaccept routine returns a file descriptor over which the server may communicate with its client. If
the call is purely local, the fd returned by ipcaccept refers to one end of a pipe whose other end is the fd
returned by the corresponding call to ipcopen. If the client and server are on separate machines, then the
connection refers to-a stream that passes over a network. Ipcaccept also takes a file descriptor as argument.
It is used when the service being provided is to make another connection. A network dialing server, for
example, receives the desired address in the ip structure returned by ipclisten, makes the connection with
network-specific primitives, and if the connection succeeds, returns the descriptor for the connection to the

Vol 10 No 4 120 AUUGN

client using the cfd argument of ipcaccept. In the simpler case in which the server itself communicates
directly with the client, cfd may be empty.

Addresses

The arguments supplied to ipcopen and ipccreat are strings with several components separated by
exclamation mark ’!’ characters. The first part is interpreted as a file name. If it is absolute,, it is used as is;
otherwise, it is interpreted as a file in the directory/cs, which we use, conventionally, as a rendezvous
point. In the case of ipcopen, any remaining components are passed to the server as part of the ip structure
returned by ipclisten. For example, a game controller like that discussed in a previous section might
announce itself with

ipccreat ("mazewar") ;

The player program could then connect to the controller with

ipcopen ("mazewar") ;

In this simple case, the IPC routines merely accomplish a convenient packaging of the scheme discussed
above.

More interesting are the network servers. Here, the first component of the string names a kind of net-
work, and, conventionally, the remaining components supply an address within that network, and possibly a
service obtainable at that address. For example, we have three kinds of networks: tcp (TCP/IP Intemet
connection), dk (Datakit connection), and phone (dial-up telephone). Each network server adopts the con-
vention that a missing service name means a connection to an end-point that allows one to log in by hand.
Therefore, calling ipcopen with the strings

tcp!research.attocom
dk!mh/astro/research
phone!201-582-5940

gets connections over which one will receive a ’login:’ greeting, each over a different kind of network. The
servers are responsible for the details of name translation, performing the appropriate connection protocol,
and so forth. Some examples of named services at particular locations are

dk!dutoit!whoami
tcp!research.att.com!smtp

The first is a debugging service that echoes facts about the connection and the user ID of the person who
requests it. The second is the way mail is sent between machines: by connected to the smtp server (mail
receiver) on the machine.

IPC Implementation

The ipccreat routine, for a simple service, works just like the game-manager program described
above; it first creates a file in the/cs directory corresponding to the name of the service, then makes a pipe
and stream-mounts one end of the pipe on this file. For complex services, which have a ’!’ in their names,
the simple service named to the left of the ’!’ must be created first; when ipccreat is handed the name of
such a service, it uses a version of ipcopen referring to the simple, underlying server, and passes it the
remainder of the name. In either case, ipccreat returns its own end of its pipe, ready to receive requests.

The ipcopen routine uses a technique that resembles that used by the simple network calling routine
described above, but differs in detail. The following scheme suffices: ipcopen opens the file in /cs
corresponding to the desired service, makes a pipe, and hands one end of the pipe to the server. It then
sends the actual contents of the request (the full address) to its end of the pipe, and waits for an acceptance
or rejection message to appear on this pipe.

The server ipclisten call waits for a passed stream on the file descriptor mounted on its/cs communi-
cation file, and when it appears, ipclisten knows that someone has called ipcopen, so it reads the request
block from this passed stream. After analyzing the request, the server calls either ipcaccept or ipcreject;
each sends an appropriate message back to the client over the passed stream. Ipcaccept has two cases:

AUUGN 121 Vol 10 No 4

when its cfd argument is empty, the same pipe sent to the server by the client is used for communication;
when cfd is non-empty, that file descriptor is sent. lpcopen returns the appropriate descriptor.

Network Managers
The IPC routines discussed above handle both clients and servers that are local to a single system,

and we also showed how to accomplish outgoing network connections. One missing piece is how to write
network servers, the programs that accept connections from a network, and arrange that the appropriate
local programs are invoked. We call such programs managers. The networking part of a manager is
specific to the network. For example, the manager for a TCPBP network must arrange to receive IP packets
sent to certain port numbers, and analyze the packets to determine what service is being requested. Often, it
must conduct a dialogue both with the operating system and with its remote client; for a TCP connection, it
must select a port number for the conversation, communicate it to the peer, and prepare the system to route
packets on this port number to it. Finally, the manager must invoke the selected local service. Each
manager could use ad hoc code for this part of its job; instead, we take advantage of the IPC mechanisms,
and use a more general program called the service manager.

The Service Manager
By using ipccreat, a process establishes itself as a server and receives requests. While it is serving, it

must remain in existence. For some servers, like the multi-player game controller that continues to run as
users enter and leave the game, the longevity of the server is appropriate. However, many, or even most,
useful services do not necessarily need a long-lived process, because the service merely involves execution
of a particular program. For example, services like rlogin, telnet, smtp and ftp, as well as simpler ones
that merely provide the date, or send a file to a line printer, can all be accomplished merely by running the
appropriate program with input and output connected to the right place. Moreover, even when the charac-
teristics of such services differ in detail, there are general patterns. Some for example, require no authenti-
cation, some require checking of authentication according to an automatic scheme, and others always insist
on a password.

The observation that many services share a common structure suggested a common solution: the Ser-
vice Manager. It is started when the operating system is booted, and is driven by a specification file; each
entry in the file contains the name of the service, and a list of actions to be performed when that service is
requested. The service manager issues ipccreat for the name given in each entry;, when another process
uses ipcopen to request the service, the service manager carries out the specified actions.

The most important action specifies the command to be executed; for example, the line

date cmd (date)

means that connecting to the service date would run the ’date’ command. Other actions may specify the
user ID under which the program is run:

uucp user (uucp) +cmd (/usr/lib/uucp/uucico)

This service specifies a passwordless connection to the uucp file-transfer program; a locally-conventional
TCP/IP port number is used for such connections, and a corresponding convention is used on our Datakit
network. There are other built-in actions:

login ttyld+pas sword

means that the login service needs to install the line discipline module for terminal processing, and also to
execute the login command without the special flag that causes it to avoid demanding a password;

oklogin auth+ttyld+login

is similar, but allows passwordless login. Authorization is checked by the auth specification, which deter-
mines whether the call came from a trusted host on a trusted network, so that the passed user ID can be
believed.

Vol 10 No 4 122 AUUGN

Uses

The techniques described in this paper permit a general approach to network and local connections in
which most of the work is done in a few user-mode programs. As an example of the benefits of the
scheme, we have unified various commands that do remote login over two kinds of networks (TCP/IP and
Datakit). A single command, con, tries various networks and uses the first over which a connection can be
made. The traditional names (like rlogin) are retained as links, but the only effect of using them is to influ-
ence the order in which networks are tried. The stream implementation makes the transport layers of the
networks sufficiently similar that the same code can be used once the connection is established; and even
the connection interface itself becomes uniform.

The same techniques extend well to inter-network connectivity. For example, although almost all of
our machines have a Datakit interface, only a few have Ethernet connections. Nevertheless, from a
Damkit-only machine, it is easy to connect to another machines that has only Ethernet (whether it runs the
Ninth Edition system or not). One of two methods is used. For the first, which depends on the flexibility
of the stream I/O system, the local operating system contains the TCP/IP protocol code, and below the
TCP/IP level, the ’device’ interface is actually a Datakit connection to another local machine on an Ether-
net. The usual IP network code there gateways IP packets appropriately. The other scheme uses the
methods described in this paper. Here, the TCP network manager and dialout programs do not use TCP/IP
at all, and indeed TCP/IP code need not be configured into the operating system; instead, they make Datakit
transport-level connections to a protocol-conversion server on a gateway machine. The difference between
the two schemes is invisible to users of the service.

Conclusion

Unix has always had a rich file system structure, both in its naming scheme (hierarchical directories)
and in the properties of open files (disk files, devices, pipes). The Eighth Edition exploits the file system
even more insistently than its predecessors or contemporaries of the same genus. Remote file systems, pro-
cess files, and the face server all create objects with names that can be handed as usefully to an existing tool
as to a new one designed to take advantage of the object’s special properties. Similarly, the stream I/O sys-
tem provides a framework for making file descriptors act in the standard way most programs already
expect, while providing a richer underlying behavior, for handling network protocols, or processing
appropriate for terminals.

The developments described here follow the same path; they encourage use of the file name space to
establish communication between processes. In the best of cases, merely opening a named file is enough.
More complicated situations require more involved negotiations, but the file system still supplies the point
of contact. Moreover, the necessary negotiations may be encapsulated in a common form that hides the
differences between local and any of a variety of remote connections.

References

References

1. D.M. Ritchie, "A Stream Input-Output System," AT&T Bell Laboratories Technical Journal, vol.
63, no. 8, October 1984.

2. AT&T, UNIX System V Release 3 STREAMS Programmer’s Guide, 307-227, 1986.

3. P.J. Weinberger, "The Version 8 Network File System," USENIX Summer Conference Proceed-
ings, Salt Lake City, UT, June 1984.

4. T.J. Killian, "Processes as Files," USENIX Summer Conference Proceedings, Salt Lake City, LIT,
June 1984.

5. R. Pike and D. L. Presotto, "Face the Nation," USENIX Summer Conference Proceedings, Portland,
OR, June 1985.

6. T.A. Cargill, "The Blit Debugger," Journal of Systems and Software, vol. 3, no. 4, pp. 277-284,
December 1983.

AUUGN 123 Vol 10 No 4

7. Computer Systems Research Group, U.C. Berkeley, Unix Programmer’s Reference Manual: 4.3
Berkeley Software Distribution, Berkeley, California, April, 1986.

8. A.G. Fraser, "Datakit-A Modular Network for Synchronous and Asynchronous Traffic," Proc. Int.
Conf. on Commun., Boston, MA, June 1980.

Vol 10 No 4 124 AUUGN

Security in Standard Environments

Robert A. Michael
The Santa Cruz Operation, Inc.

Preliminary Paper

Introduction

As more and more business, government, and military information is handled by machine, security is
taking a place alongside cost-effectiveness as a major concern when investing in a computer system.

Computer system security has traditionally been associated with expensive, proprietary hardware, and
with software that is difficult to use and administer. But as microcomputers have grown in power and
flexibility, another option has come to the fore. A standard hardware platform such as the 80386-based
microcomputer solves many of the traditional problems of cost and obsolescence. The UNIX System V
operating system is built to provide many security features without sacrificing ease of use. The combi-
nation forms a computing system that is at once cost-effective, flexible, and secure.

In order to control costs, it is important to be able to choose a platform with computing power appropri-
ate to the application. An ability to selectively upgrade components of the system whenever necessary
is also crucial, so that new operational requirements can be met without discarding those parts of the
system which are still useful, The key to achieving these goals is the recognition and support of indus-
try standards.

Many new standards are emerging today to address these needs at a number of levels, with the most
important feature to consider being binary portability. Systems with binary portability allow the applica-
tions written for those systems to be transported between them without changes of any kind. Either
proprietary hardware design or proprietary operating systems restrict or eliminate binary portability,
especially between different systems vendors. Until recently trusted systems have relied on such
proprietary designs, which has meant that not only the system itself but the applications have had to be
modified or replaced when upgrading to new products. Also, the various different products which have
been offered to date had little or no ability to share applications between different operational units,
effectively locking a trusted systems user into a single vendor for a given application.

SCO UNIX System V/386 Release 3.2 will maintain full binary compatibility with the system that has
become the de facto standard for the Intel 80386 hardware environment, SCO XENIX. All the popular
enhancements to UNIX which have made SCO the number one supplier in the microprocessor UNIX
software market will also be present.

Trusted Systems Background
A "Trusted" system is one which achieves a specific level of control over access to information, provid-
ing mechanisms to prevent (or at least detect) unauthorized access. In the United States, the standard
criteria for evaluating the level of trust granted a computer system are listed in the Trusted Computing
Systems Evaluation Criteria (TCSEC) issued by the National Computer Security Center (NCSC).
The TCSEC (also known as the "Orange Book" because of the color of its binding) does not contain
specific "how to" rules for building trusted systems. What it does provide are guidelines for asking
intelligent questions about the nature of the system, the answers to which may reveal potential security
risks.
When all the criteria have been applied, the system receives a security rating. A rating of D indicates
the lowest level of trust, with security levels increasing through C1, C2, B 1, B2, B3, to reach A1 at the
top of the scale. Claims of a specific level of trust are validated by an independent agency qualified to
perform a complete evaluation. In the United States that agencY is the NCSC.

AUUGN 125 Vol 10 No 4

In general, the UNIX operating system meets the requirements of a C1 system. It has password protec-
tion on accounts, a discretionary access control mechanism, and some limited authentication features.
With proper system administration it can be used to maintain sensitive information with some degree of
trust. Most sensitive environments, however, need at least the features of a C2 system. A C2-trusted
system has strengthened password protection and authentication, protected subsystems (such as printers
and tape drives), and makes administration tools available. While there is nothing about the basic
design of UNIX that interferes with the requirements for C2, it is a substantial amount of work to imple-
ment them all.

Several companies have announced C2 functionality as a future option for their UNIX product offerings.
SCO’s entry in the C2-trusted field is SCO UNIX System V/386 Release 3.2, which will be available
this year.
The areas in which SCO UNIX has been enhanced to satisfy the requirements of C2 include protected
subsystems, administrator interfaces, auditing of system events, and removal of the encrypted passwords
into a protected database. Many standard commands and utilities have been enhanced to operate
correctly in the trusted environment as well. THis has been achieved in a manner which preserves
application compatibility with the operating system, enabling users of the trusted environment to select
from the thousands of currently-available commercial and business applications.

An optional extension to standard SCO UNIX System V/382 Release 3.2 is under development to satisfy
the requirements of a B-level trusted system. Generalised access control mechanisms, mandatory access
control, establishment of security category and level concepts, increased use of protected subsystems,
removal of root as the all-powerful superuser, and numerous extensions and enhancements to standard
utilities are all required to achieve this functionality. The Kernel mechanisms and implications for com-
plete system evaluation provide interesting topics for further discussion.

Vol 10 No 4 126 AUUGN

Enhanced Error Processing for UNIX Parsers

A.N. Pears and R.S. Francis,
Concurrency Research Group

Department of Computer Science
La Trobe University, Bundoora, Australia 3083

Abstract

This paper describes the use of an error recovery filter designed for use
with standard lex, yacc based parsers. Placement of actions within the grazn-
mar provides follow set er.ror recovery similar to that used in recursive descent
parsers. This paper presents an overview of the filter, and demonstrates how
a grammar should be modified to provide effective error recovery. The defi-
nition of halting and follow sets is made within the yacc input grammar file.
This definiti.on includes an error message appropriate to each set, an optional
insertion or deletion operation, and an error message for each symbol in a
set. The result is a robust controlled error recovery of the parse to a precision
determined by the implementor of the grammar.

Index terms Error Recovery, Parsing, Follow Symbols, Lex, Yacc.

Contact

Dr. R.S. Fr.~cis,
Concurrency Research Group,
Dept. of Computer Science,
LaTrobe University,
Bundoora, Vic 3083, Australia.

ACSnet/CSNET: rhys@latcsl.oz
ARPA: rhys%latcsl.oz@uunet.uu.net
JANET: latcs 1.oz !rhys@ukc
UU CP: {enea,hplabs,mcvax,nt tlab,ukc,uunet }!
munnari!latcsl.oz!rhys

ISD +613 desk 479 2504 dept 479 2598 fax 478 5814 TELEX AA 33143

Mr. A.N. Pears,
Concurrency Research Group,
Dept. of Computer Science,
LaTrobe Uniwrsity,
Bundoora, Vic 3083, Australia.

A C Snet / C S NET: p ears @latcs 1.oz
ARPA: pears%latcsl.oz@uunet.uu.net
JANET: latcsl.oz !pears@ukc
UU CP: {enea,hplabs,mcvax,nttlab,ukc,uunet }!
munnari!latcsl.oz!pears

ISD +613 desk 479 1144 dept 479 2598 fax 478 5814 TELEX AA 33143

AUUGN 127 Vol 10 No 4

1 Introduction

The UNIX1 parser generators lex[5] and yacc[4] have been in regular use for many
years. They simplify the implementation of programming languages by eliminating
much of the labour involved in parser construction. Yacc allows an experienced
programmer to rapidly construct a parser from syntax diagrams. Lex aids in the
recognition of primitive symbols, which can then be supplied to yacc for parsing.

This paper reports~ on the design and use of an error recovery facility which, in
conjunction with lex and yacc, provides robust and controllable error recovery. In
common with others[2, 3], our work has found the error recovery support available in
yacc to be deficient. It is difficult to apply, and in response to a single error is likely
to produce many spurious error reports, or skip large parts of the input. Such action
detracts from the usefulness of a parser in command and programming systems. In
particular, inaccurate information arising from inadequate error recovery leads to
significant user frustration.

The technique described in this paper has been successfully applied to the yacc
grammar of a Modu!a II based systems programming language used for user and
kernel programming in the Threads simulation system[I]. Our primary motivation
in developing the strategy, was to increase the level of user information available
during ~:he normal syntax debugging of programs. A design constraint was the use
of standard lex and yacc. The result is a filter which can be easily installed between
lex and yacc, and which allows the grammar designer to include error recovery
control within the yacc grammar specification.

The technique described in this paper does not support advanced error repair
strategies but rather concentrates on providing a robust parser. As in all LR parsers,
good error recovery involves the resynchronisation of the input stream with the parse
state. The simpler strategies attempt to delete symbols from the input and states
from the parse stack until valid processing of the input file can be resumed. The
objective in this case is to minimize both the number of symbols and parse states
deleted..

Some previous attempts to provide full error recovery in yacc based parsers[6, 2]
have concentrated on modifying the implementation of the yacc machine. These ap-
proaches, while partially successful, are complex and require considerable knowledge
of the implementation of the yacc state machine. Others have attempted the for-
mulation of a strategy relying on structured use of the existing error facilities. Such
approaches require the partial restructuring of the grammar, and the introduction
of complex agglomerations of error clauses.

Our approach departs from those already stated by providing extra facilities for
error recovery to the standard yacc machine, using an active filter. No modifications
are made to the yacc implementation, and the use of our facilities reduces the com-
plexity of error clauses. The filter provides yacc with a library of actions, which,
when inserted into the grammar, simulate follow symbol error recovery similar to
that used in recursive descent parsers. The filter uses follow sets provided by these
actions to force the parser stack to a state appropriate to the first follow symbol

1UNIX is a registered trademark of AT&T Bell Laboratories

Vol 10 No 4 128 AUUGN

located in the input. This ensures that the parser discards the minimum input nec-
essary to reach a state known to be recoverable. The precision of the recovery is
controlled by the number of error control actions included in the grammar. Fine
levels of recovery may require significant grammar modifications. This paper will
concentrate on techniques for the effective use of the facilities provided by the filter,
coupled with an overview of the implementation.

2 An Overview of Errec

The positioning of the filter between yacc and lex is diagrammatically represented
in Figure 1.

gex
yylex() Errec

PopFLW(~)

yyerror()

Y&cc

Figure 1: Errec Functional Interface

Yacc obtains its input using the function yylex’(), which, errec maps to calls to
yylex() in accordance with it’s operating state. Errec also traps calls to yyerror()
in the code generated by yacc in order to force a state change for error processing.
In addition errec provides three new error recovery support functions for use in
yacc actions.

1. PushFLW(~’) extends the follow symbol stack to include the list of valid follow
symbols associated with the set identifier 5r: The: association of set identifier
and follow symbols is made in the yacc grammar file.

2. PopFLW($’) removes the top set of follow symbols from the stack. The identi-
fier of the set removed is compared to the set identifier .T" to check for internal
errors. A set identifier of a different follow set should never be popped if
the error resynchronisation is operating correctly and the recovery actions are
inserted at the correct positions in the grammar.

AUUGN 129 Vol 10 No 4

3, ScanFLW(.T"). Resynchronisation is provided by actions invoking this func-
tion at appropriate locations in the grammar. ScanFLW(~’) pops the follow
stack back to the set Y" and then searches the input stream, commencing with
the symbol that caused the error, for the next symbol which is a member of an
active follow set. If the matched symbol’s set identifier is 5v, errec corlmaits
to the recovery, performs the recovery action specified in the follow table and
returns true as the function result. If the set identifiers are different, errec
returns false. The returned value is used to optionally force yacc to pop its
parse stack.

Errec is normally invisible to yacc, and merely relays the tokens produced by
lex. When a parsing error occurs, errec intercepts the call to yyerror() and enters
ERROR mode. Control is then returned to yacc which recovers by popping the
parse stack until it can shift one of the recovery error actions. All error actions
contain a call to ScanFLW(5r). There are two forms of this call, one is used in
situations where recovery to a particular level of the grammar is required, while the
other provides scanning of simple linear constructs. The set 9r consists of all the
symbols which can legally occur following the position where the error was detected.
Errec pops its stack of follow sets to the first occurance of the set ~, and scans for
the next input symbol which is a member of any follow set presently on its follow
stack. If the symbol located is in the set 9v errec returns the value truel otherwise it
returns the value false. If the value true is returned, yacc clears its error mode and
resumes parsing. If the value false is returned, yacc remains in error mode removes
a parse state from its stack, and commences a scan to locate an earlier error rule
at an outer level of the grammar. This process continues until a location in the
grammar is found where a ScanFLW(~) call locates a syrnbol in the set ~.

3 Follow Sets

Follow sets required by the errec filter, and used in the error recovery actions in
the grammar, are defined as a multi-dimensioned array at the end of the yacc file.
This array structure is pictorially represented in Figure 2.

Each major entry in the array represents a follow set. This follow set is composed
of multiple elements, each of which defines an expected symbol, an operation on the
input stream, appropriate to the detection of that symbol at this stage in the parse,
and a specific error message. The operation code associated with each element of
the follow set has the following significance.

Zero, (0), indicates that the follow symbol is to be returned on the next call
of yylex~(), and therefore no modification of the input stream is required.

A yacc token, (> 0), indicates that the supplied token is to be inserted into the
input stream before the follow symbol. The next call to yylez~() will return
the supplied token and the subsequent call to yylez~() will return the token at
which the error was recovered.

Vol 10 No 4 130 AUUGN

SetN
.

Set2

Setl ~ opcod-e~ ~ opco.are. ~ opco~de,
I s~mbol I [s)mbol]] s’~mbol

errec follow table

Figure 2: Errec Follow Set Table

Other, (< 0), indicates that the follow symbol is to be removed from the input
stream. The next call to yylex~() will return the next symbol from the input
stream.

The errec follow stack holds pointers to these sets, and varies in depth with the
depth of the parse. The use of a stack allows the detection of symbols valid in
enclosing constructs, and the depth in the stack at which a follow symbol is located
determines the level to which yacc must unwind it’s parse to recover.

4 A Simple Example

Type declaration lists are parsed using a recursive grammar structure. In such lists
the follow symbol set is generally composed of the element separator, or terminator,
and any other symbols valid at that level of the parse. The separator and terminator
must be handled at this level while the follow symbols associated with enclosing
constructs are present deeper in the follow stack. The grammar segment used in the
Threads compiler for type declarations is:

typedecls
¯/* empty */
I typedecls typedecl

typedecl
¯ ideq typeerr

typeerr
’type TSEMICOLON

AUUGN 131 Vol 10 No 4

I error { LeafScan(Dsemi); }

ideq
: TIDENT TEQ
I error { LeafScan(Deqsemi); }

Two error recovery actions have been inserted into this grammar segment to allow
efficient recovery. The recovery process depends on the structure of the grammar,
the placement of the error rules, and the definition of the follow sets. The follow
sets required by the above grammar fragment are:

{ Deqsemi, "should be <simple identifier> =", {
{ TSEMICOLON, 0, "missing =" },
{ TEQ,-i, "skipped past =" },
{0, 0, 0 } } },

{ Dsemi, "error in declaration", {
{ TSEMICOLON,-I, "skipped past ;" },
{0, 0, 0 } } },

The error action in the rule ideq locates the next equality or semicolon symbol
before reduction of the state occurs. This allows input processing to resume at the
following type specification in the case where an identifier is missing, and an equality
symbol is located before the next semicolon.

The error action in the rule typeerr locates the next semicolon on the input
stream, and by forcing the reduction of a type declaration allows further type dec-
larations to be processed.

As can be seen from this example the set ~ must be constructed to force the
grammar along the rule. This is achieved through selecting key symbols which
will allow components of the current rule to be reduced, and the use of LeafScan.
LeafScan(t"), pushes the set ~’ onto the follow symbol stack, performs a Scan(9v"

), and then removes the set.

5 A More Complex Example

Statement list error recovery is an example in which the follow set stack must be
manipulated to reflect the nesting of the control structures in the input. The idea is
that the parse should recover to a position above the level of the current structure if
a relevant symbol is unexpectedly encountered. This requires the use of Pop, Push
and Scan.

In most grammars where several different control structures are provided it is
necessary to design several statement list grammars which ensure that the correct
follow symbol sets are present during the parse. The grammar for a typical statement
list is of the form:

Vol 10 No 4 132 AUUGN,

statelist
:statement
I statelist TSEMICOLON statement
l error { Scan(Fstatement); }

The follow set for any statement list is defined by the control structure in which it
is used. The semicolon statement separator will always be present, to allow recovery
to the start of the next statement.

To ensure that all errors at the current parse level are processed correctly a
terminal symbol must follow the statement fist in the parent construct. This prevents
the reduction of a statement list, on an error, before a valid follow symbol for the
encompassing control structure has been located.

Any error which occurs during the processing of a statement fist will be trapped
by the local error rule, and either a semicolon or one of the follow symbols related
to the control structure will be found. In the former case, parsing will continue with
the next. statement,, while for the latter, the current rule will be reduced and the
next: ru, l~e in the encapsulating control structure will be expanded.

The use of statement fists with varying follow sets is best understood by con-
sidering examples from a grammar. The grammar used for the Threads repeat
statement is:

repeatstatement
: TREPEAT repeatloop TUNTIL { Pop(Frepeat); }

booleanexpr

repeatloop
: { Push(Frepeat); } repeatstatelist

repeatstatelist
:statement
I repeatstatefist TSEMICOLON statement
I error { Scan(Frepeat); }

While parsing any control structure the valid follow symbols comprise the key
words denoting the start of a following statement, the keywords expected to follow
the current position in the current construct, and the terminating symbol; in this
case end.

As the repeat statement grammar is simple it requires only one recovery action
located in the statement list. With this grammar in mind, and considering the
other statements provided in the Threads language, the following set of symbols,
and associated input stream actions, would be appropriate.

{ Frepeat, "invalid statement in repeat", {
{ TUNTIL, 0, "skipped to UNTIL" },
{ TIF, TSEMICOLON, "probable missing semicolon"

AUUGN 133 Vol 10 No 4

TWHILE,
TLOOP,
TFOR,
TCASE,
TWITH,
TSEMICOLON, 0,
TEND, 0,

{o,o,o}}},

TSEMICOLON, "probable missing semicolon" },

TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, "probable missing semicolon" },

TSEMICOLON, "probable missing semicolon" },

"skipped to ;" }~
"skipped to END" },

When a statement symbol is located the action for that symbol inserts a semi-
colon to allow the reduction of the erroneous statement, and correct parsing of the
next statement. K the symbol until is detected it is left on the input stream to force
the parser to reduce the statement list and then parse the boolean expression. A
semicolon found during recovery is treated as the list separator, and must remain
on the input stream. The detection of the symbol end indicates the termination of
some higher level construct. This symbol is left on the input and yacc will discard
states until the correct level of the grammar is located and parsing can resume.

The requirement that all exit transitions from a parse state be guarded by a
terminal symbol results in an unusual grammar for the if statement.

ifstate~nent
: TiF ifstate

ifstate
: ifexpr { Push(Fthen); } TTHEN thenstatelist elsepart

ifexpr
:expression
I error { LeafScan(Fif); }

elsepart
: TELSE { Pop(Fthen); Push(Fstrnnt); }

statelistend { Pop(Fstmnt); } TEND
I TELSIF { Pop(Fthen); } ifstate
I TEND { Pop(Fthen); }

statelistend
:statement
I statelistend TSEMICOLON statement
I error { Scan(Fstrrmt);}

thenstatelist
"statement
I thenstatelist TSEMICOLON statement
I error { Scan(Fthen); }

Vol 10 No 4 134 AUUGN

Insertion of follow set actions into this grammar segment was undertaken in
several steps. First the major terminal symbols of the construct were identified.
These were then divided into sets according to the position in which they occur
in the grammar. For example, after the token TTHEN if an error occurs in the
statement list valid follow symbols are ELSE, ELSIF,and END. With this in mind
a follow set Fthen is created in the yacc file, and the action Push(Fthen) added just
prior to entry into a thenstatelist.

Once the parse proceeds to an elsepart, these symbols are no longer valid, and
so the set is removed using Pop(Fthen). If an error occurs, yacc remains in the
thenstatelist, shifts the error token, and executes the associated action. When one
of the follow symbols has been located, using the Scan(Fthen) in thenstatelist, yacc
can reduce the state thenstatelist, and proceed to recognise an e!separt. Similar
arguments apply to the positioning of the other Push and Pop actions.

Because the valid follow sets and input stream operations required for specific
symbols varies depending on the position of the parse within the rule, it is necessary
to define several follow sets.

{ Fif, "error in IF expression", {
{ TTHEN, 0, "skipped past THEN" },,

TELSIF, TTHEN, "probable missing THEN" },
TELSE, TTHEN, "probable missing THEN" },
TIF, TTHEN, "probable missing THEN" },

{
{
{
{
{
{
{
{
{
{

TWHILE, TTHEN,
TLOOP, TTHEN,
TFOR, TTHEN,
TCASE, TTHEN,
TWITH, TTHEN,

"probable missing THEN" },
"probable missing THEN" },

"probable missing THEN" },
"probable missing THEN" },
"probable missing THEN" },

TSEMICOLON, TTHEN, "skipped to ;" },

TEND, TTHEN, "skipped to END" },

{o,o,o))),
Fthen, "invalid then clause, possible missing keyword", {

TELSIF, 0, "skipped to ELSIF" },
TELSE, 0, "skipped to ELSIF" },
TEND, 0, "skipped to END" },
TIF, TSEMICOLON, "probable missing semicolon" },
TWHILE, TSEMICOLON, "probable missing semicolon" }:

TLOOP, TSEMICOLON, "probable missing semicolon" },

TFOR, TSEMICOLON, "probable missing semicolon" },
TCASE, TSEMICOLON, "probable missing semicolon" },
TWITH, TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, 0, "skipped to ;" },

{0,0,0))),
Fstmnt, "invalid statement syntax", {

TIF, TSEMICOLON, "probable missing semicolon" },

AUUGN 135 Vol 10 No 4

{ TWHILE,
{ TLOOP,
{ TFOR,
{ TCASE,
{ TWITH,
{ TSEMICOLON, 0,
{ TEND, 0,

o, o } } },

TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, "probable missing semicolon" },
TSEMICOLON, "probable missing semicolon" },

"skipped to ;" },
"skipped to END" },

The set Fif is used to recover from errors in guard expressions. It allows error
recovery to locate the key word then, or if the start of a statement, or branch, is
suspected, a then is inserted to allow parsing of this rule to proceed.

There are two follow set required for statement lists in the if statement. This
condition occurs because the symbol end is only valid in the statement list of an
else clause. As is the case in the other follow sets described, the expected symbols
are retained if discovered during error scanning allowing parsing to continue through
the construct. Symbols indicating the suspected start of another statement cause
the the insertion of a semicolon to allow the parsing of further statements in that
block.

The LeafScan in the if expression rule uses a follow set containing the symbol
THEN. Any error in an if expression will locate the next THEN in the input stream
or any earlier symbol specified in a more global and still active follow set. This
allows yacc to reduce the ifexpr, and continue parsing at the earliest possible point.

6 Summary

The previous discussion highlights the major considerations in applying error recov-
ery using errec in yacc grammars. It is easy enough to generate grammars that work
in most cases but occasionally result in strange transitions within the grammar. Our
experience is that such faults have three major causes.

1. Inappropriate error transitions are visible as yacc unwinds its stack

2. Transitions out of nested or recursive structures occur on errors because their
reduction is followed by actions before tokens are required.

3. The follow sets in LeafScans do not cover all possibilities or do not specify the
correct recovery ’action to force the parse along a linear construct.

It is important to test the error recovery installed into a grammar by parsing input
streams which force errors going ’in to’ and ’out of’ every rule which contains an error
transition. Faults in the error procesing actions which might exist in a grammar
only result in inappropriate error reports during error processing. Once such faults
have been identified, the grammar can be restructured to remove them.

The implementation of the active filter errec allows yacc users to design flexible
parsers with robust error recovery, using standard yacc actions. The development of

Vol 10 No 4 136 AUUGN

follow sets, and insertion of our enhanced error processing facilities into the gram-
mar, can be undertaken with most parsers implemented using these tools.

The demonstrated improvement in recovery, and accurate error reportage, makes
yacc more attractive to the serious commercial designer.

The application of the techniques described in this report has produced a tremen-
dous improvement in error recovery and greatly enhanced-user interaction with the
Threads compiler. The appendix contains a listing file for an input to the Threads.
compiler containing multiple errors (indicated by braces). In the example, the parse
recovers correctly and diagnoses subsequent errors.

AUUGN 137 Vol 10 No 4

References
I.D. MATHIESON and R.S. FRANCIS, "A Dynamic-Trace-Driven Simulator for
Evaluating Parallelism", Proceedings of the 21st Hawaii Int. Conf. on System Sci-
ences: Vol. 1 (Architecture track), Kailua-Kona, HI: IEE.E Computer Soc. Press, Jan.
1988, pp. 158-166.

A.T. SCHREINER and H.G. FRIEDMAN Jl~, "Introduction to Compiler Construc-
tion with UNIX", Prentice-Hall, 1985.

[3] K.J. GOUGH, "Syntax Analysis and Software Tools", Addison-Wesley, 1988.

[4] "YACC- Yet Another Compiler Compiler", Support Tools Guide UNIX System, ~Vest-
ern Electric, pp. 131-167, 1983.

[5] "LEX- Lexical Analyser Generator", Support Tools Guide UNIX System, Western
Electric, pp. 113-124, 1983.

"Error Recovery in LR Parsing: A Case Study Using YACC", S. IYENGAR, The
SoftLab Project (Internal Working Paper), Univeristy of North Carolina at Chapel
Hill, 1986.

Vol 10 No 4 138 AUUGN

7 Appendix A: A Sample Listing

1
2
3
4
5
6
7

ERROR
8

9
ERROR

10
11

12
13
14

ERROR
ERROR

15
ERROR

16
17

ERROR

18
19

ERROR
20
21
22

23
24
25
26
27
28
29
30
31

MODULE ThenTest;

VAR,
one: REAL;
two: INTEGER;
T : REAL;
c : INTEGER (*

1
b (* : *)REAL;

<-- skipped past ;

error in declaration

a ¯ REAL
2 <--error in declaration

BEGIN
<-- skipped to BEGIN

IF(T >= 12.0) THEN
two (* : *)= 3;

3 <-- missing := or missing procedure declaration
4 <-- invalid then clause, possible missing keyword

<-- skipped to ;
one := 5.23 (* ; *)

5 <-- invalid then clause, possible missing keyword
T := 12.3

ELSIF (* T = 1.3 *)THEN
<-- skipped to ELSIF
6 <-- error in IF expression

<-- skipped past THEN
two := one;
T := 43.0

7 <-- invalid then clause, possible missing keyword
one := 5.23

(* ELSIF *) T = 9.3 THEN
one := 5.23;

<-- skipped to ;
T := 12.3

ELSE
two := 3~
one := 5.23;
T := 12.3;

END;

END ThenTest.

AUUGN 139 Vol 10 No 4

Macintosh Toolbox Emulation under A/UX®

Kent Sandvik, Apple Computer Australia Pry. Ltd.’
ksand@appleoz.oz~kU

Philip Cookson, Apple Computer Australia Pty. Lt~L

This paper provides a technical overview of the implementation of
the Macintosh Toolbox routines in a UNIX~ environment,
specifically A / UX Apple’s implementation of the UNIX operating
system on the Macintosh hardware platform. It is a case study of
how a different environment and User Interface can be mapped on
top of a UNIX operating system; and serves to demonstrate the
flexibility of UNIX as an operating system platform. The key areas
discussed include : differences between the Macintosh OS and
A/UX execution environments, such as the method of accessing
hardware devices, allocating system resources, especially memory
management and memory addressing schemes; fundamental
differences in the File System Structures, File Formats and File
naming conventions; and differences between the Pascal calling
conventions used by the Macintosh ROM and the C programming
language typically used in A/UX. The implementation of the
AppleTalk® protocols in the UNIX environment are also described.

Introduction

A/UX Version 1.1, is Apple’s implementation of the UNIX operating system on the
Macintosh platform1,2. AiUX is a POSIX and FIPS #151 (Federal Information
Processing Standard) compliant implementation of AT&T’s UNIX System V2.2 (with
Berkeley BSD 4.2/3 enhancements). The implementation of the Macintosh User
Interface and Toolbox under A/UX, is achieved with a Toolbox emulation module.
This paper will examine how the different components of this Toolbox emulation are
implemented, and will.describe how the Macintosh Toolbox routines and AiUX (UNIX)
libraries can be combined to develop application software which combines the
functionality of UNIX with the graphically oriented Macintosh User Interface.

The Macintosh Toolbox is a library of routines built into the Macintosh ROM (Read
Only Memory), which provide the support code required to generate the Macintosh
Interface "look and feel" 3,4,5,6. The Macintosh Toolbox can be logically divided into
sets of functionally related routines which support various features, these are referred
to as Managers of the features that they support. For example, the Window Manager
which is a set of routines which manage the creation, activation, movement and
resizing of windows.

Vol 10 No 4 140 AUUGN

The Macintosh Toolbox can be divided into two distinct groupings of routines :

(a)

(b)

Native Macintosh Operating System (OS) Routines
These routines provide low level operating system functions such as : input and
output to physical devices, memory management and interrupt h°andling.
Macintosh User Interface Toolbox Routines
These routines provide the basic building blocks to implement the standard
Macintosh User Interface.

Note that the a Macintosh User Interface Toolbox routine may itself make calls to the
Native Macintosh OS routines.

The A/UX Toolbox

The A/UX Toolbox is a library of A/UX routines that enables a program running under
A/UX to make direct calls to the Macintosh User Interface Toolbox routines and to
remap all calls to the Native Macintosh OS Toolbox routines (including those made by
the Macintosh User Interface Toolbox), to an equivalent set of A/UX (UNIX) operating
system routines 7. The A/UX Toolbox supports almost all of the Macintosh User
Interface Managers and has functional equivalents for most of the Native Macintosh
OS Managers, except for those which manage hardware devices; the function of these
Managers is handled by conventional UNIX device drivers. The A/UX Toolbox
enables UNIX applications which utilize the Macintosh User Interface to be developed
and it’s implementation is robust enough to allow well behaved Macintosh OS
application binaries to run unchanged in the A/UX environment.

A/UX Application Development/Execution Options

Application software which uses the Macintosh User Interface may be developed under
either the Macintosh Operating System or A/UX; and using the A/UX Toolbox library it
is possible to execute applications under one environment that were originally
developed under the other. The four possible application development/execution options
are summarized in Figurel.

AUUGN 141 Vol 10 No 4

Execution Environment

~cCS

Develop, debug
and run program
with Macintosh
Tools

Develop and debug
program with A/UX
Tools. Use A/UX
Toolbox calls.
Transfer source file
to Macintosh, then
compile and link to
run in native Mac
environment

Develop and debug
program with
Macintosh Tools.
Transfer binary file
to A/UX, then launch
with A/UX Toolbox
utility

Develop, debug and
run program with
A/UX tools.

Development
Environment

Figure

Because of the fundamental differences between the Macintosh Operating System and
A/UX, not all of the Macintosh Toolbox routines are available through the A/UX
Toolbox; therefore applications that are intended to run in both environments may only
access Macintosh Toolbox ROM routines which are common to both. The Macintosh
Finder is not currently implemented under AiUX; however most standard Macintosh
Desk Accessories are supported, including the Chooser for access to network resources
such as AppleTalk connected printers. Macintosh OS Desk accessories and
application binaries which attempt to directly manipulate the hardware will not
function properly under A/UX.

Launching Machatosh Application Bkaar~es under A/UX

The launch command is used to start a Macintosh application. The user must pass the
command the name of the application, together with any files that the user wants to
open at the same time. An example of this is :

$ launch MacDraw "my picture"

Note that names containing spaces will need to be enclosed in quotes to prevent the
shell from interpreting it as two separate files. The launch program is able to
initialise the Standard Toolbox Managers to handle Macintosh OS application
binaries which expect this. The launch command is also able to set up and maintain
many of the Macintosh OS global variables, such as Ticks variable (time variable).

Vol 10 No 4 142 AUUGN

How the A/UX Toolbox works

When an application issues a call to one of the Macintosh User Interface Toolbox
routines, the A/UX Toolbox intercepts the call and, if necessary, translates the
parameters into a form usable by the Macintosh ROM routines (which use Pascal
calling conventions); it then invokes the appropriate Macintosh ROM routine. When
an application (or Macintosh User Interface Toolbox routine) issues a call to one of the
Macintosh OS routines, the A/UX Toolbox diverts-the call to a substitute routine in its
own library, the A/UX Toolbox OS routines in turn make calls to the standard A/UX
library routines to perform the A/D-X equivalents of the Macintosh OS functions. The
interaction between the A/LrX Toolbox library and the Macintosh Toolbox is illustrated
in Figure 2. Note that the Macintosh Operating System Toolbox routines are never used
when running under A/UX.

UNIX
application

program

! Quickdraw ROMs I

I A/UX KERNEL

lToolbo--
I library

Figure 2

The remapping between the A/UX Toolbox library and the Macintosh Toolbox routines
in ROM is performed by the AiUX daemon toolboxdaemon which is normally running
when A/UX is active. This Toolbox daemon is responsible for setting up the shared
memory used by the A/UX kernel and the A/UX Toolbox application environment, and
for removing screen windows and data structures left in the shared data segment when
an A/UX Toolbox application exits.

Communication between the Toolbox and the A/UX kernel

The A/UX kernel contains a special user interface device driver, /dev/uinterO, that
handles communication between an A/UX Toolbox application and the kernel. The
A/UX Toolbox library routines make calls to this device driver the same way ordinary
UNIX calls, for instance like calls to the device driver for a disk.

AUUGN 143 Vol 10 No 4

The user interface device driver, /dev/uinterO, performs the following functions:

(a)

(b)

When an application is started, the device driver establishes memory
segments for the screen buffer and ROM code.
The driver contains its own so called event queue handler (the M.acintosh OS,
like other window oriented systems are event driven, and have an event
queue for events). This driver posts mouse and keyboard events.

(c) The device driver enables vertical retrace interrupts (this is the Macintosh OS
interrupt for the system, one interrupt for each vertical retrace of the screen).
It also tracks the cursor at each interrupt. This cursor data is in shared
memory, so it is accessible to both the kernel and the application.

(d) During startup, the driver installs in shared memory a pointer to the A-line
trap handler. When the kernel identifies an exception as a Macintosh ROM
call, it copies the return address from the kernel stack to the user stack and
invokes the trap address.

Once an A/UX Toolbox application is running, most A/UX Toolbox functions are
called through Motorola 68020/68030 exception vectors, that is Motorola 68k opcodes in
the range 0xA000 to 0xAFFF. These are known as A-line traps, because the
instructions start with a hex A. Under the standard Macintosh OS these A-line trap
calls are routed by the CPU to an exception handler that resides in the ROM. This
exception handler uses a pair of dispatch tables (one for the Toolbox graphical routines
and one for the OS routines) to route the A-line traps. Because all exceptions put the
CPU into supervisor mode with Motorola 68k systems, an A-line trap in A/UX must be
routed to the kernel. In A/UX and other UNIX systems ported to the Motorola 680XX
architecture, the kernel runs in Supervisor mode and the user processes run in User
mode. In the A/UX environment, trap handling must always be routed through the
kernel itself. In a similar fashion to the Macintosh OS, the ROM dispatch tables in
A/UX uses two sets of dispatch tables. If the trap represents a Macintosh User Interface
routines, the table points to the relative ROM code. If the trap represents a Macintosh OS
routine the table points to an alternative routine in user RAM. The Toolbox emulation
sets up a memory map that is close enough to the one used by the native Macintosh OS
that it fools the code in ROM and in applications. Before transferring control of a
program, the Toolbox emulation makes several calls to the A/UX kernel to change the
memory map making the ROM and the screen’s frame buffer accessible.

An AiUX Toolbox application uses a special initialisation routine that opens the user
interface device driver and issues a series of setup instructions before starting the
program itself. The initialisation routine is /usr/lib/maccrt.O.o. Each Ac%TX Toolbox
application (including launch, see later), is linked to this file instead of
/usr/lib/crtO.o, which is normally used by UNIX programs. The A/UX Toolbox
initialisation routine, / usr / lib / rnaccrtO.o, performs the following functions:

(a)

(b)
(c)

(d)

(e)

Invokes the BSD 4.2 signalling scheme as default (note that A/UX supports
both System V, POSIX as BSD signals);
Attaches the shared data segment;
Opens the device driver and invokes the necessary initialisation steps;

Initialises a low-memory segment that will hold the dispatch tables and
Macintosh oriented global variables;
Initalises various AiUX Toolbox modules as well as the dispatch table;

Finally, it calls the application’s main routine.

Vol 10 No 4 144 AUUGN

Differences between the Macintosh OS and A/UX File Systems

In the Macintosh OS, a file consists of two forks (binary file partitions) : the Data Fork
and the Resource Fork. The Data Fork consists of application specific data (in the case
of an application file), or User data/text (in the case of a document file). The Resource
Fork holds all of the resources associated with the application or document, such as
Window sizes and types, Static Text, Menu Items and, in the case of an application, the
acutal application CODE resources. Although a file can contain two forks, one or the
other of the two forks may be empty. The Macintosh OS also records other information
about the file, such as its position on the Macintosh Desktop. This information is stored
in a separate (invisible) file called the Desktop file. Under the Macintosh OS this file is
represented by a single icon on the Finder Desktop.

The A/UX file system is a true UNIX file system, and it makes no distinction between
the Data and Resource Forks; and the A/UX directory structure has no provision for
storing the Desktop file information. In order to allow Macintosh OS files to coexist in
a UNIX file system, Apple developed two standard file format structures for
representing Macintosh OS files : AppleSingle Format and AppleDouble Format.
Figure 3 illustrates the typical contents and structure of AppleSingle and AppleDouble
file formats.

Header Finder Info Resource
Fork

Data
Fork

AppleSingle Format

Data
Fork

Header Finder Info Resource
Fork

Data File
AppleDouble Format

Header File

Figure 3

Another important difference between the Macintosh OS file system and the AiUX file
system is in the definition of a volume. Under the Macintosh OS, each physical volume
appears as a single-rooted tree which can be separately mounted. Under AiUX (and
UNIX in general), all physical volumes are mounted at a specific mount directories in
the directory hierarchy, that is the file system appears as a single-rooted tree. Thus
under A/UX, all volumes appear as part of a single-rooted tree whose name is / (slash).
This volume cannot be mounted, unmounted, or taken on- or off line, though
component physical volumes mounted beneath the root directory can be mounted and
umounted using the standard UNIX utilities mount and umount.

AUUGN 145 Vol 10 No 4

File name conventions are different under the two operating systems; A/UX file names
are case sensitive and limited to 14 characters. Macintosh file names can be up to 32
characters long, and are not case sensitive. Directory names are separated by a /
under UNIX, and by : (colon) under the Macintosh OS. These differences only affect
hard-coded file names. The A/UX Toolbox File Manager emulation understands the
UNIX file system structure, so a Macintosh application binary application can access
files through the Standard Macintosh File Dialog Box, even though they exist under a
UNIX File System. The AiUX Toolbox library contains a number of utility routines for
transferring files between the A/UX and Macintosh Operating System (hfx, mfs) and
for manipulating their formats (fcnvt, settc).

Differences in the Execution Environment

The Macintosh Operating System was originally conceived as a single user operating
system and in this environment individual applications and utilities have complete
control over the system’s resources and are able to directly access the hardware.
However, in a UNIX environment, the kernel arbitrates all access to the hardware and
System resources including memory allocation.

Memory Management

The Memory Management under A/UX consists of code completely different from the
code used by the Macintosh OS. A/UX uses the standard UNIX system calls and
libraries, such as malloc and free , to do the work of the Memory Manager emulation.
These routines simply maintain a circular list of memory blocks. When a Macintosh
application makes an allocation request, the system searches the list to find the first
free block large enough. If there is no free block large enough, the sbrk system call
asks the kernel to extend the heap, thus creating more virtual memory. Thus this is a
normal memory allocation scheme under UNIX, with the addition of virtual memory
for Macintosh binaries. None these routines perform memory compaction, so they are
much simpler and faster than the algorithms used in the Macintosh OS Memory
Manager. There are however cases when compaction helps with paged systems.
Without compaction, the memory fragmentation can cause paging even when there is
enough physical memory. Applications can start paging and run more slowly even if
they allocate less memory than the system has. However, there are advantages to the
UNIX memory allocation scheme. It does not spend time moving blocks around in an
effort to compact the heap.

Some of the Macintosh OS Memory Manager functions are not relevant in a virtual
memory environment. In a virtual memory environment, it is not clear what value
the call to determine the amount of free memory available should return. When a
Macintosh application is launched, A/UX behaves as if there is 1 Mb of free memory.
This is a compromise, because A/UX has virtual memory and the Macintosh Memory
Manager was designed to manage a finite amount of physical memory. With the new
SIZE resource a Macintosh application could be defined to have allocated a certain
amount of heap space. This is tunable and the user could tune the size of the heap to
larger than 1 Mb, and thus make use of the AiUX virtual memory capability.

The internal data structures are different as well. Macintosh OS has master pointers
that point to the block of data reserved in memory. These master pointers under
Macintosh Os are 4 bytes long (long word). A/UX master pointers are 8 bytes long (2
long words), this is due to the fact that A/UX uses the full 32-bit address space, whereas
the current version of the Macintosh OS only uses 24 bit addressing (refer to Figure 4).

Vol 10 No 4 146 AUUGN

the current version of the Macintosh OS only uses 24 bit addressing (refer to Figure 4).

One of the major reasons that Macintosh OS application binaries fail to run under
A/UX is that they assume that the master pointer is 4 bytes. There exist flag bits in the
master pointer that for instance indicate if the reserved data block is locked or not.
When Macintosh OS application binaries try to toggle these flag bits directly, without
using the correct A-line trap call, they indadvertantly toggle the address information
and cause the application process to abort.

Another issue is heap zones, the Macintosh OS has two heap zones, one for the system
and one for the application. A/UX does not distinguish between the application and the
system heap zones. Macintosh applications which make assumptions about the order
or location of various sections of the memory will not be able to run under A/UX. The
shared common data and code segments are managed by the A/UX Toolbox daemon,
which runs in the background. The launch utility initializes these segments since it is
replacing some of the function of the Macintosh OS and the FinderTM.

Handle

Handle

31

~ Flags Master Pointer

MacOS Handle System

Master Pointer

Flags Unused

A/UX Handle System

Figure 4

Process Scheduling

Macintosh applications are event-driven, meaning that there is an event loop that
waits for different kinds of events and triggers off functions according to the events.
Typically the main body of an application is a loop that uses the GetNextEvent trap to
look for events, such as keystrokes or mouse clicks. This busy-looping model works
well under a single user, single task operating system. However, under a multi-
tasking operating system such as UNIX, busy looping time takes processor time away
from any other processes that are currently running. Also, the process scheduler
makes scheduling decisions based on how much CPU time a process has recently used.
Thus with constant CPU usage the priority level decreases dramatically. To solve this
problem, both under Macintosh OS and AiUX Toolbox emulation, a new trap called
WaitNextEvent has been added. This trap is similar to GetNextEvent, except that it
yields the CPU until an event is available. Note that this works if you only make use of
Macintosh Managers. If you write a combination of UNIX libraries and Macintosh

AUUGN 147 Vol 10 No 4

libraries this trap only checks for Macintosh oriented events. With the Berkeley
select(2) system call the program is able to monitor both Macintosh I/O activities as
UNIX I/O activities. The select() utility examines a set of file descriptors that the
programmer specifies through bit masks. For instance if the programmer wants to
have the interface device driver checked (/dev/uinter0), he opens the file, gets a fd (file
descriptor) and specifies this fd as part of the bit mask. Thus select will now check for
user interface events from the Macintosh application point of view.

Even though A/IfX is full multi-user, multi-tasking operating system, the A/UX
Toolbox can only currently support one Macintosh binary at at time. This is due to the
fact that the Multi-Layer Manager (used in the Macintosh OS MultiFinder), is not
implemented under the current version of A/UX, (Version 1.1). Desk Accessories,
small utility programs capable of being launched from within a Macintosh
application, are however concurrently supported.

Emulation of Global Variables

The standard Macintosh environment includes a set of global variables used by
different parts of the system. These are stored in the so called low memory of the
memory map. To make room for these global variables, an A/UX toolbox application
compiled in A/UX is linked at the virtual memory address 0x0040 0000. The launch
program for executing Macintosh binary code (itself an A]UX Toolbox application), is
linked at this address. Normally non-toolbox UNIX programs are typically linked at
memory address 0x0000 0000. Note that not all global variables are supported under
A/UX. In general, variables not related to hardware are supported.

Dgfferences be veen C and Pascal Calling Conventions

Ordinarily, the A/UX Toolbox handles the difference between the C conventions used
by A/UX and the Pascal calling conventions that are used by the Macintosh Toolbox
ROM routines. However if you are writing your own definition functions or filter
functions or are making direct use of data in structures, you must explicitly take these
differences into account. The C and .Pascal conventions differ in six primary ways,
how strings are stored, how parameters are ordered, how the parameter types are
stored, how points are passed, how function results are passed, and how registers are
used. In C, strings are stored as an array of characters, of any length, terminated by
the null byte (’\0’). In Pascal, strings start with a byte that specifies the length of the
string, and the string plus length byte cannot be longer than 256 characters. When the
Pascal string length is specified explicitly, a Pascal string is not terminated by a null
byte. With two library routines, c2topstr and p2cstr, it is possible to translate between
these two formats. Refer to figure 5.

Pascal string C string

Figure 5

Parameters in C functions are evaluated right to left and are pushed into the stack in
the order they are evaluated. Parameters in Pascal functions are evaluated left to right
and are pushed into the stack in the order they are evaluated. The Pascal language
always passes 4-byte structures by value rather than by pointer, unless the structure is

Vol 10 No 4 148 AUUGN

declared as a VAR. Pascal treats registers DO, D1, D2, A0 and A1 as scratch registers.
All other registers are reserved. A/UX C treats only registers CO, D1, A0 and A1 as
scratch registers. An A/UX Toolbox routine automatically saves and restores register
D2 when using ROM code. There are other registers in the Toolbox emulation
reserved for different functions. Register A5 is the global frame pointer, register A6 is
the local frame pointer, and register A7 is the stack pointer.

When necessary, the A/UX Toolbox interface routines convert C program calls to a
form usable by the ROM, and then convert the ROM’s output to a form usable by the C
program. The A/UX Toolbox routines that perform this conversion have three parts, the
entry conversion code, the A-line trap, and the exit conversion code.

The libraries under AiUX include two version of all routines that take strings or points
or return strings. One version, spelled exactly like it appears in the Apple
documentation (Inside Macintosh), uses Pascal string format and point passing
notations. The second version, spelled in all lowercase letters, uses C string format
and point passing conventions. This lowercase version converts input parameters
from C format to Pascal format before passing them to the ROM and converts return
values back to C format. Both versions use interface routines to adjust for other
differences in parameter passing and return-value conventions.

Environment Tuning and Manipulation

There are many ways to change the Macintosh emulation environment, either with the
help of shell variables, or global variables set in programs. For instance by defining
noEvents as 1 inside the program, the system does not initialise the Event Manager.
This status lets mouse and keyboard events go through normal UNIX event handling
channels instead of having them captured by the Event Manager

The Toolbox emulation uses several shell environment variables to modify it’s
actions under certain circumstances. Most of these variables are useful only during
program development and testing. These A/UX Toolbox environment variables are
set and read like other environment variables. For instance if TBCORE is true the
Toolbox causes a core dump if a fatal error occurs. Compared with Macintosh OS the
kernel OS memory is protected. If TBRAM is set the ROM code is copied into a memory
segment when a program run. This variable lets the programmer set a breakpoint in
the ROM code for debugging. TBTRAP indicates that the system writes debugging
information to standard error every time an A-line trap is executed.

It is possible to use UNIX system calls in an application that is originally developed
under the Macintosh OS. This application could end up as a binary file that can be
executed in both environments. The basic procedure is to translate the UNIX system
calls into assembly language routines and make these routines available to the
compiler. First the programmer has to define the assembly line sequence that is
generated by the A/UX compiler when it encounters the system call that is required.
Then the programmer will create an assembly line routine that performs the same
function. This call should be conditionally be inserted into the application. Finally
the program has to check for the value of bit 9 in the global variable HWCflFlag, a 16-
bit word at memory location 0x0B22. If this bit is 1, the A/UX operating system is active
and the program can use this UNIX routine. If the bit is 0, the application is running
under Macintosh OS and the application should use an equivalent Macintosh OS
routine.

AUUGN 149 Vol 10 No 4

AppleTalk® Networking

AppleTalk is the general name for the AppleTalk suite of protocols that conform to the
ISO OSI seven layer model. When AppleTalk is used over serial lines and RS-499
connections it is called LocalTalk®, when AppleTalk is used over Ethernet is it called
EtherTalk® (and when using it over Token Ring systems it is called Token Talk®!).

The A/UX AppleTalk support is split between the AppleTalk Manager emulation and a
special device driver written for A/UX. The AppleTalk manager redirects AppleTalk
protocol handling to this special device driver. Because of the high processing
requirements of both AppleTalk and the A/UX multitasking when using LocalTalk
and serial cables,LocalTalk under AiUX currently requires a separate coprocessor
card to handle the AppleTalk protocols. The main reason for this requirement is the
high rate of interrupts coming from the network to the motherboard where the hardware
for LocalTalk is situated (as well as a 2 byte buffer in the SCC chip).

AppleTalk is implemented under A/UX as a protocol stack, consisting of a set of layers,
with one or more protocols per layer. This set of protocols corresponds roughly to the
layers of the OSI model. At present not all of the AppleTalk protocols are supported, the
supported protocols are illustrated in Figure 6.

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Link Layer

Physical Layer

Zone Information Protocol,
Print Access Protocol
AppleTalk Transaction Protocol,
Name Binding Protocol,
Routing Table Maintenance Protocol
Datagram Delivery Protocol

AppleTalk Link Access Protocol

Figure 6

Most AppleTalk protocol layers are implemented as Streams modules. The two
exceptions are the DDP and ALAP layers, which are implemented as Streams drivers.
The majority of applications require the programmer to push one or more modules into
the open stream in order to achieve the proper layering for that application. Figure 7
describes the A/UX implementation of AppleTalk protocols.

Vol 10 No 4 _ 150 AUUGN

User Processes

at_print~

PAP

ATP

Print
Request
Modules

NBP Name
Binding
Module

NBPD
NalTle
Binding
Daemon
Module

Figure 7

The first application, at_printer, shows the configuration for communicating with a
network print server. Note that the ATP module must be pushed before the PAP module.
While it is possible to reverse the pushing order, unpredictable results can occur if this
is done!

The second and third application, at_cho_prn and at_npd, are normally used together.
When AppleTalk is brought up, a special application daemon, nbpd, is invoked. It opens
an AppleTalk socket and pushes the module at_nbpd into the stream. This application
daemon is used by subsequent applications to open a socket and push the module at_nbp
into the stream. Modules at_nbp and at_nbpd communicate at the ALAP level to
complete users’ requests for name binding information.

The C interfaces and libraries for all of these protocols are provided in the standard
A/UX system distribution.The lowest layer (ALAP/DDP) C interfaces are normally
used for new network testing and development, such as building a new layer using
TCP/IP on top of DDP. The AppleTalk A/UX routines automatically set up and invoke
the correct ioctl requests that are necessary for most AppleTalk requirements. While
the ioctls give the programmer more control than the AppleTalk library routines, they
require a much greater understanding of the A/UX implementation of AppleTalk.

Vol 10 No 4
AUUGN 151

Final Words

The difficult task of migrating applications developed for a single user, single task,
graphically based environment to an UNIX platform has been described, and the
particular implementation of the Macintosh User Interface in the A/UX ehvironment
has been discussed. The impact of the Macintosh emulation .on the performance of the
A/UX system in running Macintosh OS application binaries is very small, and in
some cases Macintosh application binaries run faster under UNIX (mostly due to the
file buffer cashing, virtual memory and faster memory allocation, that is provided by
a UNIX operating system).

The successful implementation of the Macintosh OS User Interface under A/UX
demonstrate the inherent flexibility of the UNIX operating system to adapt to different
hardware platforms and characteristics and to implement a range of user interface
technologies.

The remaining work to be done concerning Macintosh User Interface emulation under
A/UX is to continue to write emulation modules to for existing Macintosh Toolbox
Managers that have not yet been implemented, and to develop support for new
Managers as the Macintosh OS itself evolves. The overall aim is to provide an
emulation which will allow the complete implementation of the Macintosh
Finder/MultiFinderTM Desktop interface to supplement the standard UNIX command
shell interfaces.

Referenc~

[1]

[2]

[5]

A/UX System Overview 1989 Apple Computer Inc.

Technical Introduction to the Mac~tosh Family 1987, Addison-Wesley. Apple
Computer Inc. An introduction to the hardware and software design of the
Macintosh family of computers.

Programmer’s Introduction to the Macintosh Family 1987, Addison-Wesley.
Apple Computer Inc. A programmer’s technical overview of the Macintosh
system introducing the most important Macintosh Toolbox and Macintosh
Operating System features.

Inside Macintosh Volumes I through IXI, Addison-Wesley, 1985. Apple
Computer Inc. A complete description of the architecture and operation of the
128K and 512K Macintosh, including the ROM routines.

Inside Macintosh Volume IV, Addison-Wesley, 1986. Apple Computer Inc. An
update to Volumes I through III, covering the Macintosh 512K Enhanced and the
Macintosh Plus.

[7]

Inside Macintosh Volume V, Addison-Wesley, 1987. Apple Computer Inc. An
update to Volumes I through IV, covering the Macintosh SE and Macintosh II.

A/UX Toolbox : Macintosh ROM Interface 1989 Apple Computer Inc. A
description of the Macintosh ROM interface.

Vol 10 No 4 152 AUUGN

About the Authors

Kent Sandvik is the A/UX Systems Engineer with Apple Computer Austra.lia Pty. Ltd.
Prior to joining Apple, Kent worked as a UNIX development engineer with UNISYS.
He holds a BSEE (Vasa Technical College, Finland).

Philip Cookson
Philip Cookson is a Systems Engineer with Apple Computer Australia Pty. Ltd. Prior to
joining Apple, Philip was a lecturer in Computer Science at the Australian Defence
Force Academy. He holds a Masters degree in Computational Physics (Monash
University) and a Post Graduate Diploma in Computer Science (Melbourne
University).

Special Thanks
Special thanks to Kevin Nietzke, Apple Computer Australia Pty. Ltd. for assistance in
the production of this paper.

TradeMark Acknowledgements

UNIX is a registered trademark of AT&T Information Systems.
A/UX, Apple, Macintosh, AppleTalk, EtherTalk, TokenTalk and LocalTalk are
registered trademarks of Apple Computer Inc.

AUUGN 153 Vol 10 No 4

User Mode File Servers

Bruce Janson
bruce@ basser.cs.su.oz

Basser Department of Computer Science
University of Sydney

1. Introduction

In many older operating systems, including UNIX, the kernel, acting as a single large subroutine
library, is the primary service provider. Modification of such monolithic kernels is an error prone activity.
Nevertheless, such kernels do need to be modified whenever a new service is to be provided. Recent
releases of the UNIX operating system have begun to provide support for network file systems (e.g.
netfswei84a in AT&T Bell Laboratories’ Eighth and Ninth Edition UNIX, NFSsan84a,san87a from Sun
Microsystems’, and RFSRif86a in AT&T’s System V UNIX). Similar functionality may also be found in
many non- UNIX operating systemsRic79a, R.79a, Dio80a, K.81a, Tan8 la, A.83a, Zwa84a, R.85a, B.89a. Network file
systems extend the hierarchical file system name space by allowing remote file systems to appear as sub-
trees within the local file system. In this article we show how the basis of a user mode file server which
supports such a network file system may also be used as a server for a variety of other, non-standard, file
system types.

Under UNIX and UNIX-like operating systems, file system access requests from user processes are
usually served by the operating system kernel of the machine on which the requesting process executes.
We call a file system supported in this way a kernel modefile system. In Figtu’e 1, a kernel mode file server
FS receives file system access requests from a user process p, converts these to I/O requests and passes
them on to a disk drive d via disk device interface i.

world

kernel

Figure 1 - FS: A Kernel Mode File Server

In a user mode file system such requests are not served directly by the kernel but are instead
redirected to and served by another process. In Figure 2, a user mode file server ufs receives file system
access requests from user process p, converts these to other file system access requests and passes them on
to kernel mode file server FS which converts these to I/O requests and passes them on to disk drive d via
disk device interface i.

Access requests for either kernel or user mode file systems may be served on the machine on which
the process is running or they may be redirected to another machine. We label the former case a local file
system and the latter case a network or remote file system. Clearly, these independent characteristics may
be combined and we can speak of, say, a local user mode file system or a remote kernel mode file system.
In Figure 3, remote user mode file server rfs running under kernel kl receives file system access requests
via a network connection from user process p, running under kernel k0, converts these to other file system
access requests and passes them on to local kernel mode file server FS which converts these to I/O requests
and passes them on to disk drive d via disk device interface i. nO and nl are network device interfaces.

Vol 10 No 4 154 AUUGN

world

kernel

Figure 2 - ufs: A User Mode File Server

world

k0 In0

Figure 3 - rfs: A Remote User Mode File Server

Most network environments allow the establishment of (virtual) connections between any pair of
nodes. In particular, a loopback connection from a machine to itself is usually permitted. In such an
environment, a local user mode file server is easily implemented as a remote user mode file server which
uses a network self-connection. Given these two preconditions: 1) the existence of a remote user mode file
server and 2) sufficient flexibility of extant networking software, it becomes straightforward to implement a
general user mode file server which may execute either locally or remotely. On basser (a DEC VAX
11/780 running Eighth Edition UNIX), this first condition was met by Weinberger’s neons network file
server and the second was met by Ritchie’s stream I/0 systemRit84a and Morris and Presotto’s streams-
based Internet protocol softwareJ’8?a. Initial applications using user mode file systems were constructed on
this platform. In UNIX environments other than Eighth or Ninth Edition UNIX, similar functionality may be
obtained through the use of the NFS protocol coupled with a suitably enhanced version of Shand’s user
mode NFS serversha88a and Berkeley’s Internet networking softwareLefSza. This second implementation
platform has the advantage of being more portable as it is based on freely available software and on pub-
fished, widely distributed protocol descriptionsMic87a’ Mic88a, Mic89a. Our later user mode file servers have
been based on this NFS platform.

Several kinds of user mode file servers have been implemented. Our initial application was essen-
tially Weinberger’s Eighth Edition neons server and provided support for a remote file system. The com-
munication medium used was an RS-232 asynchronous line. More recently, we have implemented (NFS-
based) file servers running under Eighth Edition UNIX (on a VAX 11/780), under SunOS 3.5.2 (on a Sun
3/260), under MIPSCo’s System V.3 RISC/os UNIX (on a MIPSCo M]120) and under IBM’s AIX Operat-
ing System 2.1.2 (on an IBM RT System Model 125). However, our main interest lies not in the imple-
mentation of such standard UNIX file servers, but rather in the discovery and implementation of interesting
and/or useful non-standard file systems. For example, such file systems include a kernel name list file sys-
tem and a line printer spooler file system. These and other examples will be described in detail below.

As Presotto and Ritchie have observed ".. it requires a sophisticated server to simulate a file
system.’’Pre85a. We have managed to conceal some of this sophistication by hiding details common to a
large class of file servers within a library. To use this library a server must provide definitions for a small
set of functions. These functions are (essentially) replacements for a subset of UNIX system calls which
access the file system. Thus, implementation of a user mode file server is reduced to the reimplemention of
a subset of the familiar UNIX system calls.

AUUGN 155 Vol 10 No 4

In the remainder of this article we survey existing types of file servers, both local and remote and
implemented in both kernel and user mode. We also mention aspects of the NFS protocol and describe our
own (NFS-based) user mode file server in some detail. We show how the basis of such a server may be
used as a skeleton from which may be easily constructed other, non-standard, user mode file servers. We
give examples of its use in this way and present the results of some performance measurements. As a file
system served by a user mode process is usually noticably slower than one served by an.operating system
kernel, we expect that user mode file systems will be most useful in applications where flexibility and ease
of implementation are more important than performance.

2. Standard and Non-Standard File Systems

By a standard UNIX file system we mean a file system which behaves in the normal way. Unfor-
tunately, there has been little published which describes formally what "behaves in the normal way" means
(although Morgan and SufrinM°rs3a and Declerfayt et. al.DeeSSa provide formal but incomplete
specifications while the System V Interface DefinitionATr86a, the "POSIX" standardIEEssa and the various
online manual entries are useful, albeit informal guides). Thus UNIX file system behaviour is defined by
the various, differing file system implementations themselves.

File servers for standard UNIX file systems usually convert file system access requests into one or
more disk I/O requests. Most file system access requests originate as system calls from user processes.
The I/O requests are served directly by kernel software device drivers and eventually by disk device
hardware.

When we refer to a non-standard file system we mean a file system which breaks the rules in some
sense, perhaps by imposing unexpected restrictions or by causing interesting side-effects to accompany file
system accesses or by remapping file system structure or by reformatting file data. In general, file system
requests need not be mapped onto disk I/O operations at all and may instead be interpreted in a variety of
ways. User mode file servers allow greater flexibility of implementation of file system semantics than their
kernel mode counterparts.

3. The User Mode File Server

3.1. Kernel Support

3.1.1. The Client-Kernel Interface

The interface between client processes and a file system supported by a user mode file server is sim-
ply the subset of the normal UNIX system calls which access the file system. Ideally, a user process should
not be able to determine whether its file system specific system calls are being served by a local or remote
kernel or user process.

3.1.2. The File System Switch

Just below the client-kernel interface is the file system switch. The file system switch is an army of
file system information structures. Each structure describes a particular type of file system by providing a
set of pointers to functions which are that file system type’s implemention of the basic file system opera-
tions. UNIX files are represented by inode s (aka. vnodes, gnodes, modes) within the kernel. Which file
system type to apply is a function of the inode referenced in the system call.

The user mode file system is reached via the NFS entry of the file system switch. The functions
pointed to by this file system switch entry do little more than encapsulate the client’s data, write it to a com-
munications channel - in our case a UDPp°ss°a socket - await a reply and pass this reply, suitably inter-
preted, back to the client process. The encapsulation method referred to here is called External Data
Representation (XDR)Mic87a. It ensures that all data on the network is expressed in an agreed normal form.
The software which handles the details of sending a remote procedure call and interpreting its reply is
called Remote Procedure Call (RPC)Miessa. We note that on this, the client side, the NFS, RPC and XDR
routines are implemented within the kernel.

3.1.3. The Kernel-Server Interface

The server process reads from a UDP channel, decodes the data stream using XDR then interprets the
result as an RPC call and further interpwt,, the RPC data as an NFS request. After performing the requested

Vol 10 No ~ 156 AUUGN

NFS operation a reply is encoded and written back to the UDP channel.

3.2. Server Process Architecture
The server process consists of three sections. The first of these is the RPC/XDR library and the

rpcgen program distributed by Sun. The second is an NFS-specific server library derived from Shand’s
unfsd. The final section is the set of plug-in system call replacements which define the chaiacteristics of the
particular file server. The plug-in system call replacements are:

u access, u_chmod, u_chown, u_close, u_creat, u_link, u_lseek, u_lstat, u_mkdir, u_open,
u-read, u_readlink, u_renamc, u_rmdir, u_stat, u_symlink, u_truncate, u_unlink, u_utimc,
u_write
And in fact there are seven other routines which must also be supplied which perform any necessary

initialisation, handle directory operations and return global information about the file system in question:

u_closedir, u_opendir, u_readdir, u_seekdir, u_telldir, u_init, u_staffs
Each plug-in replacement routine (except u_init and u_staffs) replaces the system call or directory

library function named by deleting the "u_" prefix from the replacement’s name.

4. Two Applications

4.1. A Standard User Mode File System

4.1.1. Description
This file server is perhaps the simplest which may be constructed using the above machinery. Each

"u_" routine simply passes its arguments on uninterpreted to its system call/directory library function
namesake and returns the result returned by that call as its result. For example, the u_stat function
definition looks like this:

int
u_stat(path, buf)
char *path;
struct stat *buf;
{

return stat(path, buf);
}

4.1.2. Performance

Here is a transcript of a simple experiment comparing the performance of a local user mode NFS
server with that of a local kernel mode file server (on harpo - an idle MIPS M/120):

AUUGN 157 Vol 10 No 4

% # Start the user mode NFS daemon.
% ./nfsd &
25115
% # Create a directory on which we will mount a file system.
% mkdir mnt
% # Where are we?
% hostname
harpo
% # Mount a copy of the local root.
% ./mount -o intr,hard harpo:/’pwd’/mnt
% # Find a big enough file.
% ls -las/unix
3001 -rwxr-x--- 2 root daemon 1523276 Apr 18 23:32/unix
% # Time reading the file the fast way.
% time dd bs=32k </unix >/dev/null
46+1 records in
46+1 records out

real 1.6
user 0.0
sys 0.5
% # Do it again now that the file is in the buffer cache.
% time dd bs=32k </unix >/dev/null
46+1 records in
46+1 records out

real 0.3
user 0.0
sys 0.3
% # Now time reading the same file while it is still
% # in the buffer cache via the user mode NFS server.
% time dd bs=32k < mnt/unix >/dev/null
46+1 records in
46+1 records out

real 24.0
user 0.0
sys 3.0
%

Next, we compare the performance of a remote user mode NFS server with that of a remote kernel
mode file server (on harpo and chico - two idle MIPS M/120’s):

Vol 10 No 4 158 AUUGN

% # Where are we?
% hostname
chico
% # Mount a copy of harpo’s root.
% ./mount -o intr,hard harpo:/’pwd’/mnt
% # Time reading the same file using a
% # remote kernel mode NFS server.
% time dd bs=32k </n/harpo/unix >/dev/null
46+1 records in
46+1 records out

real 4.2
user 0.0
sys 0.6
% # Do it again just to check that the file is
% # in the local buffer cache. Actually, it is
% # also in the remote buffer cache.
% time dd bs=32k < ha/harpo/unix >/dev/null
46+1 records in
46+ 1 records out

real 0.3
user 0.0
sys 0.3
% # Now time reading the same file while it is still
% # in the remote buffer cache via the user mode NFS server.
% time dd bs-32k < mnt/unix >/dev/null
46+1 records in
46+1 records out

real 18.3
user 0.0
sys 2.1
%

Interestingly, reading from a remote user mode file server is faster than reading from a local user mode file
server. A plausible explanation of this behaviour would be that in the remote case, the processing is shared
between two processors rather than one and some overlapping of processing occurs.

4.2. Kernel Name List File System
The executable image of the UNIX kernel is typically stored in the file system as "/unix". As with

other UNIX executables a symbol table (aka. name list) is usually appended to this file. During normal sys-
tem operation the special file "]dev/kmem" allows suitably priviledged processes to access the (dynamic)
contents of kernel memory.

File systems served by the kernel name list user mode file server appear to be a single directory con-
raining one regular file for every name in the kernel name list. The modes, uid’s and gid’s of the files are
just copies of the mode, uid and gid of/dev/kmem. The size of each file is just the number of bytes separat-
ing its name from the following name in the kernel name list. The last modified, access and inode-change
times always reflect the current time. read0’s, wdte0’s and lseek0’s of these files are translated into
equivalent operations on/dev/kmem but offset by the address of the file’s name in the kernel name list.
Here are some examples of its use:

AUUGN 159 Vol 10 No 4

% hostname
harpo
% # An instance of the daemon is already running on mango.
% # We will l~3k at the mango kemel’s memory from harpo.
% ./mount -o intr~ard mango://nl
% cd/nl
% ls
950000~300000
950000000001
95OO00OO0OO2
95~3
95001300013004
9500000000~
BADADDRFRM
BSD_alloc
BSD_alloccg
BSD_alloccgblk
BSD_badblock
BSD_blkpref
BSD_bmap
BSD_clrblock
..

% # And so on -- there are 2521 entries in mango’s
% #/unix name list so we wont list them all.
% # The first four bytes at the location named "time" contain
% # the number of seconds since Jan 1, 1970.
% Is -las time

1 -rw-r 1 root sys 8 Jul 10 02:51 time
% # (its size is 8 because it is really a "struct timeval")
% # We use a command called "printf" here to format some data.
% # prinff is, in this incarnation, a program that reads
% # from its standard input and formats it according to
% # its first argument -- very like printf(3).
% printf "%dXn" < time
616006620
% # printf has one or two extra features.
% printf "%T~n" < time
Mon Jul 10 02:57:51 EST 1989
% # Time waits for no man.
% prinff "%TXn" < time
Mon Jul 10 02:58:18 EST 1989
% # Let’s make it generally available
% chmod o+r time
% In -s/nl/time/dev/date
% printf "%T~" </dev/date
Mon Jul 10 03:01:28 EST 1989
%

Clearly this file system can be used for more than just reading the time. It is a useful aid during ker-
nel debugging -- shell scripts can be used instead of one-off feedback programs. Note also that it allows
remote access to a system object that is normally only accessible from the local machine.

5. Some Potential Applications

Vol 10 No 4 160 AUUGN

5.1. Line Printer Spooler

5.1.1. Description
This is the line printer spooling file system. We assume that such a file system is mounted on/lp and

that, as is customary at Basser, our line printers are identified by single letter names.
To spool a file called paper for printing on line printer 9 one might type something &luivalent to:

% cp paper/lp/9/paper.’cat/lp/9/nextname’

The contents of the file llp/91nextname appears to be a new short, string guaranteed to be unique (by the
line printer file system server) each time it is read. This unique name used as a suffix provides a simple
way to avoid unfortunate name clashes. Any file copied to the directory/lp/9 is automatically queued for
printing. Files are queued in the order in which they arrive.

To inspect the queue for line printer 9 one might type:

% ls -last/lp/9

The file at the bottom of the listing would be the file currently being printed and the position of paper.*
would indicate its position in the queue.

Files in/lp/9 are automatically removed as soon as they have been printed. However, ff it is desired
to stop a print job one would type something like:

% rm/lp/9/paper.*

The directory lip/9 would allow file creation by anyone but would allow only the owner of a file (and root,
of course) to unlink it. Adopting recent custom this would be represented by causing the sticky and public
write bits to be set in the modes of these directories.

To enquire of the status of the actual printer device one could type:

% cat/lp/9/status

The output would be a printable ASCII representation describing the current status of line printer 9.

Finally, we note that once again, network access is implicit in this scheme.

5.2. Password File (and Other Potentially Single.File Data Bases)

File systems supported by this user mode server contain just one (regular) file. This is a distributed
password file daemon. When applied to a distributed password file the user mode file server supports just a
single file mounted at/etc/passwd. One host in a network is designated the holder of the real password file
for all. This real password file might be/etc/real_passwd on the designated host. All hosts, including the
server, mount this file on their/etc/passwd.

When the remote password file is not mounted (as would be the case just after a reboot but before the
various rc scripts have been run) a minimal password file can exist as/etc/passwd containing perhaps just a
root entry. When this file is subsequently mounted over by the remote password file it will disappear (as
per normal mount behaviour) until the remote password file is unmounted again.

It is not clear that the current behaviour of NFS mounts during remote server crashes is appropriate
for such a scheme. Nevertheless, the return to a world where password files (and hosts files, services files,
protocols files, ethers files, etc.) live within the file system and accurately reflect the data they are supposed
to contain, would appear to be a very worthwhile goal.

5.3. Logging or Multi-Version File Systems
A logging file system automatically and transparently keeps a log of changes made to any files within

it. The granularity of such logging may be very coarse - a differential file comparison performed whenever
the file system is unmounted - or it may be very fine - an exhaustive transaction trail which records every
f~le system operation performed.

AUUGN 161 Vol 10 No 4

5.4° Redundant File System
This file system type is similar to the logging file system but the intention here is to replicate file sys-

tem data in such a way as to minimise file system data loss during a system failure and also to ensure data
consistency after such a failure. This might be accomplished by duplicating data at different points in the
local file system or it may be done by writing the data to some remote device or file system.

5.5. Network Bin

The contents of the executables files in this kind of file system depend on the architecture of the
client’s machine. In a heterogeneous network environment, for example, executables can be made to
always match their executing CPU.

5.6. Customisable File System

In many UNIX programming environments workstations are connected via a network to other works-
tations and perhaps to machines designated as shared file servers. Often the policy which decides when to
swap or page a process out of the local workstation and off to some remote point in the network is out of the
control of the person using the workstation. It may be that the installed policy is not even generally known
by users of such workstations. A user mode file server which either bypassed the kernel file servers com-
pletely and interfaced with the. raw devices directly or which allowed the workstation user to at least experi-
ment with file caching might be worthwhile.

6. Problem Areas and Work In Progress
The NFS protocol, although a useful workhorse is far from ideal as a basis for user mode file servers.

Its deficiencies are well known and will not be completely reiterated here although we will mention some of
its problems. Nevertheless, it continues to gain popularity - at Basser it was the only network file system
protocol available on more than one machine.

Under NFS many of the basic file system operations are assumed to be idempotent. They are not.
This is the source of the sometimes puzzling error messages which indicate that a file system operation has
failed when in fact it has not. Some NFS implementations attempt to maintain a log of recent file system
operations and check for duplicates when in doubt. This reduces the probability of failure but does not
eliminate it.

An NFS file server is not supposed to preserve any state information other than that actually kept in
the file system. Unfortunately, in a standard (non-network) UNIX file system, important state information is
kept in the in-core inode structures which never reach the disk. Thus permission checking under NFS
necessarily differs from standard UNIX file systems and unlinking open files is not really possible. Simi-
larly, the NFS protocol provides no open or clo~ primitives - such primitives would require state informa-
tion to be kept o thus it is not possible to even determine when a file is no longer open in any process, let
alone when it has no more file system links.

NFS servers cannot distinguish between a file being read for execution and a file being read normally.
Thus, read access is always allowed even if a file’s mode only permits execute access. Similarly, NFS
servers cannot distinguish between a file which was once readable but is no longer and a file which is still
readable to processes in which it is open despite its current mode. Thus, read access is always allowed to
the owner of a file even if the file’s mode does not permit it.

NFS and some other network file system protocols do not support operations on files which may
block indefinitely. In particular, remote special files are not handled and neither are remote ioctl (2)’s.

ioctl’s are also difficult to implement because they often expect or generate amounts of data which
are strongly dependent upon the particular ioctl call. RFS solves this problem by allowing the server to
engage in a two-way dialog with the client host.

Certain NFS file system operations (e.g. create) carry potentially more initialisation commands than a
user mode file server can effect in a single UNIX system call. For example, if a file is to be created with uid
7 and the user mode server is executing under root’s uid then the server either has to change its uid tem-
porarily while it is creates the file or it has to perform the operation in two stages (a create with uid 0 and
then a chown to uid 7). Kernel mode file servers do not have this problem as they are free to enforce much
stronger locking and thus ensure that intermediate states are never ~een or, they can very easily change their
uid for the duration of the transaction.

Vol 10 No 4 162 AUUGN

At present the user mode server assumes that all participating machines share the same uid and gid
space. This is not entirely satisfactory, particularly as the distance between client and host increases.

To gain full benefit from user mode file servers it should be possible for non-root users to mount and
unmount such file systems. However, at this time mount (2) and umount (2) are root-only system calls.

Some kernels do not allow mounts to succeed on files other than directories. This is unfortunate as it
further restricts the applicability of user mode file servers. Furthermore, many kernels do not allow mounts
using sockets from other than the INET domain.

The pseudo-inumbers generated internally by the file handle package within the current user mode
file server libraries are not guaranteed to be unique. This is particularly true when several instances of user
mode file servers have been mounted from different machines.

Benchmarking of user mode file servers is made unnecessarily difficult under NFS due to enthusistic
client caching of the results of previous NFS calls.

Further work will involve attempts to fix some of the problems mentioned above as well as the
implementation of Nowicki’ s suggested NFS performance enhancementsN°w89a.

7. Related Work
We mention here, in varying levels of detail, a selection of existing UNIX user mode file system types

which might be considered noteworthy.

7.1. neta
Weinberger’s initial, remote user mode file system. It is restricted to Eighth Edition UNIX. This was

followed by...

7.2. netb
Weinberger’s second, remote user mode file system. Again, this is restricted to Ninth Edition UNIX.

7.3. /n/face
This is Pike’s user mode face server file systemPik85a. It provides a database of 48x48xl and

512x512x8 ikons stored in what looks like a normal (read-only) file system. It uses Weinberger’s network
protocol (and is therefore restricted to Eighth and Ninth Edition UNIX). It divides the work between a
remote user mode file server and a local user mode intermediary. Data is actually stored on only one
machine.

7.4. /mail
This is Hitz and Honeyman’s mail delivery agent file systemHit86a. It is suppored by a local user

mode file server which uses a protocol similar to Weinberger’s network protocol (it required a new file sys-
tem switch entry). The primary difference in the protocol is that it passes the whole namei pathname at
once rather than component-by-component. Interestingly, different files may have the same name. Again,
it is restricted to Eighth and Ninth Edition UNIX.

7.5. Watchdogs
Essentially this is a user mode file server which relies on fairly extensive kernel supportN.88a. The

subset of file system operations handled by the server is easily configurable.

7.6. TFS

Hendricks’ (Sun Microsystems) Wanslucent file serviceHen88a. This is a user mode NFS-based file
server. It allows per user views of file system hierarchies.

7.7. The Newcastle Connection

The Newcastle Connection is a network file system based on trapping certain file system calls within
client programs and redirecting them to be served on a remote hostF.86a. It uses many, short-lived server
processes.

AUUGN 163 Vol 10 No 4

7.8. Extended File System

This is Masscomp’s implementation of a network file systemT.s5a. It uses many kernel mode
processes on the server machine. There is a meta-server (called the "lifeguard") which redirects file system
requests to the actual server processe ("agents"). These agents change their own u_area to match the client
process before serving the client’s system call. The underlying communication protocol is their own RDP
(Reliable Datagram Protocol) which apparently avoids the overhead of setting up virtuar circuits for each
transaction but still guarantees in-order, reliable delivery of messages and timely indication of communica-
tion failures. Interface is via the SOCK_RDM 4.2 BSD socket mechanism and Internet addressing domain.
It also allows easy independent reply demultiplexing to separate clients. They insist that uids must be the
same on different machines. It is stateful. They have modified some of the system calls to cope with a net-
work environment. Their stat (2) returns a structure with an extra machine id field. (So cp can still detect
when it is about to copy a file over itself.) Similarly, ustat (2) has became rustat (2).

7.9. Pseudo-File-Systems

Pseudo-file-systems are implemented ~,~ user mode file servers in the Sprite distributed file
systemB’89a. Their first application was as a local translator from Sprite file system operations to remote
NFS file system operations.

8. Conclusion
We have presented a method of reducing the complexity of the task of implementing a user mode file

server under UNIX. File servers based on Sun’s popular NFS protocol may take advantage of this tech-
nique. It should also be possible to apply this method to environments using other network protocols. We
have described and implemented several user mode file servers and have described other existing user mode
file servers. Such file servers provide a convenient and flexible means of extending the functionality of the
UNIX file system name space.

9. References

References

A.83a.Malcolm, Michael A. and Dyment, D., "Experience Designing the Waterloo Port User Interface,"
Proceedings of the 1983 ACM Conference on Personal and Small Computers, pp. 168-175, 1983.

ATF86a.
ATr, The System V Interface Definition, Issue 2, Volumes I, H and III, AT&T Customer Information
Center, Customer Service Representative, P.O. Box 19901, Indianapolis, IN 46219, U.S.A., +1-317-
352-8557, 1986.

B.89a.Welch, Brent B. and Ousterhout, John K., Pseudo-File-Systems, Computer Science Division, Electri-
cal Engineering and Computer Sciences, University of California, Berkeley, California, April, 1989.

Dec88a.
Declerfayt, O., Demeuse, B., Wautier, F., Schobbens, P.-Y., and Milgrom, E., "Precise Standards
through Formal Specifications: A Case Study: The UNIX File System," EUUG Autumn Conference
Proceedings, Cascais, Portugal, 1988.

Dio80a.
Dion, Jeremy, The Cambridge File Server, pp. 26-35, >= 1980. Computer Laboratory, University of
Cambridge

F.86a.Marshall, Lindsay F., "Remote File Systems Are Not Enough!," EUUG Conference Proceedings,
September, 1986.

Hen88a.
Hendricks, David, The Translucent File Service, Sun Microsystems, Inc, >=1988.

Hit86a.Hitz, D. and Honeyman, P., "A Mail File System for Eighth Edition UNIX," USENIX Association
Summer Conference Proceedings, Atlanta, June, 1986.

IEE88a.
IEEE, 1003.1 "POSIX" Full Use Standard, IEEE P1003 Portable Operating System Interface for
Computer Environments Committee, IEEE Service Center, 445 Hoes Ln., Piscataway, NJ 08854,
201-981-0060, October, 1988.

Vol 10 No 4 164 AUUGN

J.8?a.Morris, Robert J. and Presotto, David L., 198?. Apparently Morris did the initial port from 4.2bsd as
part of a summer job and Presotto has worked on it subsequently.

K.8 la.Ousterhout, John K., Medusa A Distributed Operating System, Computer Science: Distributed Data-
base Systems, No. 1, UMI Research Press, 1981.

Lef82a.
Leffler, S.J. and Fabry, R.S. et. al., 4.2 BSD Interprocess Communication Primer, Computer Systems
Research Group, Electrical Engineering and Computer Sciences, University of California, Berkeley,
California, June, 1982.

Mic87a.
Sun Microsystems, Inc, XDR: External Data Representation Standard, RFC 1014, SRI Network
Information Center, Menlo Park, CA, June, 1987.

Mic88a.
Sun Microsystems, Inc, RPC: Remote Procedure Call Protocol Specification, RFC 1057, SRI Net-
work Information Center, Menlo Park, CA, June, 1988.

Mic89a.
Sun Microsystems, Inc, NFS: Network File System Protocol Specification, RFC 1094, SRI Network .
Information Center, Menlo Park, CA, March, 1989.

Mor83a.
Morgan, Carroll and Sufi’in, Bernard, Specification of the Unix Filing System, Programming Research
Group, Oxford University Computing Laboratory, Oxford, July, 1983.

N.88a.Bershad, Brian N. and Pinkerton, C. Brian, "Watchdogs - Extending the UNIX File System,"
USEN1X Winter Conference Proceedings, Dallas, Texas, February, 1988.

Now89a.
Nowicki, Bill, "Transport Issues in the Network File System," Computer Communication Review,
vol. 19, no. 2, pp. 16-20, April, 1989.

Pik85a.
Pike, R. and Presotto, D.L., "Face the Nation," USEN1X Summer Conference Proceedings, Portland,
OR, June, 1985.

Pos80a.
Postel, Jon, UDP: User Datagram Protocol, RFC 768, SRI Network Information Center, Menlo
Park, CA, August, 1980.

Pre85a.
Presotto, D.L. and Ritchie, D.M., "Interprocess Communication in the Eighth Edition UNIX Sys-
tem," USEN1X Conference Proceedings, June, 1985.

R.79a.Cheriton, David R., Malcolm, Michael A., Melen, Lawrence S., and Sager, Gary R., "Thoth, a Port-
able Real-Time Operating System," Communications of the ACM, vol. 22, no. 2, pp. 105-115, Febru-
ary, 1979.

R.85a.Cheriton, David R. and Zwaenepoel, Willy, "Distributed Process Groups in the V Kernel," ACM
Transactions on Computer Systems, vol. 14, pp. 77-107, 1985.

Ric79a.
Richards, M., Aylwa~d, A.R., Bond, P., Evans, R.D., and Knight, B.J., "TRIPOS - A Portable
Operating System for Mini-computers," Software - Practice and Experience, vol. 9, pp. 513-526,
1979.

Rif86a.Rifkin, A.P., Forbes, M.P., Hamilton, Richard L., Sabrio, M., Shah, S., and Yueh, K., "RFS Archi-
tectural Overview," USENIX Conference Proceedings, Atlanta, June, 1986.

Rit84a.Ritchie, D.M., "A Stream Input-Output System," AT&T Bell Laboratories Technical Journal, vol.
63, no. 8, October, 1984.

San84a.
Sandberg, Russel, Sun Network File System Protocol Specification, Sun Microsystems, Inc., Techni-
cal Report, 1984.

San87a.
Sandberg, Russel, "The Sun Network File System: Design, Implementation and Experience,"

AUUGN 165 Vol 10 No 4

Australian Unix Users Group Newsletter, vol. 8, no. 5, pp. 96-111, 1987.

Sha88a.
Shand, Mark, 1988. Public domain software posted to Usenet news group comp.sources.misc(?)

T.85a.Cole, Clement T., Flinn, Perry B., and Atlas, Alan B., "An Implementation of an Extended File Sys-
tem For UNIX," USENIX Conference Proceedings, MASSCOMP Software Engineering, June, 1985.

Tan81a.
Tanenbaum, A.S. and Mullender, S.J., "An Overview of the Amoeba Distributed Operating Sys-
tem,"ACM Operating Systems Review, vol. 15, no. 2, pp. 51-64, July, 1981.

Wei84a.
Weinberger, P.J., "The Version 8 Network File System," USENIX Stunmer Conference Proceed-
ings, Salt Lake City, Utah, June, 1984.

Zwa84a.
Zwaenepoel, Willy and Lantz, Keith A., "Perseus: Retrospective on a Portable Operating System,"
Software - Practice and Experience, vol. 14, pp. 31-48, 1984.

Vol 10 No 4 166 AUUGN

Ace: a syntax-driven C preprocessor

James Gosling

Abstract
This document presents the ace preprocessor for C programs. Unlike

cpp, which operates on characters, ace operates on syntax trees. The user
specifies syntax trees which are used as templates against which program
fragments are matched. Positive matches cause trees to be rewritten. Ace
can be used as a special-purpose optimizer that can be controlled by the
programmer.

Introduction
Ace is a preprocessor for C programs, a sort of"macro processor" in the spirit of cpp. Unlike cpp,
ace "macros" do not operate on strings of characters, they operate on syntax trees. Instead of mac-
ros, ace has rules. A rule consists of a pattern in the form of a syntax tree, and a replacement, also a
syntax tree. These rules cause instances of the pattern to be replaced in the program tree. Ace reads
in a C source program, constructs its syntax tree, performs any replacements, and writes the tree out
as a C program.
The design of ace was motivated by a desire to perform transformations on algorithms to improve
their performance, without impacting their readability and maintainability. As an example of the
kind of thing it can do, consider this code fragment:

for (i = O; i<lO; i++)
if(da > O) A[i] ++;
else A[i] --;

The test in the inner loop, da> 0, is loop-invariant: it doesn’t change from one trip through the loop
to another. This loop can be rewritten as:

if (da > O)
for (i = O; i<lO; i++) A[i]++;

else
for (i = O; i<lO; i++) A[i]--;

Eliminating this is a form of code motion that no compilers use since it leads to an exponential
growth in code size, but in some cases it is justified.The exponential code growth comes from the
fact that much of the body of the loop is replicated. Each one of these invariant tests that is removed
from a loop body doubles the size of the code. But in some circumstances, like the inner loop of a
vector drawing routine, this cost in code expansion is gladly paid.
Often the way that people deal with optimizations like this is that they expand the code by hand
with a text editor. But once this is done, the original code is destroyed and the relationships between
the parts is obscured. If you wanted to change, for example, the upper bound on the loop from 10 to
11, you would now have to change it in two places rather than one. When the loop body becomes
large, and the number of such special cases becomes large, doing this transformation by hand becomes
a major undertaking. Using ace, the second piece of code can be generated from the first by prefixing
it by one line, like so:

Sun Microsystems, Inc 2550 Garcia Avenue Mountain View, CA 94943 (415) 960-1300
,,.

AUUGN 167 Vol 10 No 4

1

$pullout(da > 0)
for (i = 0; i<10; i++)

if(da > 0) A[i] ++;
else A[i] --;

Rules
Ace understands the syntax of C with a few additions. To avoid name clashes, ace considers $ to be
a legal character in identifiers. By convention, names specific to ace start with $. The most impor-
tant addition is the $replace statement. It looks like this:

Sreplace statementl $with statement2

This defines a rule that causes all occurrences of statementl to be replaced by statement2. Statementl
is a template. Since expressions are syntactically statements in C, $replace can be used to define re-
placements for expressions as well as statements:

Sreplace sqrt (4) ; Swith 2;
a = sqrt (4) ;

s clrt (4) in the second line will be replaced by 2. $replace definitions are applied to the rest of
the file. When multiple templates match a tree, the one from the earliest $replace statement applies.
The templates can contain unbound meta variables that match anything. These are the symbols $0, $1,
$2 ... For example:

Sreplace ! ($0<$I) ; Swith $0>=$i;
if (! (a<b+3))

! (a<b+3) will be replaced by a>=b+3. Sometimes it’s necessary to restrict the matches of
these meta variables. One restriction is to trees that are side-effect free. Such matches are indicated
with $f0, $fl, $f2... For example:

Sreplace Sf0 = $0; Swith $0;
a = a;
*p++ = *p++;

The first assignment statement, a=a would be replaced by a, since evaluating a has no side effects.
The second assignment wouldn’t be replaced since p+ + has a side effeCt. Ace is reasonably clever
about statements and will eliminate those that have no side effects, so replacing a=a in a statement
context with a causes the whole statement to be eliminated. But b= 2 * (a = a) would become
b:2*a.
$LET is a special function that ace understands:

SLET(a0,al,a2,a3, . . .,an)

This temporarily defines rules that replace a0 with aI, a2 with a3 in an. For example

$LET (a, i, a+b) would expand to l+b.

As a useful piece of syntactic sugar, ace extends the C language with prefix statements. A prefix
statement is just a statement that has been prefixed by something that looks like a procedure call.
The statement becomes a last argument to the procedure call. This procedure call will normally be
transformed into a statement by ace rules. These prefix statements are defined with the $defprefix
procedure:

Sdefprefix($1et, SLET) ;

This defines $let to be a prefix statement that is replaced by a call of the $LET function:

$1et (a, i) {
b = a+l;
print (a) ;

}

Vol 10 No 4 168 AUUGN

o

o

becomes

b = 2;
print (1) ;

Unlike cpp, one doesn’t have to insert parenthesis all over the place in ace rules:

$replace angle(SO); $with SO->angle;

When ace rewrites angle (*p), $ 0 matches *p. When the syntax tree is f’mally printed, ace
correctly inserts parenthesis based on operator priorities to yield (*p) -> a ngl e.

Time/Space tradeoffs
Ace has a facility that allows you to make time/space tradeoffs:

Stradeoff (codeI , code2)

picks either code1 or code2 depending on a time/space tradeoff. Presumably, code1 and code2 perform

the same computation, only in different ways. Ace will estimate the time used by each code frag-
ment and the space used. To aid in its computation of a time estimate, it needs to know the probabili-
ty that branches will go one way or another and it needs to know the expected number of trips
through a loop. $Replace is used to tell ace the probability that a boolean expression will be true:

Sreplace $P(e); $with c;

This says that the probability that e will be true is c. These probability specifications are used in if
and switch statements to determine the probability of execution of each clause. If ace cannot deter-
mine the probability of some expression, it will assume that all clauses are equally likely.
The expected number of trips through a loop is specified by prefixing it with Strips:

Strips (I00)
for(i=O; i<lO0; i++) { ... }

This tells ace that the for loop is expected to be executed about 100 times.
Based on this information, and two parameters, ace will pick one of the two code fragment parame-
ters of $tradeoff to replace $tradeoff. The two parameters are pthresh and mingain. Pthresh is a
probability threshold: If the probability of executing a particular $tradeoff exceeds pthresh then the
time-efficient code fragment will be chosen, otherwise the space-efficient fragment will be chosen.
mingain specifies a minimum percentage time gain. If the code fragment chosen by pthresh doesn’t
gain at least mingain percent in time, the space-efficient code fragment will be chosen.

Rule Application Order
Once the source has been parsed, Ace applies the rules that have been defined. They are applied by tra-
versing the parse tree from the root. It attempts to apply rules to a node both before and after the
rules have been applied to its subnodes. Rules are applied before so that rules which change the rule-
set (e.g. those that use let) behave properly. They’re also applied after in case the transformed subn-
odes expose new opportunities for rule application.
This can cause some subtle interactions. Consider the following:

Sreplace log2(2) ; Swith i;
Sreplace constant($cO) ; Swith i;
Sreplace constant(SO); $with O;
constant (I)
constant (a)
constant(log2 (2)) ~,~; ~.,

The intent of the constant rule is that it should evaluate to true if it’s argument is a constant, and
false otherwise. Because of the ordering of the definitions, this should be so: If the argument is a

AUUGN 169 Voi 10 No4

So

constant, the second rule will be applied, yielding true. If it isn’t, the third will be applied, yield-
ing false. Constant(l) evaluates to true, and constant(a) evaluates to false. But constant(log2(2))
evaluates to false because when the rules are applied before reducing the argument to constant, the
third rule is used since log2(2) isn’t a constant. There is a way around this:

$replaceafter constant(S0); with 0;

If a rule is defined with $replaceafter rather than with $replace, it will only be applied to a node af-
ter its arguments have been reduced.

Building on ace
Using ace, we can define DeMorgan’s law:

Sreplace ! ($0 && $I); $with ! $0 II !$I;
$replace ! ($0 II $I); Swith ! $0 && !$I;

Then there are a number of rules that are used in conjunction with these:

Now we

Sreplace ! ($0 == $I); Swith $0 != $i;
$replace ! ($0 != $i); Swith $0 == $i;
Sreplace ! ($0 >= $i); Swith $0 < $i;
Sreplace ! ($0 <= $I); Swith $0 > $i;
$replace ! ($0 > $i); Swith $0 <= $i;
Sreplace ! ($0 < $i); Swith $0 >= $i;
$replace ! !$0; $with $0;

can define a more subtle rule:

$replace $assume($0, $i);
Swith $1et($0, i, !$0, 0, $i);

This mlecausescode ~agment$1 to becompiled, assumingthat$0istrue, and that!$0isfalse:

$defprefix($AgSUME, $assume);
SASSUME(a<0) {

if (a>=0) print("true");
else print ("false");

}
This is transformed into just print ("fal se"). $Assume will replace a< 0 with 1, and
! (a<0) with 0. Other rules ensure that ! (a< 0) is replaced by a>=0, which is replaced by 0.

The if now has a constant to test, so the true clause is eliminated. There are many special cases of the
assume rule that can be defined. Because of the ordering rule of template matching, they have to pre-
cede the general rule:

Sreplace Sassume($0 == $i, $2);
$with $1et($0, $i, $2);
Sreplace Sassume($0 < $I, $2);
Swith $Iet($0<$i, i,

$0>=$i, 0,
$0<=$i, i,
$0==$I, 0,
$0 != $i, i, $2);

$replace $assume($0 > $I, $2);
Swith $iet($0>$i, i,

$0<=$I, 0,
$0>=$i, i,
$o==$1, o,
$o != $i, 1, $2);

$replace Sassume($0 && $I, $2);
Swith Sassume($0, $assume($1, $2)) ;

Using these, we can now define the $pullout prefix that was used at the beginning of this description:

Vol 10 No 4 170 AUUGN

6,

$defprefix($pullout, Spulloute) ;
Sdefprefix($LET, $1et) ;
Sreplace Spulloute($0, $2) ;
Swith if ($0)

Sassume($0, $2) ;
else

Sassume(!$0, $2) ;

In other words, to pull a test out of a code fragment, perform the test, and when it’s true execute
the code assuming that the test is true, and when it’s false, execute the code assuming that it’s false.
Repeating the example from the beginning of this paper:

Spullout (da > 0)
for (i = 0; i<10; i++)

if(da > 0) A[i] ++;
else A[i] --;

This gets expanded to:

if (da>0)
SASSUME(da > 0)

for (i = 0; i<10; i++)
if(da > 0) A[i] ++;
else A[i] --;

else SASSUME(! (da > 0))
for (i = 0; i<10; i++)

if(da > 0) A[i] ++;
else A[i] --;

The ASSUME clauses cause this to become:

if (da>0)

else

for (i = 0; i<10; i++)
if(l) A[i] ++;
else A[i] --;

for (i = 0; i<10; i++)
if(0) A[i] ++;
else A[i] --;

And constant collapsing eliminates the inner ifs, yielding:

if (da>0)

else

for (i = 0; i<10; i++)
A[i] ++;

for (i = 0; i<10; i++)
A[i] --;

Tradeoff0 can be used to make Spullout0 much more powerful:

Sreplace
Swith

Spulloute($0, $2);
Stradeoff($0

$2) ;

? $assume($0, $2)
: Sassume(!$0, $2),

This pulls $0 out of $2 only if there is a useful performance gain. Note: ace treats ? and if identical-
ly.

More mundane uses
Ace can be used much like cpp to define procedures that are expanded inline, with the added attraction
that it’s easy to define special cases for parameters that are known at compile time:

/* bool (a,b, op) executes a boolean operation
$replace booi($0,$i,0) ; Swith $0151;
Sreplace bool ($0,$i,I) ; Swith $0&$i;

specified by op */

AUUGN 171 Vol 10 No 4

It can, of course, match parameters other than constants:

$replace Get Context(S0, CTX CLIP); $with $0->CTX CLIP;

It can provide default parameters to procedure calls:

Sreplace atan2(S0); Swith atan2($0, i);

It can be used to define iterators for special data types:

/* shape iterator */
Sdefprefix($scanshape, Sscanshapee);
Sreplace Sscanshapee($0, $i);/* (shape,
Swith {

register ENTRY *sptr = Get_Shape(S0,
short x0,

y0,
xl,
yl;

while (*sptr != Y EOL) { --
y0 = *sptr++;
yl = *sptr++;
while (*sptr != X EOL) { --

x0 = *sptr++;
xl = *sptr++;
$i;

}
sptr++;

code) */

SHAPE_DATA);

This example uses the special prefix syntax so that it can be invoked this way:

Sscanshape (thisshape) {
printf("%d, %d, %d, %d\n", x0,
FillRectangle(x0, y0, xl, yl) ;

}

y0, xl, yl);

o Acknowledgements
A special thanks to Patrick Naughton for being a guinea pig user. And to the whole "Shapes" team
that put up with mysterious things breaking.

Appendix 1.

-pthresh n

-time

-space
-lnc

-nln

-mingain m

-Qpath path

Invoking ace
[-time] [-space] [-inc] [-nln] [-pthresh n]

[-mingain m] [-Qpath path] [-o ofile] ifile

Sets the pthresh parameter to n. See the section on time/space tradeoffs

Optimize for time. It’s the same as -pthresh 0.

Optimize for space. It’s the same as -pthresh 1.
Line numbers as comments: each line generated by ace will be prefixed
with a comment that tells what line of the input file it came from. This is
a good switch to use for debugging since dbx will step through the expand-
ed output, but you’ll be able to find the code in the original source.

No line numbers. This should be used if you want to read the code generat-
ed by ace. It removes the clutter left by line numbers.

Sets the mingain parameter to m. See the section on time/space tradeoffs.
Causes ace to look in path for cpp. Normally it just looks in/lib and
/usr/lib.

Vol 10 No 4 172 AUUGN

-o ofile Sends the generated output to ofile. The default is standard out. Ofile will
be unlinked before it is created, and it will be created with mode 444, to
prevent accidental editing.

-ifc Includes comments after each if and else that indicate what’s true and
what’s false, according to containing if statements.

Ace pipes its input through cpp and takes all parameters that cpp would accept and passes them on to
it.

Appendix 2.

sh

A Large Example
As an example of how ace can be used in a real-world example, here is a routine for drawing vectors
using Bresenham’s algorithm. It is almost exactly the same as the vector routine that appears in the
Shapes library, except that the code to support clipping has been eliminated. But is does handle sever-
al framebuffer depths (1, 8 and 32 bits per pixel), plane masks, and all 16 rasterop codes. Normally
the inner loop is written out many times for the various special cases. Here, it is written once, and
ace is used to generate all of the special cases:

fb VecPt (ras, Xl, YI, X2, Y2)
RASTER ras;

register short count;
register int err;
register int erra;
register int errb;
int plane_enable

dx, dy, left,
= FB_plane_enable,

lineiny;

if

}
dy
dx
if

if

(YI > Y2) {
swap_coord(Xl, X2, left) ;
swap_coord(Yl, Y2, left) ;

= Y2 - YI;
= X2 - Xl;
(left = (dx < 0))

dx = -dx;
(lineiny = (dy >

count = dy + i;
err = left ? 1

} else {
count = dx +
err = -dx;

Sswitchout(DEPTH,
register int

dx)) {
erra = dx

- dy : -dy;
<< i; errb = dy << !;

I; erra = dy << i; errb = dx << i;

ras->RAS DEPTH, SH SUPPORTED DEPTHS) {
bpsl = ras->RAS LINEBYTES;

PIXCOLOR(color, FB col, DEPTH) ;
PIXROP(ropcode, (int) FB_rop, color, DEPTH);
PIXPTR(pix,,DEPTH);
PIXMASK(mask, DEPTH);
initpixelpointer_no(ras, pix, mask, Xl, YI, DEPTH);
--count; /* Srepeat(count) generates count+l
Sfastrops(ropcode, DEPTH)

Salwayspulloutiff((FB_disp & FB_DRAW_PLANES) == 0,
plane enable == ~0)

$alwayspullout(erra != 0)
Salwayspullout(lineiny == O)
Salwayspullout(left == 0)
Srepeat(count) {
writepixel(pix, mask, DEPTH,

ropcode, color, plane_enable);
if (lineiny == O)

if (left == 0)
RIGHTSTEP(pix, mask, DEPTH);

else

loops */

AUUGN 173 Vol 10 No 4

LEFTSTEP(pix, mask, DEPTH);
else

DOWNSTEP STRIDE(bpsl, pix, DEPTH);
if (erra != 0T

if ((err += erra) >= 0) {
err -= errb;
if (lineiny != 0)

if (left == 0)
RIGHTSTEP (pix, mask, DEPTH) ;

else
LEFTSTEP(pix, mask, DEPTH);

else
DOWNSTEP_STRIDE(bpsl, pix, DEPTH);

Running this through ace yields a 20 page source file that contains expanded code for all the special
cases. As you can see, the inner loops are all very tight. The following listing has been substantial-
ly abbreviated. The expansion of the Srepeat macro is especially interesting: it is machine depen-
dent. In this case it expands to do { ...) while (--count ! = -1), which is compiled on a
68020 into a dbra instruction.

int sh_fb_Vect(ras, Xl, YI, X2, Y2)
RASTER ras; {
register short count;
register int err;
register int erra;
register int errb;
int plane enable = sh fb attrs.plane enable, dx, dy, left, lineiny;
if (YI > ~2) { -- -- --

left = Xl ;
X1 = X2;
X2 = left;
left = Y1 ;
Y1 = Y2 ;
Y2 = left; }

dy = Y2 - YI;
dx = X2 - Xl;
if (left = dx < 0)

dx = - dx;
if (lineiny = dy > dx) {

count = dy + i;
erra = dx << i;
errb = dy << I;
err = left ? 1 - dy : - dy; }

else {
count = dx + i;
erra = dy << i;
errb = dx << i;
err = - dx; }

switch (ras->RAS_DEPTH) {
case 1 : {

register int bpsl = ras->RAS_LINEBYTES;
int color = sh fb attrs.col;
int ropcode = ~ol~r ? mono_remapl[(int) sh fb attrs.rop] :

mono_remap0[(int) sh fb attrs.rop] ;
register unsigned short *pix; -- --
register unsigned short mask;
pix = (unsigned short *) (ras->RAS DATA + (short) ras->RAS LINEBYTES*

(short) Y1 + (Xl >> 3 & -2)); -- --
mask = 32768 >> (Xl & 15);
--count ;

Vol 10 No 4 174 AUUGN

switch (ropcode)
case 14 :

if (erra != O) {
if (lineiny == O) {

if (left == O)
Monochrome (1 bit deep), going right, x is the major axis, the line is neither horizontal nor vertical, and the
ropcode is SRC.

do {
*pix I= mask;
if ((mask >>= I) == O)

mask = 32768;
pix++; }

if ((err += erra) >= O) {
err -= errb;
pix = (unsigned short *) ((int) pix + bpsl);

while (--count != -i) ;
else

Monochrome (1 bit deep), going left, x is the major axis, the line is neither horizontal nor vertical, and the
ropcode is SRC.

do {
*pix I= mask;
if ((mask = (unsigned short) (mask << I)) == O) {

mask = 1 ;
pix--; }

if ((err += erra) >= O) {
err -= errb;
pix = (unsigned short *) ((int) pix + bpsl); } }

while (--count !=-i) ;
else

Monochrome (1 bit deep), going right, y is the major axis, the line is neither horizontal nor vertical, and the
ropcode is SRC.

if (left == 0)
do {

*pix I= mask;
pix = (unsigned short *) ((int) pix + bpsl);
if ((err += erra) >= O) {

err -= errb;
if ((mask >>= i) == O) {

mask = 32768;
pix++; } } }

while (--count !=-i) ;
else

do {

else

*pix I= mask;
pix = (unsigned short *) ((int) pix + bpsl);
if ((err += erra) >= O) {

err -= errb;
if ((mask = (unsigned short) (mask << i)) == O) {

mask = 1 ;
pix--; } } }

while (--count != -i) ;

if (lineiny == O) {
if (left == O)

do {
*pix I= mask;
if ((mask >>= I) == O) {

mask = 32768;
pix++; } }

while (--count != -I);
else

do {
*pix I= mask;

AUUGN 175 Vol 10 No 4

if ((mask = (unsigned short) (mask << i)) == 0) {
mask = 1 ;
pix--; } }

while (--count !=-i) ;
else

do {
*pix I= mask;
pix = (unsigned short *) ((int) pix + bpsl); }

while (--count != -i) ;
break;

case 8 : {
register int bpsl = ras->RAS LINEBYTES;
register int color = sh fb a~trs.col;
int ropcode = (int) sh_f--b_~ttrs.rop;
register unsigned char *pix;
pix = ras->RAS_DATA + (short) ras->RAS LINEBYTES* (short) Y1 + Xl;
--count; --
switch (ropcode) {
case 12 :

if ((sh_fb_attrs.disp & i) == 0) {
if (erra != 0) {

if (lineiny == O) {
if (left == 0)

8 bit deep pixels, going right, x is the major axis, the line is neither horizontal nor vertical, all planes enabled,
and the ropcode is SRC.

do {
*pix = color;
++pix;
if ((err += erra) >= O) {

err -= errb;
pix += bpsl; } }

while (--count !=-i);
else

8 bit deep pixels, going left, x is the major axis, the line is neither horizontal nor vertical, all planes enabled,
and the ropcode is SRC.

do {
*pix = color;
--pix;
if ((err += erra) >= 0) {

err -= errb;
pix += bpsl; } }

while (--count !=-i) ;

else
if (lineiny == 0) {

if (left == 0)
8 bit deep pixels, going right, x is the major axis, the line is horizontal, not all planes are enabled, and the
ropcode is SRC.

do {
*pix = color & plane_enable I *pix & ~plane_enable;
++pix; }

while (--count !=-i) ;
else

do {
*pix = color & plane_enable I *pix & -plane_enable;
--pix; }

while (--count !=-i);
else

do {

Vol 10 No 4 176 AUUGN

