
LIFE

WITH

UNIX

LIFE

WITH

UNIX

A Guide For Everyone

Don Libes & Sandy Ressler

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Life with UNIX, A Guide For Everyone

UNIX is a registered trademark of AT&T.

Production: Sophie Papanikolaou
Cover production: Eloise Starkweather
Cover design: Lundgren Graphics, Ltd.
Cover artwork: Sandy Ressler
Marketing: Mary Franz

Life With UNIX was edited and composed with Frame Maker on a Sun Microsystems work-
station running UNIX. Camera-ready copy was prepared on a Linotronic 100P by Profession-
al Fast-Print Corporation using PostScript files generated by Frame Maker.

 1989 by Prentice-Hall, Inc.
A division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without written permission from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Priviate Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To our loving families

Contents

Preface .. xiii

How To Read This Book ..xvii

SECTION 1: Past, Present, Future... 1

Chapter 1: UNIX History ...3
1.1 Before the Beginning ... 3
1.2 In the Beginning... 4
1.3 Philosophy ... 11
1.4 1979 – Seventh Edition.. 12
1.5 Politics – Part I... 12
1.6 Politics – Part II ... 20
1.7 UNIX Cloning.. 21
1.8 The UNIX Trademark.. 22
1.9 Recent History: 1980-1986 .. 23
1.10 Politics – Part III .. 27
1.11 Is UNIX Just History?.. 28
1.12 Who’s Who .. 29

Chapter 2: UNIX Present...37
2.1 UNIX – A Perfunctory Definition ... 37
2.2 The UNIX Philosophy ... 37
2.3 The User Interface.. 39
2.4 UNIX, the Operating System... 41
2.5 Versions ... 44
2.6 Portability – Part I.. 47
2.7 Portability – Part II .. 48
2.8 UNIX Licensing... 49

vii

Contentsviii

2.9 Buying UNIX... 50
2.9.1 Making the Decision ... 50
2.9.2 The Mechanics .. 51

2.10 The Dominant UNIX Sellers ... 52
2.11 The Dominant UNIX Hardware and Porters ... 55
2.12 The Dominant UNIX Cloners.. 58
2.13 The Dominant UNIX Customers ... 59
2.14 The Dominant UNIX Competitors... 64

Chapter 3: UNIX Future..67
3.1 Standards.. 67

3.1.1 C Standards ... 68
3.1.2 UNIX Standards.. 71

3.2 Merging System V with BSD with XENIX... 75
3.3 Mach .. 76
3.4 Berkeley 4.3 and BRL.. 77
3.5 Changing Technologies ... 78
3.6 User-Friendly UNIX – The Macintosh/Smalltalk Influence 78
3.7 C++ .. 80
3.8 The Networking Influence ... 81
3.9 Portables and Laptops .. 82
3.10 UNIX: The Standard Operating System .. 84
3.11 A Foundation for Innovation ... 85

SECTION 2: UNIX Information... 87

Chapter 4: Printed Information...89
4.1 The UNIX Manuals.. 89

4.1.1 A Little History ... 89
4.1.2 Obtaining Manuals.. 91
4.1.3 Organization of the Manuals... 91
4.1.4 What?!? No Manual On the Kernel? .. 93

4.2 Sources Are The Ultimate.. 95
4.3 UNIX and C Bookstores and Publishers.. 99
4.4 Reference Cards ... 99
4.5 Books ... 100
4.6 Periodicals.. 110

Chapter 5: Nonprinted Information ..115
5.1 Conferences.. 115

5.1.1 Conference Freebies and Other Trash... 120
5.2 Workshops ... 122
5.3 Courses... 123
5.4 User Groups ... 124

Contents ix

SECTION 3: Inside UNIX... 129

Chapter 6: The User’s Environment ...131
6.1 Beachcombing for Shells ... 131
6.2 Shell Basics.. 134

6.2.1 I/O Redirection.. 135
6.2.2 Pipes.. 136
6.2.3 Shell Scripts .. 137
6.2.4 Aliases... 138
6.2.5 Environment Variables ... 139
6.2.6 Process Control ... 139

6.3 File Structure and Names... 143
6.4 A Tool is a Command is a Filter is a 145

6.4.1 File Manipulation Commands .. 146
6.4.2 Data Manipulation Commands ... 148
6.4.3 Programming Commands ... 150
6.4.4 Miscellaneous Commands .. 151

6.5 Putting It All Together ... 152

Chapter 7: The Programmer’s Environment ..157
7.1 System Concepts.. 158

7.1.1 I/O ... 159
7.1.1.1 Ordinary Files and Directories... 160
7.1.1.2 Devices... 161
7.1.1.3 Device Drivers ... 162
7.1.1.4 Basic I/O System Calls .. 164
7.1.1.5 Standard I/O... 165
7.1.1.6 Some More Device Drivers ... 166

7.1.2 Processes ... 169
7.1.3 Signals... 171

7.2 C and Other Languages.. 173
7.2.1 C and UNIX: A Symbiotic Relationship .. 174
7.2.2 Libraries .. 176
7.2.3 C Preprocessor .. 178

7.3 Support Tools... 180
7.3.1 Debuggers ... 180
7.3.2 Make ... 181
7.3.3 Version Control... 182
7.3.4 Yacc and Lex .. 183
7.3.5 Profiling .. 184
7.3.6 Lint.. 185
7.3.7 Curses.. 186
7.3.8 Editors ... 187

7.4 Other Tools .. 190

Contentsx

Chapter 8: The Administrator’s Environment ..191
8.1 Managing the System... 192

8.1.1 Initial Configuration ... 192
8.1.2 Booting.. 193
8.1.3 Halting .. 193
8.1.4 Debugging After a Crash .. 194

8.2 Managing Disks ... 195
8.2.1 Mounting and Unmounting the File System..................................... 195
8.2.2 Maintaining File System Integrity .. 196
8.2.3 Backups... 198
8.2.4 Disk Quotas... 199
8.2.5 Symbolic Links ... 200
8.2.6 Find, Xargs.. 200

8.3 Managing Tapes... 201
8.4 Managing Terminals and Serial Lines ... 203

8.4.1 Init and Getty .. 203
8.4.2 Termcap and Terminfo ... 205
8.4.3 Setting Terminal Options – stty .. 206

8.5 Managing Users ... 206
8.5.1 User Accounts... 207
8.5.2 Group Accounts .. 208
8.5.3 Communication... 209
8.5.4 Uucp.. 209

8.6 Managing System Activity .. 210
8.6.1 Miscellaneous Files... 210
8.6.2 Daemons and Other Processes .. 211

8.7 Security & Insecurity ... 213
8.7.1 File Permissions .. 213
8.7.2 Superuser a.k.a. Root .. 214
8.7.3 Setuid .. 215
8.7.4 Security in a Distributed Environment ... 217

SECTION 4: Outside UNIX .. 219

Chapter 9: UNIX Underground...221
9.1 Usenet .. 221

9.1.1 How to Get on Usenet... 227
9.1.2 Commercial Usenet and Public-access UNIX Systems.................... 227
9.1.3 Accessing Other Networks ... 231
9.1.4 Usenet History .. 232
9.1.5 April Fools Day on Usenet ... 233
9.1.6 The Future of Usenet .. 234

Contents xi

9.2 Public-domain or Otherwise Free Software... 235
9.2.1 Archives ... 236

9.2.2 Usenet Source Newsgroups .. 238
9.2.3 User Group Software .. 239
9.2.4 GNU and the Free Software Foundation .. 239
9.2.5 MINIX... 240

9.3 Public-domain Hardware ... 241
9.4 Games .. 242
9.5 Obfuscated C.. 244

Chapter 10: UNIX Services..247
10.1 Benchmarking .. 247
10.2 Consulting .. 248
10.3 Emergency!!... 249
10.4 Jobs .. 250

10.4.1 Looking For New Employees ... 250
10.4.2 Looking For New Jobs.. 251

10.5 Mailing Lists .. 252
10.6 Porting, Integration and Installation .. 252

10.6.1 Porting... 252
10.6.2 Integration and Installation ... 253

10.7 Security .. 255
10.8 Validation... 255
10.9 Timesharing ... 256
10.10 Typesetting and Publishing.. 256

Chapter 11: UNIX Applications...257
11.1 Vertical Software ... 257
11.2 Accounting and Finance .. 258
11.3 Artificial Intelligence ... 259
11.4 CAD, CAE, CAM.. 260
11.5 Character Graphics, Form and Menu Systems .. 260
11.6 Communications .. 261
11.7 Databases and Database Management Systems... 262
11.8 Desktop Publishing .. 263
11.9 Editors .. 265
11.10 Fourth Generation Languages.. 266
11.11 Graphics ... 267
11.12 Mail, Messaging... 268
11.13 Mathematical Modeling ... 270
11.14 Office Automation ... 271
11.15 Programming Languages ... 272
11.16 Shell Compilers.. 274
11.17 Spreadsheets... 275
11.18 System Administration .. 276

Contentsxii

11.19 The Toolchest... 276
11.20 Windows .. 277

Chapter 12: UNIX Meets The Real World ..279
12.1 Databases and Database Management Systems... 280
12.2 Distributed UNIX... 281
12.3 Emulators and Coexistence.. 282
12.4 Fault Tolerance, Transaction Processing ... 284
12.5 International UNIX .. 286
12.6 Mainframes and Supercomputers .. 287
12.7 Micros .. 289
12.8 Network File Systems .. 291
12.9 Networking .. 293
12.10 Parallel Processing ... 295
12.11 Real-Time Processing, UNIX Executives.. 296
12.12 Security .. 298
12.13 Workstations .. 301

Appendix A: Addresses...303

Index ...327

Preface
This book is the "other" book about UNIX. It covers everything that the

manual didn’t, that your Intro to UNIX book didn’t, and that your UNIX course
didn’t. This book is a study in reading between the lines – which is very much
what learning UNIX is like.

However, you won’t be reading between the lines of Life With UNIX.
We spell it all out – what’s missing between the lines of those other books, plus
the history, present and future of UNIX, and everything else we could think of.
Oh, and we also include all the important anecdotes and strange UNIX humor
that we could dig up.

No matter what people have told you, you can’t learn UNIX from the
manuals, or even the sources. UNIX is so much more than that. To under-
stand UNIX is to understand its users and its applications, as well as its failures
and flaws. This is just some of what this book hopes to cover.

Make sure you realize what this book isn’t. It isn’t a textbook on C or
UNIX programming. (There are already plenty of good ones.) You won’t learn
how to write shell scripts or what is in the kernel. Well, maybe a little. But you
will learn plenty of useful things. Things that will fill in the gaps between the
other useful and useless things you already know about UNIX.

We would like to think this book is a little like Ted Nelson’s Computer Lib
crossed with the Whole Earth Catalog but all focused on UNIX. You should
find it informative whether you are a UNIX beginner or expert. If you program
on mainframes using VM, micros using DOS, or any other proprietary operating
system, you will learn what the vendors have tried to hide from you. And you

xiii

Prefacexiv

will find out all the BS about UNIX as well. We pull no punches – UNIX has
its shortcomings as well as its advantages, and we discuss both.

Disclaimers

This book is a synthesis of what we, the authors, know about UNIX. We
have tried to present the truth as best we know it. It has been especially diffi-
cult tracking down certain historical information, which seems not to have been
rigorously preserved except by oral passage from the mouth of one UNIX guru
to another.

Mention of any specific companies, brands, or products does not imply
endorsement by the authors.

Acknowledgments

Thanks to Sol and Lennie Libes for reading many drafts for technical
accuracy and grammatical style. Thanks to Susan Libes, Stephen Clark, Dave
Fiedler, Larry Welsch, Faye Taxman, Ken Manheimer, and Janet Shapiro for
proofreading and helpful criticism. Thanks to Tony Shaw for digging through
the patent office files for us.

Thanks to Marc Rochkind, Greg Chesson, Rick Rashid, Mel Ferentz,
Dick Haight, Mike Accetta, Peter Langston, Ken Arnold, Ted Dolotta, Doug
Gwyn, Ed Barkmeyer, Dave Yost, Guy Harris, Chris Torek, Tom Duff, Rob
Rosenthal, Donn Seeley, and George Goble for some extremely pleasant and
valuable conversations while digging up UNIX history. And thanks to the
UNIX user community – especially through Usenet, which dredged up much of
the hard-to-find and never-before-published material that appears here.

Thanks to our crew of UNIX experts who actually had the patience to
read through our error-filled drafts. It is hard enough to find UNIX experts, no
less ones that can consume 350 pages and comment intelligently while working
under the deadlines that we gave them. Brian Kernighan helped us with the
History chapter by reviewing it and checking the facts with people from
research. Armando Stettner gave us a perspective of early years at Bell and
DEC. Mike O’Dell made many suggestions about the book in general. John
Quarterman corrected many inaccuracies in our section on standards. Finally,
special thanks to Eric Allman who corrected many of our misstatements about
Berkeley and the rest of the UNIX world, and who made this book much better
than it could have been.

Preface xv

Our UNIX experts also included anonymous reviewers supplied by Pren-
tice Hall who critiqued several drafts. In addition, David Greenstein told Pren-
tice Hall to encourage us to write the rest of the book, after having only seen
the outline, and a few sketchy chapters.

Finally, thanks to the Prentice Hall staff, whose professional work made
the book look so good. In particular, we would like to mention the pleasure we
had working with Sophie Papanikolaou, who was in charge of production.
While working on 20 other books at the same time, she showed us it was possi-
ble to keep a sense of humor even while striving for perfection 24 hours a day.
Thanks to her and everyone else who helped.

 Don Libes

 Sandy Ressler

How To Read This Book
This book wasn’t written front-to-back – you don’t have to read it front-

to-back. If you already know some aspect of UNIX, read about the other
parts. However, we hope that you will read the whole book at some point.
You may find that there are things you never knew about the things you knew.

Every subject in UNIX is related to many other subjects. Thus, you will
often see references to other parts of the book. In addition to those references,
we suggest many other articles, books, magazines and companies. If you are
interested in learning more about a particular subject, take the effort to get the
reference we recommend. You will find it worth your while. Many references
have associated addresses which can be found in Appendix A. We have cho-
sen not to print addresses after each reference because some references
appear several times in the book.

Life With UNIX is divided into four sections. Each section is broken into
several chapters.

The first section describes UNIX in a historical sense. The first chapter
covers UNIX history by setting the scene for the entrance of UNIX. The sec-
ond chapter is a snapshot of UNIX as it is today. The last chapter in this sec-
tion concludes with some predictions for the future of UNIX.

The second section covers information. The chapters in this section
include discussions on information sources such as UNIX manuals, books, mag-
azines, user groups and conferences. Of course, all the other parts of the book
cover information as well, so don’t fail to read the other sections, too.

xvii

How To Read This Bookxviii

The third section is a look inside UNIX. Each chapter in this section cov-
ers UNIX from a different perspective – the user, the programmer or the admin-
istrator. You may find yourselves using these chapters as reference material,
since many UNIX concepts are mentioned but not explained in other chapters.
You will find them explained here.

The fourth section is a look outside UNIX. This includes anything that is
not part of UNIX proper. For example, many third-party applications and ser-
vices are described here. The Underground chapter covers public-domain pro-
grams and many other things you will never see advertised. The last chapter is
a set of short essays on the problems and solutions UNIX has met in the real
world.

Many of the topics presented in the book easily fall into several areas.
Naturally, we did not want to duplicate material unnecessarily; thus, we placed
topics in the chapter that seemed most appropriate. For example, Usenet is
covered in the Underground chapter although it could have as well been pre-
sented in one of the Information chapters.

We have also been fairly liberal with our groupings into chapters. Rather
than artificially fragment a single discussion into several chapters, we have
often placed the complete subject in the chapter which best describes the dis-
cussion. For example, you will find some predictions for the future in the Histo-
ry chapter, and some history in the Future chapter. Think of it as incentive to
read the other parts of the book.

Dialects

We have tried to provide a reasonable number of concrete examples to
motivate much of our discussions. You may find it educational, useful, or simply
fun to try some of these things out on your system, and we encourage you to do
so.

However, UNIX comes in many dialects, and some of the things that we
say may not be exactly the same on your system. Of particular annoyance to
new users is that UNIX is so easily modifiable, that it is possible to sit down at
someone else’s system for the first time and find many discrepancies between
the manual and reality.

Rather than place lots of footnotes after every discussion (e.g., "as long
as you are using csh" or "if you have virgin System V Release 4"), we have
attempted to write about specifics as they apply to the majority of existing

How To Read This Book xix

UNIX systems. When we necessarily write about a particular implementation,
we have qualified it as such.

Typographical Notes

Throughout the text, certain words will be emphasized by appearing in dif-
ferent fonts. Anything embedded in a paragraph that would appear on a termi-
nal such as a filename or output will appear in computer font boldcased. For
example, /etc/passwd. Extended terminal excerpts will simply appear in a
computer font. For example:

% date
Fri Dec 25 22:52:43 EST 1987
%

Words or phrases that are being defined or otherwise definitively
described will appear in italics. For example, "Pacman is an arcade video
game."

Throughout this book you will see many information boxes. These boxes
are not critical to the rest of the text but usually contain something of interest
and related to it, such as a humorous anecdote. The four types of boxes are as
follows:

Hints & Tips

These boxes contain interesting tips. This is not what the book is all
about, but we can’t help ourselves.

Notes from the Underground

These boxes contain information from underground sources such as
unofficial spokespersons or electronic (i.e., unpublished) network
communiques.

How To Read This Bookxx

From the Wizards

These boxes contain secret knowledge that for some reason is not
allowed to be written down except in these silly boxes. Don’t look
for it in your manuals.

UNIX Funnies

These boxes contain humor or amusing anecdotes about UNIX. They
will probably be the only thing that anyone reads in this book.

SECTION 1: Past, Present, Future

Section 1
Past

Present

Future

Chapter 1: UNIX History
"One half of the world must sweat and groan that the other half may dream."
– Henry Wadsworth Longfellow

This chapter discusses the history of UNIX as best we can rec’lect from
the dim dark ages of the ’60s and ’70s. Several articles are suggested for fur-
ther reading.

The history of UNIX explains many things about the UNIX philosophy,
from why it is so omnipresent today, to why it has such strange licensing
arrangements. We describe the steps taken along the path to UNIX maturity
and elaborate on the subject of the UNIX philosophy and how it evolved.

1.1 Before the Beginning

It is worth discussing the eve of UNIX, to make the following two obser-
vations:

1) While much of UNIX and the execution of its implementation was inno-
vative, several very important ideas are traceable back to earlier operating sys-
tems; and

2) UNIX might never have been written were it not for Ken Thompson,
and how he reacted to the tools available to him at the time.

The year was 1968. Ken Thompson and neighboring staff, working in the
Computer Research Group at Bell Labs, had made substantial contributions to
the MULTICS project. MULTICS was a visionary computer environment that
had taken the wrong evolutionary fork. While providing very sophisticated fea-
tures, it required substantial computing resources. Production versions were
too large and slow. The original design had to be scaled back during implemen-
tation.

3

In the beginning...UNIX History4

Nonetheless, several working versions of MULTICS were completed,
providing extremely pleasant computing environments. The alternative at Bell
Labs was a GE 645 emulating a GE 635. While that system provided timeshar-
ing, it was primarily batch-oriented and made for a clumsy and unfriendly envi-
ronment. Ken and friends (particularly Dennis Ritchie and Joseph Ossanna) did
not want to lose the comfortable environment provided by MULTICS, so they
began lobbying management for an interactive time-sharing machine, such as
the DEC-10, on which they could then build their own operating system.

The DEC-10 was one of a series of machines that had just been intro-
duced by DEC (Digital Equipment Corp). The machine came with a very slick
interactive, time-sharing environment. Unfortunately, like all time-sharing
machines of the time, the DEC-10 was very expensive.

Fortunately for us, Ken’s request for a DEC-10 was turned down. Unfor-
tunately for Ken, this occurred several times. Management was not impressed
by the failure of the MULTICS research, and they were not interested in
funding another attempt to design an operating system that clearly seemed like
MULTICS, just on different hardware.

At this time, one of Ken’s interests was in a program called Space Travel
which simulated movement of the major bodies of the solar system, along with
a spaceship that could be landed in different places. Ken installed it on the GE
system but was disappointed by the jerky response from the time-sharing sys-
tem. It was also extremely expensive to run – $75 a game according to Den-
nis. Finding the now famous "little-used PDP-7 sitting in a corner," Ken and
Dennis used the GE to create a paper-tape executable image of Space Travel
that would run on the bare machine.

1.2 In the Beginning...

With Space Travel, Ken now had a reason for implementing the theoreti-
cal file system that he had designed and simulated earlier during the MULTICS
project. Naturally, the machine needed more than a file system to make it use-
ful. Ken and friends wrote the first command interpreter (or shell) and some
simple utilities to manipulate files. Initially the GE system was used to cross-
compile for the PDP-7, but as soon as an assembler was written, the system
became essentially self-supporting.

At this point the system already had UNIX-like features (such as fork()
to support multiprocessing). The file system was very similar to the modern

In the beginning... UNIX History 5

UNIX file system. It used i-nodes. It also had special file types to support
directories and devices. The PDP-7 supported two users at the same time.

The word "MULTICS" actually stood for MULTiplexed Information and
Computing System. In 1970, Brian Kernighan jokingly referred to their two-
user system as "UNICS," for the "UNiplexed Information and Computing Sys-
tem" since MULTICS seemed to be a vastly oversized operating system by
comparison. (Some claim that MULTICS stands for "Many Unnecessarily
Large Tables In Core Simultaneously" and that UNIX was a castrated version
of MULTICS. (see §10.6.2)) Soon after, "UNICS" became "UNIX" and the
name has stuck ever since.

The computer science research group was not entirely satisfied with the
PDP-7. For one thing, it was a borrowed machine, but more importantly, it was
simply underpowered and could not support the demand for computing service.
Thus the group put forth another proposal, this time for a PDP-11/20 to
research text processing. A distinguishing characteristic of this proposal and
prior ones was that the price of a PDP-11 was a fraction of the price of a sys-
tem like the DEC-10. With a more concrete proposal than before, specifically
to create a text-processing system, management relented and bought the PDP-
11.

UNIX was ported to the PDP-11/20 in 1970. This was a not inconsider-
able task since the entire system was written in assembler! The group ported
roff (also known as runoff, a predecessor to troff) written in assembler,
from the PDP-7 to the 11/20. This, plus an editor, was apparently enough to be
called a text-processing system.

At the same time, the Bell Labs patent office was looking for a text-
processing system. It selected the group’s PDP-11/20 based UNIX system
over a commercial system. The Lab’s patent office became the first official
users of UNIX.

It is interesting to note some of the characteristics of this first production
system. This PDP-11/20 ran UNIX with no memory protection. It had a
0.5Mb disk. It supported three concurrent users editing and formatting, plus the
original group doing further UNIX development. The documentation for this
system was labeled "First Edition" and dated November 1971.

It is now tradition to name releases of UNIX after the edition of the man-
ual. While this seems clear, editions are also called versions, but they mean
the same thing. For example, Version 7 is the same thing as the 7th Edition.

In the beginning...UNIX History6

Research
(Dennis, Ken, et al.)

Berkeley

971

973

976

977

978

979

980

981

982

983

984

985

986

987

969 (PDP-7)

Version 1 (PDP-11/20)

PWB 1.0

MERT

RT 1.0 TS 1.0

System III

System IV

System V

1BSD

2BSD

3BSD

4.0BSD

4.2BSD

4.3BSD

2.8BSD

2.9BSD

System VR2

Version 8

Version 5

Version 6

(PDP 11)

(VAX)

Version 7
32V

4.1cBSD

4.1aBSD

PWB 2.0

System VR3

4.1BSD

XENIX 2

XENIX 5

ULTRIX

Version 9

2.10BSD

Version 4 (rewritten in C)

System VR4988

PWB/UNIX

USDL
USGPWB

Major evolutionary steps of UNIX

TS 2.0

CB UNIX LSX
(LSI-11)

C8002
(Z8000)

(68000)
various

TS 3.0

XENIX 3
(8088)

4.4BSD
POSIX

In the beginning... UNIX History 7

The Second Edition was released in 1972 and featured the addition of pipes.
This edition also incorporated work on supporting and using languages other
than assembler. In particular, Ken had attempted to rewrite the kernel in the
NB language.

NB was a locally modified version of the B language (designed by Ken
and Dennis), which was a descendant of BCPL. BCPL (Basic CPL) was
designed by Martin Richards at Cambridge in 1967. CPL (Combined Program-
ming Language) was a joint project of Cambridge and the University of London
in 1963. CPL drew heavily from the ideas of Algol60 (designed in 1960).

All of these languages share a resemblance to C in control structure,
however B and BCPL are "typeless" languages (although that is a misnomer),
since they only support access to memory by "words." NB evolved into C,
which quickly became the language of choice for new utilities and applications.

Experience with MULTICS (which had been written in PL/I) taught Ken
and Dennis that writing a system in a high-level language is worthwhile.
Hence, they kept trying to do this. In 1973, C was enhanced to support struc-
tures and global variables. At this point, Ken and Dennis successfully rewrote
the UNIX kernel in C. The shell was also rewritten (from assembler) into C.
This improved the robustness of the system and made programming and debug-
ging much easier.

At this point, there were approximately 25 UNIX systems. A UNIX Sys-
tems Group was created at the Labs for internal support. Several universities
contacted Bell Labs and received copies of the Fourth Edition. Agreements
were signed not to disclose the source code, but no licenses were in use at this
point. Ken made the tapes himself and didn’t charge anything. The first tapes
went to Columbia University in New York.

In 1974, Ken and Dennis published a paper in Communications of the
ACM, describing the UNIX system. At that time, Communications was the pre-
mier journal for computer science research, and the article raised interest in
UNIX considerably throughout academia. The Fifth Edition was officially made

"The number of UNIX installations has grown to 10, with more
expected." – The UNIX Programmer’s Manual, Second Edition,
June, 1972.

1972 Population Explosion

In the beginning...UNIX History8

available to universities "for educational purposes." The price was nominal –
enough to cover the cost of reproducing a set of tapes and manuals. The Fifth
Edition was used as a teaching aid at many universities.

Ken and Dennis were still actively involved in UNIX research at this
point; however, they continued to avoid any explicit promise of support. Their
group became known as "Research" (or "1127," inside of the Labs). Their
machine was named research. You could send them bug reports over uucp,
call them on the phone, or even drop into their office and discuss UNIX prob-
lems with them personally. Generally, they would fix bugs by the following day.

Unrelated to research was another group at Bell Labs that became
known as PWB, or Programmer’s Workbench. Led by Rudd Canaday, the
PWB group supported a version of UNIX for large software development
projects. The PWB system tried to provide UNIX services as if it was a utility
for users who were not necessarily interested in UNIX research. A lot of
effort went into vulcanizing the UNIX kernel, as well as supporting large num-
bers of users. Two particularly useful projects that came out of PWB were a
source code control system (SCCS) and a system (RJE) for using UNIX as a
uniform front-end to other mainframes around the Labs. PWB was eventually
licensed outside the Labs as PWB/UNIX 1.0.

UNIX displaced more and more of DEC’s own operating systems on
PDP-11s. While UNIX was still unsupported, it had attractive strengths over
other systems that outweighed its problems. In addition to the features of the
system itself, the source was available, and UNIX was comprehensible in its
entirety. Modifications and extensions were easy. These attributes made
UNIX unlike any other operating system in its class.

In 1975, the Sixth Edition UNIX system was released. This was the first
UNIX that became widely used outside the Labs. AT&T (through Western
Electric Co.) began offering licenses to commercial and government users.

Mike Lesk released his Portable C Library. The library was a set of I/O
routines that could be implemented on any machine supporting a C compiler.
This was an essential step in making C capable of producing portable code.
Dennis later rewrote this and called it the Standard I/O Library (now commonly
called "stdio").

The first UNIX users meeting was held in New York City, hosted by Mel
Ferentz at City University of NY. Forty people attended. Held twice yearly
after that, meetings were extremely informal. If you wanted to make a presen-

In the beginning... UNIX History 9

tation, you would raise your hand, and then do so. These meetings were the
best way to swap bug reports, fixes, and software. Everyone brought two
tapes with them – one with things to give, one blank to get new things.

Ferentz began a newsletter called UNIX News that he sent to UNIX
users free of charge. When a representative from Bell showed up and told him
that he could not use "UNIX" in the name, it was changed to ;login:. As more
and more people wanted the newsletter, Ferentz couldn’t afford to keep
sending it out for free. An organization was created to handle the dues. It was
called USENIX. USENIX quickly took on other roles, including responsibility
of the user meetings and software distributions.

At the University of New South Wales in Australia, John Lions prepared
a set of course notes for an operating systems class. The subject of the class
was a case study of UNIX, and the class notes were published as A Commen-
tary on the UNIX Operating System. The notes included the entire V6 UNIX
kernel accompanied by Lions’ running commentary. Almost every line was
explained (including the one you were "not expected to understand").

Permission for its publication was eventually withdrawn, due to the large
amount of source material involved. But while the book was in print, it made
UNIX far more accessible than before.

In 1977, Interactive Systems Corporation became the first company to
resell UNIX systems to end users. UNIX was finally a supported product.

During that same year, three groups ported UNIX to different machines.
Steve Johnson and Dennis Ritchie ported UNIX to an Interdata 8/32. Richard
Miller and others at the University of Wollongong in Australia ported UNIX to
an Interdata 7/32. And Tom Lyon and associates at Princeton ported UNIX to
the VM/370 environment.

Each of these ports was considered quite a feat.† Internally, all three
machines differed significantly from the PDP-11. Indeed, that was the whole
point. Operating systems are not designed to run on more than one computer.
Similarly, computers are almost always designed with a particular operating sys-
tem in mind. For example, if the computer supports protection between multi-
ple processes, it makes sense to have an operating system use the hardware
feature in just the way it was designed to be used.

The Australian port was particularly challenging – the PDP-11 in Sydney was separated
from the Interdata in Wollongong by 100 kilometers!

†

In the beginning...UNIX History10

As each vendor supplied hardware with nifty options, specific operating
systems were written and optimized to understand the hardware. They were
almost always written in assembler for access to the unusual hardware and for
optimal speed.

Dennis and Ken’s greatest breakthrough arose from the realization that
there was a trade-off between efficiency and utility. If they could port the oper-
ating system to another computer without the cost of starting over from
scratch, it would be worth it if they didn’t sacrifice too much speed. It wasn’t
hard to make this decision – they had already succeeded using a similar philoso-
phy when they rewrote the kernel in C. That is, UNIX would have been faster
and smaller if it were written in assembler, but the operating system was so
much easier to modify, understand and port, that it was worth the sacrifice in
speed and memory.

UNIX was soon ported to many other types of PDP-11s. Each one had
interesting features that gradually added to the complexity of hardware that
UNIX could support (i.e. floating point processors, writable microcode, memory
management and protection, split instruction and data regions).

However, the PDP-11 line was clearly based around a 16-bit address
space. Because of this, all of the programs were limited to 64Kb. Ironically,
this emphasized the building of small programs. With the advent of pipes to sup-
port cooperating processes, and exec(), which supported program chaining, it
was possible to build large systems by linking together several smaller utilities.
This is a hallmark of UNIX programming, and it is possible that we have the re-
stricted address space of the PDP-11 to thank for it.

UNIX was ported to the IBM Series 1 minicomputer (although some
thought this analogous to the bringing together of matter and antimatter). The
Series 1 had the same size words (two bytes) as the PDP-11, but the bytes
were swapped. Hence, when the machine started up for the first time, it print-
ed out "NUXI" instead of "UNIX." Ever since then, the "NUXI problem" has
referred to byte ordering problems.

In 1977, the University of California, Berkeley, Computer Science Depart-
ment began to distribute their Pascal interpreter. Also included on their distribu-
tion tape were some new drivers, fixes to the kernel, the ex editor, and a new
shell (the "Pascal shell") that was easier to program then the V6 shell. This dis-
tribution was called 1BSD (1st Berkeley Software Distribution).

Philosophy UNIX History 11

1.3 Philosophy

By this time, UNIX had most of the features that we associate with it
today. We have already mentioned its portability. Other features that were
touted were: 1) the unification of file, device and interprocess I/O, 2) the ability
to initiate asynchronous processes, 3) the ability to replace the default shell with
another, and 4) a hierarchical file system.

There were other attributes that made UNIX great, but the preceding
attributes were considered absolutely inarguable. What is amazing is not that
most systems in the ’70s did not have these attributes, but that many recent sys-
tems in the ’80s do not (e.g., the flat file systems of IBM’s CMS).

Some other noteworthy attributes were:

1) The consistency of the commands and libraries. This allowed the
building-block approach, as already noted, to work easily. Since programmers
had to assume the output of their program might be used as input to another,
they did not throw in excess verbiage such as pockmarks the landscape of oth-
er operating system’s utilities. Most programs used standard input and output.

Libraries and system calls provided one way of doing things, typically the
simplest that would solve most of the problems. This carries over from the ker-
nel, which was so small that it could be read and understood in its entirety by a
single programmer.

2) The dominant file type was text. For example, /etc/passwd could be
modified with a text editor. On most other systems, you had to use a special
program to read and write the data files required for each part of the operating
system. With UNIX, however, once you know an editor, you can edit and con-
trol everything.

3) The shell could be used for programming, since it had rudimentary con-
trol structures and parameter passing. Many people never bothered to learn C
because the shell and existing programs could be combined so easily. Interest-
ingly, the shell control structures (e.g., goto, test) were actually implemented
as separate programs.

The Sixth Edition manual was less than 300 pages and fit comfortably in
one volume. The entry for sh was three pages long.

1979 - Seventh EditionUNIX History12

By the end of 1978, there were over 600 UNIX installations. Most were
universities and government facilities.

1.4 1979 – Seventh Edition

In 1979, the Seventh Edition UNIX system was released. Version 7 fea-
tured a full K&R C compiler, including, for the first time, casts, unions and type-
defs. A more sophisticated shell (known as "sh" or the "Bourne shell," after
one of its authors, Stephen Bourne) was provided. The system supported lar-
ger files. And the results of the porting effort were felt through a more robust
kernel and new device drivers for many peripherals.

The programmer’s manual for the Seventh Edition grew to about 400
pages (which still fit in one comfortable volume). The UNIX Readings became
the second and third volumes, approximately 400 pages each.

John Reiser and Tom London ported V7 UNIX to a VAX at Bell Labs.
This port was called UNIX 32V. In some ways, the VAX was a lot like a big
PDP-11 and by treating it this way, the porting effort was made relatively easy.
This is an example of a machine with an obvious hardware capability (paging)
which was ignored in the interest of getting UNIX up and running quickly.
Nonetheless, this nonpaging version of UNIX was used widely and for a long
time within the Labs, because it had a much larger address space (4Gb) than
the PDP-11. This version was made available to Berkeley, which used it as a
base for further research efforts.

Whitesmith was the first commercial C vendor. Unfortunately, the licens-
ing aspects weren’t entirely clear, so the library for the C compiler deliberately
used incompatible subroutine and argument conventions. Later, it was judged
that there were no copyrights on the C user interface (e.g., subroutine names).
Whitesmith’s C is now compatible with UNIX.

1.5 Politics – Part I

At the birth of UNIX, AT&T was an assemblage of communication-
related companies. These included Bell Telephone Laboratories (often called
BTL, Bell, Bell Labs, or The Labs) and Western Electric Co. (WECo). Due to
an earlier antitrust court decree, AT&T was prohibited from participating in par-
ticular nonregulated areas. While it could do research on UNIX, it could not
possibly attempt to market any products based on UNIX. In fact, it was not
clear whether computer software was allowable, but it seemed that if it
became profitable (and there seemed little hope of that), AT&T would run afoul

Politics - Part I UNIX History 13

of the earlier consent decree. Either way, UNIX seemed a lost cause as a
commercial product. Naturally, management was not inclined to sponsor devel-
opment on an unmarketable product. This, then, was what faced Ken and Den-
nis and UNIX in the early ’70s.

Dennis and Ken were located at Bell Labs in Murray Hill, NJ, where the
actual UNIX research was done and they didn’t particularly care about product
development. They were having far too much fun playing with their new baby.
However, it was strange to have something that was becoming very popular
throughout the Labs that could not be distributed outside. Plus, no one had the
direct responsibility of supporting UNIX externally. According to Tannen-
baum:†

BTL didn’t really have a distribution policy in the early days, you
got a disk with a note:

Here’s your rk05, Love, Dennis.

If UNIX crapped on your rk05, you’d write to Dennis for another.

Eventually, Bell succumbed to the pressure for distributing UNIX. It
developed a simple licensing policy: No support, no trial period, no warranties,
no advertising, no bug fixes, and payment in advance.

However, a tremendous number of people were using UNIX at Bell inter-
nally. In order to support all these projects, a UNIX support group called USG
(UNIX Support Group) was created. Unfortunately, USG was allowed only to
provide support, not to do any development. The result was that, both inside
and outside Bell, users did their own development. This was further encour-
aged by the complete access to the source code that came with UNIX. USG
created several releases of UNIX, most of them only available inside the Labs.

At the same time, PWB was doing both support and development on a dif-
ferent version of UNIX. Furthermore, PWB was able to be distributed outside
of Bell Labs as well as inside. Needless to say, there were a lot of hard feel-
ings between these two groups. Each one thought that what it was doing was
the right thing, and that the other was wrong. For example, the PWB shell was
different than the USG shell.

Yet another version of UNIX was called MERT, for Multi Environment
Real-Time. MERT was similar to the virtual machine concept. UNIX (or

Andy Tannenbaum, "Politics of UNIX," Washington, DC USENIX Conference, 1984.†

Politics - Part IUNIX History14

rather, a special version of it) could run on top of MERT and take advantage of
some of MERT’s real-time facilities.

Outside Bell Labs, many licensees chose to use either PWB/UNIX or the
research version from Ken and Dennis, while inside the Labs, users used one of
USG’s UNIX, MERT, or the other two. (In fact, there were actually more ver-
sions. For example, LSX was a version of UNIX (c. 1977) for the LSI-11
microprocessor.) The multiplicity of UNIX systems was already quite annoying.

By this time, many UNIX licensees had installed one or another version
of UNIX on PDP-11s or ported it to other hardware. Working with UNIX was
much more satisfying to most programmers than the alternatives because:

1) UNIX came with the complete source and documentation. It was self-
supporting. You had the very same environment that the UNIX developers
had. You could modify UNIX yourself.

2) UNIX was small. You could understand the code. Most of the algo-
rithms were simple. You could modify UNIX with some confidence in what
you were doing.

3) There was no warranty to void. Since the system came without sup-
port, you had nothing to lose. At worst, you could go to the backup tapes. At
best, you could make a faster system or add a new feature.

4) The UNIX manuals were readable. They were only a couple hundred
pages. And it wasn’t hard to read through them all. A single person could easi-
ly grasp them in their entirety.

Several institutions which were hotbeds of UNIX activity were:

Rand, Harvard and BBN

Rand had developed the first interactive time-sharing system and was
quick to see the value of UNIX. Rand contracted with Walt Bilofsky at BBN
(Bolt Baranek & Newman, Inc.) to develop the first screen editor for UNIX.
Known as the "Rand editor," this was the first screen editor for UNIX, and it
became one of the first programs developed outside the Labs that became a
"necessity" to have. You took for granted that after bringing up UNIX, the
next step was to install the Rand editor. (In truth, the Rand editor came with its
own set of problems. The worst was that it was a terrible resource hog in
terms of CPU cycles and bandwidth.)

Politics - Part I UNIX History 15

This kind of practice continues. One brings up UNIX and immediately
loads in a lot of public-domain tools (e.g., GNU Emacs, RCS, Usenet) that have
become essential to UNIX programmers. Even today, people are not satisfied
with UNIX straight from the factory!

At the time that the Rand editor was written, neither Rand nor BBN actu-
ally had UNIX systems. They went to Harvard which had a Version 4 system
and borrowed time on that. In return, Harvard got to use the Rand/BBN
enhancements. Later they added their own, some of which were reincorpo-
rated back into Version 5. For example, Brent Byer added split I/D
(Instruction/Data) space to support the PDP-11/45 which had separate mapping
registers.

BBN continued doing contract work and later played a very important
role in the development of UNIX at Berkeley. At this time, BBN had already
been involved with the Arpanet, a network developed for the U.S. Department
of Defense (DoD). BBN applied its experience and gave UNIX the ability to
communicate using the DoD protocols. This work was enhanced and bundled
into Berkeley’s software distribution. The result was that companies using
Berkeley UNIX could perform internetworking for free. This led to the early
relationship between UNIX and networking.

Lawrence Berkeley Laboratory – The Virtual Operating System (VOS)
and the Software Tools Project

While at Lawrence Berkeley Laboratory, Dennis Hall, Deborah Scherrer
and Joe Sventek read Software Tools by Brian Kernighan and P. J. Plauger, and
decided that the book made a lot of sense. They implemented all of the tools
the book presented, including a shell. What is very interesting is that they did it
on a machine that did not run UNIX!

In order to be portable, all the tools were written in Fortran 66, since this
was the only language that was available on most computers. Unfortunately,
Fortran was not well suited for systems programming and Ratfor ("Rational For-
tran") was soon born. Ratfor was an attempt to enhance Fortran with many of
the features of C (e.g., better control flow constructs). Ratfor was (and still is)
implemented as a preprocessor that takes Ratfor code and produces Fortran
code. The latter can be compiled by any Fortran compiler. This allowed any-
one to easily bootstrap the Software Tools onto their system with minimal effort.

It didn’t take long before they had ported Kernighan and Plauger’s tools
to several operating systems. Along the way, they learned what abstractions

Politics - Part IUNIX History16

were valid across machines and which ones were not. In 1979, the Software
Tools Project as it had come to be known, held a joint conference with
USENIX (the largest technically-oriented UNIX user group). Much of the
abstractions were similar to UNIX, and many people saw the Software Tools
Project as a chance to bring UNIX to the less fortunate machines that they still
owned.

After the conference and further porting to many machines, a specifica-
tion for a virtual operating system (VOS†) was created. VOS defined a logical
layer upon which the Software Tools rested. As long as a machine could sup-
port VOS, it could support the tools. While some of the VOS abstractions were
hard to implement on some machines, the result was a fine portable develop-
ment environment – the Software Tools.

One example of the achievement was that the Software Tools supported
pipes between processes – even though many systems lacked any interprocess
communication or multiprocessing. How was this done? The tools simulated
pipes with temporary files. Concurrency wasn’t necessary either. It was simu-
lated with program chaining. But the effect was the same, and the user ended
up with the same synergy that arises from the UNIX tools paradigm.

The VOS environment was very successful. Still in use today, it brings
the good ideas of UNIX to just about any other operating system. Many ven-
dors have integrated parts of VOS into their native operating systems. The orig-
inal VOS source is in the public domain.

Berkeley

The University of California, Berkeley, Computer Science Department
(known as "Berkeley" or occasionally as "Berserkeley") had already had many
enjoyable experiences with UNIX early on. Much of their work had been dis-
tributed to other sites. Around 1979, Ken taught an operating systems course
there while on sabbatical from the Labs. During his stay, he ported UNIX to a
PDP-11/70, a very powerful machine capable of supporting many users. His
presence encouraged and his work enabled many more students to become
involved in UNIX development.

During the same period, DARPA (DoD’s Advanced Research Projects
Agency) was looking for a universal computing environment for AI, VLSI, and

Hall, Scherrer, and Sventek, "A Virtual Operating System," Communications of the
ACM, vol. 23, no. 9, September 1980.

†

Politics - Part I UNIX History 17

vision research, with the intent of saving money and easing development prob-
lems. The extensibility, small size and proven portability of UNIX made it a
good bet. However, it lacked networking, virtual memory management, and
flexible interprocess communication. The primary contender to UNIX was
VMS, an operating system developed by DEC for their VAX computers. The
VAX was seen as critical – it was the first 32-bit supermini, and it supported
VMS which had virtual memory.

Many people were very comfortable with DEC – their PDP-11s had been
enormously popular in the research community. However, VMS did have some
drawbacks, and DARPA was quite concerned over whether DEC would be
responsive to their requests for changes and improvements, since it was a pro-
prietary product. They eventually decided to go with UNIX.

DARPA looked for a place to base their UNIX development project.
Besides Berkeley, CMU and BBN were also heavily considered. However, Bill
Joy at Berkeley was already modifying the UNIX kernel to support paging on
the VAX. While Berkeley became the primary implementation site, a DARPA
steering committee composed of representatives from Bell Labs, CMU, MIT,
Stanford and BBN oversaw the development of the project. Efforts from all of
these institutions were important to the design of Berkeley UNIX.

Bell agreed to let Berkeley redistribute its source code as long as cus-
tomers had an existing source license from Bell. In particular, you had to get a
source license for any system that Berkeley chose to incorporate in their distri-
bution. The license that was required changed several times, as Bell produced
a large number of distributions themselves, each of which Berkeley incorpo-
rated to some degree.

At first, Berkeley didn’t rewrite UNIX but made extensive modifications
and enhancements to a version called 32V. 32V was a port of UNIX to DEC’s
32-bit VAX by researchers at Bell. For simplicity, they treated the VAX as a
big PDP-11, ignoring the hardware’s ability to allow programs to address more
memory than was physically resident. This is known as virtual memory, and
Berkeley quickly added this capability, calling the resulting system 3BSD (and
4BSD in 1980). The VAX allowed programs to address one gigabyte of memo-
ry even when the machine had only one megabyte of physical memory.

Virtual memory was hard to resist, and since 32V didn’t support it, every-
one outside Bell (and most inside) ran UNIX from Berkeley. Because of this
one asset, the Berkeley extensions became well-known and were considered to

Politics - Part IUNIX History18

be essential to UNIX. In particular, the C shell, curses, termcap, vi and job
control were ported back to Version 7 (and later System III) so that it was not
unusual to find these features on otherwise pure Bell releases. Indeed, these
programs were often referred to as Berkeley extensions, as in "our system
runs System III plus Berkeley extensions." More recent Berkeley extensions
(from 4.2BSD) include networking (DARPA Internet) support and automatic
kernel configuration.

Berkeley added many wonderful things to UNIX, but one thing they
couldn’t fix was support. The university was not about to go into the computer
business and provide customer support. This was supposed to be a research
project after all (funded by taxpayer’s money). Like Dennis’ love note about
rk05s, early Berkeley tapes came with a suggestion from Bill Joy that "this is a
tape of bits," meaning there was no guarantee of anything, and that complaints
should be directed to /dev/null.

In reality, the Berkeley people were fairly reasonable about bugs. They
kept a bug list accessible via electronic mail. And they fixed many problems
people discovered, as well as incorporated other people’s fixes into their code.
Eventually a company was formed to support the Berkeley distributions, called
Mt. Xinu. Its slogan, "We know UNIX forwards and backwards" is a clever
reference to "Mt. Xinu" being the reverse of "UNIX ."

Releases of Berkeley software remain labeled as "4.X BSD" even though
the differences between them are dramatic. Berkeley wanted to relabel 4.2 as
"5.0" except that university regulations would have forced it to relicense all of
its "customers." As it turned out, Berkeley had to do it anyway because of
code that was included from a new release of the AT&T software.

AT&T also seems to have stuck with the label of "System V" for dramati-
cally differing versions of its most recent versions of UNIX. AT&T probably
spent so much money saying "UNIX System V. From AT&T. From now on,
consider it standard." that it doesn’t make sense to change the name. Instead,
AT&T will issue new "major releases" (e.g., UNIX System V Release 4.0).

Digital Equipment Corporation

DEC (Digital Equipment Corporation) was in a strange position. All of
the original UNIX users ran UNIX on DEC hardware (namely PDP-11s and
VAXen). However, DEC provided no support for UNIX. Indeed, this became
a serious problem on certain types of hardware bugs. Often the DEC diagnos-

Politics - Part I UNIX History 19

tics and DEC operating system would run successfully, but UNIX wouldn’t.
You were on your own.

Nevertheless, there were people inside DEC interested in UNIX. Fur-
ther, it became clear that UNIX could not be ignored in the final profit and loss
statement. For one thing, UNIX gave users a lot of new freedom when choos-
ing software and peripherals. DEC systems forced you to use terminals and
software designed (usually by DEC) specifically for DEC computers and operat-
ing systems. UNIX had relatively few restrictions by comparison.

The final blow came when UNIX was ported to other machines besides
DECs. DEC realized that given the choice, users would buy machines from
vendors who supported the operating system they were interested in running.
DEC is now fully committed to supporting UNIX (which it markets under the
name ULTRIX) but it would prefer that users choose its proprietary operating
system, VMS, and become locked into its hardware line. DEC, however, does
not wish to refuse the large number of UNIX users that are interested in DEC
hardware.

In 1986, there were approximately 6,000 DEC ULTRIX licenses, 14,000
Berkeley 4.X BSD licenses and 20,000 AT&T System V licenses for DEC’s
VAX hardware. Since then, DEC has picked up support for UNIX on most of
its old computers and all of its new ones. Interestingly, at the same time,
AT&T dropped support of UNIX on any DEC hardware.

Et Al.

Besides the ones listed here, many other universities and research institu-
tions created important UNIX applications and extensions. Located in Canada,
Australia, New Zealand, Europe and throughout the U.S., some of these institu-
tions released their versions, or rereleased a Berkeley or AT&T version with
its enhancements and name tacked somewhere in the original. Some diverged
enough so that they could no longer be considered UNIX. The profusion was
really overwhelming.

Many contributors did not have the interest in handling their own distribu-
tions, instead sending them on to Berkeley (which seemed to use everything).
Because of this, Berkeley unintentionally takes credit for much work that was
done elsewhere.

Politics - Part IIUNIX History20

1.6 Politics – Part II

The UNIX source is considered a trade secret. If you were to get
access to UNIX source without signing a license, UNIX would no longer be a
trade secret, and you could theoretically sell UNIX without paying royalties to
AT&T (although you might have to pay your lawyers more than the license
would have cost you, fending off legal action). Therefore, AT&T jealously
guards the UNIX source so as not to lose their trade secret status. However,
AT&T has gone out of their way to continue to make UNIX available for
instructional purposes. Educational licenses are still cheap, and students do not
have to sign licenses or nondisclosure agreements before they can see the
source. Nonetheless, you and your company as licenser can be held liable
should someone make "unauthorized use or distribution of the code, methods,
and concepts contained in or derived from the UNIX product." Oh, and the
UNIX manuals are protected by copyright, too!

AT&T was in the strange position of not being in the software business
and yet issuing software licenses. Needless to say, its licenses were quite differ-
ent than other software licenses. Early licenses were issued by the Western
Electric Co., since that was where the licensing office of AT&T was. Now
licenses are issued directly by AT&T.

The original licenses were source licenses. You got the complete source
designed to run on a couple of different kinds of PDP-11s. You could run it on
one machine. Commercial institutions paid fees on the order of $20,000. If you
owned more than one machine, you had to buy binary licenses for every addi-
tional machine you wanted to run UNIX on. They were fairly pricey at about
$8,000 considering that you couldn’t resell them. On the other hand, education-
al institutions could buy source licenses for several hundred dollars – just
enough to cover Bell Labs’ adminstrative overhead and the price of tapes.

At this point, UNIX was sold "as is." And even though AT&T sold bina-
ry licenses, they didn’t sell binaries themselves. Any company that wanted to
run UNIX had to buy at least one source license, and find some UNIX exper-
tise. Many companies and consultants sprang up to fill this void. The first com-
pany to commercially support UNIX was Interactive Systems Corp in 1977.
Its product was called IS/1 and ran on PDP-11s (of course).

In 1980, AT&T finally created distribution binary licenses. Binaries cov-
ered by this license could be resold by a developer to other companies. These

Politics - Part II UNIX History 21

were much cheaper than the original binaries – distribution binaries were about
$1,500. The first company to use these licenses was Onyx Systems.

Interestingly, the Onyx system was built using a Zilog Z8000 CPU – a
microprocessor! This was the first commercial microprocessor-based UNIX,
and it would not have been able to sell had it been bundled with a software
license that doubled its price. Within a year, several more companies intro-
duced UNIX systems based on microprocessors. With prices going as low as
$10,000, these prices brought UNIX systems within the reach of many business-
es which previously had only considered CP/M, MP/M or other inexpensive
micro-based operating systems.

1.7 UNIX Cloning

An alternative to UNIX licensing is UNIX cloning. UNIX clones, look-
alikes, work-alikes, and so on, are usually compatible at the system call level,
with the kernel completely rewritten.

By doing this, vendors do not have to pay the high price of a UNIX
license nor do they have to put up with AT&T’s unusual licensing require-
ments. Many vendors have done just this and been quite successful.

The earliest system that could be called a UNIX clone was IDRIS, pro-
duced by Whitesmiths, Ltd. Since some of its employees had previously
worked at AT&T, Whitesmiths was understandably worried about using propri-
etary AT&T information. Whitesmiths realized that many of the UNIX con-
cepts were not proprietary in themselves, but that the code was. So it com-
pletely rewrote the kernel using original code. Further, it purposely chose
different library names, order of arguments, and so on. This wasn’t done simply
to avoid lawsuits – Whitesmiths also thought it was correcting design flaws in
UNIX. Besides, it appeared that AT&T was not going to be successful in bring-
ing UNIX to market.

AT&T finally decided that it could not, or would not, prevent non-
licensed systems from using the same calls and calling sequences. Whitesmiths
eventually relented, changing most of its system and library calls so that IDRIS
was compatible with AT&T’s UNIX. Many other cloners joined in the fray at
this point and remain there to this day.

Besides the pricing structure, there were many other reasons to avoid
"real" UNIX. It wasn’t supported by AT&T. AT&T did not discuss the direc-
tion or the future of UNIX. It wasn’t clear that AT&T was committed to

Politics - Part IIUNIX History22

UNIX. The pricing was high, and its structure changed frequently. Most impor-
tantly though, vendors wanted to add so many fixes and features, that it was
not clear that there was any reason to start with the AT&T sources if they had
to modify so much of them. In the end, many vendors felt like they were simply
paying for the right to use the UNIX trademark. UNIX cloners were at the
root of the UNIX standards efforts in attempts to obviate the desire to use the
AT&T trademark.

1.8 The UNIX Trademark

Originally, "UNIX" was an unregistered trademark of Bell Telephone
Laboratories. Early papers often noted this by placing a dagger or a symbol
next to the first occurrence of "UNIX," along with a footnote at the bottom of
the page. The symbol is actually the correct designation for unregistered
trademarks, but AT&T supplied a macro with early versions of troff for dis-
playing "UNIX" automatically which generated the dagger footnote. "UNIX" is
now a registered trademark of AT&T. Thus, the symbol is correct. The
appropriate footnote upon first appearance of the trademark is "UNIX is a regis-
tered trademark of AT&T." (UNIX is also a trademark of a line of audio equip-
ment marketed by Marantz in Japan.)

Strictly speaking, a trademark permits the owner to keep others from
using that mark in trade. If you are offering a UNIX product, for example, you
must abide by AT&T’s rules for their trademark because you are using it with
their permission. AT&T distributes a brochure explaining use of the word
"UNIX" in trademarks, appearance, grammatical usage ("UNIX is an adjec-
tive, not a noun"†) and in company names.

If you writing ordinary English discourse (such as in this book), you may
treat requests from AT&T as indications of their preference, but you do not
have to abide by them. For example, many people prefer "Unix" to "UNIX."
Indeed, common English practice dictates that trademarks are spelled with an
initial capital, unless they are acronyms in which case they are all capitals.
"UNIX" is not an acronym.

Licensing has continued to get more complex with each release of
UNIX. AT&T has created a complex licensing structure which varies in
restrictions, use and cost depending upon the use, user, machine and version of
UNIX. For example, UNIX varies in price for government, commercial or
educational users. UNIX on machines with multiple CPUs costs more than on

You will soon realize that we can’t stand this rule.†

Recent History UNIX History 23

single CPUs. And UNIX can be bought unbundled at different prices for just
the kernel, the applications, or the complete sources.

Licensing is such a confusing issue that we refer you to your and
AT&T’s lawyers. /usr/group, a UNIX user’s group, has also published very
comprehensive papers on the subject.

1.9 Recent History: 1980-1986

As UNIX began to mature, its popularity in the commercial market grew
enormously. One of the catalysts of this was /usr/group. /usr/group started off
almost as a splinter group from USENIX. USENIX was concerned with the
UNIX research and had little interest in promoting its market potential. Finan-
cial analysts, bankers, accountants, and other nontechnical people were very
turned off by the USENIX attitudes which seemed to them somewhat elitist, as
in, "If you don’t have the source and hack the kernel, you aren’t worth talking
to."

In early 1980, Bob Marsh held a meeting of CommUNIX at the National
Computer Conference. Interest from commercial users and vendors was there,
and the group incorporated as /usr/group the following year, producing a regu-
lar newsletter called CommUNIXations, and an semiannual trade show called
UniForum. These and other /usr/group activities focused on concerns of the
UNIX marketplace such as standards, licensing and product information. The
first UNIX product catalog, in 1981, listed 250 UNIX products from 100 compa-
nies. Within a year, /usr/group had well over 1,000 members.

The period from 1980 to 1983 saw an explosion of new UNIX compa-
nies. This was a result of two factors. One was that a growing number of grad-
uating students were extremely unwilling to give up the enjoyable UNIX envi-
ronments that they had used all through school. The second was that the
introduction of several low-cost 32-bit CPUs allowed the design of cheap per-
sonal UNIX workstations.

Each of these factors would have been meaningless without the other.
Without sufficient UNIX workstations, ex-students would have been forced to
use whatever proprietary operating system a vendor offered, perhaps with help
from the VOS project. And if the ex-students didn’t exist, the UNIX vendors
would never have been able to sell their products to users already entrenched
in propriety products.

Recent HistoryUNIX History24

Porters
"It is easier to port UNIX to a new machine, than an application to a new
operating system." – Dennis Ritchie

One of the attractive features of UNIX is the portability of it. It is written
in C, a high-level system programming language, not tied to one computer. By
comparison to other operating systems, porting UNIX to a new machine is
easy. However, it typically requires several months for an experienced porter
to do this task. Porting is a specialized and short-term task.

In the early ’80s, specialized companies, called porting houses, were born
to port UNIX to new computers. They could produce a relatively unchanged
UNIX, with little development cost. With hardware costs dropping significantly
during this period, it became much easier to design and market a successful
computer.

UniSoft Corporation began in 1981, producing a UNIX port called Uni-
Plus+. Unlike XENIX, UniPlus has stayed very compatible with the AT&T ver-
sions of UNIX. It is estimated that UniSoft has performed 65 percent of all
UNIX ports to date.

At the same time, SCO (The Santa Cruz Operation) collaborated with
Microsoft on XENIX, which was the first implementation of UNIX on the Intel
8086 and many other microprocessors. Today, XENIX remains the most popu-
lar microcomputer implementation of UNIX. It received a particularly helpful
boost when Tandy shipped 14,000 XENIX-based systems to small businesses
in 1985. The second largest shipper of UNIX systems, Altos, shipped approxi-
mately 13,000 XENIX-based systems during the same period.

With the help of these and other porting houses, UNIX was moved to an
amazing number of different machine architectures. At the end of 1983, there
were approximately 100,000 UNIX sites running on a wide variety of hardware.

Due to the proliferation of companies and products, it became difficult to
decide what was UNIX and what wasn’t. Would product X run on UNIX from
vendor Y? In source form? Binary? With 2 users? 10 users? 100? How about
on a UNIX clone? Just what did it mean to be a UNIX clone?

In 1981, /usr/group began the first serious work on UNIX standards. A
standard was completed in 1984 and promptly ignored. To this day (and proba-
bly till the end of time), UNIX standards continue to be developed by AT&T,
the Institute of Electrical and Electronics Engineers (IEEE), the International

Stanford and the SUN UNIX History 25

Standards Organization (ISO), the National Bureau of Standards (NBS) for the
U.S. government, and X/OPEN (a consortium of UNIX vendors). (See the
Future chapter for more about standards.)

Stanford and the SUN

Stanford University had had very enjoyable experiences with the Xerox
Alto. The Alto was the first personal workstation to bear any resemblance to
modern UNIX workstations. Of particular interest was that it included a high-
resolution bitmapped screen with a mouse, a high-speed (3Mb/sec) network,
and enough memory, local disk storage and processing power to support itself
comfortably. The Alto was extremely expensive in comparison to any other
personal computer. (Though never offered for sale, its estimated cost was
$30,000.) But for price, it clearly marked the way of the future.

With the release of the Motorola 68000 CPU, it was possible for students
at Stanford to design a relatively low-cost machine that duplicated much of the
capability of the Alto. It also differed from the Alto in another way – it was
designed to be a multiprocessing machine, specifically to run UNIX.

 Stanford licensed a single-board design which became known as the
SUN (Stanford University Network) board. Codata (the first licensee), For-
tune, Dual, Cyb, Lucasfilm, Sun and other companies – over a dozen in all –
bought licenses and with little effort sold UNIX clones that ran either 4.1BSD or
System III. The machines started at an amazingly low $10,000. These prices
encouraged the dramatic spread of UNIX to the commercial markets, where it
competed impressively with much more expensive computer systems.

Since the market was rather crowded, many of the companies were not
able to compete and quickly withdrew. Only a handful of the original SUN-
board vendors remain today. (None of them continue to use the original design
which has been rendered obsolete by more functional chips.) One company
continued to use the name Sun (Sun Microsystems, Inc.) and employed one of
the original designers of the Sun board, Andreas Bechtolsheim.

 This was the period of JAWS (Just Another WorkStation). For a while,
UNIX boxes seemed like a commodity market and the survivors quickly began
offering particular features that distinguished them from the others. Nonethe-
less, the prices remained low and the established (mainframe and mini) comput-
er companies began to see that they were letting a potential market get away.

Big Blue’s BlessingUNIX History26

Gradually, the larger companies such as DEC, Data General, Gould,
Apollo and Hewlett-Packard began offering UNIX systems for their own hard-
ware, even though they already had proprietary operating systems. Additional-
ly, they began offering UNIX workstations to compete in the desktop market
place.

At the same time, mainframe and supercomputer companies like Amdahl
and Cray had the foresight to support a UNIX environment on their machines.
It seemed like UNIX was everywhere.

Big Blue’s Blessing

In 1983, IBM joined the fray by offering UNIX on its PC (ported by Inter-
active), based on the 16-bit Intel 8088. This was not technologically interest-
ing – UNIX had been created on 16-bit computers, after all. What was impor-
tant about it was that the IBM announcement was the stamp of approval for
UNIX. It is hard to describe now exactly how important this was, but there
were many people who would not buy a product unless IBM marketed it.
(Microcomputers that preceded the IBM PC were a fascinating example of
this.)

Currently, it is unusual to find a computer for which one cannot get a
UNIX implementation. Popular computers such as the IBM PC-AT line have
half a dozen ports available. Even systems such as Apple’s Macintosh and
Atari’s ST with their more modern user interfaces have had UNIX ported to
them.

The reasons for this are easy to understand.

• UNIX programmers abound and most often come directly out of
college.

• Porting UNIX to a new machine architecture is substantially easier
than designing and implementing a new operating system from
scratch.

• UNIX is an industry standard operating system. It is the only one
that is machine-independent.

• The productivity of system programmers is much better on UNIX
systems than on other commonly available systems.

It is worth noting that at the time of IBM’s announcement of UNIX for
the PC, there were already approximately 70,000 computers running UNIX.

Politics - Part III UNIX History 27

2500 of them were inside the Bell System. About 1,300 universities had UNIX
licenses, of which 750 were in the U.S. or Canada. AT&T estimated that there
were 100,000 programmers writing UNIX software, and about 300 application
packages were available from more than 90 companies.

1.10 Politics – Part III

Competition between USG and PWB finally ceased when the groups
were merged. Most of the contributions of both groups were integrated into
one UNIX. This merged group became known as USDL (UNIX System Devel-
opment Laboratory) and introduced UNIX System III in 1982. System III also
included significant support for transaction processing taken from CB UNIX, a
version designed by the Columbus Bell operating company. System III was the
last Bell Labs UNIX product licensed through Western Electric.

Due to a ruling by Judge Greene in the monumental antitrust case that
the U.S. had brought against AT&T, it was divested of many of its subsidiaries
in 1984. Also, AT&T was allowed to participate competitively in the computer
business. In preparation, UNIX had finally been given its own home in
AT&T’s Information Systems the previous year.

In early 1983, AT&T Information Systems announced System V. At this
point, AT&T radically changed the style of its marketing. It lowered the price
for UNIX significantly. For the first time, AT&T offered support for UNIX.
And most importantly, AT&T announced its intention to maintain upward com-
patibility with future releases. This brought confidence to many potential mar-
kets, since AT&T was viewed as a force as powerful as IBM, and with the
chutzpa to sell coals to Newcastle. On top of this, AT&T had the complete
ownership of a product that people were literally begging for. At the same
time, many people expected AT&T to finally integrate some of the more useful
aspects that they were using but from the unsupported Berkeley UNIX. Both
groups of people were disappointed.

For the next few years, AT&T did a poor job of marketing UNIX.
AT&T let others sell its product more effectively. And it failed to give any
resistance to IBM while it walked away with the PC marketplace. AT&T
started dropping support for DEC’s hardware, including the original machines
which UNIX had been developed on, in an attempt to move the market to pro-
prietary hardware that had been developed in-house. However, strong competi-
tion from Motorola, NSC and other hardware manufacturers made this unten-

Is UNIX Just History?UNIX History28

able. AT&T lost an estimated $1 billion in its computer-related businesses in
1986.

AT&T announced System V R.2 (Release 2) in 1984 and SV R.3 in 1986,
both of which have become very popular. At the same time, AT&T cemented
agreements with several of the major chip manufacturers for binary compatible
versions of UNIX. In addition, AT&T agreed to merge both XENIX and Sun’s
Berkeley-based UNIX with System V. Clearly, the future of UNIX depends a
lot on whether AT&T succeeds at its merger. We have more to say about this
in the Future chapter.

1.11 Is UNIX Just History?

Is UNIX just history? No way. UNIX is here to stay. International
Data Corporation (IDC) states that the UNIX market was worth $3.6 billion in
1985. This was approximately 6 percent of the total worldwide budget spent on
computing.

According to the December 1987 issue of UNIXWORLD, about $5.5 bil-
lion was spent on UNIX systems that year, of which 10 percent was for soft-
ware. This was approximately 8 percent of the total worldwide budget for com-
puting, according to IDC.

Novon Research Group states that approximately 300,000 UNIX sys-
tems were shipped during 1987. The total number of UNIX systems in use
was about 750,000. Almost half the purchases came from Fortune 1000 compa-
nies. There were an estimated 4.5 million UNIX users, and more UNIX
machine hours were used than DOS hours.

It is expected that 450,000 UNIX systems will be shipped in 1990, much
of the increase being due to commercial use. By 1991, UNIX market share is
expected to reach 20 percent, and continue increasing.

Clearly, UNIX is a success.

Dennis and Ken have said, "The success of UNIX lies not so much in
new inventions but rather in the full exploitation of a carefully selected set of
fertile ideas."† This is probably not what people think of when they are asked
why UNIX is so successful. We have tried to state our reasons. In any case,

D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Communications of
the ACM, vol 17, no. 7, July 1974, 365-375.

†

Who’s Who UNIX History 29

the increasing number of UNIX releases and the apparent continuing good
health of UNIX is astonishing.

1.12 Who’s Who

Though we cannot hope to provide a full list of everyone who was
responsible for some part of UNIX, we have listed some of the people that are
frequently referred to, albeit perhaps just in conversations at UNIX conferences.

It has been difficult tracking down some of the people involved in the
development of UNIX. Many have not left identifiable signatures behind, even
though their work was substantial. Others made large contributions as a whole,
but not to any one part that can be easily stated. (It seems as though hundreds
of people have hacked on the kernel.) In any case, please excuse any omis-
sions of credit.

Many people involved in UNIX are famous (sometimes more so) for their
roles in other unrelated projects. We have not listed these non-UNIX contribu-
tions to the world – not because we are myopic – rather, these attributions
would fill an entire volume by themselves.

Some people have extremely well-known nicknames, usually because
they were in the /etc/passwd file distributed with many of the early versions of
UNIX, or because their initials appear in so much source code. We have listed
these also, so that when you hear people say "dmr says …", you know that
they are referring to Dennis Ritchie.

Mike Accetta: Responsible for symbolic links, key (later to become
man -k) and /dev/pty.

Rick Adams: Major force behind UUNET. Wrote SLIP.

Alfred Aho: The A in awk and author of egrep and dbm library.

Eric Allman: Wrote sendmail, trek, tset and -me macros.
Major contributor to Ingres.

Ken Arnold: Wrote curses, fortune, and lots of other games.

Özalp Babaoglu:~ Co-responsible with Bill Joy for virtual memory in
Berkeley UNIX.

Who’s WhoUNIX History30

W. O. Baker: Rejected request for DEC-10 by Thompson, Ritchie
and Ossanna, leading to development of a much
smaller operating system on a much smaller
machine.

Andreas Bechtolsheim: Developed initial design for SUN board.

Steve Bellovin: Wrote first implementation of Usenet.

Walt Bilofsky: Wrote Rand editor.

Biff: Heidi’s dog.

Irma Biren: Mailed out all the Sixth Edition UNIX tapes.

Bruce Borden: Worked on MH and Rand editor.

Steve ("srb") Bourne: Created the Bourne Shell. Wrote adb.

Steve Bunch: Co-wrote first Arpanet (NCP) code for UNIX.

Brent Byer: Added split I/D-space to support PDP-11/45.

Ron Cain: Wrote Small C, first public-domain C compiler.

Rudd Canaday: Co-designer of UNIX file system with Dennis and
Ken. Created PWB group.

Lorinda Cherry: Writer of the Writer’s Workbench (diction, style,
etc.), bc, and dc. Wrote eqn with bwk.

Greg Chesson: Past drummer for Woody Herman Band, developer
of mpx files (forerunner to select()), original uucp
packet driver, Datakit, line disciplines and adaptive
control in dh driver.

Douglas Comer: Wrote Xinu. Responsible for first UNIX X.25 imple-
mentation with Paul McNabb and System V cron
with Bob Brown and Keith Williamson.

Dave Crocker: Wrote MMDF, MS.

Bill Croft: Wrote first UNIX internetworking implementation
(using PDP-11s).

Who’s Who UNIX History 31

Ted Dolotta: Responsible for -mm macros. First director of USG.

Robert Elz: Wrote BSD quotas and autoconfiguration.

Robert Fabry: Original faculty advisor to Berkeley CSRG who got
DARPA funding for project.

Stu ("sif") Feldman: Author of make, f77 and efl. Has nice wine cellar.

Mel Ferentz: Hosted first UNIX user group meeting. Founded
UNIX News (a.k.a. ;login:).

David Fiedler: Founded or edited more UNIX and C magazines
and newsletters than anyone else, including The
UNIX Software List, The C List, Unique, UNIX
Review, The C Journal, and The C Users Journal.

John Foderero: Wrote Franz Lisp.

Herb Gellis: Wrote xargs.

Jim Gettys: Co-responsible for X Window System.

George Goble: Did first influential UNIX port to an asymmetric
multiprocessor (two VAX-11/780s).

James Gosling: Wrote UNIX emacs. Co-authored NeWS with
David Rosenthal.

Gary Grossman: Co-wrote first Arpanet (NCP) code for UNIX.

Rob Gurwitz: Wrote BBN’s TCP/IP implementation which later
became part of Berkeley distribution.

Doug Gwyn: Wrote BRL’s System V emulation for BSD.

Teus Hagen: Established first uucp connections between U.S.
(decvax), Europe (mcvax) and many other countries.

Dick Haight: Wrote find, cpio, expr. Added named variables to
shell. Major contributor to PWB.

Chuck Haley: Wrote tar. Co-implementor of early versions of ex
and Pascal shell with Bill Joy.

Who’s WhoUNIX History32

Dennis Hall: Co-implemented first Virtual Operating System
while at Lawrence Berkeley Laboratory. Founded
Software Tools User Group.

Robert Henry: Wrote error.

Steve Holmgren: Co-wrote first Arpanet (NCP) code for UNIX.

Peter Honeyman: The Honey in Honey DanBer uucp. Wrote
pathalias.

Mark Horton: Wrote curses, terminfo and did substantial work
on uucp mapping project and Usenet.

Stephen ("scj") Johnson: Wrote yacc, pcc (Portable C Compiler), lint and
early versions of spell. Assisted Dennis in one of
first ports of UNIX (to Interdata 8/32).

Bill ("wnj") Joy: Wrote much of original Berkeley release including
virtual memory support, networking, Pascal, vi,
csh and termcap. Co-founder of Sun Microsys-
tems. Designed NFS. Received 1986 ACM Grace
Murray Hopper Award for work on Berkeley
UNIX.

David Kashtan: Wrote Eunice.

Howard Katseff: Wrote sdb and last.

Lou Katz: First president of USENIX.

Brian ("bwk") Kernighan: The K in K&R and awk. Co-authored The C Pro-
gramming Language which set style for how most
people write C. Wrote ratfor, ditroff, eqn and
pic. Shared co-responsibility for Version 7.

Andrew Koenig: Wrote varargs (a.k.a. stdargs).

David Korn: Wrote ksh.

Ted Kowalski: Responsible for modern fsck.

Bob Kridle: Founded Mt. Xinu.

Who’s Who UNIX History 33

Jim Kulp: Developed original version of job control and csh
directory stacks.

Peter Langston: Responsible for early USENIX go tournaments.
His friends Eedie and Eddie can often be reached
at (201) 644-2332.

Sam Leffler: Wrote tip with Bill Shannon. Major force behind
4.2BSD and Berkeley TCP.

Mike Lesk: Wrote lex, tbl, refer, -ms macros, uucp and
portable C library, precursor to stdio.

Don Libes: Co-author of Life With UNIX. Little else of note.

John Lions: Wrote first book describing and documenting the
UNIX system. Often misspelled as "Lyons."

Tom London: Co-responsible for 32V, first VAX version of UNIX.

Brian Lucas: Co-creator of first distributed UNIX file system (4
PDP-11s served by a PDP-10).

Heinz Lycklama: Wrote MERT with Doug Bayer. Wrote LSX, first
UNIX for a microprocessor (LSI-11). Responsible
for much early work on UNIX standards including
first (/usr/group) UNIX standard.

Tom Lyon: Did one of first UNIX ports (to VM/370).

Joe Maranzano: Responsible for USG.

Bob Marsh: Founder and first president of /usr/group. Founded
Onyx, first vendor of non-PDP UNIX systems and
microprocessor-based UNIX systems.

John Mashey: Wrote Mashey shell, which later merged into
Bourne shell. Major contributor to PWB.

Doug McIlroy: Suggested idea of pipes. Wrote tmg. Wrote diff
and spell. Research in speech processing on
UNIX led to grep.

Who’s WhoUNIX History34

Kirk McKusick: Wrote Berkeley Fast File System and portable
directory access routines. Prime force behind
4.3BSD. Wrote gprof (with Peter Kessler).

Lee McMahon: Wrote sed.

Al McPherson: Wrote fsdb.

Richard Miller: Did one of first UNIX ports (to Interdata 7/32).

Robert Morris: Wrote dc and bc with Lorinda Cherry.

Bill Munson: Responsible for Ultrix.

Mike Muus: Responsible for JHU/BRL UNIX.

Alan Nemeth: Responsible for BBN’s C machine, first microcoded
implementation of UNIX.

Landon Noll: Founder and judge (with Larry Bassel) of Interna-
tional Obfuscated C Code Contest.

Dan Nowitz: The Dan in Honey DanBer. Substantial contribu-
tions to original uucp.

Joseph Ossanna: Responsible for troff.

Rob Pike: Co-developer of Blit bitmapped terminal.

P. J. Plauger: Wrote first commercial C compiler. Started White-
smiths, Ltd. Responsible for Idris.

Dave Presotto: Wrote vgrind with Bill Joy.

Rick Rashid: Responsible for Mach. Designed CMU interpro-
cess communication.

Brian ("ber") Redman: The Ber of Honey DanBer.

Bill Reeves: Wrote vcat with Tom Duff and Mike Tilson.

John Reiser: Co-responsible for 32V, first VAX version of UNIX.

Sandy Ressler: Who??????

Who’s Who UNIX History 35

Dennis ("dmr") Ritchie: While he often denies doing as much as Thompson,
he is undoubtedly half the reason for UNIX. Large-
ly responsible for C language. For work on UNIX
with Thompson, received many prestigious awards
including 1982 IEEE Emmanuel Piore award and
1983 ACM Turing Award.

Marc Rochkind: Wrote SCCS, and bfs. Major contributor to PWB.

Rob Rosenthal: Co-creator of first distributed UNIX file system.

Steve Schaefer: Responsible for CPATH, LPATH, and MPATH.

Deborah Scherrer: Co-implemented first Virtual Operating System
while at Lawrence Berkeley Laboratory. Founded
Software Tools User Group.

Eric Schienbrood: Wrote more.

Eric Schmidt: Wrote BerkNet.

Jeff Schriebman: Founded Unisoft.

John Seamons: Did first port of UNIX to SUN board.

Donn Seeley: Did substantial work on f77, Ritchie compiler and
pcc.

Bill Shannon: Implemented first overlayed kernel for the PDP-11
with Bill Jolitz. Wrote early version of BSD printer
spooler.

Dick Shapazian: Responsible for designing early UNIX licensing
structure.

Kurt Shoens: Wrote Berkeley Mail (a.k.a. mailx), fmt.

Richard ("rms") Stallman: Responsible for emacs, GNU and Free Software
Foundation.

Armando ("aps") Stettner: Spent several years getting DEC to acknowledge
the existence of UNIX.

Bjarne Stroustrup: Wrote C++.

Who’s WhoUNIX History36

Joe Sventek: Co-implemented first Virtual Operating System
while at Lawrence Berkeley Laboratory. Founded
Software Tools User Group.

Andrew Tanenbaum: Wrote MINIX.

Rebecca Thomas: Co-authored first commercial book about UNIX
with Jean Yates.

Ken ("ken") Thompson: The person to blame for inventing UNIX. For work
on UNIX with Dennis, received many prestigious
awards including the 1982 IEEE Emmanuel Piore
award and the 1983 ACM Turing Award.

Walter Tichy: Wrote RCS.

David Tilbrook: Founded HCR.

Michael Toy: Author of two great games, rogue and
/etc/shutdown.

Michael Ubell: Wrote first history prototype, later adapted into csh.

Larry Wall: Author of rn, patch, and perl.

Larry Wehr: Responsible for modern named pipes.

Peter Weinberger: The W in awk. Wrote lcomp.

Peter Weiner: Obtained first commercial UNIX license for Rand
Corp. Founded Interactive Systems Corp.

Lauren Weinstein: Responsible for Stargate.

David Willcox: Wrote indent.

Chris Van Wyk: Wrote ideal.

Dave Yost: Made substantial contributions to Rand editor and
MH.

Walter Zintz: Created Uni-Ops user group.

Steve Zucker: Created early version of named pipes.

Chapter 2: UNIX Present
"The first step binds one to the second." – French proverb

UNIX can be defined in many ways. For instance, the manual that
comes with your UNIX system is one way. This entire book is another way.
Yet another is Dennis Ritchie’s personal opinion. There are many others. Each
of them presumes a certain context. Depending upon who you are and where
you are coming from, one view may be more appropriate than another.

We take several approaches to looking at what UNIX is, from the techni-
cal to the philosophical to the commercial. If you like one, consider the other
views as supplemental and try and understand those too.

In a sense, the rest of this book is all supplementary material to this chap-
ter. So is sitting down at a UNIX system, trying it out, getting to know it, and
writing a UNIX program. Tell others about it and see what they think. Talk to
a UNIX user, programmer, administrator or vendor. Attend a UNIX confer-
ence. Read some UNIX books and magazines. Dream about UNIX.

2.1 UNIX – A Perfunctory Definition

UNIX (yoo′niks), adj. 1. Trademark. one of several computer operating sys-
tems developed at AT&T: That toaster oven runs the UNIX operating sys-
tem. 2. a computer operating system or interface that bears significant
resemblance to UNIX. – UNIX-like. 3. associated with UNIX: the UNIX
shell. [after the Multics operating system; see UNI-, MULTICS, EUNUCHS]

2.2 The UNIX Philosophy

UNIX is much more than such simplistic definitions. It is more than an
operating system. It is a philosophy of programming. The main tenet is that the
power of UNIX comes from the relations between the programs rather than

37

The UNIX PhilosophyUNIX Present38

the programs themselves. UNIX encourages one to take existing programs
and combine them into a new, more useful program.

Understanding this simple idea is key to using UNIX effectively. Your
work will fit better in the environment, and it will be more understandable to oth-
ers who understand UNIX. It will be more understandable to anyone.

There are no hard and fast rules to UNIX. No one wrote down program-
ming laws that all UNIX programs must follow. There are no rules. However,
there are some observations that can be made.

• Small is beautiful.

Build a program that does one thing well. UNIX gives one the ability to
connect such programs together easily. The result is a synergy – a workbench
of tools that are more than the sum of their parts. Many other systems have
useful tools, but they generally don’t work together as readily as in UNIX.

• 10 percent of the work solves 90 percent of the problems.

UNIX was never designed to be the system to solve all problems. It pur-
posely ignores certain difficult problems. The result is a system that solves
almost as many, much more easily.

• When faced with a choice, do whatever is simpler.

Simpler tools are more reliable, easier to understand and easier to use. A
program with lots of special case code may find that it has unexpectedly placed
the burden on the user to adapt their problem to the special case solution.
After enough special cases are added, the program becomes slower than it
was originally.

A good example of the previous two points is the UNIX file system. It
has a single simple file access method in contrast to complex file systems of oth-
er operating systems. The UNIX file system is very efficient and works easily
for almost all applications.

• Solve the problem, not the machine.

Build programs while ignoring the underlying machine or operating sys-
tem as much as possible. Don’t depend on internal data structures or algo-
rithms. Focusing on the machine results in nonportable code. Such programs
are generally not useful in different contexts and don’t lend themselves to help-
ing solve other problems.

The User Interface UNIX Present 39

• Solve at the right level, and you will only have to do it once.

Solving problems is easy. Solving them only once is the key to UNIX
problem solving. For example, file name pattern matching is only implemented
once (the shell), not in every program that uses files. Screen paging is only
implemented once, not in every program.

Notice that none of these guidelines are technical in nature. For exam-
ple, the last example mentions screen paging. It can be implemented once in
either the operating system or a stand-alone program – we don’t care. The
point is only that it should be done once. Then all other programs can graceful-
ly make use of it. What these guidelines do spell out is a sense of style. In a
way, they implicitly decide the technical aspects of a program. Any program
which follows them is a program that would live well in a UNIX system.

Of course, these are generalizations of observations, not rules or laws.
There are exceptions. For example, sometimes you absolutely have to solve
100% of the problem, or use a complex algorithm. However, these are the
exceptions in UNIX, and they are rare. Their relative lack, in contrast to other
operating systems, makes UNIX a system that hangs together. It is a system
that is flexible and easy to use.

2.3 The User Interface

This is what most people see first when they use UNIX. And those who
do not go on to do UNIX programming are often left with the impression that
this is exactly what UNIX is. (If you want details on the shell, see the User
Environment chapter.)

In fact, the shell that most of us use is only one way of interacting with
the system. You can use a window system, or a menu system, or design your
own interface. Because the shell is what most people interact with, however,
we come to view it as the face of UNIX.

The shell was designed for users that were programmers, not naive
users. This is ironic considering that most UNIX (and other computer) users
are not at all interested in programming. Almost all commands require some
creativity and programming. For example, to print the date on the lineprinter,
the command:

date | lpr

The User InterfaceUNIX Present40

combines two existing programs to perform a new function. The shell allows
much more complicated expressions, as well as programs that are as sophisti-
cated as can be done from any programming language.

On the other hand, such a complex interface carries with it the potential
for overwhelming and confusing complexity, just like any language. The shell is
not biased towards handholding – very little is in UNIX – and therefore you
must be careful what you say.

It is easy to demonstrate that the shell is unfriendly towards naive users.
A classic example is that rm * will silently delete all the files in your current
directory, regardless of your intent. (Perhaps you just wanted to remove a file
actually named *.)

Depending upon your point of view, this is either a feature or a bug. rm
does not see the asterisk. The shell replaces the asterisk by a list of files and
gives that to rm. Possibly, if rm knew that you had just asked to delete all your
files, it would ask you if you were sure since this is a fairly unusual request.

Nonetheless, there are valid reasons for doing this. And further, there
are ways of protecting yourself. We are not trying to tell you that we apologize
for major flaws in UNIX. We are trying to explain that the shell is designed for
programmers who have some understanding of the consequences of their
actions.

After all, imagine driving in your auto. You turn the wheel so that the car
is now heading directly for a tree. Does your car ask you if you are sure you
wish to head for a tree? No. But even if it had the wisdom to do so, you might
have a good reason to head for a tree. Or go 20 mph over the speed limit. Or
even drive home in reverse.

When the UNIX shell first appeared, it was a tour de force. There was
nothing comparable. While early shells are now considered primitive by com-
parison with modern ones, the point is that a shell remains a good tool for the
programmer. Pipes, redirection, and the control features of the shell allow the
programmer to write new programs quickly, often without writing any C code.
Small, almost simple utilities can be easily combined, becoming yet another utili-
ty that can be used and combined in the same way.

The lack of file formats and the lack of distinctions between files and
devices obviates the user and programs from having to deal with differences.

UNIX the OS UNIX Present 41

Once a program has been implemented, it can read input equally well from a
device, a user at a keyboard, or the output of another process.

The user interface combined with the other tools creates a synergistic
environment that allows programmers to be much more productive than other
systems. And the fruits of their labor, in turn, are more immediately understand-
able and useful to other programmers.

2.4 UNIX, the Operating System

Many people think of the shell as the essence of UNIX. It is the part
they first encountered and the part they are most likely to remember. But a pro-
grammer is more likely to remember what is underneath all that – the infrastruc-
ture, so to speak.

The kernel, the system calls and the libraries, and to a lesser extent, the
utilities (including the shell) are what UNIX is. But the libraries and utilities are
creations after the fact. They can be rewritten, or even ignored. But what you
cannot ignore are the system calls. These are the entry points into the UNIX
kernel. If you could change them, you would have a different operating system
than before. It would be a different version of UNIX, or perhaps something
totally unlike UNIX. Everything else is written in terms of them, including
every library subroutine and utility. They strongly affect the view of everything
else around them.

The paradigms that are so innately UNIX are in part due to the design of
the system calls, and also partly due to the UNIX philosophies expressed else-
where in this chapter.

For example, the ability of programs to manipulate devices and files with
the same code (like mv, cat, rm, etc.) is because the system calls also do so.
One writes the following C code to open the file "foo" for reading:

open("foo", READ);

The following code does the same thing for the device "bar":

open("bar", READ);

Not only does the basic I/O system work the same for devices and files,
but so do access permission and naming conventions. The results are the con-
ceptually clean utilities of UNIX. There are very few exceptions to this
paradigm, and there are none that are artificial – like other operating systems

UNIX the OSUNIX Present42

where one might use two different system calls to open files and devices, not to
mention different kinds of devices, or files with different access methods, or…

Other parts of the kernel present the same type of straightforward access
to the system. For example, there is only one call to bring programs into exis-
tence – execve(). Permissions are controlled entirely by chmod(). And so on.

Of course, there are potential problems with a "tight" system like this.
The most important is that some things will never fit the UNIX paradigm. But
people are going to try, and in two different ways. Some will make it work
within the existing UNIX system, no matter how inappropriate (and slow) it is.
Others might try adding a new system call, totally fracturing the consistency of
the paradigm (as well as making the kernel a lot larger).

The first few versions of UNIX were written by two men sharing the
same office. In that environment, it was possible to discuss future implications
and ramifications that the addition or change of part of the kernel would have
on any other. But once UNIX was distributed, this became much more difficult
and unlikely.

Some fanatics of purity (see Minix in the Underground chapter) believe
that Version 7, the last version released by research, is the last true UNIX.†
Like biblical fundamentalists, the fanatics are fun to listen to but entirely imprac-
tical in this day and age. We cannot take giant steps backward, because no
matter how much modern UNIX creaks, it is simply much more capable than
V7.

Thompson and Ritchie knew what they wanted, and knew what they
were doing. They strongly believed in the 10 percent – 90 percent rule, for
example, and were willing to give up a little functionality to avoid a lot of com-
plexity. For example, UNIX file protection doesn’t provide a means of check-
ing access on a per-user basis (unlike capabilities or authority lists). However,
their applications had very little use for such fine-grain protection.

And yes, they made some design mistakes. In fact, a lot of UNIX is the
result of evolution. Things that did not work out were removed (e.g., multi-
plexed files) or changed (e.g., file name lengths). Since the user base was
small and sophisticated, there was no necessity to maintain old interfaces forev-
er. Such modifications are rare in commercial operating systems (including

† Indeed, both Thompson and Ritchie had stopped putting their name in the front of the man-
ual after V6, as if to say that they could no longer be responsible for UNIX.

UNIX the OS UNIX Present 43

recent versions of UNIX). The lack of mistakes in UNIX is as much due to
divine understanding as it is to its chance to evolve without carrying around the
baggage of those old mistakes.

Since Version 7, the last release of UNIX common to all others, people
have created many different versions of UNIX. And while there are incompati-
bilites, virtually all of the UNIX kernel calls still continue to be the base upon
which all other UNIX systems rest.

The kernel itself is not inviolate. AT&T has not protected the functional
specification of the UNIX kernel in any way. This allows cloners to build a
UNIX kernel without using any of the proprietary source code. With UNIX
standards, it is possible to build a functionally equivalent system.

What is important about the kernel is its interface – the system calls.
One may have a kernel that works in a completely different way from an
AT&T kernel, and as long as it supports the system calls, it is still UNIX. (And
here, we are not talking about the proprietary variety, but the essence.)

Some utilities have knowledge about the kernel built into them. (This is
probably one of the more grievous mistakes UNIX contains.) For example, the
process status command, ps, knows how to read through kernel data structures
directly without going through any system call. When the kernel was written,
Thompson and Ritchie reasoned that since there was only one program that
would need this information, it wasn’t worth creating a new system call.
What’s more, the data of interest seemed fairly machine dependent.

The result of this is that ps remains a machine-dependent command.
While this allows vendors to not have to duplicate historical remnants of the ear-
ly UNIX kernels, it introduces a small amount of nonportability into certain
areas of UNIX – particularly those that require information from the kernel.

Vendors have tried to remedy this by extending existing system calls and
introducing new ones. It is a difficult problem, the more so because many ver-
sions of UNIX have a completely rewritten kernel. Furthermore, vendors grow
comfortable with the idea that they can add or modify system calls. This result
is a divergence of UNIX systems.

Current UNIX kernels are much larger than the original one. Early ker-
nels fit in 40Kb. Now, kernels of 400Kb are considered small, and some
machines have kernels larger than 1Mb. (Of course, the early kernels didn’t
provide things like virtual memory, networking or large buffer caches.)

VersionsUNIX Present44

As UNIX kernels increase in size substantially, we face several prob-
lems. Large kernels require more physical (and possibly virtual) memory, in
turn placing difficult demands on memory management. Such kernels are much
more complex and difficult to debug. And they further isolate the user from the
ability to easily change the system.

Many researchers are reexamining the concept of the modern UNIX ker-
nel in attempts to reduce its size and complexity. For example, it is possible to
reimplement parts of the UNIX kernel as user code. This has been done with
the file system and other device drivers. While we normally consider these as
requiring quick response to interrupts, a much smaller kernel can work so much
faster, that such high-demand user code is possible. Furthermore, smaller ker-
nels enhance reliability (less code, less errors) and give users more control.

2.5 Versions
"If you want to make enemies, try to change something." – Woodrow Wilson

While UNIX standards struggle to keep UNIX systems looking alike,
commercial pressures pull in the opposite direction. Simply producing a faster
UNIX isn’t good enough. Vendors want products that differentiate from each
other. UNIX vendors want sex appeal. In a way, UNIX’s malleability may be
its Achilles Heel. It is so easy to modify UNIX, that everyone does. Dramati-
cally. It is not possible to describe UNIX as a single operating system without
doing an injustice to a great many vendors. It is kind of like trying to describe
an automobile. Every manufacturer tries to be different, and yet they all have
to produce the same thing – an automobile.

The same holds for UNIX. There are so many companies selling UNIX
that we necessarily see many, many different versions. While most of the ver-
sions can be grouped in a gross sense on technical features, there are some
that resist any kind of clean classification. This is especially the case with
UNIX clones.

The majority of UNIX systems are based either on Berkeley 4.2 (often
abbreviated as "BSD" for "Berkeley Software Distribution"), or System III or V
(often abbreviated "SV"). All of these, in turn, share a common heritage from
Version 7 (often abbreviated "V7"), released by AT&T in 1978. (Older ver-
sions of UNIX are covered in the History chapter.)

Some people consider XENIX to be a version in its own right, but it is
based on System V UNIX and is really not very different externally. (Early
XENIX systems were based on V7 and later System III.) Internally, XENIX is

Versions UNIX Present 45

different from System V – significant performance work has been done for it to
run well on microcomputers. This is the largest area of use for XENIX.
Because of the low prices and popularity of the microcomputers that XENIX is
sold for, it is easily the most widely sold version of UNIX.

Supported by the U.S. Department of Defense’s (DoD) Advanced
Research Projects Agency (DARPA), Berkeley extended V7 UNIX so that it
could support large AI projects in a networked environment. It added virtual
memory support for DEC’s new VAX 32-bit computer. And it incorporated a
significantly enhanced version of BBN’s implementation of the TCP/IP network
protocols, developed and proven very successful in the Arpanet several years
earlier.

(from "Interview with Bill Joy," UNIX Review, vol. 6, no. 4, April
1988)

Peter Weinberger: "…SunOS…has three times the executable text
and twice the number of source lines that our system, V9, has. Why is
that?"

Bill Joy: "We have more customers than you do, Peter."

Oh, so that’s the difference!

Many new user and programmer interfaces were added, such as the C-
shell, job control, vi and termcap. Some of the modifications, such as a new
style of signal handling, were quite incompatible with earlier versions of UNIX.
Because of the incompatibilities, the emphasis on networking and AI, and the
undergraduate nature of some of the other additions, Berkeley UNIX was seen
as a research project. Berkeley has expressed its intention to introduce incom-
patible features in future versions (or more precisely, "not to necessarily remain
compatible with earlier versions"). With no intent to provide support, it is not
surprising that some commercial companies avoid Berkeley’s UNIX, no matter
how futuristic it is. As if lack of support wasn’t enough, many people have
extended Berkeley UNIX (again without support) with special features, more
"improvements" and rereleased it. Thus, we find a UM (University of Mary-
land) BSD UNIX, a CMU (Carnegie Mellon University) BSD UNIX, a
JHU/BRL (Johns Hopkins University/Ballistic Research Laboratory) BSD
UNIX, and so forth.

VersionsUNIX Present46

By comparison with BSD, AT&T’s System III and V have remained
much more compatible with their predecessors. However, some things have
changed (e.g., terminal characteristics). And what they kept came with all the
old bugs (e.g., signal delivery was still unreliable). AT&T chose to ignore cer-
tain areas (e.g., networking, job control, virtual memory) important to
researchers and large systems, and emphasize features (e.g., shared memory,
semaphores) of importance to commercial applications. Originally they lacked
some modern features such as a screen-oriented editor, but now they have
incorporated many of the Berkeley enhancements. More importantly, and in
contrast to Berkeley, AT&T has stated that its new systems will be upward
compatible with old systems (starting with System III). While System V still
lacks solutions for real-time control and other problems, it is a much more
appropriate choice for commercial users by comparison to Berkeley’s UNIX.
(System IV existed but never became commercially available.)

Currently, both System V and Berkeley UNIX have adapted much of the
work that appears in the other. What remains are not really functional differ-
ences, but rather arbitrary differences, as if two brothers left home after high
school and we compared them after ten years. We might find that they are
both earning good money, but one might be married and the other single. One
might like exotic cars, while the other prefers pickups. They would still both
share strong resemblances to their parents, but not enough that their mother
wouldn’t notice if one of them tried to substitute for dad.

UNIX versions resemble brothers and fathers. Though a UNIX system
may be based on some version of UNIX, this in no way implies that it is a sub-
set (or even a superset) of that version. Each reseller is allowed to bundle and
unbundle the software as it sees fit. Unbundling is popular with small systems.
The user may not be interested in parts of UNIX (such as word processing, or
program development) and may not have the disk space to store the stuff any-
way. Many VARs completely rewrite parts of UNIX (the file system, for exam-
ple) and then discard nonapplicable utilities (such as fsck).

As well as the Berkeley derivatives and AT&T derivatives, there are
mixed breeds (like Apollo and Pyramid) of both Berkeley and AT&T, UNIX-
like nonderivative derivatives, UNIX emulators and various combinations of
each of these. Plus, there are systems like MS-DOS and OS/2 that are clearly
not UNIX but have incorporated many UNIX features in them.

Trying to understand what is UNIX and what isn’t is very difficult
because of this diversity. It is the aim of the (unfortunately, many) standards

Portability I UNIX Present 47

committees to put an end to this tower of Babel. It is doubtful that this will
result in a single universally accepted standard; however, some convergence is
likely to occur (see the Future chapter).

There are over 100 companies offering UNIX, UNIX clones, UNIX emu-
lators and UNIX-like operating systems on virtually every general purpose com-
puter system from micros to supercomputers. Plus, there are several public
domain UNIX systems (see the Underground chapter). It is possible to get
more than one version for many popular computers. (At one point, there were
five versions of UNIX available for the IBM PC.) This trend will undoubtedly
continue. At the same time, there are several standards groups (see the sec-
tion covering standards) that are trying to define what UNIX is, or perhaps
what it was.

Fortunately, the differences between all these systems at the user level
are slight. System V has gradually adopted many of the good things that were
developed at Microsoft and Berkeley (gee whiz, talk about a cheap way of get-
ting software development done). Significant differences lay at the program-
mers level. These can destroy the portability of the software.

2.6 Portability – Part I

One test of the differences and similarities between versions is the porta-
bility of applications. If you are an end-user of some UNIX-based product and
the vendor has the same product running on both versions, then you probably
don’t care. If you are that vendor and you have to get your product running for
that previously mentioned end user, you had better care, and take care when
writing your product.

The most critical differences between UNIX versions (including Berke-
ley, System V and XENIX) are the areas which UNIX V7 never addressed
such as real-time processing and networking.

Additionally, UNIX systems have diverged on points which UNIX V7
addressed but somewhat inadequately, such as interprocess communication,
virtual memory, device control and signals.

Because of these differences, one cannot assume UNIX code written in
C is portable. Writing portable software is a specialized activity that requires a
lot of experience. It can be expensive and time consuming. Portability, like C,
is not for everyone.

Portability IIUNIX Present48

Bearing in mind the preceding discussion, it is still possible to write
portable UNIX software. A particularly good tool in learning how to go about it
is the book Portable C and UNIX System Programming from Rabbit Software.
Following its guidelines will generally result in programs that easily port to most
reasonable machines. But don’t be ridiculous and complain when your Sinclair
ZX81 with 1Kb doesn’t run troff.

Of course, sometimes it is necessary to write nonportable software. Just
make sure you advertise it as such. And at least make the effort to isolate the
nonportable parts so that when the day comes when your software is moved to
a new machine, it doesn’t cause the poor programmers heart attacks when
they look at your source code.

Ongoing standards work may help reduce the problems with portability.
These are covered at length in the Future chapter. If and when these become
official standards (and we all decide on the same one), it may be much easier
to write code which is guaranteed to be portable.

2.7 Portability – Part II

A second aspect of portability is that UNIX itself is portable. This means
that it works on a variety of machines from micros (the IBM PC and compati-
bles) to minis (PDP-11, Interdata), to superminis (VAX, 68000) to mainframes
(Amdahl, IBM) to supercomputers (Cray). It has also been ported to machines
with new and unusual architectures (RISC) as well as being co-resident with
other operating systems (VM, VMS).

This was made possible in part because UNIX itself is written in the high-
level C language which has also been ported to these machines. Most other
operating systems have been written in assembler or a high-level proprietary
language. Secondly, UNIX assumes little about the hardware underneath and
makes few demands upon it. While this means it is possible to build faster sys-
tems than UNIX on a given piece of hardware, it also means that you will have
an operating system that is much more reliable having been banged on for hun-
dreds of man-years in many other machines. It also means that all your old
applications will continue running. This is one of the reasons why UNIX pro-
vides an attractive market base, having been implemented on more different
pieces of hardware than all other operating systems combined.

Besides running on many computers, UNIX supports many different
peripherals. It also supports infinitely many kinds of terminals through either
termcap or terminfo, systems for describing terminal capabilities in a high-level

UNIX Licensing UNIX Present 49

description. (See the section on terminal handling in the Programmer’s Environ-
ment chapter.)

2.8 UNIX Licensing

Some of the most confusing areas of computers are the legal issues,
including ownership and rights on software, hardware and firmware. Many
areas are not yet settled. However, when it comes to UNIX, it pays to be cau-
tious. AT&T has staked out its turf. It has secured patents, copyrights and
trademarks on UNIX, its concepts, software and name. And paying the
lawyers in defense of an AT&T suit would probably bankrupt most companies.
While AT&T has never taken a company to court, their lawyers have shown
up on several doorsteps with suggestions for behavior modification.

AT&T’s licensing fees for UNIX are quite confusing, varying across dif-
ferent machines, operating system releases, and number of users. This is fur-
ther complicated by third-party vendors and developers of UNIX.

Basically, there are two kinds of UNIX licenses, a source license and a
binary license. A source license buys the right to read the source, change it,
recompile it and run it all on one machine. Anything else costs extra (see
below). A source license includes the complete set of UNIX sources for one
machine architecture. AT&T has a small set to choose from. A binary license
buys the right to run UNIX on one machine (which includes some reconfigura-
tion rights) and that’s it.

The simplest type of license is a per-machine license, meaning that you
can run UNIX on one CPU. If you want to run the same exact UNIX on anoth-
er CPU, you have to pay extra for it. In fact, there are a number of extra
charges depending upon other factors:

• The cheapest system is a single-user system. A multiuser license
costs more, and there are different plateaus. (No, there is nothing
that prevents you from running more users than you are licensed
for – you are on your honor to keep this part of the contract.)

• You only get the source to one CPU-type. If you want another,
you have to pay extra for it.

• You only get the source to one version. If you want another, you
have to pay extra for it.

• You are not allowed to distribute the source or binaries to anyone.
If you want to distribute the binaries (that contain AT&T propri-

Buying UNIXUNIX Present50

etary code, such as a library), you must buy a distribution license
(extra). If you want to distribute the source, you must pay extra
for it, plus the seller must buy or have a UNIX license from AT&T
corresponding to the version of UNIX that the source is from.

An excellent paper on UNIX licensing is available from /usr/group.

AT&T’s Customer Communication Center will also attempt to explain
UNIX licensing. Of course, since AT&T is the one who set it up in a most con-
fusing manner, you should not expect it to be the most understandable source.

Fortunately, most people do not have to delve deeply into licensing trivia.
If you buy a UNIX system for your own use, the seller generally includes the
price of a UNIX license bundled with the system.

2.9 Buying UNIX

2.9.1 Making the Decision

Buying a UNIX system should be handled like buying any other computer
system – with a clear, cool head. Experience helps a lot. If you have none,
find other people who have systems. Even better, find people who have the
same applications that you do and talk to them.

Don’t be suckered by features, and especially by a salesperson’s view.
Ignore those benchmarks unless they are clearly for systems with similar hard-
ware, and running your applications. Try to be application driven. Will the sys-
tem do what you want? Is there an application that exists now to do what you
want? Will the system meet your future needs?

Is the system compatible with other systems you own or use? Don’t
believe UNIX is portable until you’ve ported your programs and data. Realize
all UNIX systems are not alike. The hardware differences are usually obvious -
the software differences usually aren’t.

It is nice to have a computer of your own to learn about it. But UNIX
systems are expensive. And you may find out a UNIX system is overkill for
what you need. If all you want to do is play games, a UNIX machine is proba-
bly not for you. Be honest with yourself. Why do you really need a computer?

See if you can borrow time on someone else’s UNIX system. They are
multiuser, so if you don’t run big programs, many UNIX administrators will be
accommodating if you explain your situation. Promise to use it only at night.

Buying UNIX UNIX Present 51

Sign up for a computer course at a local college or university. That will give
you access to a UNIX machine for a whole semester.

2.9.2 The Mechanics

UNIX can be purchased in a number of ways. Unlike most programs,
buying UNIX is particularly complex due to AT&T licensing requirements, as
previously described.

AT&T holds the original trademark and copyrights to UNIX. Every copy
sold is licensed either directly or indirectly through them. AT&T offers several
different versions of UNIX (V7, System III, System V, for example). Each
license is written for a particular machine or set of machines (designated by
CPU), the number of maximum users, and whether it is a binary or source
license. It is further qualified by the type of buyer one is (government, commer-
cial, academic) and whether you plan to resell UNIX or include it in a product.

You probably won’t deal with AT&T directly if you are buying a precon-
figured version of UNIX. For example, XENIX is a licensed version of UNIX
sold by Microsoft. You may buy XENIX directly from them, preconfigured for
a PC and single-user operation with minimal sources.

UNIX vendors also unbundle UNIX tools and applications so that it is
possible to buy, say, just the C development tools. Unbundling usually has the
benefit of a lower price than that of a complete system. Because of this, how-
ever, you must be very careful to check that the system you are buying has the
software components that you need. For example, if you ever expect to add a
device driver, you will probably have to pay extra for the programs that allow
you to rebuild UNIX.

If you are buying a UNIX look-alike, you are not paying for a UNIX
license from AT&T and can expect such software to be less expensive. How-
ever, this is not always the case. Many UNIX cloners claim their products are
completely rewritten, and deserve as much money as any real operating sys-
tem. More in the cloner’s favor is that their licensing rules are much less
restrictive. For example, several UNIX look-alike systems provide the com-
plete source with few restrictions on what you can do with it.

Unless you have bought your UNIX system directly from AT&T, you
have become a customer of whatever company you purchased your system
from. If you have questions or problems, you should speak to that company,
not AT&T. The company will contact AT&T, if necessary.

UNIX SellersUNIX Present52

2.10 The Dominant UNIX Sellers

UNIX is a licensed product of AT&T. Therefore, every version of the
real thing is licensed from AT&T and based on an AT&T version. Now this
doesn’t mean it is making most of the sales, nor does it mean it is making the
lion’s share of the profits.

Indeed, at the beginning of 1987, Microsoft claimed that two-thirds of the
300,000 UNIX licenses worldwide were for XENIX, Microsoft’s version of
UNIX. Of course, most of the licenses were binary licenses, which are relative-
ly cheap – on the order of $1 to $500. Buying even a relatively cheap UNIX
box at say, $5,000, from a UNIX reseller which has to pay AT&T $100 per
binary UNIX sale means that the reseller is getting the lion’s share of the mon-
ey. The reseller has probably bought the complete UNIX source code (around
$45,000 in 1986), a one-time charge, so that has to be amortized over the
income from each system sold.

Nonetheless, many computer companies have chosen to buy UNIX
source code licenses, and become UNIX VARs (Value-Added Resellers). If a
company sells 500 complete systems at $10,000 a piece, that amounts to a
gross income of $5,000,000. Subtracting from that a $60,000 source licensing
fee and the per-system binary fee of $100 times 500 still leaves a net of
$4,890,000 to spend on glitzy packaging and a little value-added-development.
The costs directly attributable to licensing on a per-system basis in this case
would only be $220 or 2 percent of the final retail cost.

As we said earlier, Microsoft and SCO held the lead in the number of
licenses sold to end-users. However, their market has in the past been aimed
at the low-end single-user systems, while most other companies chose to cover
high-end single-user systems or multiuser systems. ABC Corp. may have 500
UNIX users on PCs running XENIX each with their own copy of XENIX,
while XYZ Corp. may have 500 UNIX users sharing five Crays. Clearly, licens-
es or copies of UNIX sold is not always a valid indication of number of users.
We are constantly reminded of this whenever we see someone compare the
number of UNIX licenses to the number of MS-DOS licenses. MS-DOS is in
the millions, but each one is limited to a single-user system. (There are high-
end multiuser XENIX systems, and multiuser MS-DOS-compatible systems,
but these constitute a small fraction of the market.)

While Microsoft and SCO are the leaders in sublicensing agreements,
AT&T is the leader in actual number of users. Informal surveys show that by

UNIX Sellers UNIX Present 53

number of users there is no majority; however, AT&T versions of UNIX
(primarily System III and System V) account for approximately 35 percent of
the market. So AT&T’s claim that System V is "the standard UNIX" might be
more accurately written as "the most popular standard UNIX."

System V UNIX is available on many machines. Unlike the XENIX
ports, straight System V ports span the gamut from micros to supercomputers.
However, XENIX and System V are slowly becoming the same thing. That is,
many programs port with minor or no changes between XENIX and System V
hosts. The percentage is constantly growing. AT&T and Microsoft have a
binary standard for certain machines, meaning that programs will run without
recompiling on both types of systems which use the same hardware.

There are hundreds of companies selling systems based on XENIX and
System V. Some of the more well known include Apple (A/UX), Arete Sys-
tems Corporation (Arix), Databoard Inc. (D-NIX V), Hewlett-Packard Co. (HP-
UX), IBM Corporation (IX and AIX). And while the X/OPEN effort is attract-
ing the most attention in Europe, Japan’s MITI (Ministry of International Trade
and Industry) has clearly expressed its desire for development environments
based on System V with Berkeley extensions.

If we add together XENIX’s share of the market with AT&T’s, it comes
to about 44 percent of the market. What is left is primarily the Berkeley vari-
ants, the clones, and some specialized versions of UNIX.

Berkeley is the original source for all Berkeley versions of UNIX. It has
distributed thousands of 1BSD and 2 (for PDP-11s) and 4BSD (for VAXen)
since 1977. And it will continue this for the foreseeable future. The UNIX
effort at Berkeley has attracted research grants, good students and faculty as
well as raising the prestige of the computer science department. Even outside
Berkeley, its UNIX dominates the research and future of the entire UNIX mar-
ket because it is often the first place where new ideas appear.

It is possible to obtain UNIX directly from Berkeley, but this is a research
product, not a commercial one. You will have to get support for it elsewhere.
Furthermore, Berkeley does not provide (or even recommend) hardware,
which you will have to obtain separately. Many companies have taken advan-
tage of this void and offered software support (e.g., Mt. Xinu) or complete com-
mercial systems (e.g., Sun, DEC, Wollongong) based on Berkeley UNIX. One
notable company is Mt. Xinu. Since Berkeley does not support its own distribu-
tion, several Berkeley expatriates formed Mt. Xinu as a support group. It col-

UNIX SellersUNIX Present54

lects bugs and fixes, and redistributes them. Additionally, Mt. Xinu sells its own
version (more/BSD) of Berkeley UNIX. Unlike Berkeley, Mt. Xinu will config-
ure your UNIX for a large variety of devices and computers, easing some of
the necessity of having a UNIX guru around.

There are fewer companies selling Berkeley ports than System V and
XENIX ports. Nevertheless, these companies are doing quite well. Sun
Microsystems, for example, is the leader in total workstations sold. This is illus-
trative of the market that Berkeley-based vendors have targeted. Their market
is more oriented towards scientific/engineering/academic applications, which
finds healthy acceptance of Berkeley’s UNIX. They make up about 20% of the
UNIX user base.

Some companies that sell Berkeley-based UNIX are: Convex Computer
Corp., Digital Equipment Corp. (Ultrix), National Semiconductor (Genix), and
Sony Microsystems. It is not surprising that fewer vendors support Berkeley
UNIX. Berkeley’s attitude toward support and future direction is not something
that everyone is prepared to deal with. Furthermore, the system as delivered
requires substantial modifications to make it into a commercial product. While
BSD is definitely not a toy, it isn’t cellophane wrapped either. Keen program-
mers don’t seem to mind this. Indeed, Berkeley UNIX is more in tune with
what many programmers want, and it follows that Berkeley UNIX flourishes in
research institutions. But it is more work for companies to finish it off as a com-
mercial product.

Like XENIX, there is much market pressure to merge Berkeley UNIX
with System V. Unlike XENIX, however, Berkeley UNIX (at least at Berke-
ley) will remain distinctly different – forever a research project exploring new
ideas, and necessarily incompatible approaches with existing systems. Howev-
er, commercial implementations of Berkeley UNIX have tempered the original
brashness of Berkeley UNIX. And we find that Berkeley UNIX is slowly merg-
ing with System V (just like XENIX).

Of course, some think the speed of this merging is akin to plate tectonics.
Thus, many vendors have taken to offering multiple versions. Referred to as
dual universe systems (coined by Pyramid), many vendors have ingeniously fig-
ured out how to supply systems that can run both Berkeley and System V pro-
grams. Some of these vendors are: Apollo Computer Inc. (DOMAIN/IX),
Pyramid, Sequent Computer Systems, Inc. (Dynix), Sequoia Systems, Inc.
(TOPIX), Sun Microsystems (SunOS), and The Wollongong Group (Eunice
SV/BSD).

Hardware and Porters UNIX Present 55

At the other end of the spectrum are vendors who have purposely sacri-
ficed compatibility with AT&T’s or Berkeley’s UNIX, for one reason or anoth-
er. For example, most commercial UNIX versions do not support real-time
computation. In the past, this has meant that vendors of such products have
had to make significant modifications to the UNIX system. Many have chosen
simply to ignore compatibility problems resulting from such extensions. Since
the only standards were old and weaker de facto standards, this was under-
standable.

2.11 The Dominant UNIX Hardware and Porters

It is possible to buy UNIX from any number of the porters if you have
fairly common hardware. For example, in January 1987, it was possible to get
UNIX for the PC/AT from Mark Williams (Coherent), Interactive Systems
(IN/ix), Microport Systems, Inc. (System V/AT), Microsoft (XENIX Version
5.0), Opus Systems (Opus5), Prentice-Hall, Inc. (Minix), Quantum Software
Systems Ltd. (QNX), Santa Cruz Operation, Inc. (SCO XENIX System V),
VenturCom, Inc. (Venix System V), and Whitesmiths, Ltd. (IDRIS).

Additionally, there are many companies reselling these same systems for
the PC with minimal changes. For example, IBM sells SCO’s XENIX,
Microsoft’s XENIX and Interactive System’s IN/ix.

The PC is a computer based on Intel CPU chips. These chips strike a
good balance between dollar value and CPU power. On PCs using more pow-
erful chips, such as the Intel 80386, they easily support the straightforward mul-
tiprocessing architecture presented by UNIX. These are typical of chip sets
that have grown favor with UNIX vendors.

These chip sets are characterized by being relatively cheap and fast.
They have good support for multiprocessing operating system architectures and
the ability to address at least 232 bytes of virtual memory. And, they can physi-
cally support at least 4Mb of physical memory. The following table lists some of
the vendors selling UNIX or UNIX systems based on common chip
sets.

Hardware and PortersUNIX Present56

Berkeley

Intel

DEC

Motorola

NSC

Generic Ports

Eakins, Wollongong, Mt. Xinu,
DEC, Berkeley

Sun, Scandia Metric, Masscomp, Inte-
grated Solutions, Apollo, Gould,
Sony

NSC, Zaiaz, Competitive Computer
Systems

Berkeley

Interactive, IBM, Opus, Norand, SCO,
Microport, AT&T, Venix, Intel, Sphinx,
Compaq, Microsoft, Altos, Systime, ITT,
Lee Data, Scientific Micro Systems, Tandy,
WiPro Information Tehnology

Interactive, Wollongong, NUXI

Alcyon, Motorola, AT&T, Unisoft, Arm-
strong, Dual, Aston, HP, Integrated Micro
Products, Scandia Metric, Masscomp, Sun,
NCR, Heurikon, Isotron, Plexus, Conver-
gent, Microbar, Sperry, PTL Software,
Stride, Wicat, Counterpoint Computers,
Tadpole Technology, Honeywell, Silicon
Graphics, Apollo, Macq Electronique

Zaiaz, NSC, AT&T

AT&T, SCO, Microsoft, Unisoft, Interac-
tive

System V and/or XENIX

Multiple Vendors Selling UNIX for Popular Chip Sets (c. 1987)

Chip Set

This table is a snapshot of UNIX offerings from early 1987. It is not com-
plete. Rather, it is simply meant to illustrate that there were a large number of
vendors offering UNIX systems on hardware based upon a very small number
of different chip sets. Also, notice the large number of vendors that chose to
use AT&T or XENIX over Berkeley UNIX.

UNIX has been implemented on just about every possible type of comput-
er system. It would be pointless to list them all. For any given hardware, either
the hardware manufacturer offers UNIX (sometimes in spite of having an
already existing proprietary operating system), or a third-party vendor can pro-
vide it.

It may seem strange for a company to sell both UNIX and a proprietary
operating system. But they do not necessarily compete with each other. Some
operating systems specialize in an area that UNIX does not address. However,
supporting two different operating systems is expensive, so most companies
avoid it. Companies that started with a proprietary operating system have
invariably extended support to UNIX. The demand is just too great to ignore,

Hardware and Porters UNIX Present 57

no matter what duplication of resources is required by the company to provide
UNIX.

Some companies that provide both proprietary operating systems and
UNIX for their hardware are DEC, IBM, HP, DG, Apollo, Amdahl, Microsoft,
Intel, Motorola, Gould, Unisys, NCR, IBM, Data General, and Cray. There are
hundreds of others.

Many new companies that started by offering systems beginning with
UNIX do not have to worry about supporting a proprietary system. On the oth-
er hand, they do have to worry about the competition. Since they are using a
common operating system, it is much easier for an unhappy user to simply pick
up their code and move to another system that runs UNIX. Thus, UNIX ven-
dors must be more responsive to their users.

Some companies that provide UNIX-based systems exclusively are Sun,
Silicon Graphics, Wollongong, Unity, LPC, Venix, Multiflow, CAE/SAR, Conver-
gent Technologies, MIPS, Pyramid, Ridge, MAD Intelligent Systems, and For-
tune. Each of these companies has an edge in some respect. Some cover the
low end of the market offering very good prices. Others offer unusual features
such as real-time support, or support for multiple versions (Berkeley & System
V).

Earlier we observed that most companies using the popular low-end
UNIX chip sets were using System V or XENIX implementations. This does
not generalize as we move into the proprietary one-of-a-kind hardware sys-
tems. One reason why is that early versions of System V and XENIX did not
support the requirements of these hardware systems while Berkeley did, or
could easily be made to do so. For example, Berkeley supported virtual memo-
ry for several years before it appeared in other commercial UNIX systems.
This was an absolute requirement for applications that demanded systems with
large memories, such as mainframes or superminis.

The last line of the preceding table lists companies producing generic
ports, or ports to multiple architectures. Berkeley barely counts since it is not a
commercial company, but it is the only one which continues to port Berkeley
UNIX to many different architectures. The four companies listed on the right
are responsible for the majority of implementations listed above them in the
table, as well as many not listed.

ClonersUNIX Present58

Unisoft has produced the most ports, estimated at 65% of all of them.
Unisoft calls its port "Uniplus+"; however, it has always been so closely based
on the most recent AT&T version that we view it as one and the same.

SCO has done many ports including porting XENIX to the 8086. SCO
and Microsoft have a joint agreement towards development of XENIX. SCO is
the official second source of XENIX.

If you need UNIX ported to a new piece of hardware, you can contract
directly with SCO, Unisoft, Microsoft, Interactive, AT&T or other porting
houses. Porting UNIX to "reasonable" hardware might cost in the range of
$100,000 and take three to six months. In contrast, most other operating sys-
tems cost ten times as much money and involve much longer times in develop-
ment.

While all of these companies provide only System V ports, they all come
"with Berkeley enhancements" such as the C-shell, job control and virtual mem-
ory management. For example, AT&T now supports the vi editor (which
came from Berkeley) as the official editor of System V. Unfortunately, the
phrase "with Berkeley enhancements" is not strictly defined, and thus you
should inquire exactly what its interpretation is.

2.12 The Dominant UNIX Cloners

The UNIX-compatible (hereafter called simply "clone") market began
even before AT&T sold its first copy of UNIX (see the History chapter). While
many of the original reasons (e.g., lack of UNIX support) for clones have disap-
peared, some remain. For example:

• Clones don’t require an AT&T license. Clones don’t have to fol-
low AT&T pricing and licensing restrictions.

While UNIX sublicenses are cheap enough to compete favorably with
other operating systems, they are still an unnecessary expense for some compa-
nies. There are also some unusual licensing practices which make licenses
inconvenient. For instance, the cost of a license differs depending upon how
many users are using the system at any one time. Another example is that
AT&T’s source code may not be redistributed. Many other companies dis-
tribute code in source form, avoiding the problems of generating binaries for dif-
ferent types of computers.

Customers UNIX Present 59

• Clones can make nonstandard enhancements.

AT&T has set extremely restrictive policies for conformance with Sys-
tem VR3. For example, vendors cannot make certain nonstandard enhance-
ments. For areas of computing not addressed by UNIX (e.g., real-time process-
ing), this creates a problem for a vendor. They can either not address a
market, or not claim their product is UNIX.

Fortunately, other UNIX standards may provide the ability to classify
products so that buyers can still intelligently compare UNIX with UNIX-like
products and have some assurance of knowing the salient differences.

As we have stressed many times already, UNIX is just as much a philos-
ophy as it is a licensed operating system. Many companies have capitalized on
this by offering UNIX clones, compatibles, look-alikes, work-alikes, and so on.
A large percentage of the market is served well by these UNIX compatibles.
Some of the UNIX-compatible vendors are: Charles River Data Systems
(UNOS), Concept Omega Corporation (Thoroughbred O/S), Cromemco, Inc.
(Cromix), Flexible Computing Corporation (MMOS), Mark Williams Company
(Coherent), Quantum Software Systems (QNX), and Whitesmiths, Ltd. (Idris).

2.13 The Dominant UNIX Customers

UNIX customers have changed significantly through the life of UNIX.
Originally, they were groups internal to Bell Labs, and then they were quickly
joined by educational institutions.

As many of the students raised on UNIX graduated, they took UNIX
with them to computer companies and research institutions. And shortly after
that the JAWS (Just Another WorkStation) wars brought UNIX to the main-
stream for scientific users. Soon after that, inexpensive hard disks and large
memory chips allowed Microsoft, Tandy and Interactive to make UNIX avail-
able on microcomputers, and UNIX invaded the low-end business market as
well as the high-end personal computer market.

By 1985, all the larger companies including DEC, Amdahl, Data General
and notably IBM offered UNIX. This essentially brought UNIX the rest of the
way into the public eye. It is now everywhere, from Hollywood to Madison
Avenue, from micros to superdupers. A quick scan of the UNIX Applications
and UNIX Meets the Real World chapters will clue you in that UNIX solutions
exist for all problems, and that UNIX has taken root in Wall Street offices and
Uncle Joe’s farm as quickly as at MIT.

CustomersUNIX Present60

More and more companies (General Motors, Ford, and so on) are man-
dating that most of their new computer purchases must be UNIX compatible.
The U.S. federal government is also following this trend. We think many com-
panies will make the same choice for a long time to come. It is interesting to
consider the reasons.

U.S. Government

It’s hard to ignore the world’s biggest computer user – the U.S. govern-
ment. In 1987, the annual budget for internal administrative processing alone
was $17 billion. And that doesn’t include computers for research and defense.

In 1986, 65 percent of the government’s procurements were for UNIX.
One reason that the government finds UNIX attractive is because procure-
ments are done by function and price. A specification will state that, say, 17
functions are necessary. Specifications may not include brands unless there is
an adequate justification. This functional type of specification tends to qualify
UNIX machines, as they are perfectly adequate for most types of computer
usage. And by comparison with most proprietary systems, they are cheaper.

The government plans to make use of the IEEE POSIX standard (see
Standards section in Future chapter) in many future computer procurement
specifications. POSIX is, of course, remarkably similar to UNIX.

During 1988, the Department of Defense had several outstanding
procurements for UNIX machines worth an estimated $4 billion.
Spearheaded by one from the Air Force for 20,000 machines and
another from the Army for 75,000, many other defense and civilian
agencies opted in to these contracts using the same specifications.
The prospect of landing such a contract made every UNIX vendor
salivate, and read the specs very closely.
For more information on how the government buys UNIX, read "So
You Want to Be a Government Contractor" in the September 1987
UNIX World. Government Computer News also carries major news
on government procurements.

Government Procurements

Customers UNIX Present 61

Computer Companies

Computer companies are different from other companies. They supply
software and hardware for everyone else. They respond to market demands,
and at the same time, try to press ideas of their own that they think are good,
either for technical or market reasons.

We are now seeing the results of this. Most companies offer UNIX on
their own systems. If they don’t offer it, someone else will. Many older compa-
nies continue to offer alternative proprietary operating systems in the belief that
they are better (although whether for the customer or the company is not
always obvious). It is easy to lock users in, once they have made a big invest-
ment in nonportable software. At the same time, most vendors have comple-
mented their proprietary operating systems with UNIX-like features. This is
partially a marketing ploy, and partially because there are some good ideas that
can be used in their own system by doing this.

Computer companies also faced the pressure of UNIX from within.
While looking for employees in the ’80s, most found that potential candidates
knew more about UNIX than any other operating system. A company would
go through a phase where the programmers insisted that they needed a UNIX
machine to get their work done – to program – even if it was to develop their
company’s proprietary products! UNIX was often a better environment for pro-
gramming than what the vendor offered on their own system. Rather than buy-
ing a competitor’s system, the vendor would support the development of UNIX
internally. Eventually the system would be offered to customers.

End Users

There are really two kinds of end users – those who do their own pro-
gram development, and those who want turn-key systems.

End users with turn-key systems could care less if they are using UNIX
or SomethingElseWare. They are application driven and will buy whatever
operating system and hardware support their application needs. They won’t
use the UNIX shell, or any of the other UNIX utilities. The only kind of shells
they want to see are the ones on the beach in Hawaii.

Thus, it may seem strange that users are buying turn-key systems that
run on top of UNIX systems. After all, they are paying for a wonderful pro-
gramming environment and not using it. Right? Not entirely. UNIX is now
sold unbundled, meaning that it can be sold in separate pieces. In fact, accord-

CustomersUNIX Present62

ing to SCO, around 80% of the XENIX systems do not include the development
tools, such as the C compiler, lex and yacc. They are little more than UNIX-
based executives (see the Real World chapter).

In some sense, these users are the most important ones of all. They are
really using computers, unlike the rest of us who are "just" playing or experi-
menting or whatever it is we do on our programming workbenches. All of the
things we discuss in the Application and Real World chapters are what these
users do, from computer-aided design and engineering to manufacturing and
point-of-sale transactions.

Unlike turn-key users, other end users are using the full power of UNIX –
to develop their own specialized systems. As we mentioned earlier, many com-
panies, including trend-setters like GM and Ford, have settled on UNIX for
development and engineering systems. They know that the investment in
UNIX will pay off in the future. Their software will continue to run as they
upgrade to new hardware. They are not locked into one vendor for either hard-
ware or software. And they can find a ready source of UNIX programmers in
the field and from colleges and universities for many years to come.

Universities and Research Institutions

Interestingly, educational and research institutions are where UNIX is
faced with more objective scrutiny than anywhere else. Students, faculty and
researchers are continually exploring new ground – new operating systems –
new realms where operating systems are not even meaningful.

These people have much less of a need to depend on the past and are
the first to accept new technology with open arms, no matter how theoretical
or pie-in-the-sky it appears. The payoffs in computing – whether cheaper,
faster, or more stable – are enormous. Certainly enough so that new ap-
proaches are continually attempted.

It is indeed ironic that UNIX faces some of its heaviest criticism from the
people who accepted it before anyone else. But that is to be expected. It was
accepted only because other environments really were inferior to it. This is no
longer the case.

Nonetheless, UNIX is now an accepted part of the educational system.
Virtually all computer science departments in the U.S. have UNIX systems, and
more students understand the concepts of UNIX than any other operating sys-

Customers UNIX Present 63

tem – by a wide margin. UNIX is now the metric by which many operating
systems are taught and judged.

Everyone

No one wants to be locked into a proprietary system. If you buy a com-
puter using proprietary hardware or software, you must seek upgrades and sup-
port through channels that your vendor has approved. If you want to buy a
faster machine running the same software, you’re going to have to buy it from
the same vendor. Too bad if it doesn’t have one you like. Forget about compet-
itive pricing.

While UNIX is licensed by AT&T, it is possible to find an implementation
on virtually every computer system. At the same time, users want to unify
their environment in an effort to reduce training and overhead support for differ-
ent systems. These two goals conflict except in a standard system like UNIX.

Lastly, UNIX is a suitable system for doing the great majority of comput-
er tasks. Distributed directly from AT&T, "virgin" UNIX is capable of perform-
ing most tasks with no modifications.

One reason for buying a non-UNIX system is that it runs an application
which is dependent upon that operating system. However, this is an extreme
disadvantage to application developers, since it effectively locks them into a
smaller percentage of the market than is necessary. If an application is written
to run under UNIX, the application can be ported to any computer because
UNIX can be ported to any computer.

The pressures all point towards choosing a standard system. The buyers
want it, the developers want it and the government demands it. Furthermore,
the hardware people find that it opens up more avenues to the customers.
UNIX is the only system that is standard enough, sophisticated enough, capable
enough and common enough to meet the needs for such requirements.

Of course, new systems are being developed every day. Although it is
unlikely that a new operating system will ever gain the popularity that UNIX
has, systems other than UNIX will be bought and used. However, we claim
that only systems decidedly superior to UNIX will survive its head start.

We may sound quite prejudiced, but that is not entirely accurate. We like
UNIX more than other systems because we think it is better. However, we
are very interested in using the best computer systems possible, and we don’t

CompetitorsUNIX Present64

care what operating system they run. (If we never use UNIX again, we will be
quite happy.) However, it will take more than slick advertising to replace
UNIX.

2.14 The Dominant UNIX Competitors

The truth of the matter is (and we shudder to think this), UNIX is not the
dominant operating system in the world. Most of the major computer vendors
offer proprietary operating systems. Some of these systems are geared for par-
ticular applications, such as large databases, fault-tolerant operation and real-
time applications.

It has been said that "UNIX is supported by IBM, like a hanging man is
supported by rope." IBM does indeed sell UNIX-based systems, but it is clear
that it is not particularly interested if UNIX succeeds. Open systems like UNIX
destroy the ability of vendors to lead customers their way.

IBM’s success in the past has been in keeping proprietary systems
closed, and forcing its customer base to follow them. Monopolistic business
practices were used to lock customers to proprietary products, even in the face
of equivalent or superior products from competitors. This was well docu-
mented in the multiple antitrust suits brought against IBM.†

Many other computer companies have studied IBM closely and learned
their lessons well. Indeed, many of them are more competent than IBM. IBM
does not have an operating system that runs across their entire line of
machines, nor are their operating systems considered technically superior.
IBM has only opened the doors to UNIX, and reluctantly so, because of incredi-
ble market demand.

Another vendor in a similar position is DEC. Discussed at length in the
previous chapter, DEC managed to ignore UNIX for several years while cus-
tomers bought their machines, left DEC’s operating system on the unread
tapes, and brought up Berkeley UNIX. In response, DEC refused to support
the machines running UNIX. If UNIX reported a machine fault, DEC wasn’t
interested unless you ran its operating system and diagnostic programs to find it.

VMS, DEC’s operating system for their VAX line of computers, is a typi-
cal example of an operating system that competes against UNIX. VMS
attempts to be all things to all people – it is quite a bit more complex than

Richard T. DeLamarter, Big Blue: IBM’s Use & Abuse of Power, Dodd, 1986.†

Competitors UNIX Present 65

UNIX. At the same time, it lacks the ease and programmer orientation of
UNIX. After watching their market drift away to UNIX, DEC finally began
offering many of the UNIX tools for VMS, including make, sccs and a UNIX
shell.

VMS was not designed to be portable and only runs on the VAX architec-
ture. (Large parts of it are written in assembler.) Unless a vendor duplicates
most of the VAX hardware, running VMS is essentially impossible. Porting
VAX/VMS programs to other machines is extremely difficult because of the
resulting VAX and VMS dependencies in the code.

Interestingly, DEC has announced its intention to produce a POSIX-
compatible VMS. No matter what its argument, we take this as a sign that it
has realized the utility of the UNIX environment. It is not going to be easy, but
it looks like the way of the future for DEC and many other vendors in the same
position. Proprietary systems are becoming the dinosaurs of a past age.

Our last examples are DOS and OS/2. DOS is an operating system for
the IBM PC family and compatibles. It is reasonably adequate as a successor
to the primitive CP/M; however, it doesn’t stand up well to modern demands.

DOS is single tasking, meaning that it cannot run two programs simultane-
ously. It has many inherent restrictions such as a maximum of 64Kb memory
segments and 32Mb disk partitions. And it is dependent upon a small family of
microprocessors, meaning that you are locked into the DOS world. Anyone
who believes DOS to be an "open system" is kidding themselves.

OS/2 is an up-and-coming replacement for DOS. Unfortunately, it won’t
run on the older PC equipment, nor will your DOS programs run in the normal
OS/2 protected mode. You pay a heavy price for such a "replacement."

On the other hand, OS/2 is multitasking and has far fewer arbitrary
restrictions than DOS had. OS/2 has virtually all of the features that UNIX has
including pipes, signals, forks and a hierarchical file system. It also has all of
the newer features such as common memory and semaphores. Plus it comes
with built-in support for multithreaded processes and other things that were nev-
er bundled with UNIX.

CompetitorsUNIX Present66

Of course, to support all this requires the bulk of a UNIX kernel and utili-
ties plus whatever extra OS/2 needs. OS/2 requires 2Mb of main memory, but
is more comfortable with 4Mb. 20Mb disks are as uncomfortable for OS/2 as
they are for UNIX. 75Mb disks or larger networked disk servers are a necessi-
ty.

OS/2 looks very much like UNIX. The system calls are very similar (in a
theoretical sense). The level that the programmer sees borrows most of the
UNIX environment, just as DOS tried to borrow as much as it could. It is not
hard to write programs that are portable between OS/2 and UNIX. However,
it is also easy not to, particularly because OS/2 is designed for one hardware
architecture. Nonportable code will have the same problem that DOS code
had – hardware dependencies. Gee, we haven’t learned anything, have we?
In fact, it’s even worse, since OS/2 only runs on PS/2 systems and IBM is try-
ing much harder to prevent PS/2 cloning. Once again, the result is nonportable
applications and systems – a closed system.

What about the Apple Macintosh? Well, the Macintosh can hardly be
called a competitor. Apple’s A/UX operating system for the Mac II is UNIX
with an Apple front-end. This could only help UNIX for the future. (See the
Future chapter for more about this.)

Chapter 3: UNIX Future
"If it keeps up, man will atrophy all his limbs but the push-button finger."
– Frank Lloyd Wright

It has been said that we may not know it but our toaster at home may
already be running UNIX. While this is rather unlikely, the primary reason is
not one of overkill, but rather of licensing costs (since the cost of a UNIX
license would probably quadruple the final cost of the toaster). Nonetheless,
with UNIX standards obviating licenses and UNIX systems in ROM, it may yet
happen. So if you detect a funny smell over your coffee one morning, be sure
and check the toaster for a burnt core dump.

Where do we go from here? What does our crystal ball reveal out in the
not so distant 20 minutes into the future? Well for one thing, an incredible
amount of activity. No longer the domain of a few long-haired, t-shirt wearing
hackers, UNIX is out in the real world. Heaven help us. Real live businesses
actually do things like manage accounts and keep databases with important
data on UNIX machines. Aside from the industrial strengthening of the sys-
tem, what of the new environments and the capacity to change, distribute and
innovate? Stay tuned…

3.1 Standards
"The nice thing about standards is…there are so many to choose from!" – Anon.

In 1984, /usr/group successfully completed work on the "1984 /usr/group
Standard." The standard defined a subset of System III kernel and library calls
plus a record-locking primitive. It was immediately ignored and, for all practical
purposes, useless. The problem was that /usr/group had tried to standardize an
area that was still rapidly evolving. At that time, Version 7 UNIX was still pop-
ular. But BSD had made substantial changes, and AT&T had recently reen-
tered the picture with System III. Even worse, the UNIX compatibles were

67

C StandardsUNIX Future68

springing up everywhere. Was XENIX UNIX? Was Coherent UNIX? Was
anything UNIX?

Since that time, there have been no successful standards set in either
UNIX or C, although as this book is being completed (early 1988), it appears
that we will be seeing some useful standards set in the near future. In the
meantime, there are several de facto standards which are being used while
being pushed for adoption as real standards.

While not so directly related, many non-UNIX standards bear impact on
UNIX users. For instance, if you are building a network of UNIX systems, you
should pay attention to communication standards, since you will have to deal
with equipment following one or another of these networking standards. This is
typical of the hundreds of standards that are not UNIX standards but are clear-
ly of interest to UNIX users. Unfortunately, we cannot possibly attempt to cov-
er all standards that indirectly relate to UNIX. Instead, we discuss the stan-
dards that directly impact us all, namely the UNIX and C standards.

If you have access to Usenet, you may keep current on UNIX standards
issues by reading the USENIX-sponsored moderated newsgroup
comp.std.unix or the mailing list std-unix@uunet.uu.net or uunet!std-
unix. (Send requests to be added to the list to std-unix-request.) Most of
the standards organizations have members who read and contribute to this
forum.

3.1.1 C Standards

K&R

The C Programming Language (First Edition) by Brian Kernighan and
Dennis Ritchie was the first book written about C. It included a reference man-
ual for the language, which came to be accepted as the standard for "K&R C",
after the authors.

Fortunately, K&R was extremely well written and left few dark corners
in the language definition. However, there were several inherent problems in
the design of K&R C. Furthermore, the language had many commonly ac-
cepted extensions that were not described in K&R (e.g., enumeration types).

In a way, K&R was a little like the Bible. There were the fundamental-
ists, who used the book faithfully when implementing C. There were the
spokespersons who reinterpreted the divine teachings, producing an admittedly

C Standards UNIX Future 69

"not quite K&R C." There were the heretics who grossly misstated the issues,
producing mongrel dialects that they passed off as C, confusing inexperienced
programmers to no end. And of course, there were the new-age cultists offer-
ing us C++ and other alternative dogmas for salvation.

PCC

While K&R left little doubt on most issues, there was yet a higher authori-
ty available – the C compiler itself. When UNIX ran on PDP-11s, there was
indeed only one C compiler – Dennis Ritchie’s compiler. The Ritchie C Compil-
er was used from UNIX V4 through V7.

As interest in UNIX and C increased, several new C compilers were
written, both in and outside the Labs. Of particular note was one by Steve
Johnson. His C compiler was specifically designed for portability and was
called the Portable C Compiler, or pcc. In contrast, the Ritchie C Compiler
was not particularly portable. It had clearly been modeled for the PDP-11.
And while it was reliable and produced efficient PDP-11 code – indeed, better
than pcc – pcc became the standard C compiler for many systems, including
System V and BSD.

The Future is Hard to Predict

The original expectation of Prentice-Hall was that an average of nine
copies of K&R would be sold to the 130 UNIX sites that existed at
the time the book was first published. By January 1988, over a mil-
lion copies of the First Edition had been printed!

pcc was distributed with UNIX for several years and was used as the pri-
mary model for C compiler ports to many other machines. Thus, C compilers
on different machines behaved remarkably similarly to one another. Even pcc’s
bugs were propagated consistently!

When there was a question as to correct behavior, the answer was to
see how pcc handled it. Unfortunately, when it was clearly wrong, you had to
face the question of whether to be consistent and wrong, or inconsistent and
right.

The answer, of course, was that there was no absolute right way. Each
answer had its advantages and disadvantages. And after a while, it was impos-

C StandardsUNIX Future70

sible to be right or consistent, no less both. New C compilers were being writ-
ten all the time. The popularity of C grew substantially when compilers for
CP/M and MS/DOS became available. C was ported to many other non-UNIX
environments and used for many applications that it was never designed for.

It is inevitable that there would be more and more disagreements over
the definition of the C language. Analogous pressures have been placed on the
libraries, although the strong bias in C applications towards UNIX has kept
them fairly cohesive. However, there are so many people using the C language
now, and so many companies requiring C compilers, that a real standard which
is accessible to everyone is called for.

ANSI X3J11

To cure the quandary of multiple C languages, the ANSI X3J11 commit-
tee has taken on the task of defining a C standard. The aim is to produce a
complete and unarguable definition of the language, with the goal of increasing
portability. The result will be less guesswork, both when writing new C applica-
tions, and when creating new C compilers.

Of course, believing that a standard will cure all the world’s problems is
somewhat naive. While standards have their benefits, there are drawbacks as
well. For example, standards may not allow easy use of a vendor’s proprietary
enhancements. Standards can also discourage the adoption of new and better
designs.

The primary concern of the X3J11 committee is to codify the C language
as it exists today with some very minor extensions. The committee has taken
the wise tactic of attempting to standardize existing conventions and practices
wherever possible rather than coming up with new conventions.

The committee will not fix design errors in the language because that
would break a lot of code. (So don’t bother suggesting that it change = to :=
and == to =.) It will not define too many extensions because then no one would
have conforming compilers. X3J11 will simply define C rigorously, as it exists,
warts and all. For a copy of the standard or information relating to it, contact
Global Engineering Documents.

If you want to fix, improve or add to the C language, you would be well
advised to look at C++. This will undoubtedly go through the same standards
process in a few years that C is going through now.

UNIX Standards UNIX Future 71

ISO WG14

ANSI is an American standards organization. It is politically undesirable
for many non-American companies to follow American standards, so the ISO
(International Organization for Standardization) is also creating a C standard. It
is not trying to be different; rather, it exists only to make the ANSI standard
acceptable to many non-American countries and companies. The ISO stand-
ard is purely a political convenience.

Officially called the ISO TC97 SC22 WG14, the ISO Working Group on
C is trying to ensure that its standard is identical to that of ANSI X3J11. It
would be a tremendous failure if the ANSI standard could not satisfy the ISO,
resulting in two C standards.

3.1.2 UNIX Standards

The area of UNIX standards does not fare as well as that of C stand-
ards. This is because UNIX is much more complex, and it was never defined
as rigorously (see the source). In a sense, UNIX’s extensibility is its own
Achilles heel. Because it has been so easy to modify, virtually every company
that resells UNIX has made its own extensions to it. At the same time, the con-
cept of application code portability must survive if UNIX is to remain as attrac-
tive as it is.

The UNIX standards will undoubtedly come to pass despite the many
variants of the system, simply because of the amount of money that is at stake.
No standards mean large amounts of time and money wasted porting software.
It also means that UNIX vendors cannot be assured of meeting competitive
bids for products that require a particular brand of UNIX.

Interestingly, there are several different bodies developing UNIX stand-
ards. It remains to be seen which will turn out to be the most influential. It is
possible that some of them may merge standards together. (For instance, both
AT&T and X/OPEN have expressed their intent for their standards to be
POSIX conforming.) Although this can lead to a much more complicated stand-
ard, the fewer standards the better.

Currently, there are many organizations attempting to produce UNIX
standards. Each standard is different, as each organization has different goals
in mind. None of these standards attempts a complete definition of UNIX, as it
is still evolving. Thus, there are smaller but additional proposed standards for

UNIX StandardsUNIX Future72

subsystems (e.g., windows, network file systems, and so on) in addition to the
first three mentioned.

POSIX

Based on the 1984 /usr/group Standard, POSIX is a standard being devel-
oped by ANSI and IEEE. The full name of POSIX is the IEEE P1003 Portable
Operating System Interface for Computer Environments. POSIX defines a
UNIX-like system by a set of system calls, libraries, tools, and some other inter-
faces. While there are many things not defined by POSIX, it has the narrowest
scope of the standards discussed. This is not necessarily bad, since a least
common denominator can support a large percentage of UNIX code without
extensions.

Parts of P1003 (POSIX)

P1003.0 — POSIX Guide

P1003.2 — Shell and Tools Interface
P1003.3 — Verification and Testing
P1003.4 — Real Time
P1003.5 — Ada Binding for POSIX
P1003.6 — Security

P1003.1 — Systems Interface

Most of the U.S. UNIX developers have announced their support of the
POSIX effort, and many have representatives participating in the standardiza-
tion process.

The POSIX effort is also supported by NBS (U.S. National Bureau of
Standards). NBS has already produced a FIPS that is based on the 1003.1
effort. They did not wait for the final form, due to pressure from various federal
agencies for a standard (of any kind). It is likely that when POSIX is finalized,
the NBS FIPS will be revised to meet it.

NBS provides a test suite for conformance testing. It is expected that
most government procurements for UNIX systems will require POSIX compati-
bility. It is likely that the U.S. government will base several multibillion dollar
procurements on the POSIX standard. With this kind of incentive, we expect
vendors to pay a lot of attention to POSIX.

POSIX has also been recommended as an international standard to ISO.
The draft proposed standard name is TC22 WG15.

UNIX Standards UNIX Future 73

For more information about the IEEE Portable Operating System stand-
ard, contact the IEEE Computer Society and ask for the "1003.1 Posix Full Use
Standard." For more information about TC22 WG15, see TC22 WG15 in the
addresses Appendix.

SVID

AT&T has its own UNIX standard, called SVID (System V Interface
Definition). It is also referred to as the purple book (the color of its cover).
The SVID is more comprehensive than POSIX and defines more libraries and
command interfaces. Not blind to government dollars, it is expected that
AT&T will make sure that its standard is upwards compatible with POSIX.
AT&T provides conformance testing for its standard. SVVS (System V Verifi-
cation Suite) is a test suite which will verify if a system complies with SVID.

Beginning with System V Release 3, AT&T took a very strict approach
with its standard, tying the use of the name "UNIX System V R3" to SVID con-
formance. In particular, any system which claims to be "System V R3 based,"
"System V R3 compatible" or even including "System V R3 enhancements"
must comply with the SVID "base system." This can be a problem for vendors
who want to modify the system in certain ways. For example, adding some of
the Berkeley enhancements can produce a noncompliant UNIX. Many ven-
dors who sold modified releases of earlier AT&T UNIX are faced with the
choice of either removing extensions (and causing problems for their cus-
tomers) or not upgrading to the latest releases of System V. Of course, there is
nothing to prevent vendors from incorporating parts of SVR3, but not claiming
SVR3 conformance.

Another disadvantage to SVID is that it is not a vendor-independent
standard. Clearly AT&T has an advantage over every other company that
uses AT&T’s standard. While AT&T has not been known to make capricious
changes, there is nothing to prevent them from doing so. And it is unlikely that
the SVID will not grow to accommodate any change necessitated by a new
release of System V. Indeed, if SVID tracks System V rather than the reverse,
all the other System V-compatible vendors will continually be one step behind
AT&T in their effort to be compatible. For these reasons and the ones given in
the previous paragraph, vendors may market SVID-compatible products, but
choose not to advertise them as such.

For more information about the AT&T SVID, contact the AT&T Cus-
tomer Information Center.

UNIX StandardsUNIX Future74

X/OPEN

By far the most encompassing standard is that of X/OPEN. This is a
standard produced by representatives from many European companies as well
as U.S. companies (including AT&T) and is the best contender for an interna-
tional standard. X/OPEN is based on SVID and is a superset of POSIX. How-
ever, it also defines many libraries, command interfaces, the C language,
indexed sequential access method (ISAM), the SQL database language, and
several extensions for international use of UNIX. Of course, X/OPEN has a
test suite, too. It is called XVS for X/OPEN System V Specification.

For more information about the X/OPEN standards, contact Elsevier Sci-
ence Publishers Co., and ask for the X/Open Portability Guide.

In a rather open-minded moment, the P1003 committee ran a con-
test, called WeirdNIX, to find problems with the POSIX standard.
Contestants competed by submitting the "most demented" legal
interpretation of the POSIX standard which violated the intuitive
intent. First prize was an HP calculator and mention in the stand-
ard itself. Who ever said standards are dull?

WeirdNIX

As we said earlier, there are many related standards, de facto standards
and working groups that are of interest to UNIX users. Besides the ones
already listed, some other important ones are:

Networking Standards

TCP/IP – Contact Arpanet Network Information Center.
OSI – Contact International Organization for Standardization (ISO).
GM MAP/TOP – Contact General Motors, Corp.
PN1 – Contact /usr/group Working Group on Network Interface.

Windowing Standards

X Windows – Contact Massachusetts Institute of Technology.
NeWS – Contact Sun Microsystems, Inc.
/usr/group – Contact /usr/group Working Group on Graphics/Windows.

Merging SYS V, BSD, Xenix UNIX Future 75

Network File Systems

NFS – Contact Sun Microsystems, Inc.
RFS – Contact AT&T Customer Information Center.
/usr/group – Contact /usr/group Working Group on Distributed File

Systems.

Internationalization

JAE – Contact the AT&T Customer Information Center.
X/Open – Contact Hewlett-Packard, Co.
/usr/group – Contact /usr/group Working Group on Internationalization.

/usr/group also has a number of other working groups:

/usr/group Working Group on Realtime
/usr/group Working Group on Database
/usr/group Working Group on Performance Measurements
/usr/group Working Group on Security
/usr/group Working Group on Super Computing

3.2 Merging System V with BSD with XENIX

Whether or not UNIX definitions are standardized, there will be products
that become de facto standards. This happens a lot with UNIX because there
are a small number of UNIX developers that resell UNIX to a large number of
VARs.

The largest developer is clearly AT&T. Everything they do has potential
for impact on the future of UNIX. (Actually, there are several developers in
this position, including IBM, Sun, Microsoft and major research institutions such
as Berkeley.)

MachUNIX Future76

Trend for merging System V, BSD, and XENIX

present

future

V7

XENIX

BSD

System V

System V

XENIX

BSD

POSIX
X/OPEN

SVID
???

AT&T is clearly trying to incorporate important features of XENIX and
BSD into System V. They have made agreements with the major XENIX and
BSD vendors to produce unified versions of UNIX. We expect this effort to
succeed. Other vendors (see the Real World chapter) have already done this
and it has proven very popular. If AT&T provides a unified version of UNIX,
this will undoubtedly become more prevalent than any other UNIX.

3.3 Mach

As we have mentioned, many people have made extensions to UNIX.
One of the most important, in terms of the future of UNIX, is Mach. Mach is a
modern version of UNIX. Mach was specifically designed to support multipro-
cessor and parallel computation while retaining the features of UNIX. With a
completely rewritten kernel, Mach is potentially a UNIX for the next generation.

Like UNIX, Mach is designed to be portable. It does not require a specif-
ic machine feature (such as a memory management unit or a LAN). And

Berkeley 4.3BSD and BRL UNIX Future 77

because the kernel communicates by message passing, Mach can deal with
multiprocessor architectures as easily as uniprocessor architectures. What
Mach does is to provide a consistent model of communications and multitasking
primitives, upon which can be built higher-level models such as common memo-
ry or message-passing communications. Mach can be thought of as a "UNIX
brought up to date" with modern computer operating system principles. We
think it will become a very popular base for multiprocessor UNIX systems.

Mach was developed at Carnegie-Mellon University where research con-
tinues today. Mach is able to run 4.3 BSD UNIX object code without modifica-
tion, as well as supporting its own environment.

Mach has been ported to more than a dozen dissimilar computer sys-
tems, including the IBM RT, the Sun 3, the 16-processor MultiMax, the 30-
processor Sequent Balance 21000, and nine members of the DEC VAX family
of uniprocessors and multiprocessors. An implementation of Mach for the
BBN’s Butterfly Parallel Processor is discussed in depth in "Variations on
UNIX for Parallel-Processing Computers" by Channing Russell and Pamela
Waterman in Communications of the ACM, vol. 30, no. 12, December 1987.

And the best part of all, is that Mach is available free from CMU
(although you need a System V and Berkeley license). It is copyrighted, howev-
er, and no one is allowed to resell it without permission. You can read more
about Mach in "Mach: A New Kernel Foundation for UNIX Development" by
Accetta, Baron, Bolosky, Golub, Rashid, Tevanian and Young, in Proceedings
of Summer USENIX, July 1986.

3.4 Berkeley 4.3 and BRL

Research on UNIX continues at Berkeley though at a much slower rate
than before. With the release of 4.3 BSD (Berkeley Software Distribution),
many of the people instrumental in the creation of the Berkeley work have tired
after working for several years at student wages with few benefits other than
recognition at UNIX conferences. Many formed startup companies to sell
UNIX products. Others went to work for large UNIX-hungry companies that
were paying high salaries. And a few even went back to school and graduated.

While Berkeley will continue to produce new releases of BSD, albeit at a
slower rate than in the past, many companies have stepped forward to pick up
the reins. One interesting development is that the Department of Defense
(which funded Berkeley’s 4BSD research) has decided to fund the Army’s Bal-
listic Research Labs (BRL) so that it can maintain BSD UNIX. Maintenance

Changing TechnologiesUNIX Future78

and support was something that Berkeley never provided. BRL is well known
for having provided many bug fixes to the Berkeley releases. BRL has also
rereleased the Berkeley 4.2 code with a System V compatibility package.
BRL has also released a version of 4.3 BSD and is continuing work on it.

3.5 Changing Technologies

The future of UNIX will, to a certain extent, be governed by the future of
computer science. New computer architectures that are being created and
refined, such as multiprocessors, will suggest new environments for UNIX.
UNIX is extending its influence throughout the range of computing hardware
from supercomputers to micros. As new ones are being designed, UNIX is
being ported to them. And while UNIX may never run on certain specialized
hardware, such as neural nets, UNIX will certainly contain an interface to one
as a peripheral.

At the same time as micros grow smaller and even more capable, super-
computers grow even faster, approaching incredible speeds. The possibility of
room-temperature superconductors, for example, will increase the processing
rate of our fastest computers many-fold.

We will see workstations capable of 100MIPS performance in a desktop
package by 1992. As memory package size decreases, we can expect that
these workstations will have memory on the order of 100Mb and a small local
disk of, say, 500Mb. This will enable the use of really smart interfaces, such as
natural language understanding systems that replace the old-style shell, and AI
problem solvers which use the tools optimally, or replace them with more appro-
priate tools dynamically.

 Larger computers such as mainframes and network servers will have
even larger physical memory sizes than workstations. And disk storage of net-
work servers will easily be in the multiple Tb range. By using WORM (Write-
Once Read Many) optical disk technology, backups will be continuous.

3.6 User-Friendly UNIX – The Macintosh/Smalltalk Influence

If UNIX is to survive into the next decade, we are going to have to do
something about its user interface. From day 1, UNIX was designed to be used
by programmers and not by naive users. This has changed little. And although
there are menu-oriented shells, window systems, and other aids on many UNIX
systems, the UNIX tools are still an essential ingredient in using UNIX effec-
tively.

User-Friendly UNIX UNIX Future 79

And that is what makes UNIX a poor comparison in this age of user-
friendly interfaces. UNIX does not stand up well to comparisons with slick
front-ends like the Apple Macintosh finder or Xerox’s Smalltalk browser. And
it is clear that the world is headed towards this kind of interacting.

UNIX revolves around pipes and filters. Take the output of one program
and feed it into another program. Hook a bunch of programs together that don’t
know anything about each other.

The Macintosh model, on the other hand, is the exact opposite. The sys-
tem doesn’t deal with character streams. Data files are extremely high level,
usually assuming that they are specific to an application. When was the last
time you piped the output of one program to another on a Mac? (Good luck
even finding the pipe symbol.) Programs are monolithic, the better to complete-
ly understand what you are doing. You don’t take MacFoo and MacBar and
hook them together.

Undoubtedly, we will see implementations of Mac-like front-ends on top
of UNIX systems. Indeed, the Mac II running A/UX (Apple’s release of UNIX
System V with Berkeley enhancements and NFS) holds great promise for inte-
grating the best of the UNIX and the Macintosh worlds. We can’t wait to
hypercard our way through file systems with a mouse, looking at pictures of
garbage cans, tape drives and shells.

The object-oriented model presented by Smalltalk is much closer to
UNIX ideas, although UNIX doesn’t do it as well (or to such extremes) as
Smalltalk. Think of UNIX I/O as a good example. You can write data to a
disk, tape, or frisbee, and the individual driver takes care of the work. But,
write() works the same way in every case.

Smalltalk’s front-end ("the browser") enables navigation through huge
unknown environments. As UNIX incorporates more and more tools, inter-
faces, and … well, uh … crud, it becomes very difficult for anyone to master,
no less a new user. Browsing through capabilities – picking and choosing what
to look at or what to use – is going to be the only way of staying on top of the
massive choices that UNIX presents us with in the future.

Until then, we will have to make do with doldrums of reality. While mak-
ing all sorts of incredibly complex pipelines, shell scripts and combinations of 20
processes to implement a spell-checker, we will continue to dream about a

C++UNIX Future80

vision of personal computing with integrated audio, video and communications
expressed so well by Alan Kay’s Dynabook.†

3.7 C++

C++ is a language based on C. However, it is definitely a new language.
The name is a pun on the C increment operator (++), which when applied to a
variable gives you one greater. Hence C++ sounds like it is the next release of
C.

C is actually an old language. From the day it was born, many people
have tried to improve it. However, it was so precisely described by K&R that it
has resisted most of those suggestions and has evolved very little. The evolu-
tionary steps it has taken are minor. They are described by Larry Rosler in the
"The Evolution of C – Past and Future," AT&T Bell Laboratories Technical
Journal, vol. 63, no. 8, October 1984. The ANSI C standard is the next step in
the maturity of C.

C++ is an attempt at producing a language which retains all the good
ideas of C while adding many more new ones. In fact, C++ is upwards compat-
ible with C, meaning all C programs will compile in C++. (Well, almost all.)
While some faults of C remain due to the desire to retain compatibility, many
have been fixed.

C++ really is a superior language to C. Among C++’s most notable fea-
tures are better type checking, better facilities for data abstraction, operator
overloading, and built-in support for object-oriented programming. The result is
a language that is much easier to use than C. C++ retains much of the flavor of
C, and can still be used for system implementation. But it is easier to structure
code. You are less likely to produce buggy code. You can reuse subroutines
more easily, and the resulting code has a better chance of being more efficient.

Implementations of C++ are characteristically written as preprocessors
to a C compiler. However, there is nothing inherent about this in the definition.
C++ is available from a number of vendors (see the Applications chapter). You
can find more information about the language in the book The C++ Program-
ming Language by Bjarne Stroustrup (who designed the language while at Bell
Labs).

Alan Kay and Adele Goldberg, "Personal Dynamic Media", IEEE Computer, March 1977,
31-41.

†

The Networking Influence UNIX Future 81

While implementations of C++ have actually been available since 1983,
we think it will be some time before the majority of C programmers will move
to it. However, we hope that at some point, most C programmers will accept
this new language as their own. (There are alternatives such as Ada and Mod-
ula-2, but we think C++ has a much better chance of capturing the audience of
programmers and applications that C currently has.)

3.8 The Networking Influence

The boundaries between machines are disappearing. Networking soft-
ware provides us with the illusion that the our local resources are those of our
local area network. Currently we simply mount another network disk whenev-
er we need more space or access to a file that isn’t local. In the future, all
disks will appear as a global resource. We don’t really care where our data is
as long as we have easy and reliable access to it. By easy, we mean that the
access procedures are identical to the ones we’ve been using for local disks
and devices. Reliable may mean that there are multiple copies distributed at
various servers. A similarly analogy holds for processes. If we need more
cycles, we obtain some from another machine. The future will remove even
more boundaries so that our domain encompasses wide area networks. The
concept of local area networks is a prehistoric hangover from the early days of
networking. Its boundaries and limitations no longer relate to our interest in
communications.

The trend toward network-wide resources is attractive from many points
of view not the least of which is cost. If we need only buy one expensive
peripheral and easily use it from any place on the net, we can save lots of mon-
ey. We have done this with printers and tape drives for years. Now it is easy
to do the same thing with other types of peripherals. For example, it is possible
to have a database machine attached to the network as the base of a distrib-
uted data system. Another possibility is a one-of-a-kind supercomputer as a
back-end compute-engine.

The U.S. Defense Department’s Arpanet was an experiment in expen-
sive computer resource sharing. It was successful, but in ways that were total-
ly unexpected. For example, the original implementation never called for more
than several hundred computers to be on a single network. And the design did
not allow for more than a small number of networks. Now there are thousands
of networks, not to mention hundreds of computers on many of the networks.

Portables and LapTopsUNIX Future82

The design specifications for the original Internet (as the Arpanet is now
referred to) have been revised many times to handle the tremendous explosion
of internetworked computers. While the Arpanet continues to face the ever
increasing number of computers that want to communicate, there are many
projects that are attempting to face the problems of scale, with the expectation
that there will be no limit to future growth.

Two research efforts that intentionally decided to address the problem of
scale in UNIX are Project Athena of MIT, and the Andrew system of
Carnegie-Mellon’s Information Technology Project. Each of these is building
networks with tens of thousands of UNIX computers, and many more users.
What happens when you have a password file with 100,000 entries? Can you
access your files as if they were locally resident from any workstation on the
campus? In the world? Does being the superuser on one machine entitle you
to be superuser on others? Which others? These are just some of the ques-
tions faced by these projects. Answers to these questions and hundreds of oth-
ers, have the potential for repercussions in many UNIX concepts.

3.9 Portables and Laptops

So you and your UNIX workstation are integrated into your local area
network, and you share files and peripherals with your coworkers across the
corridor. But what do you do if you need to take to the road?

Formerly, the only option for travelers was to travel with a portable termi-
nal, and use telephone lines to connect to a larger system at home. The first
transportable computer systems were microcomputers weighing 20 lbs or
more (some people called them "luggables") and costing about $10,000.
(Technically, the most accurate definition of a transportable is that it is a
machine that is easily moved from place to place. Unfortunately, this is a use-
less working definition.) In 1985, Hewlett-Packard introduced the first trans-
portable UNIX machine. It cost $5,000 and had the operating system in 500K
of ROM.

Portables were distinguished from transportables by weighing less than
20 lbs, and having minimal setup time. Portables under 10 lbs are often referred
to as laptops because they are light enough to rest on your lap for long periods
of time. Some portables are also battery powered, allowing use on, for exam-
ple, airplanes. However, while many of us have gotten used to writing articles
at 35,000 feet, debugging a new kernel modification seems like something bet-
ter left for the calm and cool environment of a hacker’s basement.

Portables and LapTops UNIX Future 83

Portables were originally the realm of primitive operating systems like
CP/M and DOS, but continuing advances in technology have provided the
means to support a UNIX environment on such a system. Low-power memory
chips are available that provide 4Mb of memory in a compact module. Physical-
ly small disks now have large enough capacities that they can hold all of the
UNIX systems. CD-ROMs can store immense databases, be carried in a shirt
pocket, and popped into your portable as easily as a floppy. Lightweight plas-
ma and LCD displays provide bitmapped screens for multiple windows.

Naturally, there are many companies offering laptop UNIX systems
including Grid Systems Corp., Hewlett-Packard, and Toshiba America Inc. It
is also possible to buy UNIX on many of the laptop systems designed for DOS
and built with adequate processors such as the Intel 80386 or the Motorola
68020. With their small screens and keyboards, laptops are not for everyone.
But if the system is compact, lightweight and can handle being jolted about, it
will be welcome on a trip. However, we are still waiting for a system that has
an inflatable keyboard and display. But we know as soon as we put our money
down, they will be made obsolete by neural wetware devices embedded in your
shoulder.

The future of portable systems seems clear. They will continue to
decrease in price and weight. They will increase in power and functionality.
Lastly, expected future increases in data transmission rates over dialup lines
will provide portables with the ability to network with geographically distant
LANs.

The naming convention followed at Bell Labs is to name the version
according to the edition number of the manuals. We have already
started to read about results from the Eighth Edition of UNIX. A
talk at the 1987 Phoenix Usenix conference reported results from
the Ninth Edition. Following tradition, this implies that the manu-
als have already been printed, and Dennis is working on the Tenth
Edition. Hold your breath.

Where’d it get that number?

UNIX: The StandardUNIX Future84

3.10 UNIX: The Standard Operating System

It is clear that UNIX is the standard operating system of the 1980s and
that it will continue to be the dominant operating system, as long as there are
operating systems (and incredibly large government procurements).

Many people believe there will never be another UNIX. What they
mean is two things.

The first is that for an operating system to be popular, it must do things
much, much better than UNIX. UNIX has such a critical mass now that it will
be difficult to displace even if another operating system is clearly better. And
there are better operating systems. Some interesting ones are Xerox’s
CEDAR environment, Brown University’s PECAN system, CMU’s GAN-
DALF project and Tektronix’s MAGPIE system.

Also, we recognize the lucky break that UNIX had from being introduced
and developed noncommercially the way it was for so many years. It is unlike-
ly that this could happen to any new system. Research projects that have any
viability of success are detected and commercialized as quickly as possible
nowadays.

The second meaning of the statement is that operating systems as user
interfaces are disappearing. Even now, most users think of UNIX as the shell
rather than the kernel. Only a tiny percentage really understands the fundamen-
tal concepts of UNIX discussed throughout this book. Most people, and rightly
so, are interested in dealing with computers in a declarative way. This means
that the computer should figure out the method as well as execute it. Lan-
guages such as Prolog and interfaces such as the Macintosh Finder illustrate
this. While UNIX will be with us for a long time, we believe it will be The Last
Great Operating System.

One of the reasons that UNIX has become the most widespread operat-
ing system is that it was written in a high-level language, and as new CPUs and
systems were created, porting of UNIX was "relatively" easy. Once the port-
ing job was finished, you immediately had lots of software available to your
new machine (with the associated ports of that software being minimized). As
more powerful and different types of systems come into existance, notably
RISC, parallel and distributed architectures, you can bet that people will port
and modify UNIX to run on those machines. Perhaps one of the true UNIX
legacies will not be the operating system and utilities themselves but the fact
that the environment encouraged its own evolution into something new.

A Foundation for Innovation UNIX Future 85

The amount of money necessary to create a new operating system or to
port an existing non-UNIX operating system to another architecture is so high
that UNIX remains the only acceptable choice. Other operating systems (e.g.,
Mach) are either so heavily based upon UNIX that they can be considered a
half-breed of it, are so heavily machine dependent (i.e., VMS) that they are not
acceptable on most other machines, or don’t resemble an operating system at
all (Lisp, APL, Smalltalk).

This last category is perhaps the ultimate future. Many computer scien-
tists recognize that operating systems are just warts on the machine. Just as
we have left the era of the 1960s where we dealt with file allocation problems
and blocking factors, we hope to leave the era of dealing with file names, or
files at all, for that matter. Some day we will look back at UNIX and C with
the same fondness that we now look back at JCL and Fortran. Discussing
operating systems will be akin to discussing dinosaurs. Don Knuth said it best
when he remarked that "An elephant is a mouse with an operating system."

3.11 A Foundation for Innovation

The architecture of the UNIX system is perfectly designed for explo-
ration of new computing worlds. UNIX is a continually self-improving founda-
tion from which innovative software and hardware arises.

Software innovation is catalyzed by the ability of UNIX to span new
compute-engines from micros to supers, from parallel and distributed systems
to toaster ovens. Hardware innovation is encouraged by the relative ease of
porting UNIX to computers still on the drawing boards. Porting UNIX to a new
machines or integrating a new device is much easier than with a new or propri-
etary operating system.

UNIX is a wonderfully open system. Openness isn’t something bestowed
or permitted – it is an attribute of the underlying architecture of a system.
While many systems claim to be "open," UNIX pioneered the concept even
before the word was coined.

UNIX lends itself to tinkering. New tools and applications are easy to
write. New languages are easy, too. The source is there to study. Many
books and magazines are available and courses are taught on the subject. It’s
easy to play with, modify and rewrite to any degree one wants.

A Foundation for InnovationUNIX Future86

Of course UNIX isn’t everything. It doesn’t solve all the problems but it
gives you the best platform on which to solve the next problem. This ability of
UNIX is demonstrated by the many-fold expansion in its power since it was
first released in 1973. It is inevitable that further research and experimentation
based on the UNIX ideas will pay off with worthwhile ideas and practices.
Since the birth of UNIX, we have seen a continual growth of innovative ideas
appear on UNIX machines. It is obvious that this will continue for many years
to come.

UNIX

Information

SECTION 2: UNIX Information

Section 2

Chapter 4: Printed Information
"... the whole documentation is not unreasonably transportable in a student’s
briefcase." – John Lions describing UNIX 6th Edition
"This has since been fixed in recent versions." – Kernighan & Pike

This chapter describes printed information available on UNIX. Knowing
where to look is the key to successfully using UNIX. One of the differences
between the experienced UNIX user and the beginner is knowledge of the
available manuals. However, the manuals are only one piece of documentation
in the universe of the written UNIX word. Other sources of information include
books, periodicals, and source code. We describe this overwhelming collection
of UNIX information and put the manuals in their proper place.

4.1 The UNIX Manuals
"Acts oddly on nights with full moon." – BUGS section for catman from
4.2BSD UNIX Manual

4.1.1 A Little History

In many ways, UNIX manuals are a reflection of the UNIX system
itself. Originally written by the UNIX implementors (rather than a documenta-
tion team), they only contained information appropriate to the UNIX system pro-
grammer. The most severe drawback was that this often presumed a compre-
hensive knowledge of all other parts of the system.

For example, utilities did not explain the use of pattern matching since
this was provided gratis by the shell. However, a naive user might get the idea
that pattern-matched arguments were not acceptable to a utility because it was
not specifically mentioned on that particular manual page.

The benefit was that the manuals were extremely concise. With a mini-
mum of words, they described each part of the system precisely. It seemed
like the authors used the same sense of style writing the manuals that they used

89

The UNIX ManualsPrinted Information90

in designing UNIX. They also had a sense of humor about the failings of some
of their programs.

The style of the UNIX manuals is easily traceable to the UNIX Program-
mer’s Manual, Sixth Edition by Ken Thompson and Dennis Ritchie (Bell Tele-
phones Laboratories, 1975). It was approximately 300 pages long and fit com-
fortably in one volume. It was typeset with troff and included a permuted
index of every entry. The Seventh Edition was a set of three volumes. The
first volume was an expanded (by 100 pages) Sixth Edition manual. The other
two volumes were sets of readings, each describing a different aspect of the
system at length. This increased the documentation to about 1,200 pages.
(Actually, the readings existed before the Seventh Edition as Bell Labs internal
memoranda or Computer Science Technical Reports, but they had never been
bundled with the manual before.)

The readings included an "Introduction to UNIX" by Brian Kernighan
which provided a brief but beautiful introduction to the power and simplicity of
UNIX. Similarly, there was a document titled simply "UNIX Programming" by
Kernighan and Ritchie which devoted another short explanation of the entire
philosophy of UNIX system programming, complete with lucid examples.
"Password Security: A Case History" by Robert Morris and Ken Thompson
was another reading demonstrating the open and honest attitude that the devel-
opers had about the shortcomings of their system. At the time, getting this kind
of information from a commercial vendor would have been a fantasy.

There were many other readings – all short, concise, and amazingly easy
to read and understand. Tutorials also existed for several applications such as
troff and ed.

The early existence of these well-written documents is undoubtedly why
so many people felt UNIX to be a very accessible system.

When UNIX reached Berkeley, the documentation enlarged again, partly
by the addition of a third volume of readings. At this point, the UNIX manuals,
like the UNIX system, began to become bloated in an attempt to be all things to
all people.

Further, UNIX was no longer used simply by system hackers who had
easy access to the source or a guru. UNIX was used by mere mortals, who
wanted completed answers and explanations that could be understood without
having a degree in computer science.

Organization of the Manuals Printed Information 91

Nonetheless, a large part of current UNIX manuals remains substantially
unchanged from the way it first appeared. We credit this primarily to the origi-
nal style which we have already praised so much. In fact, the lowest-cost
UNIX license you can get, comes with no documentation at all. (The documen-
tation is probably available at your local library). It has long been published by
several publishing companies. Many vendors just supply code, with some sup-
plementary notes on software differences and hardware peculiarities.

4.1.2 Obtaining Manuals

UNIX manuals usually come with your system. Since most UNIX ven-
dors modify the systems from the way AT&T distributes them, it is more likely
that the vendors’ manuals are more realistic than AT&T’s.

There are reasons why you might want to get manuals without having a
system, however, and it is possible to do so. For example, you might be trying
to write a UNIX clone. Or you might want to write a program that is portable
to multiple versions of UNIX. In that case you can obtain UNIX manuals from
the larger UNIX sellers.

AT&T and Prentice-Hall sells System V manuals.

Prentice-Hall sells X/OPEN specifications.

IEEE sells POSIX specifications.

Microsoft Inc. sells XENIX manuals.

USENIX sells Berkeley UNIX manuals.

4.1.3 Organization of the Manuals

The organization of the manuals has remained much the same as when
they were originally written. Few UNIX resellers reorganize or rewrite the
bulk of the documentation. This is a real testament to Dennis and Ken’s fore-
sight and style.

Organization of the ManualsPrinted Information92

The manuals are organized in two levels. The top level is divided into
eight sections. The sections are:

It may not be obvious in which section to find the information you are
seeking. And even if you know which section, you may not be sure what entry
to look at. A particularly useful aid is the permuted index at the front of the
manual. The permuted index lists the title of each index in the manual by every
single word in the title. So if you want to know about commands to read and
write tapes, you can look under "tape" and find out about tar, cpio, dump, and
so on. Of course, you will have to read the individual entries to find out which
is more appropriate to your needs.

Manual pages are usually called "man pages," after the command of the
same name which prints them at your terminal. Each man page is divided into a
small set of subheadings. Common to all are NAME, SYNOPSIS, and DESCRIP-
TION. The synopsis is usually a one-line example of the command. This is
often sufficient to jog your memory if you’ve already used the command. If you
need more help, there will be a much longer general description following the
synopsis.

 Depending upon the particular entry, there may also be one or more sub-
headings such as BUGS (describing any known problems) and FILES (naming
files used by the command).

An example man page for a mythical chess program follows:

 Section Description

1. Commands & Programs: User-level programs and commands.

2. System Calls: System calls; i.e., functions directly supported by the kernel.

3. Libraries: Subroutines and subroutine libraries.

4. Devices: Devices and device drivers.

5. File Formats: Formats of system files; e.g., /etc/passwd, /etc/group.

6. Games: The most important section of all.

7. Miscellaneous: troff macros, ASCII listing and other miscellany.

8. System Maintenance: Programs and documentation useful to the system
administrator.

UNIX Manual Sections

No Kernel Manual?!? Printed Information 93

Life With UNIX Release 1.0 1

NAME
yachess – the game of chess

SYNOPSIS
yachess [-w] [-b] [#]

DESCRIPTION
Yachess is yet another computer program that plays chess. Move pieces by selecting
with the mouse and moving to the new position.

Optional arguments are as follows:

-w Player will play white.

-b Player will play black.

Computer will play as if it had this rating.

DIAGNOSTICS
"Illegal move" means just that.

SEE ALSO
endgame(6), othello(6), chess(6)

FILES
/usr/games/lib/chess.open standard chess openings
/usr/games/lib/chess.cheaters record of everyone who cheats

BUGS
This game doesn’t work without a mouse.

YACHESS(6) GAMES YACHESS(6)

4.1.4 What?!? No Manual On the Kernel?

People who are interested in writing device drivers and making modifica-
tions to the UNIX kernel will notice that there are no manual pages for kernel-
level functions. The usual device-driver man pages are user-level descriptions,
not internal descriptions. For example, spl() is a kernel-level function that
changes the hardware priority level. It is common to virtually every UNIX and
UNIX-like system. Yet, there is no spl() manual page.

No Kernel Manual?!?Printed Information94

Originally, the only documentation for spl() and other kernel functions
was the source itself. People joked that "anyone needing documentation to the
kernel functions probably shouldn’t be using them."

That attitude wasn’t meant to be elitist, rather it referred to the difficulty
of kernel programming. Making changes to one part of the kernel can easily
(and usually does) impact other parts, so you really had to be familiar with most
of it. And since you had to have read the whole kernel, it was inevitable that
you knew what the kernel-level functions did.

Of course, we are really carrying this argument to extremes. You don’t
have to understand everything about the kernel to write a device driver. Fur-
thermore, there are things that are not evident from reading code. However,
the tradition lingers on, and the result is that very few kernels are well docu-
mented. Some manufacturers do a good job of documenting their kernels,
while others only supply documentation if you buy the complete source to the
kernel. If you intend on doing kernel programming or writing device drivers,
make sure you can obtain documentation from your UNIX supplier.

There are only a few books on device drivers and kernel-level program-
ming. A particularly good one is The Design of the UNIX Operating System by
Maurice Bach. While generic and not detailed about a specific implementation,
it describes rationales, alternate approaches and substantial code describing
UNIX kernels. The only book describing the Berkeley kernel is The Design of
the 4.3BSD UNIX Operating System by Samuel Leffler, et al.

 Some good treatments on writing device drivers are put out by manufac-
turers, but they are not generic since they are tuned to one specific system.
For example "Writing Device Drivers for the Sun Workstation" is available from
Sun, and we have seen similar well-written documents from Masscomp,
Microsoft and SCO. Also, UNIXWORLD carried a three-part series by George
Pajari on "Writing Device Drivers" in January through March, 1988. Recently,
we saw one manufacturer document its kernel functions in "Chapter 9." We
can only hope this practice spreads.

Depending upon your system, either of the two books mentioned here
combined with the manufacturer’s documentation is your best bet to learning
about UNIX kernel programming.

As supplementary reading, we also recommend the books Operating Sys-
tems: Design and Implementation by Andrew Tanenbaum, and Operating Sys-

Sources Are The Ultimate Printed Information 95

tem Design: The XINU Approach by Douglas Comer. Both books include com-
plete source to systems that are very similar to commercial UNIX systems.

The man macros are a set of troff macros which provide a stand-
ard visual format and greatly simplify the creation of a man page.
Only two macros accomplish most of the work .TH (for Title Head-
ing) and .SH (for Section Heading). After creating your text, install
the new man page in the proper directory (usually under /usr/man
or /usr/local/man). The man command will now find your new
man page and you will become famous for your amazing documented
program. If you are creating the man page for some other reason
and it won’t be installed in the place where the man command
looks, you can say: nroff -man filename to format it. PS: The
best way to create new man pages is to look at the existing ones
and modify them to suit your needs.

man Macros

4.2 Sources Are The Ultimate
/* you are not expected to understand this */ – from UNIX V6 kernel source

The best documentation is the UNIX source. After all, this is what the
system uses for documentation when it decides what to do next! The manuals
paraphrase the source code, often having been written at different times and by
different people than who wrote the code. Think of them as guidelines. Some-
times they are more like wishes. Of course, sometimes they are right on the
money, accurately describing programs and correctly identifying limitations,
bugs and workarounds.

Nonetheless, it is all too common to turn to the source and find options
and behaviors that are not documented in the manual. Sometimes you find
options described in the manual that are unimplemented and ignored by the
source.

Originally, UNIX source was supplied with each system. This allowed
programmers to reference the source and manual pages at the same time, pro-
viding both the real truth (sources) and the helpful tips and wishes (manuals).
Unfortunately, times have changed. Most UNIX users don’t have access to the
system source. A large percentage wouldn’t understand it if they did, either

Sources Are The UltimatePrinted Information96

because they don’t know C, or they are not familiar with all the components of
the system.

Nonetheless, referring to the source code is still an invaluable tool for
understanding parts of UNIX, or any software for that matter. It’s just that
UNIX source is so much more accessible. Actual UNIX source code is pro-
tected by trade secret laws. However, even with these restrictions it is not
hard to get a peek at it.

Most universities and many nonprofit organizations have low-cost source
licenses. By signing a nondisclosure agreement (and possibly enrolling in a
course), you can read any of the UNIX source. Of course, you are not allowed
to redistribute it or use it for commercial gain. By comparison, it is extremely
unlikely that you will see the source code to any other commercial operating
system, even in the classroom.

Many books have been published that described UNIX programs and
algorithms with large sections of UNIX excerpted and well-documented.
There are also many clone implementations of UNIX that are available free or
at low cost (see the Underground chapter) that contain large amounts of useful
source code.

The books are more completely documented later in this chapter. How-
ever, we must mention a pair of books titled A Commentary on the UNIX Oper-
ating System (one book is the source; the other is the commentary) by John
Lions. They contain the source to V6 UNIX on the PDP-11/40 accompanied
by a line-by-line explanation of the code. These books were originally written
under a grant from AT&T for use in an operating systems course. Unfortunate-
ly, they are no longer being published. AT&T has taken a firm stand against
publishing its proprietary code, so you will not find any other books that include
actual UNIX source code, with or without a comprehensive explanation.

While there are no other annotated listings of UNIX systems, Design of
the UNIX Operating System by Maurice Bach (see review later in chapter) is
better written and more complete in its overall presentation of UNIX kernel
concepts and algorithms. Also, the Underground chapter has more information
about many books and source releases for UNIX-like systems.

Should you be lucky enough to find yourself on a real UNIX system with
sources, you will find them living in the /usr/src directory. Within this directo-
ry there are several other directories. The following is from 4.2BSD. Other
systems may be slightly different.

Sources Are The Ultimate Printed Information 97

cmd: This has the source to commands. For example,
/usr/src/cmd/ls.c is the source to ls, the directory
listing program. Some programs live in directories of
their own because they have a number of source files
(and hopefully, a Makefile). An example is the
sources for yacc which can be found in the directory
/usr/src/cmd/yacc.

games: The sources for games are here. It is not unusual to
find them in cmd, but they are often separated, so they
can easily be removed if disk space is limited.

libc and lib: These contain the libraries and support
routines for the C language. In these directories, are
the following subdirectories:

crt: Standing for "C RunTime," this contains special
runtime support routines, for profiling or sped-up
versions of math or string routines. These are
usually in assembly language.

csu: Standing for "C Startup," this contains the entry
and exit points of all C routines. When your C
program is executed, control is passed to the
entry point defined in one of these modules,
which sets up things like stdio and memory and
then calls your main.

sys: This contains the source for the user-level system
calls. Often these are just wrappers, selecting a
parameter and calling a generic system entry
point. The source that performs the real work
(in the kernel) is located in /usr/src/sys.

stdio: This is the source to the standard I/O (hence the
term "stdio") library and any other portable C
library routines that require the stdio library. For
example, fopen() and fprintf() live here.

Sources Are The UltimatePrinted Information98

gen: Contains most of the library routines in section 3 of
the manual that make up the portable C library. For
example: getlogin() and malloc() are here.

local: This is where locally developed source that is not
normally distributed lives. Since /usr/src is typically
contained on a separate disk that may not always be
mounted on the system, many installations like to place
local sources in /usr/local/src because /usr/local
is always mounted.

new and old: These contain, respectively, new and old
versions of command and library routines. With the
availability of source code control systems, few people
use the new and old directories. For trivial programs,
it is conventional simply to rename the old source and
binary to something like oyacc and leave it in the
original directory. Expect to be confused by seeing all
of these practices used at the same time.

sys: This contains a number of directories that are used to
generate the UNIX kernel. The most important is sys
(yes, that makes /usr/src/sys/sys) which contains
the system entry points for all the system calls.

Of major importance when reading the source code are the include files.
These files contain many definitions and data structures used throughout the
system. Often there is extensive documentation in the include files themselves.
For example, the fields of data structures and their legal values are more likely
to be documented here than in the source where they are used.

The #include files can be found in /usr/include. An example is
/usr/include/stdio.h which lives here and is the file used when the line

#include <stdio.h>

appears in a C program. (The angle brackets mean "find this file in
/usr/include.") There are also subdirectories of include files within
/usr/include. The most notable one is called sys and has include files of
importance to the UNIX kernel.

UNIX and C Bookstores Printed Information 99

We don’t want you to get the wrong impression. While it is healthy to
have a reasonable distrust of manuals, you should not become paranoid about
the written word. Going to the source code to find out how a program works is
only necessary after the manual has failed to do its job. However, many people
find it very hard to live on a system that does not include the complete source
code.

4.3 UNIX and C Bookstores and Publishers

Here are the stores that we are aware of that have all or most of the
important titles in the field. While we recommend these stores, it is a good idea
to call ahead to ask if the particular items are in stock and ask about the deliv-
ery schedule. All of the stores will supply lists of books that they regularly car-
ry. (Complete addresses can be found in the Appendix.)

Cucumber Bookshop, Inc. — Cucumber carries all the UNIX and C
books available. It does not carry magazines. Orders are taken by mail or
phone with 24-hour turnaround. Credit cards and checks accepted.

Computer Literacy Bookshop — The largest bookstore of computer and
electronics books anywhere. They carry most of the UNIX and C titles. Credit
card and checks accepted. Overnight delivery available.

Computer Systems Resources, Inc. — CSRI sells UNIX reference and
tutorial books. Checks accepted on mail orders. Phone orders will be delivered
C.O.D.

Jim Joyce’s UNIX Bookstore and Uni-Ops Books — Both of these organi-
zations carry a good selection of UNIX and C-related books, journals, refer-
ence cards and posters.

If your favorite bookstore is out of some UNIX book and you can’t find
anyone else that carries it, you can always call the publisher and order it direct-
ly. However, publishers often have much longer delivery times than bookstores.

4.4 Reference Cards

Useful condensations and references for experienced users are reference
cards for C and UNIX. Some of the available cards we have seen are: ed, vi,
UNIX Shell, Netnews, SCCS and C Programmer’s. SSC, Uni-Ops Books,
Cucumber Books and ASP all specialize or have a large selection of such cards
for C, C libraries, the UNIX shell and other utilities.

BooksPrinted Information100

4.5 Books

There is an incredible number of UNIX and C books available. Knowing
which to read and which to avoid is difficult, since no one can review them all.
Nonetheless, there are a number of classics that you should be familiar with.

We refer to many of these as classics because they are often referenced
by others, although not necessarily because they are superior. Indeed, some
were simply the first book available on a topic and became ingrained because
of that. We mention the classics to avoid as well as the ones to have on your
bookshelf. We also include some books that, while not classics, are nonetheless
noteworthy. Each book is rated on a scale of one to ten for the type of audi-
ence, usefulness, lasting value and readability.

Advanced Programmer’s Guide to
UNIX System V

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

A good reference for System V specific users and
programmers. The book contains many good shell
scripts and C code examples, especially on interpro-
cess communications. Do not confuse this with
Yates’ and Thomas’ User Guide to the UNIX Sys-
tem.

Author(s): Rebecca Thomas
Lawrence Rodgers
Jean Yates

Publisher: McGraw-Hill

Advanced UNIX Programming
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This superb book pedagogically describes program-
ming at the UNIX system call level. The author cov-
ers every system call in detail and with sample code.
Included are comprehensive treatments of sophisti-
cated subjects such as signals and interprocessor
communication. While little knowledge of UNIX is
assumed, this book is one that all UNIX experts will

Author(s): Marc J. Rochkind

Publisher: Prentice-Hall

want to keep handy. The book is oriented towards System V and its derivatives. However, the
author discusses portability issues with specific mention of BSD, XENIX and other systems.

Books Printed Information 101

The AWK Programming Language
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book is a long-needed answer to the many
problems one encounters when looking at the origi-
nal documentation on AWK. Written by the
authors of AWK, we finally have an explanation of
the power of AWK, a much underestimated lan-
guage/tool. Filled with many examples and cover-
ing the ground from introductory concepts to full-

Author(s): Alfred Aho
Brian Kernighan
Peter Weinberger

Publisher: Addison-Wesley

fledged applications the authors have greatly contributed to the usability of this language which
has been used from data base prototyping to report generators to recursive-descent parsers.

The Bell System Technical Journal 57,
 no. 6, pt. 2, July/August 1978

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This is a special issue of BSTJ, made up of important
UNIX readings. The papers describe UNIX from
various viewpoints (including those of Thompson
and Ritchie). There are several papers describing
important UNIX applications and related works.
Almost all of the papers are classics.

Author(s): Bell Laboratories staff

Publisher: Bell Laboratories (AT&T)
(reprinted by Prentice-Hall)

AT&T Bell Laboratories Technical
Journal 63, no. 8, pt. 2, October 1984

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

While it has changed names, this is another special
issue on UNIX of the BSTJ. As before, the papers
are extremely well written and are classic essays.
Many new applications and areas are covered.
Unlike the earlier edition, there are several essays
that include lucid reviews of the past.

Author(s): Bell Laboratories staff

Publisher: Bell Laboratories (AT&T)
(reprinted by Prentice-Hall)

BooksPrinted Information102

C: A Reference Manual
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

Ostensibly a reference manual, this book is much
more. It is so comprehensive in scope that it func-
tions just as well as a C language implementors
guide. The writing style is concise and yet informal
enough so that one can read it from cover to cov-
er, picking up useful knowledge on every page. If

Author(s): Samuel Harbison,
Guy Steele, Jr.

Publisher: Prentice-Hall

you only have one C book on your desk, this should be it.

The C Answer Book
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book provides solutions to all the questions
posed in K&R. Additionally, many examples from
the earlier book are resolved with alternate tech-
niques. Note that two editions are in print, corre-
sponding to the two editions of K&R.

Clovis Tondo, Scott Gimpel

Publisher: Prentice-Hall

Author(s):

The C Programming Language,
First Edition

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This was the first C text to be published. Contain-
ing the complete C reference manual, it was well
written enough that it served as the definitive C
manual for many years, both for beginners and
compiler-writers. It has been superceded by a sec-
ond edition (see next page). C hackers should
have this book nonetheless, for working with K&R

Author(s): Brian Kernighan
Dennis Ritchie

Publisher: Prentice-Hall

(i.e., pre-ANSI) compilers. Known as "K&R" or "the white book."

Books Printed Information 103

The C Programming Language,
Second Edition

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This is a complete rewrite of the original K&R. It is
based on the ANSI X3J11 standard and includes
new examples, a simple version of cdecl, discus-
sions of language changes, and a yacc-compatible
grammar. And the cover is still white. This is the
book to learn C from. It is destined to be a classic.

Author(s): Brian Kernighan
Dennis Ritchie

Publisher: Prentice-Hall

The C Puzzle Book
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

Literally a book of C puzzles, such as figuring out
what cryptic C expressions evaluate to. Many peo-
ple cite this book as an aid that up-and-coming
hackers can cut their teeth on, but its focus is
extremely low level. We do not recommend learning
the C language by reading this book, unless you
want to fill your head with extreme esoterica that
you will probably not use but once in a lifetime.

Author(s): Alan Feuer

Publisher: Prentice-Hall

Writing some readable programs on your own is a much healthier exercise.

The C++ Programming Language
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book describes C++, a successor to the C lan-
guage. The author of the book is also the author
of C++, hence it is impossible to find any differ-
ences between the book’s description and the lan-
guage. Indeed, the book is only barely a tutorial,
but rather a reference. In many ways, this book
reminds us of the seminal book on C by Kernighan
and Ritchie. It will doubtless be superceded by oth-
ers.

Author(s): Bjarne Stroustrup

Publisher: Addison-Wesley

BooksPrinted Information104

The Design and Implementation of the
4.3BSD UNIX Operating System

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book is an excellent description of the internal
algorithms and data structures in the UNIX kernel.
It is specific to 4.3BSD UNIX.

Author(s): Samuel Leffler
Marshall Kirk McKusick
Michael Karels
John Quarterman

Publisher: Addison-Wesley

Design of the UNIX Operating System
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book is an excellent description of the internal
algorithms and data structures in the UNIX kernel.
It is specific to UNIX System V, but much of it is
common to most modern versions of UNIX.
Unlike the Lions book, this book does not include
any proprietary source code, either presenting pseu-
docode or rewritten code. However, it is currently
the best book for learning about UNIX kernel inter-

Author(s): Maurice J. Bach

Publisher: Prentice-Hall

nals. The book is designed as a textbook for a semester course on the UNIX operating system.

Introduction to Compiler Construction
with UNIX

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This excellent book specializes on using lex and yacc
effectively. Wasting few words, this book details
the problems facing yacc and lex users and how
to get around them. You should have this book at
your side whenever you are using these tools. The
book progresses by building a small C compiler.

Author(s): Axel Schreiner
H. George Friedman, Jr.

Publisher: Prentice-Hall

However, much of the material is appropriate towards other uses of lex and yacc besides com-
pilers. Little theory is presented about parsing and related areas. The book is practical and read-
ers should have a reasonable understanding of compiler theory to get the most from it.

Books Printed Information 105

Life with UNIX
A Guide for Everyone

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

Comprehensive treatise of what UNIX is all about,
from technical, market and historical orientations.
Includes much rare material and unusual sections
such as a Who’s Who of UNIX, public-domain and
underground UNIX, notable UNIX quotes and a flat-
tering review of itself.

Author(s): Don Libes
Sandy Ressler

Publisher: Prentice-Hall

Introducing the UNIX System
Introducing UNIX System V

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

We give this book our highest recommendation as
an introductory UNIX text. It is extremely compre-
hensive and yet reads easily. A separate version is
available that concentrates on System V.

Author(s): Rachel Morgan
Henry McGilton

Publisher: McGraw-Hill

Nutshell Handbooks
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

An excellent series of handbooks covering topics
including Usenet, curses, termcap, vi, and
make. Each handbook is an extended essay on a
particular area with a lot of examples, help and ref-
erence material.

Author(s): O’Reilly & Associates staff

Publisher: O’Reilly & Associates

BooksPrinted Information106

Operating System Design: The XINU
Approach

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This superb book discusses the implentation of the
XINU (which stands for "XINU Is Not UNIX") oper-
ating system. While XINU is not compatible with
any version of UNIX (source programs will not run
without change), many of the features that are dis-
tinctively UNIX are present in XINU. Actual code
(including bootstrap assembler) of the XINU oper-
ating (on an LSI 11/2) is presented and discussed

Author(s): Douglas Comer

Publisher: Prentice-Hall

in great detail. This book is suitable as an auxiliary text for a general course on Operating Sys-
tems, or bundled with the Lions text for a course on the UNIX kernel. It also provides some
insight on implementing C in the UNIX environment. An optional tape is available from Prentice-
Hall which contains the XINU operating system discussed in the text.

Operating System Design:
Internetworking with XINU

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book is a companion to "The XINU Approach".
Building on the XINU system, a TCP/IP network is
presented, along with a shell and a stateless net-
work file system. As with the earlier book, the com-
plete implementation appears and is extremely well
documented. While the emphasis in both books is
on practical and immediately useful knowledge, their

fading timeliness will always be offset by the clarity of presentation.

Author(s): Douglas Comer

Publisher: Prentice-Hall

Operating Systems: Design and
Implementation

Minix for the IBM PC, XT and AT

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

These books describe the MINIX system. MINIX is
a public-domain rewrite of V7 UNIX that runs on
the IBM PC and several other microprocessor-
based systems. While internally the system differs
substantially from the original V7 UNIX, this book
is an excellent replacement for the no-longer-
available Lions book.

Author(s): Andrew Tanenbaum
Publisher: Prentice-Hall

Books Printed Information 107

Portable C and UNIX
System Programming

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book aims at providing users with guidance for
creating portable C and UNIX programs. It con-
tains a good comparison of the various UNIX ver-
sions and points out many pitfalls in creating
portable code.

Author(s): J. E. Lapin

Publisher: Prentice-Hall

System V Interface Definition
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book describes the AT&T UNIX System V
standard. While it is only one of several UNIX
standards, it was the first in common use, and thus
has become a common reference.

Author(s): AT&T

Publisher: AT&T Information Systems

The UNIX Operating System
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

A comprehensive introduction to the UNIX sys-
tem. Somewhat of a compromise between the
brevity of the manuals and the more informal
K&P. While well written, this may be a little too
detailed for a beginner to easily read.

Author(s): Kaare Christian

Publisher: Wiley Interscience

BooksPrinted Information108

The UNIX Programming Environment
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book ties together the fundamental concepts
of UNIX programming. Real-world examples are
used and elaborated throughout the book. It is an
excellent book for the beginning UNIX system pro-
grammer. This book is often referred to by the ini-
tials of its authors (i.e., "K&P") and seems destined
to become a classic like its brother K&R.

Author(s): Brian Kernighan
Rob Pike

Publisher: Prentice-Hall

The UNIX System
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book is an excellent introduction which can
also take the user into intermediate-level UNIX
tools. The author has put together an extremely
lucid set of examples which illustrates how a diverse
set of programs may be coupled into a coherent
system. The chapter on data manipulation tools is
particularly useful.

Author(s): Stephen R. Bourne

Publisher: Addison-Wesley

UNIX Programmer’s Manual
UNIX System Administrator’s Manual

UNIX System User’s Manual

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

These are the actual UNIX system manuals. They
are published through a variety of sources, with
each producing a slightly different version of the
manual (user beware). AT&T sells the manuals for
System V and earlier versions. Holt, Rinehart and

Publisher(s): AT&T
Prentice-Hall

Winston publishes some of the manuals on AT&T’s behalf.

Author(s): AT&T staff

Books Printed Information 109

4.3BSD UNIX Manuals
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

These are the actual Berkeley UNIX system manu-
als.

Author(s): Univ. of California at Berkeley

Publisher: Howard Press
c/o USENIX Association

UNIX System Administration
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This is an excellent book on administrating a UNIX
system. Keep it on your desk next to your system-
specific administrative manuals.

Author(s): David Fiedler
Bruce Hunter

Publisher: Hayden Book Company

X/OPEN Portability Guide
Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Usefulness

1 2 3 4 5 6 7 8 9 10
Nil Extremely

Lasting Value

1 2 3 4 5 6 7 8 9 10
Ephemeral Classic

Readability

1 2 3 4 5 6 7 8 9 10
Obtuse Well Written

This book describes how to produce portable sys-
tems and code with respect to the X/OPEN effort.
While this multi-volume set is extremely comprehen-
sive, you can expect it to change as X/OPEN stand-
ards work continues.

Author(s): Members of X/OPEN

Publisher: Prentice-Hall

PeriodicalsPrinted Information110

4.6 Periodicals

3B JournalAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

3B Journal specializes on AT&T’s 3B series of com-
puters. It has product reviews, bug reports and
fixes. 3BJ covers information from the beginner to
the UNIX guru.

Publisher: Owens-Liang Publications, Ltd.

The C Users JournalAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

The C Users Journal covers what its name implies.
Most of the articles are aimed at the intermediate-
level C programmer, although there is a fair amount
of technical material covering the continuing efforts
of the C standards committee. CUJ is particularly
notable for making available much public-domain
software.

Publisher: R&D Publications Inc.

Computing Systems – The Journal of
the USENIX Association

Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This quarterly publication specializes in articles on
research, implementation and analysis of advanced
computing systems that involve UNIX or are based
on UNIX ideas. Papers reflect a mix of theory and
practical experience.

Publisher: University of California Press

Periodicals Printed Information 111

CommUNIXationsAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This is /usr/group’s monthly newsletter. It reports
/usr/group activities and prints several commercially-
oriented papers each month, in effect, spanning
the gap between UniForum conferences. In this
respect, it is comparable to the commercial UNIX
magazines, except this is free when you become a
member of /usr/group.

Publisher: /usr/group

;login:Audience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This is the USENIX Association’s monthly newslet-
ter. It is one of the oldest regularly published UNIX
periodicals. Apart from reporting on USENIX activ-
ities, ;login: prints several technical papers each
month, in effect, spanning the gap between
USENIX conferences. ;login: is free to all members
of the USENIX Association.

Publisher: USENIX Association

Patricia Seybold’s UNIX in the OfficeAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This newsletter specializes in UNIX in the office. It
includes product reviews, trends and some extreme-
ly technical and in-depth analysis. Very expensive.

Publisher: Patricia Seybold’s Office
Computing Group

PeriodicalsPrinted Information112

UNIGRAM • XAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

The only weekly UNIX newsletter. Market-oriented
stories on new products, mergers, large contracts,
joint-marketing agreements, analysis of companies,
market trends, etc. Very expensive.

Publisher: Miller Freeman Publications

UNIQUEAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

Monthly newsletter that presents a small number of
in-depth analyses of topics ranging from technical
issues to product reviews to market trends. Some-
what breezy but down to earth.

Publisher: InfoPro Systems

UNIX Products DirectoryAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

Updated yearly, this tremendous book contains list-
ings of all current commercial UNIX products. This
includes not only hardware and software, but publi-
cations and services. At 600 pages, product
descriptions must be held down to one paragraph.
Unfortunately, most of them are written by the ven-
dors.

Publisher: /usr/group

Periodicals Printed Information 113

UNIX REVIEWAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This monthly magazine is oriented towards the
UNIX programmer/hacker as opposed to the man-
ager or seller/buyer of commerical products. UNIX
REVIEW covers programming and items of impor-
tance to programmers. Reviews of software and
hardware focus on products that can be integrated
into systems rather than complete systems. Each
issue has a fascinating interview with a person who
has had a major influence on UNIX. The regular
columns are very good, including "C Advisor" by

Publisher: Miller Freeman Publications Co.

Eric Allman and Ken Arnold, and "Rules of the Game" by Glenn Groenewold.

UNIXuserAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This magazine is oriented towards the UNIX begin-
ner. UNIXuser has more subject introductions and
tutorials of material than other magazines. Product
reviews are aimed at first-time buyers. This maga-
zine takes account of the fact that most UNIX
users know very little about UNIX.

Publisher: Marvin L. Rosenfeld

UNIXWORLDAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

This monthly magazine is oriented towards the
UNIX user/buyer/manager. UNIXWORLD covers
marketing and technology trends, applications,
reviews and limited technical articles. Product
reviews focus on complete or packaged computer
systems. Its regular columns are very good, includ-
ing "Inside Edge" by Omri Serlin, "The Hindin
Report" by Wendy Rauch-Hindin, and the "Guest"
essays.

Publisher: Tech Valley Publishing

PeriodicalsPrinted Information114

USENIX Conference ProceedingsAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

These are collections of the papers presented at
each USENIX conference. The papers are usually
technical, ranging from practical to futuristic
research. Many seminal papers on UNIX appear
here first.

Publisher: USENIX Association

UNIX BulletinsAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

UNIX Bulletins is published twice monthly. It
focuses on one topic in depth, such as standards,
trends or new product information, along with tech-
nical analysis when appropriate.

Publisher: International Data Corporation

/usr/digestAudience

1 2 3 4 5 6 7 8 9 10
Non-wizard Wizard

Background

1 2 3 4 5 6 7 8 9 10
Commercial Scientific/Research

Product Reviews

1 2 3 4 5 6 7 8 9 10
Useless Useful

Editorial/Technical Content

1 2 3 4 5 6 7 8 9 10
Useless Useful

A news digest published bi-weekly. Consists pri-
marily of headlines with single-paragraph briefs. A
good complement to /usr/group’s CommUNIXa-
tions.

Publisher: /usr/group

Chapter 5: Nonprinted Information
"I never let school get in the way of my education." - Anon.

While there are quite a few excellent books covering the technical
aspects of UNIX, there is a large amount of information that is not available in
print. You can’t find it in your library, whether you look in texts, magazines or
the manuals.

Some information goes out of date too quickly. Some varies too much
from installation to installation. Some (particularly product information) changes
at people’s (and marketing moguls’) whims. Some information is simply best
presented in a different form than the printed word.

In the previous chapter we have tried to point you towards sources of
durable information. This chapter will cover another world of information that
we have classified as "nonprinted." We consider this to include classes, confer-
ences and user groups. (Electronic bulletin boards which do provide a wealth
of information are covered fully in the UNIX Underground chapter). Each of
these are excellent sources for product announcements, product reviews,
benchmarks and other transient information.

5.1 Conferences

Should you go to a conference? Which one? Is it worth going across the
country, or to a different country to attend a UNIX conference?

The number of annual computing conferences is truly astounding. While
the number of UNIX-specific conferences is a tiny percentage, even a UNIX
mavin will find it impossible to attend all of the UNIX conferences. Fortunately,
however, it is not necessary to attend them all. Indeed, you might question
attending any of them. Perhaps you should be attending an application-specific

115

ConferencesNonprinted Information116

conference (such as SigGraph for graphics) rather than a graphics session at a
UNIX conference.

One thing to keep in mind when choosing a conference is to know what
you expect to get out of it beforehand. Some things conferences are good at
are: meeting UNIX movers and shakers, rubbing elbows with the gurus and
wizards who have the right stuff. It is not unreasonable to go to a conference,
specifically to talk to several people that are normally unaccessible, secreted
away in corporate basements, only allowed out for annual shows, and just this
occasion.

These conferences always have job bulletin boards, where you can post
your job opportunity and expect many knocks on your door later that evening.
The majority of people recruited this way will be newly-graduated UNIX hack-
ers with little outside experience, although disgruntled gurus will usually give
the board a summary review just in case. Indeed, one of the first places that
many startups become known (and gain notoriety depending upon the wording)
is through their initial posting for employees on these bulletin boards.

Many people are under the naive impression that this is the primary activ-
ity at a conference. Actually, we have come to believe that this is the least
important priority at a conference. Especially if you are a beginner, you cannot
learn UNIX this way. After all, if you go to a week-long conference, how much
can you expect to learn in five days? Answer: About five days’ worth. There
aren’t any mystical concepts that require passage from the mouth of the master
to understand them. With the right book, you can learn the same material, and
do it at your own rate. Better yet, you can do it at a terminal and try out what
you are learning, rather than watch someone put up unreadable view graphs of
printouts.

Even advanced courses, such as "Writing device drivers" or "Arcane
awk programs" are of limited use. Typically presented as day-long tutorials,
these courses present a mass of information that is difficult to comprehend in
eight hours. It is extremely difficult for instructors (who often are not profes-
sional instructors) to explain advanced concepts to people who have a range of
experiences and backgrounds. Before attending such courses, make a good
attempt at finding written information covering the material. For sufficiently
obscure material, contact the instructor and ask for a copy of the course notes.
Sometimes the conference sponsors keep a copy of the previous year’s notes.

Conferences Nonprinted Information 117

Even though we don’t think highly of these tutorials, they are popular.
People like to believe they can reach nirvana by immersing themselves with the
material from a guru for a day or two. While our experience says otherwise,
we often find that these tutorials are booked solid months in advance. Do not
expect to pay at the door and be admitted to a tutorial, as they are usually full.
And they have guards at the door, to make sure you don’t sneak in.

In 1986, AT&T performed a survey of customer interest in tutorials and
classes. The survey results (published in a letter to customers) were as follows:

1. Networking
2. Applications Software
3. V5R3 Features
4. Connectivity
5. Office Systems
6. Programming Algorithms in C Language
7. Programming Productivity
8. Porting
9. Documentation
10. Security
11. UNIX Kernel Debugging (Crash Dump Analysis)

Like most computer shows, unless you have just completed a comprehen-
sive survey of a field in which you are an expert, vendor exhibitions are confus-
ing, or to put it more bluntly, misleading. For example, if you are shopping for a
database, you can’t very well load in your data, sample applications, and try a
couple of queries, to see if the thing works under a real load. Even getting a
feel for the user interface is difficult under the situation of a salesperson at one
side and a restless crowd surging against your other side.

At every conference, there seems to be a person who runs around from
one exhibit to the next, typing in a couple small benchmarks and running them
on all the systems. However, these benchmarks (as well as the people) should
be taken with a grain of salt. Some vendors have machines fully loaded with
memory. Some have very fast disks, which you won’t be able to afford. Oth-
ers bring beta-test versions of software that have loads of diagnostic informa-
tion compiled into them so that they present artificially slow benchmark times.

Some of the conferences have technical sessions where research proj-
ects, experiences and issues are discussed. We find the level of such presenta-
tions quite high; however, it is often sufficient simply to read the conference pro-

ConferencesNonprinted Information118

ceedings to learn the same material. (Although you will miss all the questions
from the audience, and more importantly, the speakers’ jokes.) Indeed, it is use-
ful to scan the proceedings before attending the talks, so you can 1) better
choose which talk to go to and 2) have a better understanding of what the talk
is about. Feel free to order the conference proceedings, even if you choose not
to go to the conference. The conference proceedings are often where seminal
papers on UNIX first appear.

There are several large UNIX conferences, each typically meeting once
or twice per year. Each conference tends to have a different slant on the same
subject matter. Here are descriptions of some of the conferences:

UniForum

Sponsored by /usr/group, UniForum is held once a year. They are often
held in conjunction with the USENIX conferences (see below).

UniForum is aimed at the business and end-user segment of the comput-
ing industry. UniForum includes a vendor exhibit, workshops, tutorials and con-
ference sessions. The workshops and tutorials tend to be oriented towards the
commercial end user. The conference sessions are usually run by industry peo-
ple and are invariably based on market issues.

UniForum occasionally holds joint conferences with USENIX. These are
certainly more convenient to attend, although they tend to draw uncomfortably
large numbers of people.

USENIX Conference

USENIX conferences occur twice a year, in different parts of the coun-
try. That way, at least one is in a close proximity to most users. One confer-
ence is usually run in conjunction with UniForum.

In contrast to UniForum, the USENIX conferences are aimed at the tech-
nical UNIX developer and researcher. Seminal results in the UNIX field are
often reported here first. The technical sessions are based on refereed papers.
The tutorials are more sophisticated, often requiring fluency in some section of
the UNIX source code. (Some of these require that you be able to show a
license or proof of purchase.) Attendance from universities is much higher at
USENIX. You are more likely to find Ken and Dennis here then any of the oth-
er conferences. Expect more beards and shorts to be worn. No smoking,
please.

Conferences Nonprinted Information 119

One complaint many people have with the USENIX conferences is their
choice of locales. They are typically southern spots in summer, and northern
spots in the winter. No matter where, it is always in the off-peak season. This
is designed to make it affordable to students. In 1987, students attended for
$40, while USENIX members paid $120. A tutorial cost students $115 while
USENIX members paid $195.

EUUG

The European UNIX Users’ Group sponsors a conference twice a year.
This conference is the European answer to all of the American conferences,
and is a compromise among all of them. The conference includes tutorials and
a vendor exhibition. Like USENIX, EUUG accepts refereed papers for presen-
tation.

The 1987 conference was held on a luxury ocean liner, which while
undoubtedly fun (it traveled from Stockholm, Sweden to Helsinki, Finland) prob-
ably was prohibitively expensive for most of the students that would otherwise
attend such a conference (often by doubling up or staying with nearby friends).

While covering the same ground as its American cousins, EUUG tries to
make up for the historical American bias in UNIX. Typical issues that are
always in the forefront at these conferences are 1) how to adapt UNIX to inter-
national character sets, 2) date/time formats, 3) how to deal with each coun-
try’s national telephone system and 4) forcing UNIX into the ISO mold.

The official language of the conference is English.

UNIXEXPO

Held every fall in New York City, UNIXEXPO, the UNIX Operating Sys-
tem Exposition & Conference, is a three-day conference offering commercial
exhibits, talks, tutorials and computer labs, and job fair. The tutorials and com-
puter labs are all run by AT&T.

UNIXEXPO is strictly a commercial show. While the speakers run the
gamut from all the UNIX companies, there are virtually none from academia.
This conference studies how UNIX gets the job done in the real world. The
material ranges from the financial world to the scientific. Just because there
are no academics here doesn’t mean there are no highly technical talks.

Conference FreebiesNonprinted Information120

In 1987, the rates were as follows: $100 for three days of conference and
exhibits. There is a small fee for attending only the exhibition, but most vendors
will be delighted to supply you with free passes at your request. Full-day tutori-
als are $300 each. Full-day computer labs are $325 each.

UNICORN

UNICORN holds open conferences twice yearly in the Washington, DC
area. As might be expected, they deal primarily with issues of concern to the
government or people who deal with the government. Typical issues are 1)
national security, 2) customs, 3) GSA purchases, 4) FIPS and POSIX stan-
dards, and so on. Meetings are free. Certain topics may require a security
clearance.

5.1.1 Conference Freebies and Other Trash

One of the most important reasons to go to a conference is to get the
wonderful giveaways that so many of the exhibitors distribute, trying to capture
your attention. Naturally, we have a modest collection. Here are some of them.

Buttons

Sex,
Drugs and

UNIX

Mike Tilson

E
Pluribus

UNIX
Unknown

RTFM

R
ead the manual

!

Your guru says:

MS-DOS
 Just say

"no".

David Yost
Grand Software

/* You are not
expected to under-

stand this. */

Neil Groundwater

HCR

Conference Freebies Nonprinted Information 121

VAX/VMS
Software for

the ’60s.
(name withheld by request)

OS/2
The nightmare

continues.

Unknown

The
JOY

of
UNIX

Sun Microsystems

Posters

Posters are almost as good as buttons, although a little more unwieldy to
wear. Some of the best ones we have seen are:

C-shell – Picture of a sea shell with various csh commands grouped by
function in the partitions of the sea shell. Available from
UNIX/World.

vi – Commands of the vi editor grouped by functions inside of big hollow
v and i. Available from UNIX/World.

4.2 > V – Picture of the "Mt. Xinu/4.2bsd" rocket blowing up the AT&T
death star logo. Lots of phones and telephone poles falling
out of the death star. Available from Mt. Xinu.

C syntax – Graphical drawings of BNF for the C language. Available
from AGS Computers.

UNIX Magic – Typical dark ages alchemist as guru wearing tall wizardly
hat labeled "su." Surrounded by black cat and lots of myste-
rious potions like "oregano," "tar" and "grep." Available
from UNITECH Software.

Other Miscellanea

10th Anniversary USENIX t-shirt – Picture of UNIX internals, consisting
of lots of leaky pipes, demons running around having fun.
Available from USENIX.

"Reach out and grep someone." – Found on opposite side of AT&T t-
shirt.

WorkshopsNonprinted Information122

"UNIX is a trademark of Bell Laboratories" – Found at the very bottom
of a Mt. Xinu t-shirt.

"/nev/dull" – Found on t-shirts available from Jim Joyce’s UNIX Book-
store.

Ratfor t-shirt – Picture of large rodent at keyboard wearing "4" t-shirt.
Available from STUG.

"awk: bailing out near line 1" – Caption on t-shirt. Plane going down in
background. Bird (an auk perhaps?) wearing parachute in
foreground. Available from The Independent UNIX Book-
store.

Chateau NUXI - A rare vintage. Available from The Instruction Set.

Mt. Xinu Command of the Month Calendar – full of important dates like
August 6th, 1983 (4.2BSD released), and amusing definitions
of error codes such as ENOTOBACCO: Read on empty pipe, and
EWATERGATE: Extended tape gap.

5.2 Workshops

UNIX workshops are meetings of small groups of people, who get togeth-
er to share experiences and work out solutions in one particular technical area.
Some of the past workshops have dealt with UNIX standards, C standards,
graphics and C++.

Workshops differ from conferences in several ways. Workshops are typi-
cally attended only by implementors, concerned parties and others with direct
experience. Typical attendance at a workshop ranges from fifty to several hun-
dred people. There are no exhibitors. The emphasis on the talks is technical.
And they remain extremely informal, partly because they often present "work
in progress."

UNIX*
TRADEMARK OF BELL LABS*

LIVE FREE OR DIE
License plate by

Armando Stettner.
Distributed by Digital

Equipment Corp.

Courses Nonprinted Information 123

The organizer of most workshops is the USENIX Association. Work-
shops are announced in its newsletter, ;login:. If you are interested in a work-
shop on a new subject, contact USENIX.

You may find workshops on topics such as UNIX internals, and C pro-
gramming offered by UNIX vendors and other commercial companies. These
are really classes. They may have the informality of workshops, but there are
students and instructors, and the students learn while the instructors teach.

5.3 Courses
"The only way to learn a new programming language is by writing programs in
it." – Brian Kernighan

Large companies can often support their own instructors, or have staff
members who can give occasional classes. For introductory classes, this is a
good way to go. If your organization isn’t that big, and there are still a fair num-
ber of people who would like to attend a similar class, your company can hire,
on a one-time basis, an instructor to come to your shop and give classes.

This is preferable to your leaving work and attending a class outside,
since the instructor will shape the class more to your needs or those appropri-
ate to your company. Of course, there are plenty of classes and seminars which
are open to anyone who pays the appropriate fee. In 1987, typical three and
four day courses cost $1,000 per student.

Most vendors offer classes to users of their software and hardware. How-
ever, certain UNIX topics are so standard (e.g., C-shell programming) that
many of these classes can be considered even if you don’t have that vendor’s
equipment. Particular topics may require that the student be able to show a
UNIX source license.

All companies listed offer classes around the country for your conve-
nience as well as on-site classes. Several of the companies offer their courses
on videotape and videodisc. Videos are the ultimate in convenience, with the
one drawback that you cannot ask the instructor questions. On the other hand,
videodisc courses are often interactive, and can quiz you periodically, or allow
you to skip around following up just the areas that are of interest to you.

Here are some of the largest course vendors:

AT&T: As might be expected, AT&T has been teaching UNIX classes
for longer than anyone else and offers the widest variety of classes (over 40

User GroupsNonprinted Information124

this year) and options. AT&T actually offers CEUs (Continuing Education
Units). Many courses are available on videotape.

Computer Technology Group: CTG offers a large variety of UNIX and C
topics, in Canada and England as well as the U.S. Courses available on
videodisc.

Digital Equipment Corporation: DEC offers classes in ULTRIX internals
as well as C programming.

Institute for Advanced Professional Studies: IAPS offers classes in
many UNIX topics, but specializes in advanced areas.

Lurnix: Lurnix offers classes in a variety of UNIX topics as well as C
programming. Lurnix offers a self-study program based on the book UNIX for
People. (See Printed Info chapter.)

Uni-Ops: Uni-Ops offers a variety of courses such as UNIX System
Security, 386 UNIX for Programmers and even Advanced vi.

USPDI: A nonprofit organization, the U.S. Professional Development Insti-
tute offers UNIX and C classes for CEU credit. These classes are sponsored
by the DPMA Education Foundation.

Integrated Computer Systems: ICS offers courses on C and UNIX in the
U.S. and Canada. ICS also offers video courses on the same material.

5.4 User Groups
"I refuse to join any club that would have me as a member." – Groucho Marx

There are several national and international UNIX user groups. If you
depend upon UNIX for your livelihood, it is worthwhile for you to become a
member of one of them. Your company may also want to become a corporate
member or sponsor.

The user groups are most well known for their annual and semi-annual
conferences, however they all provide many more services. These include sup-
porting standards work, supporting local user groups, disseminating information
and funding projects that benefit the members. Most of the user groups are
nonprofit organizations.

User Groups Nonprinted Information 125

International User Groups

The international UNIX user groups are /usr/group, USENIX and EUUG.

/usr/group is an international organization for commercially-oriented users
and other end users. It publishes the UNIX Products Directory yearly, CommU-
NIXations bimonthly, /usr/digest biweekly, and sponsors annual UniForum con-
ferences. /usr/group is an excellent source of information interpreting the
UNIX problems of concern to the commercial UNIX user and marketer.
/usr/group continues to do a substantial amount of work in setting UNIX stand-
ards, including sponsoring many working groups, and publishing many docu-
ments interpreting these standards. /usr/group also sponsors national and local
user groups.

USENIX is an international organization for technical and academic
UNIX users. USENIX publishes ;login: bimonthly and Computing Systems, a
refereed journal on UNIX-related papers, quarterly. USENIX also sponsors
several conferences and workshops each year where many seminal papers on
UNIX appear first. In general, USENIX is the first choice as a user group for
UNIX developers and researchers. The organization sponsors experimental
projects (e.g., UUNET, Stargate), and provides software exchange of member-
donated sources. The Usenet newsgroup, comp.org.usenix, carries discussion
of USENIX-related matters.

Historical notes about /usr/group and USENIX are presented in the Histo-
ry chapter. Their publications and conferences are further described elsewhere
in this chapter and in the Printed Information chapter.

EUUG, the European UNIX User Group, is an international user group.
However, unlike /usr/group and USENIX, EUUG makes no attempts at hiding
its bias. EUUG conferences, publications and other activities are aimed at pro-
viding UNIX support to European users. (Ironically, however, the official lan-
guage of EUUG’s conferences is English.) EUUG conferences are held twice
a year. EUUG produces a monthly newsletter called EUUGN. Many of the
national European user groups provide automatic membership in EUUG.

National User Groups

There are many national UNIX user groups – indeed, more than one in
some countries. While USENIX and /usr/group are international user groups,
their directly sponsored activities (such as conferences) have traditionally been
primarily in North America. National user groups such as the Australian UNIX

User GroupsNonprinted Information126

Users Group, and the Association Francaise des Utilisateurs d’UNIX exist to
promote UNIX in their respective countries. These and other national user
groups have regular meetings, newsletters and other services that complement
the work of the international user groups. Other well-known national UNIX
user groups include the Japanese UNIX Society, Korean UNIX User Group,
National UNIX User Group/Netherlands, New Zealand UNIX Systems User
Group, and /usr/group/UK Ltd. Addresses of these and other national user
groups are listed in the Addresses Appendix.

NZUSUGI, the New Zealand UNIX Systems User Group,
holds a yearly conference, which some claim is one of the
few UNIX conferences still worth attending. It is quite
informal as the attendance still numbers in the hundreds,
not including sheep. (There are always a lot of sheep jokes
at the conference.)

NZUSUGI

Local User Groups

Most of the national and international user groups have local affiliates.
For example, there are user groups in most of the larger cities throughout the
world. There are also national user groups for many of the smaller countries.
The easiest way to find out about your local user group is to contact the larger
user groups previously listed. They can tell you if they know of or sponsor a
user group in your area.

These local UNIX user groups are a fun way of getting together with
local UNIX talent and swapping UNIX and C tips, tricks and help. Most of the
groups have regular meetings and newsletters. Public-domain software swap-
ping is usually encouraged at meetings, and you can hear talks on new products
or projects having to do with UNIX.

Some of the user groups have classes, and while these tend to be infor-
mal, they are much cheaper, and probably nearly as good as the commercial
classes (see elsewhere in this chapter).

Besides these user groups, there are many "personal/amateur computer
hobbyist groups" that can supply you with UNIX contacts also. While these

User Groups Nonprinted Information 127

user groups do not cater exclusively to UNIX or any particular software or
hardware, they tend to attract enough people that they can support subgroups
of interests. These usually include UNIX interests, and always include C inter-
ests. (Remember that C is a very popular language on PCs and other micropro-
cessor systems.)

If you are interested in forming your own UNIX user group, contact one
of the larger user groups previously listed. They are interested in local user
groups that fit their own interests, and will help you kick it off. Typically, they
will do your first mailing and supply you with lists of their members in your local
area. They will mention you in their publications. And they might make avail-
able seed money for your new group.

Vendor User Groups

There are many user groups that specialize in particular vendors or prod-
ucts. Some of the most active ones are ADUS (Apollo DOMAIN Users’ Soci-
ety), DECUS UNIX SIG (DEC User Group UNIX Special Interest Group),
and SUG (Sun User Group). All of these have newsletters and conferences
devoted to topics concerning their respective systems. They also have distribu-
tion tapes that contain user-contributed software designed to run on their sys-
tems.

Many of the vendor-specific user groups are financially supported by the
vendor itself. Thus, such conferences will not have exhibits for competitors. In
other words, comparison shopping at conference exhibits will generally be
restricted to products that do not compete with the vendor’s. Of course, if you
are looking for products that do not compete with the vendor’s but run on or
with their products, you may find such conferences a great marketplace.

Unlike most other user groups, the vendor user groups are generally for-
profit organizations.

Some Other Groups

It is possible to spend every day of your life going to different UNIX user
group conferences and workshops, while never attending a non-UNIX function
(no less getting any work done). In reality, there are many other conferences
and special-interest groups in professional organizations like the ACM and the
IEEE which do not necessarily cater to UNIX. This does not mean that they
ignore it. Indeed, they may provide a more balanced view of the world.

User GroupsNonprinted Information128

If you have read even a small amount of this book, you will have seen
that many of our sources are not from within the UNIX world. It is in your best
interest not to blind yourself to things simply because they are not UNIX.
While UNIX is a wonderful system, it has freely borrowed many ideas from oth-
er operating systems and environments. It is to your advantage to be as knowl-
edgeable about other systems as you are about UNIX. Only then will you real-
ly understand the UNIX world.

While it is not appropriate here to mention unrelated but worthwhile user
groups, two user groups exist that are indirectly related to UNIX. Namely, the
Software Tools User Group and the C Users’ Group.

The history and importance of the Software Tools User Group (STUG)
was discussed at length in the History chapter. STUG remains active although
much of its work has been superceded by UNIX implementations.

STUG continues to distribute distribution tapes of the Virtual Operating
System software for a large number of different computer systems, along with
user-contributed software. STUG meetings are held alongside the regular
USENIX meetings, every six months.

As its name implies, the C Users’ Group (CUG) specializes in the C lan-
guage. It produces the C Users Journal eight times a year, an excellent maga-
zine for C programmers. However, CUG became known first for their distribu-
tions of member-contributed software. CUG’s software is written for a variety
of operating systems (including UNIX) and most of it is in C. (A little is in
assembler, naturally, and some of the C programs are compilers and inter-
preters for other languages.)

CUG claims to have "the world’s largest holding of public-domain C soft-
ware," and they are quite professional in their distribution techniques. They can
write media in many different formats (including tar and cpio) and will ship
overnight if you request. In 1988, they charged $8 per volume, and their cata-
log included 135 volumes (5 1/4" floppies).

Section 3

SECTION 3: Inside UNIX

UNIX

Inside

Chapter 6: The User’s Environment
"A program designed for inputs from people is usually stressed beyond the
breaking point by computer-generated inputs." – Dennis Ritchie

This chapter describes the UNIX users’ environment. We describe
UNIX shells and many other common tools and commands. With a minimum
of effort, it is possible to do extensive UNIX programming even without learn-
ing the C language. Most UNIX users do take advantage of this and we pre-
sent some examples.

Programmers will find the next chapter filled with more information about
what lies underneath the UNIX environment. However, programmers are
users, too, and will benefit by understanding the UNIX environment, as much
as users.

6.1 Beachcombing for Shells

When asked "What is UNIX?", many people think simply of the shell (so
named because it is the outermost layer of the system) and its characteristic
features to control processes and files.

When the user types commands such as cat and ls, the program that is
listening is the shell. The shell is the program most often used to start and con-
trol other programs, including editors, compilers, games, and so on. The shell is
not a particular program but can actually be any program. Users can create
their own shell. This allows one to stylize the UNIX user interface drastically
on a per-user basis.

Allowing the user to substitute any program for the default user interface
was an invention with UNIX. Even today, most operating systems do not let
the user replace the user interface, and if they do, the program has to be a spe-
cial one using unusual conventions.

131

Beachcoming for ShellsUser’s Environment132

To a certain extent, complaints about the arcane nature of the UNIX
commands can be answered by "Well, then write your own shell!." However,
while this is simple to say, writing a good shell takes some expertise. Nonethe-
less, we think that the designers of UNIX recognized the difficulty of designing
an interface that would please everyone. So they left us with one that pleased
themselves as programmers, and left a hook for the future.

Many people have taken that hook, and now we see UNIX systems with
menu interfaces, AI interfaces, and iconic interfaces. The point is that all of
these are possible.

A well-written shell can be a pleasure to use. Writing a good one admit-
tedly takes some expertise, although the basic idea is simple enough.

while (1) {
prompt("command:");
read(command);
execute(command);

}

A real shell is a good bit more complicated than this, having to deal with
signals, interrupts, pipes and I/O redirection. One of the important points about
a shell is that, like any UNIX program, it can have its I/O redirected. So if you
redirect its input away from the keyboard to a file, it can execute a set of shell
commands. This is called a shell script.

Shell scripts may be as simple as a set of commands to be executed.
Even this simple concept allows one to tie together existing programs into new
and more powerful programs. The shell is ideal for this. And because the
shells all implement programming language constructs, shell scripts tend to look
a lot like programs and do very sophisticated things, rather than just simply exe-
cuting a set of commands. And like programming languages, choosing shells
can differ with the application.

We tend to see different people using different shells. Many people use
more than one shell. While this is a little confusing to the beginner, there are
important reasons for being familiar with more than one shell.

sh, also known as the "Bourne shell" after Steven Bourne of Bell Labs, is
the simplest shell. It is kind of a lowest common denominator of shells, having
the rudiments of a programming language (similar to Algol-68), simple vari-
ables, and so on. It is popular because it was available before the other shells,
and it is the only shell you are guaranteed to find on every UNIX system.

Beachcoming for Shells User’s Environment 133

Because of the latter reason, it is common to find people writing shell scripts for
sh, while using another shell interactively.

csh, also known as the "C shell" was written by several people at Berke-
ley and IIASA. While the programming language constructs of sh resembled
Algol, those of csh resemble the C language, hence the name "C shell." Ironi-
cally, most people find the csh more difficult to program and continue to write
shell scripts for sh, while using csh interactively.

While its name implies otherwise, the really noteworthy features of csh
are job control, history and aliasing. Job control allows one to control multiple
processes moving them between the foreground and background with single
keystrokes. History keeps a list of previously executed commands, on the
basis that you are likely to repeat commands or variants of them. Compared to
sh, csh can drastically reduce the number of characters one has to type to get
work done. Aliases are names given to command lines, which the csh remem-
bers on your behalf.

csh is distributed with all Berkeley-based UNIX, and is usually included
with any AT&T UNIX that says "with Berkeley enhancements."

tcsh, is a popular varient of csh, available in the public domain. It incor-
porates all of the features of csh, plus "command-completion" similar to the
Tenex system from BBN. Command-completion allows one to type partial com-
mand and file names. As long as enough is given to disambiguate, the system
can automatically complete the command. tcsh also provides emacs-style edit-
ing of the command line.

ksh, also known as the "Korn shell" after David Korn of Bell Labs, is the
most powerful shell in common use. It is upwards compatible with sh and con-
tains many of the best features of csh and tcsh, plus it has command-line edit-
ing à la vi or emacs (your choice). It is also much more efficient than any of
the other shells. ksh is available from the AT&T Toolchest (see Applications
chapter) as an unbundled product.

We expect that ksh will eventually be distributed with UNIX as the
default shell. We enourage people to obtain ksh and think of it as the "standard
shell." ksh is described in The Korn Shell Command and Programming Lan-
guage by David Korn and Morris Bolsky, Prentice-Hall.

The shells discussed here are the most common. You are more likely to
find them on your UNIX system than any other. However, there are many oth-

Shell BasicsUser’s Environment134

er shells available. Many third-party companies have begun to offer shells,
sometimes optimized for a particular system. Some other shells worth mention-
ing are: vsh (Microsoft’s visual shell), deskmate and tsh (Tandy), MultiView
(SCO), sysadmsh (SCO’s system administrator’s shell), dsh (American Man-
agement Systems Inc.’s directory shell), and ATvanced Office System
(Technology Research Group Inc.).

Note that describing shells can be as difficult as describing UNIX. They
can be modified as easily, and they tend to change over time as authors add
new features. For instance, csh has gained features with each new release.
While sh was evolving, it took many ideas from other shells (including csh).
csh and ksh continue to be enhanced, as do many other shells that we have
mentioned here. Do not be surprised to find that what you thought was a fea-
ture of one shell shows up sooner or later in all the shells.

6.2 Shell Basics

All of the shells have many fundamental characteristics in common.
These are described briefly in the rest of this chapter. We cannot hope to pro-
vide a comprehensive tutorial and reference guide for any one shell, no less all
of them, but you should be able to come away from this with a working knowl-
edge of

• some basic shell commands and features

• why the shell is useful

• what makes it better than most other operating system’s interfaces

Let’s dispose of the simplest stuff. The shell prompts you for a com-
mand. Here it uses a percent sign.

%

If you type the word "date," the shell will execute the program by that
name. This prints out the current date and time.

% date
Tue Dec 1 17:38:30 EST 1987

Another command is cat. cat prints the contents of the named file to the
terminal. Both cat and date are examples of programs that produce standard
output (written stdout in C programs) meaning that their output appears on
the terminal by default. Many commands take standard input (stdin) which
means that they read from the terminal by default. Any flow of data is called a

I/O redirection User’s Environment 135

stream. Hence you may hear stdin referred to as the "input stream," and std-
out as the "output stream."

6.2.1 I/O Redirection

stdin and stdout are not exciting by themselves, but the shell allows us
to easily redirect them. For example, you can store the output of the date com-
mand in the file old-date with the following command.

date > old-date

When a command is executed, its input or output may be redirected to a
variety of places. All UNIX programs understand the concept of stdin, std-
out, stderr (standard error). stderr allows you to redirect a command’s out-
put without losing any error messages.

stdout from any program can plug into stdin of another. It is surprising
how many programs easily make use of this abstraction, and how easy it is to
write programs to do so.

I/O redirection is provided by the shell. User programs don’t have to deal
with it themselves. Some basic types of redirection are as follows:

< file Use file as the standard input.
> file Use file as the standard output.
>> file Use file as the standard output, and append to

it if it already exists.
<< string Use current standard input until a line containing

string is encountered, or End-Of-File (EOF) is
reached.

‘command‘ Execute this command, and replace ‘command‘
by its standard output.

Here are some examples. The following records the output of the ls
command in a file called dircontents.

% ls > dircontents

Since the cat command sends its standard input to its standard output,
we can print out dircontents by having cat use it as its standard input. By
not redirecting cat’s output, we will see it on the terminal.

% cat < dircontents

PipesUser’s Environment136

The last type of redirection is called command substitution or backquot-
ing. It allows command output to become new commands or arguments to be
executed.

% echo date
date
% echo ‘date‘
Mon Feb 1 08:04:28 EST 1988

6.2.2 Pipes

Pipes connect the standard output of one process to the standard input of
another. You can think of it as another kind of redirection. To create a pipe,
list the two commands with a | between the two. (Naturally, we call it a pipe
symbol.)

For example, you can count the number of files by piping the output of ls
to the input of a word-counting program. (wc counts words and other things.
wc -w will print out just the word count.)

% ls | wc -w
5

Isn’t this handy? You could sort your directory by piping ls to the sort
command (although ls does that already). wc will count other things – it
doesn’t know anything special about files. For example, using grep (which
searches for strings with specific patterns), you can count the number of words
in the dictionary that match a pattern.

First, watch how grep searchs for words containing the string "sue" in
the file called /usr/dict/words.

% cat /usr/dict/words | grep sue
desuetude
ensue
issue
pursue
pursuer
sue
suey
tissue

Shell Scripts User’s Environment 137

Now, use wc to find out how many words there are.

% cat /usr/dict/words | grep sue | wc -w
9

Notice how we took the output of several commands and used them as
the input to other commands. You can construct pipelines to any degree of
complexity. By combining very simple programs, it is possible to create useful
commands. It is easy to use existing programs in ways that the original authors
never imagined.

6.2.3 Shell Scripts

Commands that are often repeated may be stored in files, so that you can
just type the file name to rerun complex commands. Sequences of commands
may be stored in a single file. Files with shell commands are referred to as
shell scripts. These shell scripts can be invoked just like any other command.
(They continue to use stdin and stdout if the commands inside them do.)
Hence, your environment can be extended and customized very easily.

Shell scripts resemble programs from modern programming languages.
In fact, the shell provides control structures so that you can write just about
anything that you can in a high-level programming language. The shell supports
if-then-else statements, do loops and variables.

Many people find that they rarely have to use any other language but the
shell. It is that powerful. And it is easy to use. Best of all, the shell uses the
same exact syntax whether you are writing shell scripts or typing commands to
it directly.

Of course, different shells do things differently, so it is a good idea to state
at the beginning of your shell script which shell you are writing for. (The
Administrator’s chapter discusses a standard way of doing this.) If you find
yourself with shell scripts that you need to run faster, you can do several
things. One way is to find where in the script things are slow. (Usually just
one or two lines cause most bottlenecks.) Then either rewrite those lines, or
replace them with specially written programs (in another language like C). We
find that it is rare that we have to rewrite more than a couple of lines. (Most of
the UNIX programs work efficiently enough.) An alternative is to get a shell
compiler. These are discussed in the Applications chapter.

AliasesUser’s Environment138

The final section in this chapter "Putting It All Together" contains some
more shell script examples. The chapter on the Present also presents some
more philosophy about shell programming.

Many users like to back up their own files using the archive pro-
gram, cpio. However, cpio does not provide a way of saving only
files which have changed recently. The program find can be used
to locate files which have been changed in some number of days.
By combining two unrelated UNIX commands, cpio and find, we
can create a new program which produces incremental archives.
We call it incarc. (Put the next three lines of code in a file by that
name. Then mark it executable with chmod.)

find $1 -mtime -$2 -type f -print > $HOME/incarc.tmp
cat $HOME/incarc.tmp | cpio -ocBv > /dev/tape
rm $HOME/incarc.tmp

To execute it, type incarc directory days, where directo-
ry is the one to save, and days is how many days’ worth of
changed files to save.

The first line uses find to locate all the right files. (See later in
this chapter for more about find.) The first and second arguments
can be accessed by using the tokens $1 and $2. The file names are
saved in a file called incarc.tmp in your home directory. The fol-
lowing line saves the archive onto tape. Notice that the archiver
reads its input from the standard input and writes to the standard
output.

The last line deletes the file that we used to store the file names. If
you want to, try rewriting this script so it avoids the use of a tempo-
rary file. Next, read up on find and fix incarc so that it can fig-
ure out itself how many days’ worth to dump. (Hint: -newer)

Shell Example: Incremental Archive

6.2.4 Aliases
"The French for London is Paris." – Eugène Ionesco

Most shells provide the notion of aliases. Aliases are like shell scripts,
except that they aren’t stored in a file. They are stored in the working memory
of the shell. They are appropriate for one-line commands. For example, if you
type ls -lt a lot, you could alias it to the single character l. This would

Environment Variables User’s Environment 139

reduce your typing a lot. And if you really have to, you can alias ls to "list" or
"directory" or whatever you think it ought to be called.

% alias l ls -lt

Although aliases are usually used for one-line commands, they can be
quite complex, and have most of the same capabilities as shell scripts.

6.2.5 Environment Variables

Like any programming language, the shell has variables which function in
exactly the same way. Several variables are predefined by the shell. For
example, the variable prompt has the string which is used to prompt the user.
Many people like to have their prompt reflect their current directory, although
others like "fun" prompts. For example, the following works in csh.

/usr/libes/src/pacman% set prompt = "Yes, master? "
Yes, master? date
Tue Dec 1 17:38:30 EST 1987
Yes, master?

Besides the shell, many programs take advantage of being able to pass
information through shell variables. For example, programs (such as the mail-
er) that use a character-graphics editor will not provide the function themselves
but will call the one that the user likes. How? The mailer will look at the value
of the variable EDITOR. If it is set to the name of a program (e.g., emacs, vi),
that editor will be run. This provides the user with a familiar environment and
obviates the mailer from having to duplicate the function of an editor.

Although these variables (and the aliases described earlier) can be set
interactively, most are usually set in a special file that is read at login (e.g.,
.login, .profile), or whenever a new shell is started (e.g., .cshrc).

6.2.6 Process Control

UNIX is a multitasking operating system. (You will also hear it called a
multiprocessing operating system.) This means that it can perform several
tasks at the same time. Your shell is just one such task. There are also many
other processes that run constantly on behalf of the system. The pipelines that
we saw earlier were examples of commands that started the execution of sev-
eral tasks at the same time.

Process ControlUser’s Environment140

You may never run more than one command at a time, but that would be
very unusual. Most people are constantly running several processes. While
one process is running, they are issuing commands for the next process. After
all, if you just sat and waited for every command to finish, you would spend a
lot of your time idle.

This brings up the interesting question of how to control all these pro-
cesses. Early versions of UNIX had very simple mechanisms for process con-
trol. You may have noticed already that when you issue a simple command like
grep, the shell completes execution of the command before prompting you for
another command. This is called synchronous execution. If you put an amper-
sand symbol (&) at the end of a command, it will run asynchronously (or in the
background). This means that the shell will not wait for it to complete before
letting you do something else.

You can have any number of processes executing in the background but
only one in the foreground at a time. The foreground process is the one that is
getting your keystrokes from the terminal. If there were more than one fore-
ground process, there would be no way to tell which process your keystrokes
should go to.

One significant problem with early UNIX interfaces was that you could
not move processes back and forth between foreground and background. For
example, if you were editing a file in the foreground and wanted to look at a file
(using cat) and then resume editing, you couldn’t. You had to stop the editor,
run cat and then restart the editor.

Originally, few UNIX programs were interactive, so there wasn’t much
need to move foreground processes to the background and vice versa. It was
rare that a foreground command lasted long enough to be interrupted. The edi-
tor was one of those rare commands. A special command ("!") was created
to execute other commands so you didn’t have to stop the editor. These
escapes became common in other long running interactive programs (e.g., tip,
cu, adb, vi). They all continue to use the original syntax from ed.

Eventually, many more interactive UNIX programs were written and this
brought about the need for more sophisticated control over processes. A num-
ber of different process control mechanisms are available in modern UNIX sys-
tems. Two approaches are particularly popular – job control and windows.

Process Control User’s Environment 141

Job Control

Berkeley’s C-shell was the first shell to use job control. Job control is a
mechanism provided by the UNIX system to suspend and resume processes,
and connect and disconnect the physical terminal to a process’s stdin and std-
out. The C-shell made job control look like a very simple system to swap pro-
cesses between foreground and background. The C-shell reserves several con-
trol characters which could be entered at any time to suspend the foreground
process, and return to the shell. Once you are in the shell, you can manipulate
background processes through an extensive set of commands. Naturally, one
of the commands brings a background process to the foreground.

One disadvantage of job control is that an application program may want
to use the very same characters that have been reserved for job control.
Another disadvantage is that job control (specifically, the Berkeley implementa-
tion) does not save all the state of a process when it is suspended. For exam-
ple, the physical screen is not saved. In the case of a graphics-oriented applica-
tion, this can be critical. The end result is that some applications must be
aware of job control, for it to appear as though it really works with all pro-
cesses. Even though job control is not entirely transparent to all applications, it
is extremely popular because it works so well for the majority.

At the same time that Berkeley introduced job control, AT&T introduced
shell layers. These supported a better degree of I/O control than simple redi-
rection, and indirectly through that, a crude form of job control. For example,
you could signal one process to come to the foreground as soon as it was ready
for input. This system has largely disappeared, and Berkeley job control is sup-
ported on almost all systems whether or not they run Berkeley UNIX. System
V machines with "Berkeley enhancements" usually include csh with job control.

Windows

It is possible to display multiple sessions at once on a single screen. The
physical screen is logically divided into separate windows. Each window con-
trols a different program. Unlike job control, where only one process is in the
foreground, windows allow any number of processes to run in the foreground.
Stated another way, every process in a window is in the foreground.

Users typically use a pointing device, such as a mouse, to manipulate the
windows themselves. Of course, windows still have the same problem as job
control – namely, an application may want to see the same mouse strokes that

Process ControlUser’s Environment142

have been reserved for the window control. It does not appear that there is
any way to escape this "meta" control problem.

Nonetheless, windows are quite popular. Imagine doing program devel-
opment by displaying separate windows for the debugger, editor, compiler and
manual. The only real disadvantage is that high-quality devices for displaying
windows require more money and CPU time than do simple character-graphic
terminals.

SunWindows running multiple applications on a single screen.

It is possible to have both windows and job control at the same time.
How does that work? Running a shell in a single window, you can use job con-
trol to run several programs in the background. (And you can still use the old-
style escapes that still exist in ed and other programs!) It is also possible, using
job control, to suspend an entire set of windows by suspending the window
manager itself. This is kind of like getting up from your desk and moving to a
new one.

See the Applications chapter for references to particular window systems.

File Structure and Names User’s Environment 143

6.3 File Structure and Names

The UNIX file system is hierarchical. This means it resembles a tree
(although it is usually drawn upside down) with a single root and many
branches and leaves. Here is a graphical illustration of a small UNIX file sys-
tem.

bin etc lib usr

/

don sandy lib local

binbooks articles

lwu

passwd cppls cat libc.a

dev

A very small UNIX file system. While names are intuitively
associated with files (as pictured here), in reality names
are actually associated with the links to directories.

The root of the file system is always written as a slash ("/"). Thus, we
can list the files at the top of the tree by saying ls /.

Yes, master? ls /
bin
dev
etc
lib
usr

Files that contain other files are called directories. UNIX actually makes
very little distinction between different types of files. Most of the commands to
manipulate files can be used whether the file is a text file, a directory or some
other type of file. Devices appear as files in the file system. This allows
devices to be manipulated with the same commands that you use to manipulate
files.

File Structure and NamesUser’s Environment144

Directories are particularly interesting because they control access to oth-
er files, if only by name. You can "be" in a directory, in which case all files are
accessed relative to that directory. Looking at the sample file system, if you
are in directory /, you will see a different version of lib than if you were in
directory usr. Relative means "relative to the current directory." The current
directory is the directory we are in.

File names can be preceded with directories by separating them with a
slash ("/") character. So if our current directory was /, we could refer to the
second lib by using the file name usr/lib.

Absolute pathnames always begin with a slash and are really just relative
to the root of the file system. A file name like /usr/lib identifies a single file in
the file system no matter what your current directory is.

The UNIX system defines the the file named . to always refer to the cur-
rent directory and .. to refer to the parent directory. These are useful for a
number of things. For example, if you want to change your directory to another
one at the same level of the hierarchy, say foo, you could either use the abso-
lute pathname or you could use the much easier form of ../foo.

Many of these characteristics of the UNIX file system have become
extremely popular and have been copied by other operating systems. Howev-
er, one feature of the UNIX file that is rare in other operating systems is that
file names are case sensitive. Thus, the file names foo and Foo refer to differ-
ent files. Virtually any character can be used in a file name. However, some
characters are used by the shell for special purposes (see the next paragraph)
and are unwieldy because of that. Human readers are also apt to be confused.
For example, if you use spaces in file names, the name "foo bar" might appear
to reference two files. Use your judgment.

By using regular expressions, users can specify a file name or groups of
file names by a pattern, rather than spelling them out. Regular expressions are
a theoretical classification of certain patterns – it is not necessary to know the
theory, but the end result is extremely powerful.

To implement regular expressions, the shell reserves certain characters.
For example, while the string foo matches the file name foo, the string f*o
matches the file name foo, fooo and foooo as well as fao and fhelloo. That
is because an * is defined to match any string.

Tools, Commands, Filters User’s Environment 145

Brackets are used to match a set of characters (any one between the
brackets). Two characters inside brackets separated by a hyphen matches a
range, and characters preceded by a caret ("^") matches anything but those
characters. A question mark matches any single character. For example,
imagine a directory with several files:

% ls
abra.cadabra baby bozo core zippy
% ls *
abra.cadabra baby bozo core zippy
% ls [ac]*
abra.cadabra core
% ls b???
baby bozo
% ls ?o*
bozo core

6.4 A Tool is a Command is a Filter is a ...

UNIX has hundreds of programs that can be executed as shell com-
mands. These are sometimes called tools to emphasize that they can be put
together to build larger things. Many of the tools are very small programs
specifically designed to do one simple task. For this reason, there are a great
many tools.

While the tool-building concept is extremely powerful, it can be over-
whelming to beginners. Some people like to find programs that do exactly what
they want. The idea of putting two things together is almost scary. It can cer-
tainly be frustrating searching for the right tools to build something when you
have no idea what the system has to offer.

In order to experience some degree of comfort with UNIX, you should
take the time to become familiar with a fair subset of the tools that UNIX has
to offer. Take the time to flip through the man pages for the commands. You
may not feel like it is helping you to solve your problem, but it is. You will learn
about all the tools. It is not enough to know how to combine tools – you must
know which ones are there to be combined.

UNIX is not a system where you can sit down once a month and feel
immediately at ease. Imagine going down to your basement right now to make
something large, like a sofa. What you want is easy to understand, but you are
going to have problems until you learn basic things like measuring, sawing, nail-
ing, upholstery, and Band-Aids.

File Manipulation CommandsUser’s Environment146

The rest of this section contains brief descriptions of the most commonly
used UNIX commands. All of these are user-level commands – you type them
directly to the shell. We have also included the etymology of the command
names, since some of them are a little obscure. Most of the commands have
optional flags or arguments; however, we mention only the most common use
of each command. For a complete explanation, refer to the man page on your
system.

While there are hundreds of other commands, the commands presented
here are what you will probably use 90 percent of the time. We do not mean to
ignore the hundreds of other commands that you will occasionally use from
time to time. Those are not important until you understand the basics.

A few commands related to programming are mentioned, but the whole
topic is discussed at much greater length in the Programmer’s chapter. The
Adminstrative chapter discusses some of the commands pertinent to maintain-
ing a UNIX system.

6.4.1 File Manipulation Commands

These commands are the basic file manipulation commands. They
include such operations as copying, removing, and listing files. Remember that
since directories and devices are files, most of these commands make sense on
them as well.

cd Change the current directory. Stands for "change directory."

After the change, all file names are relative to your current
directory, including the one in the next cd. Compare with pwd.

cp Copy files. Stands for "copy."

cp leaves the original file but makes a duplicate with a new name.
cp can also copy directory hierarchies. uucp (UNIX-to-UNIX cp)
is a relative of cp, allowing copying of files between computers.
Other variations on the cp theme exist. Compare with mv.

df Show unused space in a file system. Stands for "disk free."

df actually reports all space and used space as well as unused
space. df works by keeping track of all free space, rather than by
looking at files. Compare to du.

File Manipulation Commands User’s Environment 147

du Show space in use in a directory. Stands for "disk usage."

du counts the space in use in all files in a directory. If any files are
directories, du will recursively count the space in them. Compare
to df.

find Act on arbitrary files in a directory. Stands for "find."

find looks for files that match a given description. Once found, a
given shell command can be executed on the file (such as to print
out its name). It is hard to appreciate find until you actually need
it. (And the man page is very hard to read but worth the effort.)

ls List files in a directory. Stands for "list."

We have no idea why it is named so peculiarly, but it is short and
you get used to it quickly.

You may think that ls is a peculiar name, but there have been far
worse. biff, a command introduced at Berkeley, turned on asyn-
chronous mail notification, so that you would get a message at your
terminal immediately if you received mail. Rumor has it that the
programmer who wrote biff couldn’t think of a short, simple name
for his program, so he used the name of a dog that hung around the
hall where he worked at Berkeley. Why? Because the dog barked
when the mailman arrived!

Where do they get those command names?

mkdir Create a new directory. Stands for "make directory."

This special command is required to make sure all directories start
with entries for . and ..

mv Move files. Stands for "move."

Move files to a new place in the file system. Most other operating
systems call this type of operation "renaming," however, names
govern where files appear in the UNIX file system as well as what
they are called. Compare with cp.

Data Manipulation CommandsUser’s Environment148

pwd Print current directory. Stands for "print working directory."

Compare with cd.

rm Remove files. Stands for "remove."

Since there can be more than one name to a file, rm usually just
removes the file name. If the name is the last one for a file, the file
is removed as well. There is no way to "unremove" a file that has
been rm’d if it was the only name for a file.

which Which program would this command execute? Stands for "which."

Prints out the program that would be executed by a given
command. When you have a lot of directories in your path, it may
not be immediately obvious which one the command is coming
from. (BSD only.)

6.4.2 Data Manipulation Commands

These commands perform operations on the data inside files. However,
most of these commands are capable of handling files as well as input and out-
put streams. A filter is a program that takes its input (usually from stdin) and
produces output (usually to stdout) based on that input. Most of these pro-
grams qualify as filters.

cat Copy input to output. Stands for "concatenate."

This is the archetype of all filters. It does nothing other than copy
its stdin to its stdout. If you give cat a file name, it will copy the
file to stdout – which is its primary use – for listing files at your
terminal.

diff Show differences between two files. Stands for "difference."

diff also works on directories.

echo Echo arguments. Stands for "echo."

echo is primarily used inside of shell scripts for producing
miscellaneous commentary. echo is actually useful interactively
when typed as a command to display shell variables.

Data Manipulation Commands User’s Environment 149

ed Edit file. Stands for "editor."

A simple line-oriented editor. Try a screen-oriented editor.
Compare to sed, grep, and vi.

file Show type of file. Stands for "file."

file guesses at what type of file you have named by looking at the
first few bytes of it. It can be fooled, though not easily. Compare
to od and strings.

grep Search for pattern. Stands for the ed command, "global regular
expression print."

grep searches its input for a pattern, defined by a regular
expression. Any lines that match are printed. Compare to ed and
sed.

head Print first few lines. Stands for "head."

head is useful for taking a quick look-see at files. Compare to cat,
file, and tail.

more Show data one screenful at a time. Stands for "more."

more copies its input to its output like cat, but pauses after every
screenful. more is called page on some systems. Compare to cat.

od Print uninterpreted data. Stands for "octal dump."

Breaks input into bytes or words and prints as hex, octal, or
characters. od impunes no interpretation on its input, so you can
really see what is in the data. Compare to cat.

sed Noninteractive editor. Stands for "stream editor."

Just like ed, but it works on streams rather than files. sed is often
called from shell scripts when a file has to be edited as if by hand.
Compare with ed.

sort Sort data. Stands for "sort."

Programming CommandsUser’s Environment150

strings Show printable strings. Stands for "strings."

strings is useful for figuring out what a program does without
running it. You get the job of guessing based on your seeing the
error messages and other printable strings in the program. Think
of it as a game. Compare to file.

tail Print last few lines. Stands for "tail."

tail is useful for looking at log or diagnostic files, where all you
care about is the most recent data (at the end). Compare to head.

vi Screen editor. Stands for "visual."

A much-enhanced screen-oriented version of the editor, ed.
Compare to ed.

6.4.3 Programming Commands

These commands generally take programs as input. Sometimes the out-
put is yet another program. In a way, any of the commands discussed in this
chapter can be thought of as programmable, some just more complex than oth-
ers.

adb Program debugger. Stands for "assembler debugger."

adb is used for debugging assembler programs or C programs that
you do not have the source for. This is painful.

a.out User program. Stands for "assembler output."

The C compiler produces user programs by this name (by default).

awk Pattern processing language awk. Stands for the authors, "Aho,
Weinberger and Kernighan."

An interpreted programming language, oriented to string
processing à la Snobol. Turn to awk when your problem is too hard
to solve with the shell, and not worth writing a C program.

Miscellaneous Commands User’s Environment 151

cc C language compiler. Stands for "C compiler."

Translates C source files into a machine executable program. cc is
really just a front-end for a large set of programs including cpp (the
C preprocessor), and ld (the linker).

make Construct program from sources. Stands for "make."

make makes an executable program from sources. make uses a
program to control the complex task of compiling, lexing, yaccing,
and so on.

sdb C program debugger. Stands for "symbolic debugger."

sdb allows you to diagnose and experiment on a running C
program or do postmortem analysis on a dead one. dbx is another
C debugger that is better than sdb, but not available on all systems.

sh Bourne shell. Stands for "shell."

Most shell scripts are written for the Bourne shell. If they are not
marked executable, they can be run by hand with this command.

6.4.4 Miscellaneous Commands

date Show the time and date. Stands for "date."

kill Send signal to process. Stands for "kill."

The primary use of kill is to send a kill signal to a process, which
kills a process. kill can actually send any signal.

mail Send and receive electronic mail. Stands for "mail."

man Show on-line documentation. Stands for "manual."

man displays pages from the "Programmer’s Manual" (although this
includes all the tools and commands discussed here). Given a
keyword, man -k prints the names of man pages which have the
keyword in the title. Some systems have this as a separate
program, called apropos.

Putting It All TogetherUser’s Environment152

ps Show process information. Stands for "process status."

Displays information about any or all processes on the system.

who Show users logged in. Stands for "who."

6.5 Putting It All Together

Now that you have read this chapter, we hope you have a reasonable
feeling for the philosophy of the UNIX user interface, as well as knowing some
of the commands. To drive some points home, and at the same time add some
concreteness to the discussion, this section presents a simple tool, composed
out of a single shell script, with the commands that were previously mentioned.

Some of the commands have options (or arguments) that we did not men-
tion. (Options are useful in modifying the default behavior of commands.) If
you want to learn more about them, consult a UNIX manual.

Our example is a shell script that does an administrative task, not already
performed by UNIX – it archives a user. Archiving means that their files are
backed up to off-line storage (such as a tape or floppy disk), and they are de-
leted from the file system. This is typical procedure when a user leaves a com-
pany or school. Otherwise the file system would end up with files of users that
have long since departed.

Our program is called remove-user and is actually quite simple. All it
has to do is 1) copy the directory to a backup media, and 2) remove the directo-
ry. However, we will also leave mail for the user as a courtesy in case they
ever log in again and wonder where their files went.

remove-user is written for the Bourne shell (sh). It is good style to have
the first line be the special comment #!/bin/sh. (The reason for this is dis-
cussed in the Programmer’s chapter.) Bourne shell comments begin with #.

Since we are going to remove files, it is important that we check for
errors when archiving or at any other step. A simple way to do that is to set a
special flag that will force the shell script to stop if any error is encountered.

set -e

We also want to make sure that only the system administrator is running
this program. While users cannot delete other users’ files, it is possible for su-

Putting It All Together User’s Environment 153

perusers to delete their own files if they mistakenly run remove-user on them-
selves.

if test -e $USER = root
then
echo "Must be root to run remove-user"
exit

fi

The if statement is an example of the shell’s high-level language fea-
tures. do loops, for loops, switches and other control structures are available.
Most commands return a boolean value that can be tested. Here, we need only
to test a shell variable (USER) against a value, so no program is necessary. In
cases like these, test can be used to evaluate arbitrary expressions and pro-
duce a boolean value.

remove-user takes one argument – the user name. From the user name,
we can figure out the user’s directory by finding the corresponding entry in
/etc/passwd. The first argument to the shell is available as $1. (The second is
$2 and so on.) We can search through the password file using grep.

grep "^$1" /etc/passwd

grep returns an entire line which contains a lot of other information that
we don’t need. What we want is the sixth field. It is easy to select this using
awk. Since we want the output of grep to be the input to awk, we connect them
by a pipe.

grep "^$1" /etc/passwd | awk ’BEGIN {FS=":"} {print $6}’

Rather than storing the result in a file, we want to put it in a shell vari-
able. The easiest way to do that is by using the back-quote mechanism. This
replaces the entire previous command with its output.

directory=‘grep "^$1" /etc/passwd |
 awk ’BEGIN {FS=":"} {print $6}’‘

The result is that the shell variable, directory, contains the user’s direc-
tory name. Now we can archive the directory using tar. See the Administra-
tor’s chapter for more on tar.

tar -c $directory

Putting It All TogetherUser’s Environment154

While we are assuming that the user has left the face of the earth, it
would be nice to leave a message just in case they log in and wonder where
their files are. We can send them mail. Fortunately, mail is not stored in the
user’s directory but in a directory private to the mail system. Here, we use
another type of indirection which allows a command to receive input from
immediately following lines in the script.

mail $1 << EOF
Your files ($directory) have been archived and
removed from the file system.
Please see an administrator if you need them back.
EOF

Once these commands have executed, we know that the user’s files are
secure and we can safely remove the on-line versions.

rm -fr $directory

The completed remove-user script is as follows:

#!/bin/sh
remove-user username

exit on any errors
set -e

check that we are root
if test -e ‘who am i‘ = root
 then
 echo "Must be root to run remove-user"
 exit
fi
get the directory
directory=‘grep "^$1" /etc/passwd |
 awk ’BEGIN {FS=":"} {print $6}’‘
archive the directory
tar -c $directory
send mail to user in case they accidentally reappear
mail $1 << EOF
Your files ($directory) have been archived and
removed from the file system.
Please see an administrator if you need them back.
EOF
remove the directory
rm -fr $directory

Putting It All Together User’s Environment 155

There are many things you could do to improve this program. However,
our intent was merely to demonstrate some of the things presented in this chap-
ter in an actual shell script.

What is important is the result – we made a shell script out of simple, pre-
existing tools with very little effort. It was easy to do, because the tools are
easy to use and designed so that they can be hooked together easily.

Much more complex programs can be built out of these same tools. And
if you follow the same guidelines in program design, your programs can be used
and incorporated as easily into other people’s programs.

 Many users who use the shell do not feel they are programmers, even
when they create long pipelines or write shell scripts. However, programming
is an intrinsic part of using the UNIX shell. While shell programming may seem
less intimidating than C programming, the results are just as powerful.

This is one of the biggest differences between being a "UNIX user" and
a user of any other operating system. It is a daunting task to easily extend or
modify the user interface of most other operating systems. But UNIX users are
not restricted to the original plans of the designers and find themselves using
the tools and commands of the operating system in ways that no one ever
dreamed of.

Chapter 7: The Programmer’s Environment
"I am a programmer. On my 1040 form, this is what I put down as my
occupation." – Ken Thompson in his Turing Award Lecture

Of all the people who use UNIX, programmers have the most favorable
impression about it. UNIX is optimized more towards programming than any-
thing else. It was written by programmers for programmers. And it was writ-
ten by very good programmers.

UNIX programming is not immediately intuitive, and no matter how many
good things we say about it, you cannot sit down at a terminal and bang out a
magnificent gem of a first program. You must familiarize yourself with the sys-
tem calls, the libraries, the languages and the tools, and of course, the manual,
in order to succeed at this game.

In a way, UNIX is not geared towards helping you get your work done.
Rather it is oriented towards helping you understand the UNIX system, so that
you fit your solution into a UNIX-style solution. Often this leads to a different
solution than you might find on another system.

For example, the use of regular expressions is pervasive throughout
UNIX. There are libraries that support their use, and many of the tools under-
stand them. Writing a program that used some other kind of pattern matching
would be stupid and painful. You would ignore all the wonderful UNIX tools,
spend your time reinventing the wheel, and end up with a program that used a
totally different syntax than any other in the system.

It is well worth your time learning a little about the UNIX programming
environment and philosophy. By reaching a certain stage of UNIXness, you
will feel at home while writing UNIX programs, synergistically directing its pow-
er with minimal effort, and producing beautiful and graceful creations.

157

System ConceptsProgrammer’s Environment158

This chapter will highlight some important concepts of the programmer’s
environment. If you are interested in learning more after reading this chapter,
we recommend the books Advanced UNIX Programming by Marc Rochkind,
and The UNIX Programming Environment by Brian Kernighan and Rob Pike.

7.1 System Concepts

Much of the elegance of UNIX is derived from the design of the func-
tions at the beck and call of a programmer. These functions tend to be simple,
efficient routines which do one thing and do it well. For example, open()
works on files, directories and devices. A subset of these functions are the sys-
tem calls. The system calls are the interface to the UNIX kernel, and are con-
sidered the real primitives of a UNIX system. For example, in order to write to
a file, the user must use the write() system call. There are a number of high-
level interfaces to write to files (such as printf()). These shield the user from
some of the more mundane aspects of programming, but all of them call
write() at some point to get the work done. (There is no functional reason to
differentiate between system calls and library calls. Fortunately, they appear
the same syntactically.)

The system calls are defined and implemented in a special program
known as the kernel (frequently misspelled as "kernal"). The kernel is pro-
grammed in C; however, the kernel environment is markedly different than
most other C programs. The code has to deal with the possibility of hardware
interrupts at any time. Memory is globally shared in what resembles a multi-
threaded single process. Hence, each piece of code has to protect its data
structures against simultaneous access by another part of the kernel.

Application programs do not often make system calls. While system calls
are the most efficient means of controlling the system, they are fairly primitive.
Many libraries have been created to save the programmer time in coding and
provide robustness. In addition, the libraries are more portable than the UNIX
system calls. If you port a program to a non-UNIX operating system, you will
more likely find higher-level calls easier to emulate than lower-level ones.

Ken Thompson was once asked, "If you were redesigning UNIX,
what would you do differently?" He replied, "I’d spell creat with
an e."

creat()

I/O Programmer’s Environment 159

7.1.1 I/O

One of the strengths of UNIX is the consistency with which it treats I/O.
Files, devices and even processes can be manipulated using I/O primitives.
And since the UNIX I/O paradigm is so simple, learning it means that you can
access most of what the system has to offer very easily.

One thing that you may initially find confusing is that devices are often
referred to as files. In fact, they appear in the file system with normal file
names. This is actually an advantage. By treating them as disk files, you do
not need special commands or functions to use them. For example, you can set
the protection of a device with the exact same command and syntax as for a
disk file. Redirection works, too. If you say who > /dev/tty33, the output of
who will appear on terminal 33.

Viewed through I/O-tinted glasses, UNIX looks like the figure below. We
refer back to it in the following discussions.

device drivers

kernel

stdio

application programs

device

System calls provide a clean interface between the user and the
UNIX kernel. The kernel shares a similar interface with the device
drivers. Application programs share a similar interface with the
stdio package.

system
calls

7.1.1.1 Ordinary Files and Directories

Ordinary files are a sequence of bytes stored in the file system. There is
no structure imposed by the file system upon a file, other than a simple linear
ordering of bytes. Files are not explicitly sized by the user. Files are extended
simply by writing past the last byte in the file. Attempting to read past the last

DevicesProgrammer’s Environment160

byte returns an end-of-file. Files may be shrunk explicitly. Users may open a
file, move to, read and write arbitrary bytes in the file (if they have the appropri-
ate permission).

The lack of file structure and sizing is a highlight of UNIX. There are no
special tools for reading special files with special structures, because there are
no such files. All files are simple sequential files. Users may impose working
guidelines, of course. For example, files containing source code generally con-
tain only printable ASCII characters, with lines terminated by newlines (ASCII
NL). However, the file system does not enforce this through any mechanism.

Each file is tagged by an index (or i-number) that corresponds to a field
of data internal to the file system. These fields, referred to as i-nodes, contain
data about each file such as its protection, length, owner, and pointers to other i-
nodes containing actual data. The i-node does not include the name of the file.

Directories are files that contain a list of file names. Associated with
each file name is an i-number. By retrieving the corresponding i-node, one gets
to the file associated with a file name. When presented with a file name, the
kernel will automatically perform the mapping to get to the file. In general, pro-
grammers do not deal with files at this level; however, there are two important
consequences of this representation.

1. Files may have multiple names. Each name is called a link.

2. It is impossible to find out the name of a file from just knowing its i-
number, other than by exhaustive search. There may be more
than one name, or even no names (this is true for pipes).

Each directory appears as a file in the file system. Thus, it may appear in
another directory’s list of files. This provides the hierarchical structuring char-
acteristic of the UNIX file system. While directories can be read by users, they
cannot be written except by a special system call, since references to arbitrary
i-nodes could destroy the file system. This is one of the few exceptions to the
rule that the file system does not care about the internal structure of files.

7.1.1.2 Devices

Much of what UNIX does is control devices. These include terminals,
tape drives, disk drives, and network interfaces. Any peripheral is seen by
UNIX as a device. UNIX groups devices into two types – block and character-
oriented devices.

Devices Programmer’s Environment 161

Block-oriented devices perform I/O in fixed-size blocks of characters.
Disks are typical of block-oriented devices. Character-oriented devices are not
restricted to fixed-size block I/O. They can transfer any number of characters
at a time (including a single character). Keyboards and mice are good exam-
ples of character-oriented devices. It is actually possible to treat disks as
character-oriented devices, but it is usually inefficient to do so.

You can see which devices are character-oriented or block-oriented on
your system by executing the command: ls -l /dev. A b in the first column
indicates it is block-oriented, while a c indicates that it is character-oriented.
(Directories are indicated by a d and ordinary files by a -.) For most program-
mers, the orientation of a device is not important; the higher-level libraries unify
them so that they act the same.

It is possible to treat a device as both character-oriented and block-
oriented at the same time. For example, disks are normally accessed on a per-
block basis. However, when a disk is copied (i.e., for backups), it is more effi-
cient to access it as a character device. This is because character devices can
transfer any number of characters at a time, while block devices are limited to
the size of a block. Also, block devices are buffered in the kernel while charac-
ters devices are not.

Interestingly, memory can be accessed as a device, although this is more
of a back door than a sensible idea. There is a tremendous overhead for going
through the I/O system (with a system call) to talk to memory, rather than
doing it directly (by one machine instruction). However, it is possible to access
otherwise protected memory in this fashion. For example, ps digs up informa-
tion about other processes by reading /dev/kmem (kernel memory) and /dev/mem
(physical memory).

Devices (see previous figure) are considered not as part of UNIX proper,
but rather as being underneath it, much as the computer running UNIX is not
considered a "UNIX computer." It is possible to incorporate any device into
UNIX, however, some devices may be more appropriate than others. For
example, devices that power on with interrupts enabled are considered obnox-
ious and not UNIX-friendly. An amusing reading on the clashes between
UNIX and real-world devices is "All the Chips that Fit" by Tom Lyon and
Joseph Skudlarek in the Summer 1985 USENIX Conference Proceedings.

Device DriversProgrammer’s Environment162

7.1.1.3 Device Drivers

Each device has a special program designed to present an interface to
the UNIX system. Called a device driver, the interface makes each device
"act" alike. In particular, the driver can either make a device look like a
character-oriented device or a block-oriented device.

Each type of device is defined by a small set of functions that can be per-
formed on it. Most of these are directly mapped to system calls. For example,
each device has an open(), read() and write() call. Devices appear as files
in the file system, usually in the /dev directory. When any of these files are
accessed, the kernel calls the routine associated with each one. (How the rou-
tine is selected is explained further in the Administrator’s chapter.)

The result is a unification of access to all objects via the file system. For
example, you can read from a disk file as easily as a keyboard, since they both
respond to the read() system call the same way. Access to a device except
through its well-defined interface is prohibited, providing a reliable device sub-
system.

Pseudo-devices are theoretical devices that have device drivers but no
devices. You can think of them as simulated devices. Pseudo-devices are
used to implement pipes and many network devices. A simple example of a
pseudo-device is /dev/null.

The Null Device – /dev/null

/dev/null is the simplest device in the UNIX system. When you write
to it, your characters are thrown away. Actually, they are ignored entirely, and
write() simply returns a successful completion status. This is useful when you
don’t care what the output of a command is but are just interested in its side
effect. (For example, time grep a /usr/dict/words > /dev/null will print
out the time it took to search for all the words with a in them. Without the redi-
rection to /dev/null, it will print out the words themselves as well.)
/dev/null generates an EOF (End-Of-File) condition whenever it is read.

Another major use of /dev/null is in messages – as in "System going
down at noon. Complaints to /dev/null."

Device Drivers Programmer’s Environment 163

Pipes

Another pseudo-device is the UNIX pipe. Just like any device, a pipe
can be opened, read and written. However, there is no physical peripheral cor-
responding to a pipe. When you write to one, your characters are buffered in
memory until someone reads it from the other end. Because of this, it is particu-
larly useful as a communications path between two processes.

When the command who | lpr is given to the shell, the shell creates two
processes with a pipe between them. who writes to the pipe and lpr reads
from the pipe. Notice that who doesn’t take any special arguments to access
the pipe. Neither does lpr. Nor does either program make any attempt to
detect that it is using a pipe.

The pipe is buffered by the pipe device driver. If the pipe’s writer is
faster than the pipe’s reader, the device driver will stop the writer until the pipe
drains a little. Similarly, the reader will wait for the writer when the pipe is
empty. When the writer closes the output stream, the reader receives an EOF
(just as if it were reading a file from the disk).

This simple device is one of the key mechanisms that provides the shell
with the ability to plug programs together without any special prior coding.

One restriction of pipes is that the ends of a pipe can only be inherited
through a common ancestor of the executing processes. This is no problem
when using pipes in the shell – the shell is the common ancestor which passes
each end of the pipe to a different process. However, it prevents unrelated pro-
cesses from communicating. More recent additions (viz. sockets and streams)
to UNIX overcome this limitation.

Named Pipes, or FIFOs

Named pipes are an extension to UNIX that first appeared in PWB but
did not become generally available until System V. Named pipes are just like
ordinary pipes except that they have names. Because they appear in the file
system, they can be referenced by arbitrary processes, and provide a means of
communication between unrelated processes. This overcomes a limitation of
ordinary pipes. Named pipes are also called FIFOs (for "First In, First Out").

Unfortunately, named pipes do not provide a simple solution to the client-
server model. For example, if a server opens a named pipe and waits for a

Basic I/O System CallsProgrammer’s Environment164

client, it must have a way of preventing or distinguishing data written into the
same pipe by two different processes.

Both sockets and streams provide better mechanisms for communication
between unrelated processes than do named pipes.

7.1.1.4 Basic I/O System Calls

All of the devices mentioned so far implement the same set of basic sys-
tem calls, including open(), read(), write() and close(). These are all that
most programs ever need. When the shell executes programs, it automatically
creates and opens three files for each process. Once a file is open, it is called a
stream, and referred to by a file descriptor. The three streams opened for
each process are:

standard in This stream provides input, such as from a terminal or the
previous process in a pipeline. File descriptor 0. File
pointer stdin.

standard out This stream is provided for output, such as to a terminal
or the next process in the pipeline. File descriptor 1. File
pointer stdout.

standard error This stream is provided for errors, just so they will not be
accidentally redirected in a pipeline. File descriptor 2.
File pointer stderr.

In the case of our who | lpr example, who will automatically have its
stdout connected to a pipe. The other end of the pipe will be connected to the
stdin of lpr. who will ignore its stdin since it doesn’t read any input. lpr will
print its results on its stdout which is the terminal. The stderr of both pro-
cesses will also be the terminal.

This sounds complicated but is quite simple. The shell has done most of
the work. The processes don’t even have to call open(). All who will do is
write its results using the file descriptor 1 (see above) and lpr will read using
file descriptor 0.

The calls to read() and write() are straightforward:

cc = write(1,buffer,length); /* in who */
cc = read(0,buffer,length); /* in lpr */

Standard I/O Programmer’s Environment 165

read() reads from stdin. At most length characters are placed in the
buffer. When read() returns, the number of characters read are stored in cc.
write() works similarly.

While this may seem simple, it is quite primitive. It is also inefficient for
most types of processing. The reason is that if a process is calling write() for
each character (or even each line), a process must context swap with the ker-
nel on each call. Usually, I/O can be buffered. Buffering allows characters to
be queued until a high watermark is hit. Then, write() is called with a large
buffer. This reduces the number of system calls (and corresponding context
switches).

7.1.1.5 Standard I/O

Standard I/O is the name of a library. It provides a higher-level interface
to the I/O system calls we have just covered (see previous figure). It is even
easier to use, and at the same time, much more flexible. Standard I/O is usually
abbreviated "stdio" (and pronounced "stud-i-o") because the appropriate defini-
tions for it are set up in a C program with the line #include <stdio.h>. Stdio
is based on the "portable C library" by Mike Lesk at Bell Labs. The portable C
library was designed to allow C programs to remain portable across different
operating systems, by providing a common I/O system. Stdio can be imple-
mented on any machine that supports a C compiler.

Like the system calls, stdio is very clean because it works on all objects
in the file system whether they are disk files, devices or pseudo-devices. And
stdio follows the stdin, stdout, and stderr conventions.

A significant difference between the stdio library and the system calls is
that the higher-level stdio functions are buffered. Corresponding to the open()
system call is fopen() from stdio. fopen() opens a file and allocates a buffer
for I/O in user space. Writing characters to (or reading from) a buffer is very
cheap. When the buffer is full, characters are flushed. This is transparent to
the programmer, except that programs run very fast. And since the buffering is
handled by library calls, programs remain portable even while becoming
extremely efficient.

When doing I/O to a terminal, stdio changes its buffering scheme so that
the user does not have to wait for an entire buffer to fill up before seeing any-
thing. (The programmer can also explicitly control buffering.) Buffering on
input works similarly, and provides more corresponding efficiency over read().

More Device DriversProgrammer’s Environment166

Stdio is even easier to use than the system calls. write(), requiring
three arguments, can be performed with fprintf(), requiring only two. (In
addition, fprintf() is capable of performing complex high-level formatting.)

write(1,"hello, world",12);
fprintf(stdout,"hello, world");

stdout is the name of the stdio structure containing the output stream’s
buffer. Since printing to stdout is so common, printf() is a shorthand for that.

printf("hello, world");

7.1.1.6 Some More Device Drivers

Terminals (ttys) – /dev/tty

One of the most complex device drivers in any system is that for the ter-
minal (usually written as tty and pronounced "titty"). This driver controls termi-
nals and other things that are connected to the system through RS-232
interfaces. There are a surprising number of variations in the way these work.

Various attempts to modernize the terminal interface while still maintain-
ing support for older programs have left the terminal driver incredibly com-
plex. Anthropologists should not find it too hard to uncover the history of the
driver by studying its unusual interface. While its complexity may not be justi-
fied, it is likely more flexible than any other operating system’s terminal inter-
face.

Terminals can be read from and written to just like ordinary files. When
the shell is prompting a terminal for commands, it is simply opening a file, read-
ing characters from it, and writing characters to it. When the shell reads an
end-of-file, it will stop processing commands and exit. Thus, you can log out of
UNIX by sending the shell an end-of-file (usually by pressing control-D).
Recent versions of UNIX have added a logout command which effectively does
the same thing.

More Device Drivers Programmer’s Environment 167

One of the reasons the terminal driver is so complex is because it
has to examine every single keystroke before passing it on to the
program. For example, pressing the space bar might cause a space
to be sent to the program, but a control-C has to get turned into an
interrupt, and a backspace actually has to remove the previous char-
acter from the input stream! There are lots of complexities like
these that no other drivers have to handle.

Programs may request that the driver do no special interpretation of
keystrokes. This is called raw mode because the programs see the
raw keystrokes from the user. Screen editors often do this.

When the driver is interpreting characters, it is said to be in cooked
mode. It helps to have a sense of humor about all of this.

Raw Mode

Pseudo-ttys – /dev/pty

Another pseudo-device is a pty, or pseudo-tty. A pty (pronounced
"pity") behaves exactly like a tty, except that there is no I/O occurring on a
physical device. It all happens in the pty driver’s imagination. A typical use for
this is to support logins over a network. The user session appears to have all
the characteristics of a serial line controller, but it is all simulated.

Pty’s always have a corresponding tty to communicate with. The simu-
lated terminal (the master) is always the pty (for example, /dev/ptyp2), while
the program (the slave) that we are imagining is connected via a serial line
uses the corresponding tty (/dev/ttyp2). Put another way, data written on the
master is given to the slave as input, as though it had been received from a
hardware interface (such as a UART). Correspondingly, data written to the
slave can be read from the master, as though it had been sent to a hardware
interface.

Sockets

Berkeley UNIX imported the idea of sockets from the Arpanet communi-
ty to support networking with TCP/IP. Sockets also provide generic interpro-

More Device DriversProgrammer’s Environment168

cess communication. For example, pipe-style communication is implemented
with sockets.

Sockets are communication endpoints, much like file descriptors. Indeed,
they are manipulated as file descriptors using the very same system calls, such
as read() and write(). However, there are additional system calls defined on
sockets to support additional capabilities such as network addressing, and com-
munication between unrelated processes. With minor extensions, existing pro-
grams can be rewritten using sockets with the result that they can communi-
cate with processes on other systems.

Besides providing pipe-style communication, sockets can be used for
server-client communication, and also message passing or virtual circuits.
Sockets can support any kind of networking protocol, including both DoD’s
TCP/IP and the ISO standards. However, each type of networking requires a
different socket protocol interpreter.

Streams

Streams were first implemented in Version 8, as a means of unifying the
numerous complex line disciplines used to control terminal handling. Later,
they were generalized for interprocess communication. Hence, streams can
solve the same problems that Berkeley solved with sockets – namely, communi-
cation between unrelated processes and across networks. In this form,
streams were introduced first into System V.

Streams are very similar to sockets. They are communications end-
points. They can be manipulated using conventional programs and system
calls. Streams appear in the UNIX file system as conventional files just as do
UNIX-domain sockets (albeit in the /dev directory). Thus, they can be manipu-
lated with conventional programs. When two programs open the same device,
they can communicate.

Once processes are communicating, they may pass file descriptors over
a stream (between unrelated processes). This makes writing servers very easy.

Network drivers appear not as specialized device drivers, but as kernel
or user-level servers waiting on generic stream devices. In order to communi-
cate using a particular protocol, modules are pushed onto the stream via library
calls. Modules are stacked, allowing multiple levels of protocols.

Processes Programmer’s Environment 169

Berkeley’s sockets and System V’s streams sound different but are really
duals in function. The differences are obvious to the implementor but much less
so to the application programmer. Indeed, either system can be emulated by
the other with sufficient work. It is likely that both sockets and streams will be
available on future UNIX systems. Nonetheless, streams are particularly ele-
gant, and they will probably become the dominant base for interprocess commu-
nication in the future.

Other Drivers

It is relatively easy to add new drivers to UNIX. All you need to do is
provide a set of calls (open(), read(), write(), etc.) for your driver to execute
when accessed. These routines are then linked to the kernel (normally distrib-
uted as an object file, exactly for this purpose).

Since the drivers run in the same address space in the kernel, drivers can
manipulate any part of the system including any user process or the kernel
itself. Thus, device drivers are a simple way of getting UNIX to do things that
its designers never allowed for by the system calls. For example, early ver-
sions of UNIX only provided timer resolutions down to one second. A com-
mon workaround was to build a driver which provided the ability to sleep to a
millisecond. If you wanted to sleep for, say, 17 milliseconds, you would code
write(fd,buffer,17). The buffer was not actually written anywhere, but the
device driver would take 17 milliseconds before returning control to the process.

Drivers have been written to perform file and record-locking and other
more imaginative things that UNIX was never designed to handle. Device
drivers provide a wonderfully clean interface, but as the previous example
shows, they can also be easily abused.

7.1.2 Processes

UNIX supports multiple processes (environments of executing pro-
grams). Multiprocessing is transparent to each program. Each process runs
without regard to others. While users often take advantage of multiprocessing
(e.g., starting several programs in a pipeline), processes need not concern them-
selves with other processes, since the I/O appears to go to or come from a sim-
ple file, whether or not another process is involved. Nevertheless, processes
can create or manage other processes explicitly. The shell does this for users,
for example.

ProcessesProgrammer’s Environment170

Prior to execution, programs are built in the usual way. A program is
compiled and linked resulting in a file of executable machine instructions. This
file can be executed by the kernel with the exec() system call. The kernel
overlays the calling program with the new program and gives it control of the
process. The new program inherits several things from its ancestor, including
any open files. The shell takes advantage of this to pass its stdin, stdout and
stderr to any new processes. If the user has started programs in a pipeline,
the shell creates the pipe and passes one end of the pipe to each program.

When a program is exec’d, a few bytes of the file are read and com-
pared against several magic numbers. These magic numbers are
known constants denoting whether the file is machine code or a
shell script. To distinguish between different shells, you can put
#! shellname args at the beginning of your file. If the kernel
sees this, it will run shellname with your file as input. If it
doesn’t recognize any magic numbers, it will assume it is a
/bin/sh script. Put a line like this at the beginning of all your
shell scripts so that it is clear which shell your script is written for.

Executable files are one of the rare instances in UNIX where the
kernel looks for a specific internal structure in a file.

Magic Numbers

There are a number of different forms of exec(), although there is only
one actual system call (the rest are library versions). The choice of which one
you use depends on how you want to pass arguments. (The actual system call
is execve(), but most people refer to it as exec() (the original one) in conversa-
tion.)

exec() can run new programs, but it cannot create new processes.
New processes are created using fork(). fork() causes a copy of the cur-
rent process to be created. The new process is called the child of the original.
Both child and parent processes continue running.

The shell creates new user processes by forking. Then, the child (still
running the shell) overlays itself with the user program by exec(). If the shell
finds itself running as part of a pipeline, it replaces stdin and stdout with the
appropriate ends of the pipes, before the exec().

Signals Programmer’s Environment 171

The wait() system call allows the parent to wait for the child to exit.
(There is also an exit() system call.) If the user has requested a process to
run asynchronously (by placing an & at the end of the command), the shell will
not execute wait(), but will prompt for a new command. Otherwise, the shell
will call wait(). Hence, asynchronous or synchronous processing is very easy
to do.

Each process has a process id (or pid). The pid is a descriptor which
can be used to communicate with the object. For example, you can send a sig-
nal to a process if you know its pid. The wait() system call mentioned earlier
takes a pid as its argument.

Processes may also be grouped by process group ids. This is useful for
sending signals to a group of related processes. For example, this allows killing
any of your miscellaneous processes by logging out.

There have been attempts to unify processes and files (much like the
Grand Unification Theory of physics). One of these appeared in UNIX V8 and
became available in SVR4. Each process appears in the file system as a file.
For example, /proc/17 is the process with pid 17. This process can be
debugged by opening and modifying bytes in the file itself which represents its
image in memory.

Even without this unification of processes and files, UNIX process man-
agement is surprisingly easy and straightforward. There are only a few calls,
and they take a small number of arguments.

To finish the shell example, it is interesting to point out that each shell
eventually exits (when the user logs out or types an EOF). The process that
invoked the shell, init, receives notification and returns to monitoring the termi-
nal or modem for a new user. If a new user logs in, init will once again cre-
ate a new shell for the user via fork() and exec(). (The process is explained
further in the Administrator’s chapter).

7.1.3 Signals
"This manual page is confusing." – BUGS section for sigvec from Berkeley UNIX Manual
"This manual page is still confusing." – next release of same manual

Signals are software interrupts. Signals may be generated by hardware
conditions (e.g., division by zero, addressing exception) or by explicit request
(such as another process requesting the process to stop). The complete list of
signals can be found in the file /usr/include/signal.h.

Signals Programmer’s Environment172

Programs can declare an action to be taken upon receipt of most signals,
such as recovery or clean-up. Signals not caught generally cause processes to
terminate. Certain signals, such as SIGKILL, are not catchable by a process.
Sending SIGKILL to a process is a sure way of killing it. SIGQUIT (which can
be generated by pressing certain keys on the keyboard) kills a process and also
generates a "core dump." This is particularly useful for debugging runaway pro-
cesses.

The term core dump is historical. It refers to the use of magnetic cores
for main memory. Modern computers do not use core and with technology
changing so rapidly, memory dump would be more apropos, but people seem
not to want to give up the phrase.

Signals may be generated internally, for example, by the alarm clock
(SIGALRM) or an I/O-ready condition (SIGIO). These provide methods of
extremely efficient coding for certain types of problems. For example, use of
SIGIO avoids polling.

Unfortunately, early implementation of signals were difficult to use. For
example, signals were not queued, they interrupted system calls (meaning one
had to check each system call to see if it was interrupted), etc. An especially
grievous problem was that when a signal occurred, the first thing it did was to
reset its action to the default behavior. If another signal arrived before the pro-
cess could set it again, the program would mistakenly terminate.

Berkeley remedied this in its 4.2BSD release of UNIX. Unfortunately,
this solution was quite incompatible with previous versions of UNIX signals. So
you could either use signals which were standard but not reliable, or signals
which were reliable but not standard. System V eventually picked up most of
the Berkeley signal properties, thereby reducing major portability issues while
gaining reliable signals. Unfortunately, the interface did not get any less com-
plex. The Berkeley manual page describing signals notes under BUGS that
"This manual page is still confusing."

Most signals are generated by the kernel. However, any signal can be
sent to any process (if you have permission) using the kill() system call.
kill() is rarely used except to send a signal to kill a process, hence its name.
But it is hard to understand why it wasn’t named sendsig() or something rea-
sonable in the first place.

Languages Programmer’s Environment 173

7.2 C and Other Languages
"The sooner you start to code, the longer the program will take." – Roy Carlson

Research UNIX systems usually come with many languages including all
sorts of experimental ones. Commercial UNIX systems usually come with
very few languages – some are even unbundled from the C language – but it is
possible to buy interpreters, compilers and environments that run under UNIX
for just about any language.

A typical UNIX installation will usually acquire dozens of programming
languages – many high-level languages such as C and Modula, high-level envi-
ronments like Ada, Smalltalk and Lisp, the little languages like yacc and lex,
plus the user-oriented languages of the various shells.

Each one has its advantages and disadvantages. Believe it or not, a good
UNIX programmer is fluent in all of them. Each time a project is designed and
implemented, the experienced programmer chooses the best tools to solve the
problem. This is the mark of a good programmer.

It is possible to find interpreters and compilers that run under UNIX for
just about any language, including C, Modula-2, Snobol, Forth, BASIC, Pascal,
Lisp, Ratfor, Icon, APL, assembler, Ada, PL/I, and Fortran. (See the Applica-
tions chapter for vendor information.) Quite a few of these were available in
early UNIX systems, although most of them were characterized as "only 90
percent done."

This was quite accurate, and is understandable considering that the work
was not done by commercial companies who had to support a product. Rather,
these languages were written to compile older applications that no one wanted
to recode. Typically, the compiler or interpreter didn’t have to support the
whole language, just the part that the old applications needed! Several of the
languages were derived from class projects and were only used because the
sheer demand was so great for anything close to the language that people were
satisfied with partial implementations.

Of course, the first languages available were an assembler and then a C
compiler. Both of these were complete implementations, although not particu-
larly sophisticated. In particular, the assembler was (and remains) quite primi-
tive. Because people wrote so little code with it (using the C compiler for most
tasks), it never even supported macros.

C and UNIXProgrammer’s Environment174

With the availability of lex and yacc, language development blossomed
early on. Many experimental languages were written, including several power-
ful macropreprocessors including m3, m4 and m6. They could be used with any
language, such as assembler, but were particularly popular with C and Fortran.
Implementations of Fortran 66, BASIC and Snobol existed by Version 7.

Fortran 77 was soon to follow and by then, people at Berkeley made
available implementations of Pascal, Lisp, and APL. Numerous other lan-
guages have come and gone. Most of these "student" implementations have dis-
appeared as UNIX has become so widespread that vendors produce and sup-
port virtually all major languages with complete implementations.

Unlike other systems where Fortran is considered the lingua franca of
computers, Fortran is rarely used for new UNIX applications. However, most
UNIX systems include a Fortran compiler simply because so much extant For-
tran application code is available.

Most operating systems have a single primary implementation language,
such as Lisp for the Lisp machines, or assembler for IBM’s 370 series. UNIX
is no different.

Historically, the C language has been the implementation language of
choice on a UNIX system. There are two reasons for this. One is that vendors
always had to have an implementation of C – the UNIX system itself is written
using it. The second reason is that most C compilers produce assembler, but
unlike assembler (which is generally available for all UNIX systems), C was
high level, portable, and capable of doing system programming tasks easily.

7.2.1 C and UNIX: A Symbiotic Relationship
"The chicken was the egg’s idea for getting more eggs." – Samuel Butler

C and UNIX have a special relationship. UNIX was written in C. C
was designed specifically to write UNIX. The original decision to implement
UNIX in C was very daring, but it has paid off many times.

Some people do not like C. It has been said that it is a poor language rid-
ing its way to glory on the coattails of a good operating system. This is not
true. C is a great language. It strikes a balance between necessity and overkill
(cf. Ada). C is easy to implement and yet incorporates all the essence of mod-
ern high-level languages such as structured control flow, scoping, data struc-
tures and modularity. It produces efficient code for most types of computers,
without forcing the programmer to write code differently for each one.

C and UNIX Programmer’s Environment 175

Although C was created for UNIX, it has since been transplanted out of
the UNIX environment many times. Now, C flourishes in many strange lands,
such as mainframes and microprocessors, single-board computers, and even
toaster ovens. C has become a particularly popular programming language on
microcomputers due to its efficiency and portability. In all, C has proved its
worth apart from UNIX.

This is not to say that C does not have flaws. Its lack of type ranges,
weak lexical scoping, fall-through in case statements, and misuse of break are
examples of design problems that have induced many people to propose
improved C standards. Not surprisingly, most of the so-called "improved"
dialects either contain defects of their own, or radically change the intent of the
language, resulting in something more like Ada.

While a few other languages (e.g., Euclid, Modula-2) have achieved
some popularity for UNIX system programming, C remains the core language
for building UNIX tools. There are many tools that primarily support C. For
example, both yacc and lex produce C code as output. It is possible to inte-
grate such output into any project, but it is trivial in C.

Because of these tools, C is often viewed as a reasonable choice for
many applications. Unfortunately, this generalization can be somewhat harmful,
as C lacks support critical for certain types of programming. For example, C is
not apropos for extensive numerical computations (lacking overflow and under-
flow detection) or list processing (lacking garbage collection). However, just
about any application can and has been written in C. Perhaps the only thing
that absolutely cannot be done is certain low-level machine operations such as
saving registers or popping the stack. But such small fragments of machine
code usually only have to be written once – for instance, inside the compiler.

We do not intend to provide a comprehensive look at C. (We have rec-
ommended some good books in the Printed Information chapter.) However, we
would like to drive home the point that the C language has reached maturity. C
compilers are available for more machines than any other high-level language.
More new applications are written in C than any other language. Communica-
tions of the ACM, the most well-known publication for computer science
research, regularly presents algorithms in C. Anyone attempting to master the
field of computer science, no less UNIX, must become familiar with C.

Design and standards work on C continues to this day. The ANSI C
standard, C++ and other C extensions are vehicles that will propel C into the
role of a mature, modern language. We expect C to live a long and hearty life.

LibrariesProgrammer’s Environment176

The decision to implement UNIX in C was either very fortuitous or
incredibly insightful. Either way, we have all benefited tremendously, for it is an
excellent systems programming language – for UNIX or anything else.

7.2.2 Libraries
"Whenever possible, steal code." – Tom Duff

Libraries of software subroutines allow programmers to make use of oth-
er programmers’ efforts. For example, you do not have to write a program to
clear the screen because a subroutine has already been written to do it (e.g.,
clear() in the curses library). All you have to do is find out the correct name
and call it.

Most UNIX systems come with a large number of libraries including rou-
tines for string handling, math, terminal and window management, and commu-
nications. A good programmer should become familiar with all the libraries and
subroutines. By doing so, you can dramatically reduce the amount of effort
required to implement a project. Further, the library subroutines are usually
much more dependable than brand new code.

So before spending time writing a function, you should always check the
libraries first. The subroutine you are thinking of writing may already have
been written.

Subroutines are kept in object form for efficiency when building pro-
grams. Multiple subroutines are organized by type in libraries (also called
archives, historically) for efficiency and simplicity. The command ar (archive)
is used to create and maintain libraries.

When programs are linked (object code is resolved to machine exe-
cutable code), object files and libraries are passed to the linker. The linker then
resolves any external references between the user-supplied object code and
the libraries.

Libraries Programmer’s Environment 177

a.out-style files consist of several parts. For example, one is the
executable code (known as the text). Another is the initialized data.
A third is the bss. Everyone always asks what is the "bss" and
what does it stand for? Here is the answer.

"bss" stands for Block Started by Symbol. Used by a now obsolete
IBM assembler, BSS was an assembler pseudo-opcode that filled an
area of memory with zeros. That is exactly the effect of the bss in
a.out files. The bss is also called the uninitialized data.

BSS

UNIX usually stores libraries in predefined directories. /lib usually con-
tains the libraries necessary for the C compiler:

libc.a Standard C library: standard I/O functions, system calls,
and other fundamental routines. Included automatically
by the C compiler.

The main system-supplied libraries are stored in /usr/lib. (The libraries
are split between two directories for the same reason that /tmp and /usr/tmp
are – see the Administrator’s Environment chapter for an explanation.) Some
basic libraries found in /usr/lib are:

libF77.a Fortran library: Fortran run-times.

libcurses.a Character-graphics library: functions for creating terminal-
independent, character-graphics utilities. Depends upon
termcap or terminfo libraries.

libdbm.a Database library: functions for maintaining a simple keyed
database.

libm.a Math library: functions for trigonometric, logarithmic and
other miscellaneous mathematical algorithms.

libplot.a Plot library: functions for creating device-independent plot
utilities. Depends upon per-device plot filters which trans-
late device-independent output to device-dependent out-
put.

C PreprocessorProgrammer’s Environment178

libtermcap.a Terminal capability library: functions for accessing and
manipulating the terminal description database,
/etc/termcap. Called "terminfo" on System V.

You may find other libraries on your system as well. Different vendors
provide different libraries to support special features. If you find a library that
you are curious about and cannot find documentation for it, try the following
(assuming the library is called libxyzzy.a):

% ar tv libxyzzy.a

This will list the table of contents of the library. Usually, you can guess
what the library is, once you have seen the names of the subroutines in it.

If you examine the directories containing libraries you will also see
libraries by the same name but with the addition of the letter p, such as libc.a
and libc_p.a. The p version indicates that it is to be used when you are profil-
ing code. (See the following explanation of "profiling.") The subroutines have
special statements at the beginning and end to count entries and the time spent
in each routine.

/usr/local/lib is another directory where users store their own
libraries that they wish to share with other users on the same system. The link-
er automatically searches this directory when looking for libraries.

7.2.3 C Preprocessor
"Include me out." – Sam Goldwyn

Programs written in C often have a lot of lines beginning with #. Even if
you don’t program in C, it is useful to be able to read these lines. Many pro-
grams are designed so that likely program changes can be made just by modify-
ing these lines.

Lines beginning with # are directives to control compilation. The original
C language compilers processed these lines in a separate, precompilation phase
called the C preprocessor. The preprocessor was implementated as a separate
program called cpp. Most C compilers still work this way, but there is no
requirement in the C language standard that it be implemented as a separate
phase, so you should not depend on it. Hence, "C preprocessing phase" would
be a better term, but because of history, people continue to call it "the C prepro-
cessor."

C Preprocessor Programmer’s Environment 179

The C preprocessor’s most important job is code substitution. For exam-
ple, you can have the preprocessor substitute the string MAXMEMORY with the
string 2*1024*1024 when the program is compiled. By writing your programs
using strings like MAXMEMORY, your programs become portable to any system.
Writing programs with strings like 2*1024*1024 means your programs will only
run on systems with 2Mb of memory.

These substitutions are called defines because they appear as directives
beginning with the word #define. For example:

#define MAXMEMORY 2*1024*1024

Defines are usually gathered together in include files, grouped by their
subject. For example, all the appropriate defines having to do with string pro-
cessing are in the include file called /usr/include/strings.h. UNIX systems
come with a lot of include files in the directory /usr/include. Each such file
has a .h suffix. The h stands for "header file," although most people just call
them "include" files. These files often include function definitions and proto-
types, typedefs and structure definitions as well as simple defines.

To get one of these files included (hence the name) in your program, put
a line like #include <strings.h> at the beginning of your C source code. The
angle brackets are just a C preprocessor shorthand for the directory
/usr/include. If you want to see one of these files, you can say cat
/usr/include/strings.h. Browsing or grepping (searching with grep)
through the include files can often be more informative than reading the manu-
als. They are certainly the final arbiter, since they are actually used by the C
compiler. Much to our dismay, the C compiler does not read the manuals.

The preprocessor does a number of other things including stripping com-
ments and providing rudimentary flow control statements for selectively compil-
ing code. Conditional compilation is another way of producing portable code.

The C preprocessor is limited in some ways. For example, it respects
parentheses and literals. It is not a general purpose preprocessor (even though
many people use it as one). The UNIX preprocessor, m4, is a much more pow-
erful preprocessor that surpasses most of the limitations of cpp. When occasion
demands, cpp can be replaced by m4.

Support ToolsProgrammer’s Environment180

7.3 Support Tools

UNIX provides the programmer with a wide assortment of very powerful
tools which aid the task of programming. Some of the tools themselves are
quite complex and take as much time to master as a programming language.
Indeed, Jon Bentley, in his "Programming Pearls" column for the Communica-
tions of the ACM, has called tools like yacc and lex little languages because
they are structured just like a general-purpose programming language including
a parser.

However hard they are to learn, they invariably save you development
and debugging time. We couldn’t live without them.

Fortunately, almost all of the now-classic UNIX tools have made the tran-
sition to non-UNIX environments. The Virtual Operating System provided the
first release of most of them for non-UNIX machines. But now it is possible to
obtain them for just about any machine that has a C compiler. And many sys-
tem vendors provide these tools as essential parts of the system.

7.3.1 Debuggers
"If we can’t fix it, it ain’t broke." – Lt. Col. Walt Weir

Debuggers are used to examine working (sic) programs for bugs. Every
system has its share of debuggers and UNIX is no different. However, the
UNIX debuggers have characteristically been below the level of quality found
in all the other UNIX tools.

Early versions of UNIX came with a primitive assembler debugger, db,
and a primitive C debugger, cdb. Version 7 replaced both of these with a some-
what friendlier debugger, adb, that understood both assembler and C. adb is
still supplied with most UNIX versions, although now it is considered only
appropriate for patching binaries. Unfortunately, each machine has a some-
what different version of adb. This is understandable as assemblers and
machines differ from one system to the next.

The same holds true for C compiler interfaces. However, several debug-
gers have gained popularity. Berkeley releases introduced both sdb (symbolic
debugger), an improved version of adb, and dbx, which has a nice user inter-
face. Both of these are source-level debuggers, meaning that the debugger can
show you the line of C code being executed. Another debugger that is extreme-
ly popular is gdb (GNU debugger) from the Free Software Foundation.

Make Programmer’s Environment 181

Ironically, most of the UNIX debuggers are still somewhat primitive by
comparison to debugging environments for microcomputers. Part of the prob-
lem is that the UNIX environment gets in the way of debugging. UNIX pro-
vides very limited support for controlling a process from another, which is what
a debugger needs to do. Mapping a second process’s memory into the debug-
ger process is essentially impossible. Debugger implementations end up playing
many games to get around these restrictions.

One way to transcend all of these debuggers is by using a C interpreter.
These have much more of the compiler embedded in them, so that it is possible
to interact at a very high level with the debugger/interpreter. See the Applica-
tions chapter for companies that sell C interpreters.

7.3.2 Make
"The structure of a system reflects the structure of the organization that built
it." – Richard E. Fairley

make (written by Stu Feldman) is a tool for taking a set of source files and
and managing the compilation process to create an executable program. make
controls the order in which programs are compiled and linked, based on
"dependencies" (stored in a makefile). Based on these dependencies, make can
determine which source files need to be recompiled and which don’t, saving
lots of time and thought.

For example, you can tell make that five of your ten C source files depend
on a particular include file. If you ever modify that include file, you can be
assured that make will recompile the five dependent C source files and nothing
else.

make has many built-in rules. For example, it knows that if you change
foo.c, it must recompile foo.c before it can link anything to foo.o. However,
it is completely general, and can be used to keep track of any set of files as
long as their dependencies are related by time order. For example, if you are
supporting customers and make changes to a product, it is easy to have make
generate media with only the set of files that have changed since the customer
last received an update.

 make is useful for all but the most trivial programs. And it extends grace-
fully to large programs. Indeed, the entire UNIX system is described by a set
of makefiles which allow make to reconstruct the entire system from sources.
Without make, deciding what steps to take to rebuild a complicated software set
(using cc, ld, as, yacc, lex, mv, cp, sed, and ln) would be a nightmare.

Version ControlProgrammer’s Environment182

The usefulness of make cannot be stressed enough. After an editor and a
language, make is the next tool a programmer should master. Indeed, it is one
of the UNIX tools that has been ported to every other computer system. There
are even versions in the public domain. There is no excuse for not having and
using make.

7.3.3 Version Control
"Plan to throw one away, you will anyhow." – Fred Brooks
"If you plan to throw one away, you will throw away two." – Craig Zerouni

Version control enables several people to work simultaneously on a set of
files without stepping on one another’s toes. It also allows one to administer
releases or versions of a product in a manageable fashion.

SCCS (Source Code Control System) was initially distributed with PWB
UNIX, and is now an essential part of both System V and Berkeley UNIX.
SCCS was written by Marc Rochkind. RCS (Revision Control System) was
written by Walter Tichy in an attempt to improve upon some of the features of
SCCS. RCS is not in the public domain but can be distributed for free with com-
mercial products as long as you contact the author.

Both RCS and SCCS provide controlled access to files for the purpose of
version control. This solves the problem of the lack of high-level file locking in
UNIX (discussed in the Real World chapter). Collections of sources may be
referred to via a version number.

Access to files is controlled by an automated source code administrator.
This administrative software allows, for example, only one person to edit a file
for writing at any time, while any number of people may be using the file in oth-
er ways. The administrator keeps track of all updates, so that it is possible to
go back to an earlier release of a software set by issuing a command naming
the desired release. A history is maintained automatically to enable you to
track why changes were made.

While the major application of these systems is for source code control,
both of them are general enough to manage any kind of files. For example, two
authors working on the same book could avoid wiping out each other’s changes
by using one of these systems.

Most version control systems actually provide much more flexibility than
we can explain here. An important point is that version control systems such
as RCS and SCCS keep track of changes rather than retaining each version in

Yacc and Lex Programmer’s Environment 183

its entirety. This is less time-efficient but more space-efficient than keeping a
complete copy of each version. Such a scheme is desirable when old versions
are rarely referenced, as would be expected when maintaining software.

Some other operating systems support file versioning directly in the file
system, usually by using part of the name as a version number. For example,
DEC’s VMS file system keeps multiple versions, simply by appending a version
number to the file name. It would be nice if UNIX had this kind of versioning;
however, it doesn’t solve the problem of long-term code control that RCS and
SCCS do. Furthermore, built-in versioning restricts you to the set of capabilities
originally provided by the file system designer. Code control systems are user-
level programs – they can be extended and modified as desired, and even
replaced.

7.3.4 Yacc and Lex
"One person’s data is another person’s program." – Guy Steele, Jr.

yacc (yet another compiler compiler) and lex (lexical analyzer) are two
powerful tools that aid in the creation of new languages. They are often used
together, although that is not necessary.

lex is a lexical analyzer. This is a fancy name for a scanner or tokeniz-
er. It reads an input stream, breaking it into tokens. You define the tokens.
For example, it is easy to tell lex to recognize literals, numbers and operators.
This is most of what is necessary when scanning any programming language.

Once you have given your language specification to lex, it converts that
specification into a C routine that you plug in as the front-end of your compiler.
lex can do more than just scanning input files for numbers and words. Actual-
ly, it is a regular-expression pattern matcher. If you can describe your patterns
by regular expressions (a theoretical classification beyond the scope of this
book), they can be recognized by lex. lex allows you to specify "actions" or
arbitrary C procedures to be executed when it recognizes something. This is
powerful enough so that lex is often all you need to write an entire language.

yacc is much like lex in that it recognizes patterns. Like lex, actions (C
procedures) may be associated with each pattern. However, yacc recognizes
a much larger set of patterns than lex. The patterns define the class of
LALR(1) grammars which is powerful enough to define almost all extant pro-
gramming languages. yacc is not powerful enough to describe natural lan-
guages such as English.

ProfilingProgrammer’s Environment184

These definitions are a high-level description. For example, the pattern
from a yacc grammar describing a C do statement is:

do-statement : do statement while (expression) ;

where statement and expression are described elsewhere in the gram-
mar, and the keywords and punctuation are recognized as tokens (by lex, per-
haps). The action is not shown. The grammar used by yacc is very similar to
BNF, a theoretical language used by computer scientists to describe context-
free languages.

Since UNIX systems come with scant yacc and lex documentation, we
highly recommend the book Introduction to Compiler Construction with UNIX
by Schreiner and Friedman, Jr. for those intending to make substantial use of
the UNIX compiler tools. For instance, the book includes a modification to
yacc (that you can use even with a binary UNIX license) that dramatically
improves error messages from yacc-built parsers. Of course, this book is not a
replacement for a good compiler theory book.

Like lex, yacc is applicable to many types of problems besides compil-
ers. For example, yacc uses a unique input language of its own, but is not a
compiler. Naturally, yacc is defined in yacc!

yacc was written by Steve Johnson. lex was written by Mike Lesk.
There are many improved versions of yacc and lex available now, including
several in the public domain. The GNU project, for example, has free versions
of each.

 The availability of these tools in early versions of UNIX dramatically
reduced the effort in building languages for UNIX. Even nowadays, if you need
to write your own C compiler, it makes sense to start with a yacc description of
C. One is in the appendix of The C Programming Language, Second Edition by
Kernighan and Ritchie.

7.3.5 Profiling
"The fastest algorithm can frequently be replaced by one that is almost as fast
and much easier to understand." – Douglas Jones

Program tuning is called profiling on UNIX. By profiling a program, a
run-time analysis is performed. You can then find out the amount of time spent
in each part of the code. The number of times a subroutine is called is also
computed. This information is particularly useful when you are trying to make
a program run faster.

Lint Programmer’s Environment 185

Profiling is supported through the use of the system call, profil(), and
the library routine, monitor(). However, the programmer does not have to
deal with this directly. Most languages automatically generate profiling code on
request. For example, the -p flag will cause the C compiler to insert special
code before and after each subroutine call. In addition, the linker will use pro-
filed libraries.

When the program is run, a file called mon.out is produced that has the
raw data created by profiling. You can then interpret the raw data file by call-
ing prof on System V or gprof on Berkeley systems. prof can create a graphi-
cal display of the data. gprof generates a call-graph, displaying the chain of
subroutine calls. System V also has lcomp which produces a line-by-line profile
of the program.

7.3.6 Lint
"Details count." – Peter Weinberger

Early C compilers did not do a lot of error checking. By assuming that
compilers only had to do sensible things with sensible programs, the implemen-
tors found that compilers were much easier to write.

Unfortunately, there was no guarantee that erroneous programs would be
detected. Buggy programs often compiled without complaint, producing equally
meaningless results. For example, the C compiler will let you call sqrt() with-
out an argument and promptly take the square root of some random junk on the
stack, where the argument should have been.

This is an example of an obvious problem that could have been detected
at compile-time, rather than waiting for run-time. lint is a program which is
extremely picky (hence the name) about C programs. It will detect the prob-
lem we discussed, along with most other compile-time problems. It will not cor-
rect these problems but will notify you of many potential bugs. lint has much
stricter typechecking than the C compiler and will point out mismatched assign-
ments which will compile fine but may be erroneous, such as pointer assign-
ments of different data types. It will also warn about problems such as unused
variables and inconsistent argument usage.

It is possible to communicate with lint, by placing comments in your pro-
grams. For example, to tell lint that a function will be called with varying num-
bers of arguments, one places the comment /*VARARGS*/ in front of the func-
tion. Unfortunately, getting lint to shut up can sometimes be painful. For

CursesProgrammer’s Environment186

example, memcpy() and strcpy() are typical of functions which return values
that are almost never used.

In order to check for consistency in the usage of libraries, lint requires
a file describing each library. The contents of these files are just the stubs of
the subroutines with the type definition and declarations of the arguments. If
you have created a library, you might also consider creating a lint library.

lint is not automatically run when you compile a program, but you
should get into the habit of using it frequently. It is one of the most helpful tools
for C programmers and can quickly point you in the right direction when track-
ing down bugs. lint was written by Steve Johnson.

7.3.7 Curses

UNIX originally grew up on Teletype ASR33s. These were electrome-
chanical beasts that output characters at a stunning 110 baud (ten characters
per second). Much of the conciseness of UNIX stemmed from that (as did the
term "tty" to describe terminals). Glass-ttys (i.e., dumb CRT terminals)
behaved like fast ttys but they were still dumb.

The emphasis in UNIX had always been on programs that produced out-
put that could be used as input to another. Therefore, people generally didn’t
spend time writing graphic applications. They didn’t fit into the UNIX
paradigm. However, the one graphic application that stood apart from the oth-
ers was editing. Editing using a Teletype was not fun, but editing using a CRT
was. The Rand editor had proven that.

One of the more annoying drawbacks of the Rand editor was that it had
to be customized for each different type of terminal. In the late ’70s, there
were dozens of CRT manufacturers, producing hundreds of different models.
Each worked differently, and it was impossible to write (no less debug) support
routines for each terminal quickly enough. The Berkeley solution was termcap.

termcap (terminal capabilities) is a library that supports terminal-
independent character-graphics. It uses a simple database that describes each
terminal that the system supports. Over 300 different terminals are supported
and the number grows constantly. It is relatively easy to add new terminals.
termcap is described further in the Administrator’s chapter.

curses is a high-level interface to the termcap system. curses provides
the user with straightforward commands. For example, box() draws a box on

Editors Programmer’s Environment 187

the screen, and printw() prints a formatted string. The basic idea in using
curses is for the programmer to simply describe the way a screen looks. curs-
es takes care of making sure that the physical screen looks the way the
description does. It also does this optimally.

For example, suppose you are displaying a page of data, and your pro-
gram is about to rewrite the screen with a new page of data. But the data is
exactly the same except for, say, the page number. Then curses will only
rewrite the page number. curses will also attempt to update by a minimal num-
ber of character inserts and deletes – for example, if the data is on the screen
but just has to be moved over. It is amusing to watch curses on a slow termi-
nal because it works nonintuitively (but fast)!

curses also has functions to provide rudimentary windowing. While
curses is limited to character-graphics applications (including line-drawing
characters and color), it has seen much use and has been ported to many other
operating systems. The paper "Screen Updating & Cursor Movement Opti-
mization: A Library Package" by Ken Arnold describes curses further and is
available from Berkeley.

7.3.8 Editors
"The only use I can find for vi is editing the emacs sources while porting them
to a new machine." – Larry Campbell

Strictly speaking, editors are not programming tools. However, they are
what many programmers spend most of their time using while performing pro-
gramming development. In addition, many of the editors have tool interfaces,
allowing them to be called from scripts or in pipelines.

All discussion of UNIX editors must start with ed (written by Ken
Thompson), the granddaddy of UNIX editors. ed is special in so many ways.
Even if you never use it (which is unlikely), ed is worth learning. It is called for
in certain types of emergencies. For example, if you are on a hardcopy termi-
nal or /etc/termcap is "broken," you won’t be able to use a screen editor.
And if you are unable to mount any file system partitions, you won’t be able to
get to any editor but ed.

Another good reason to know ed is that you will be able to use sed, the
stream editor, which allows you to do editing in a pipe or a script. sed’s com-
mand language is very similar to ed’s. Many other tools have borrowed com-
mands from ed. For example, the regular-expression pattern matching used by
most of the UNIX tools appeared first in ed. ed pioneered many stylistic con-

EditorsProgrammer’s Environment188

ventions such as the "bang" notation to run a command in a subshell. ed did so
many neat things that the source code for it was originally distributed as one of
the UNIX readings. Unfortunately, this is no longer possible due to licensing
restrictions.

Most versions of UNIX include a screen editor called vi. Written by Bill
Joy, vi was the first application to use curses. vi became very popular with
early UNIX users because it was based on (you guessed it) ed. vi went on to
become AT&T’s standard screen-oriented editor. We recommend you learn it
simply because it is the only screen editor available on all UNIX systems.

ex is a version of vi, specifically designed for hardcopy terminals. It is
like ed, also, but shares all of the extended commands of vi. ex is also avail-
able on all UNIX systems.

Many people intensely dislike vi because it is heavily mode-oriented.
This means that you are either inserting text or executing a command. Since
moving the cursor is a command, you have to switch out of insert-text mode
and into execute-command mode to move the cursor. If you move the cursor
often while typing text, you will have to type a lot of change-mode sequences.
And if you stop to think about something for a moment, you may forget what
mode you are in. It is extremely annoying to have your text suddenly being exe-
cuted as commands.

A general-purpose editor we recommend over vi is emacs. emacs does
not have the heavy mode-orientation that vi has. emacs can also display multi-
ple windows on the screen at once. Unfortunately, it is not distributed with
UNIX, so you must obtain it through a third-party source. Despite the inconve-
nience, many people have turned to emacs (or at least away from vi). A
recent Usenet poll indicated about half of all UNIX users use vi and half use
emacs.

Editors Programmer’s Environment 189

Bill Joy actually went so far as to put multiple windows into vi. And
he was thinking of making it programmable, too. What happened?

While he was adding multiple-window support, the tape drive was
broken and there were no backups. Bill continued working anyway,
until one day his disk got "scrunched." He didn’t have a backup or a
complete listing, so he just gave up. Afterwards, he went back to the
previous version, finished the manual and that was it with vi. On to
the next project…

Multiple Windows in vi?

The power of emacs (and similar editors such as mince) is that it is com-
pletely programmable (yet another language to learn). emacs is easily config-
ured to be a front-end for news and mail, but we have seen people go so far as
to program it to solve first-order predicate logic problems.

A particularly useful feature of emacs is that it can edit shell sessions in
progress! This means you can use all the editor commands while talking to the
shell. Plus, you can scroll through your entire session, save it, or do anything
else that you can do with a static file.

emacs (which does not stand for "emacs makes a computer slow" but
"editor macros") was originally written at MIT by Richard M. Stallman. It ran
as a set of macros on top of another editor (teco) which did not run on UNIX.
James Gosling at CMU rewrote emacs for UNIX. Interestingly, rather than
port teco, Gosling chose to place emacs on top of a small Lisp interpreter.

Several different versions of emacs are sold commercially, some of which
are not based on Gosling’s emacs (familiarly called Gosmacs). GNUemacs is a
particularly popular version which is available from the Free Software Founda-
tion.

Other ToolsProgrammer’s Environment190

It is important to choose an editor that you will be happy with. Many of
the UNIX utilities depend upon an editor to do their work. For example, the
mail program will start up the editor for you automatically when you compose
mail. Programs will conventionally look in the environment variable EDITOR for
the name of your editor. csh users, for example, would insert the following line
in their .login file:

setenv EDITOR /usr/local/bin/emacs

7.4 Other Tools

There are many other important tools that a UNIX programmer will use
while constructing programs. We have mentioned only the most important ones.

Many of the commands mentioned in the User’s Environment chapter
are useful as programming tools, even though we have not classified them that
way. For example, the shell is programmable and is often used to build proto-
types. If the shell scripts run quickly enough, further development may be
unnecessary. There is no reason you have to use the sophisticated develop-
ment tools mentioned in the chapter if existing commands are sufficient.

We also mention some other tools in the Administrator’s Environment
chapter. It would be worth your while to read all three of these chapters
before setting out to do any serious UNIX programming.

If you work on a UNIX system, it is to your benefit to learn the tools and
concepts described in this chapter. UNIX remains a programmer’s system and
being able to program it is the only way to take full advantage of the capabilities
that it has to offer.

Chapter 8: The Administrator’s Environment
Overheard at a funeral: "I know this may be an awkward time, but do you recall
him ever mentioning source code?" – Charles Addams

This chapter discusses some of the aspects of UNIX administration. Of
course, UNIX administrators can make use of many of the same tools that
UNIX users and programmers do. UNIX administrators will find their time
well spent in becoming versed in the user’s and programmer’s environment.
And of course, UNIX users and programmers might find some so-called admin-
istrative tools are equally worthwhile to them.

The UNIX administrator’s environment gets short shrift when it comes to
quality. The original manuals did not even have a section for administrator’s
tools. There was no such person as an administrator. The UNIX programmers
cared for the system themselves, with the same tools that they used for their
regular work. If you stumbled across a bug, you fixed it, recompiled UNIX and
continued running.

Things have changed now that UNIX has become a commercial prod-
uct. Much like any computer system, there are administrative utilities such as
backup tools, tuning tools, and even a phone number to call for help. Of course,
many programmers continue to ignore so-called useful features such as file quo-
tas and accounting. After all, why do accounting on a personal workstation?

Depending upon whether your UNIX system is shared by many others
and has large enough disks, you may find it useful to have a skilled operator
take care of it. Good luck finding one. The problem is that most administrative
tasks presume great knowledge of UNIX internals. For example, tape backups
can fail due to a variety of reasons, but device drivers are notoriously bad at
reporting them back to the program. Hence, operators may see anything from
"mt0: sr reg = 5, op failed" to "core dumped."

191

Managing the SystemAdministrator’s Environment192

UNIX is extremely complex, and many things can go wrong. And it is so
configurable that it is quite difficult to write administrative manuals that cover
any configuration or situation. Because of this extensibility, it is helpful for oper-
ators to know some shell programming. But as soon as they start doing this,
they are essentially programmers, and quickly become too valuable to "waste"
performing tape backups. It’s a vicious circle.

The result is that administrative responsibilities are usually handled by
skilled UNIX programmers, much to their dismay. There is just no way of
avoiding it, short of rewriting most of the UNIX system. Fortunately, there are
many vendors attempting to do just that. However, the roots of UNIX are
deep, and it will take a long time before the results of such change is felt.

There are many books on the subject of UNIX administration, some of
which are mentioned earlier in this book. However, UNIX programming experi-
ence goes a long way. Some guts help too, such as when for the first time you
get a message asking you to reboot the system without sync’ing the disks!

8.1 Managing the System

The effective management of a complex system is nontrivial. Many vari-
ables affect the performance and capabilities of a UNIX system, not the least of
which is the knowledge and performance of your systems administrator.

8.1.1 Initial Configuration

Before using your system the first time, you will have to configure it.
This means telling the software what kind of hardware you have. Additionally,
you will choose certain software parameters, such as declaring what kind of
network protocols you will use. Since UNIX runs in so many environments,
configuration can be fairly complex.

The hard part of configuration is putting devices into the kernel. Making
any mistakes at this point can crash the system, since you are modifying the
kernel without going through any well-defined interface, such as a system call.

Modifying the kernel is typically done by linking the kernel with the appro-
priate device drivers, along with a small file that makes the associations
between the drivers and the device major numbers. Then you reboot using the
new kernel. Many systems have automated this process – you just pick all the
drivers and it does the rest of the work.

Booting Administrator’s Environment 193

When devices such as /dev/null are created, they are assigned a major
and minor number. You can see this if you do a ls -l of the file. When any
operation is performed on the device, the major number is used by the kernel to
select the correct driver. The minor number is used by the driver itself, usually
to distinguish between multiple devices of the same kind.

Once you have configured your system, you can boot using the new ker-
nel. You can then do some higher-level configuration, such as deciding what
background processes to run, setting up spoolers, networks and adding users.

8.1.2 Booting

Booting a UNIX system is a trivial task. Start by turning it on. All com-
puters have hardware that automatically jumps to a ROM monitor. Either the
monitor will bootstrap the system into multi-user mode immediately or you will
have to press "b" and select a "run level" (such as single or multi-user).†

As the system comes up, it goes through several steps, most of which
are common to all UNIX systems. All of this is automatic, although prayer
doesn’t hurt.

1. Checks the integrity and existence of basic hardware, such as a
console. Determines how much memory is available.

2. Initializes various parts of the kernel. Bootstraps the root file sys-
tem into existence.

3. Probes for devices. Each device driver is called to initialize itself.

4. init and a process to do swapping are bootstrapped into existence
as the first two processes.

5. Runs /etc/rc. This is a shell script that usually mounts and
checks the integrity of other file systems, initializes networks, starts
spoolers, mailers, networks, and terminals.

8.1.3 Halting

 It is best not to turn off your UNIX machine by simply flipping the power
switch like one does with a PC. Since processes run in the background, they
may be in the middle of doing something at any moment. For example, log files
are continually being written, even if the system is quiescent (if only to say that

The former is typical of BSD systems, while the latter is typical of System V systems.†

Debugging After a CrashAdministrator’s Environment194

the system is quiescent)! If you turn off the system as a file is being written,
you will likely corrupt the file system.

Another reason for not flipping the on-off switch is that the UNIX file sys-
tem is buffered. (This is not the same kind of buffering as the stdio buffering.)
As disks are accessed, copies of the disk are brought into kernel memory, and
then copied to user memory (or vice versa). When a user writes to a portion of
the disk, the kernel memory is updated, and that memory is flagged so that it
will later be copied to the disk.

By not immediately writing it to the disk, a large amount of time is saved.
It is quite common that disk areas are updated many times in a row. For exam-
ple, if you delete a lot of files, the directory will be rewritten many times. By
only copying the last version to the disk, time is saved. However, it means that
the disk does not always represent the reality of the file system.

To keep this unsynchronization between the file system and kernel memo-
ry to a minimum, the kernel flushes its buffer every so often. Older UNIX sys-
tems actually did this by a background process called update which called the
kernel sync() routine every thirty seconds. There is also a command called
sync, which does the same thing but only once. If the system is halted
between the time a sync occurred, and the file system was modified, the file
system might be corrupted.

Usually there are system-supplied programs that you run to halt the sys-
tem such as /etc/shutdown or /etc/halt. This makes sure that the file sys-
tem is synchronized, as well as broadcasting messages to users warning them
about the impending shutdown.

8.1.4 Debugging After a Crash

UNIX crashes are often accompanied by a panic message, such as
"panic: double parity error in memory." This indicates that the system
detected a condition that it recognized as a problem, but it was so severe that it
could not be fixed. For example, this might require physically replacing a hard-
ware component.

Some UNIX systems come with backup hardware and software, howev-
er without it, the only reasonable thing to do with a severely crippled or cor-
rupted system is to halt it. Letting the system run would undoubtedly corrupt
something else.

Managing Disks Administrator’s Environment 195

Once halted, the system should be examined for the cause of the panic.
The problem may be evident from the panic message, or it may require debug-
ging.

You may find it useful to do debugging or maintenance work from single-
user mode. Single-user mode is a way of bringing up UNIX so that no one else
can log in and /etc/rc is not run. Daemons (see later in this chapter) are not
started, and only the root file system is mounted. This is useful, for example, if
you need to repair the user file system or perform a backup.

If you cannot even boot to single-user mode, you can boot from a tape or
floppy disk. (If you can’t boot from either of these, you’ve got a serious hard-
ware problem!) Once you have booted from tape or floppy, find a spare copy
of the root file system which will give you access to the tools you need to
debug the kernel. Or restore an older and more robust kernel and reboot the
system using that.

Once you have booted, you can then debug UNIX. The UNIX debugger
has a special option that allows it to be used when debugging the kernel. By
using it, you can tell where the system stopped. For example, it may have
stopped in a brand new device driver or a kernel routine. Once you have fig-
ured out where it stopped, you can then get out the source code and debug the
module.

8.2 Managing Disks
"See a guru." – advice in fsck documentation for receipt of certain errors

While the hierarchical UNIX file system is conceptually clean, its imple-
mentation is fairly complex. This is for a number of reasons, one of which is to
provide the clean interface on top of a morass of bizarre devices. Another is to
provide that file system integrity can be maintained in the event of a crash.

8.2.1 Mounting and Unmounting the File System

Conceptually, the UNIX file system is one tree. What is not apparent is
that branches of the tree can reside on physically separate devices. Physical
disks may also be logically partitioned, so that they appear as separate devices.
Each logical partition is a file system in its own right. However, multiple file sys-
tems appear as a single file system to the user.

A logical partition is usually reserved for swap space. Swapping means
that processes can be moved out of memory and temporarily stored on a disk

File System IntegrityAdministrator’s Environment196

until such time as they are brought back into memory to continue executing.
This is useful when you have several processes that can’t fit into physical mem-
ory at the same time.

The root file system, "/", is contained in another partition. By putting /
and the swap partition on one disk, it is possible to boot a minimal system, inde-
pendent of the rest of the network or any other disks. This makes the system
fairly robust since all it needs is one disk to get running.

Once UNIX has booted, it can then mount other file systems. These are
placed in empty directories that merely serve as placeholders. The mount com-
mand actually does the work. The result of a mount is that the placeholding
directory now appears exactly like the root of the new partition. The user
doesn’t see the new root, but views the new file system as just one more direc-
tory.

umount undoes the effect of mount. Once you have unmounted a file sys-
tem, it is no longer accessible to users. They will see the original empty directo-
ry, and you can remove the disk from the system.

Network file systems (such as NFS and RFS) have extended the seman-
tics of mount and umount. Using them, you can mount devices that are on
remote systems and they appear as part of your local file system. This tech-
nique is used with workstations, so that you can sit down at any workstation
and gain access to your files by mounting them from a network file server.

8.2.2 Maintaining File System Integrity

Internally, the file system is quite complex. However, as long as it is
accessed through its defined interfaces, you needn’t be concerned with it. In
the event of a system crash, or someone pulling the AC cord out of the wall,
the likelihood is high that the file system is "out of sync." For example, if you
were in the middle of deleting a file, the file might not appear in a directory, yet
the file space hasn’t been returned to the pool of empty file space (also called
the "freelist").

When the system is booted, each file system is examined for integrity
before mounting it. If garbage file systems are mounted without checking them
first, the system can go off the deep end while traversing data structures. The
integrity of the file system is checked by the program fsck (file system check).

File System Integrity Administrator’s Environment 197

fsck looks through the underlying data structures of the file system and
verifies that it is consistent. If it discovers any inconsistencies, it attempts to
repair the damage. The file system contains some redundant information, just
for this purpose. Because of that, fsck can always repair out-of-sync file sys-
tems. However, if the problem was caused by a software bug, or a hardware
error such as a controller that scribbled garbage on a random sector, it is unlike-
ly that fsck can restore your disk to perfect health. When fsck finds problems
that cannot be restored perfectly, it will notify you. For example, when fsck
discovers files that have no directories, it will make up names for them and
place them in the directory /lost+found.

Two excellent articles on fsck are (for System V) "Using fsck" by
Michael Saxon in ;login:, vol. 10, no. 3, August 1985, and (for BSD) "Fsck –
The File System Check Program" by Marshall Kirk McKusick in the 4.2BSD
UNIX System Manager’s Manual.

Files are not stored with their names. The names are stored in
directories, and more than one name may point to the same file.

Internally, the file system identifies a file by an index (or i-node)
number, because names are not unique. While it is possible to find
out the i-node number of a file (via ls -i), it is impossible to find
out the name(s) of a file, except by examining all the directories on
a file system.

For example, to find the file with i-node number 20899 in the /usr
file system, you can execute one of the following commands:

SystemV % find /usr -xdev -inum 20899 -print
Berkeley% find /usr -mntpt -inum 20899 -print

What’s the name of that file?

Early file systems were not as robust as they are now, and fsck was not
always capable of fixing them. Hand patching was common, either with special-
ized file system debuggers like fsdb, or even adb. clri, ncheck, icheck and
dcheck were part of a suite of programs that performed special operations on
the file system, such as zeroing an i-node. Fortunately, these programs are
rarely used anymore.

BackupsAdministrator’s Environment198

8.2.3 Backups
"Whatever can go wrong, will go wrong." – Murphy’s Law

It is impossible to overemphasize the importance of backing up the file
system. If a disk controller goes haywire, or even if you accidentally delete a
file, backups are the only way to recover. Do backups daily!

 Backups are usually accomplished by using dump. However, there are
several other utilities useful for saving files, including volcopy, dd, tar and
cpio. (This list varies from system to system, unfortunately.) Each of these
utilities saves files in a different way. It may seem strange that each of these
are incompatible with each other, but there is a good reason for different types
of backups. Different formats have different purposes. Each has its own advan-
tages and disadvantages. For example, dump is good for backing up a file sys-
tem because it saves i-node information. However, dump tapes are an
inappropriate format for distributing software – other sites could care less about
your i-nodes. tar or cpio would be a better choice in this particular case.

Backups usually take a long time to execute because they must record
the entire file system. Since they take so long, it is possible for a user to write
files during a backup that are not recorded because the dump program has
already dumped that part of the file system which now contains the new file.
For this reason, file systems to be dumped should be quiescent.

Since complete backups require a lot of dedicated time and backup
media, most backups are incremental. Incremental dumps simply copy what
has changed since the last time a backup was performed. This is usually much
less than a full backup. In the User’s Environment chapter, we present a utility
for using cpio to make incremental backups.

After a disk catastrophe, the backups can be restored, either by selected
files or in toto. If incremental dumps have been taken, you will have to restore
all of the incrementals until everything looks right.

Disk Quotas Administrator’s Environment 199

Files with holes are created by seeking past the end-of-file. Every-
thing between the old end-of-file and the new data is a hole – there
is no data there, so no disk space is used. Holes are nice, except
that not all utilities understand them.

One day a programmer inadvertently handed a pointer to fseek,
promptly causing a monster hole. None of the normal file commands
such as du or df were disturbed by this. However, during the next
backup, dump requested 26 40Mb tapes. It simply wanted to save
the 1Gb file from the 146Mb disk partition!

Holy files, Batman!

Backups can also be used when a user accidentally deletes a file. If the
file has been created before the last dump, the file can be restored. However,
users should be cautioned that this is not something to rely on. This is because
there is no guarantee that users haven’t created their files after the most recent
backup.

Backups are a weak point of UNIX, and one of the reasons why UNIX
administration is so difficult. They require quiescent systems. They have no
tape library system. Few of the tape utilities understand multiple-volume file
systems or tapes. The reason tape backup procedures differ from one UNIX to
the next is that no one has gotten them right yet.

UNIX tries to straddle a fine line by not requiring operators for managing
backups, but yet forcing users to be aware of the decisions, problems and
responsibilities of preventative file system maintenance. As disk capacities
increase and computer systems grow more complex, UNIX is going to have to
develop an integrated and refined solution to managing backups. UNIX is going
to have grow up.

8.2.4 Disk Quotas

UNIX has traditionally lived in open environments where users took
responsibility for their actions. There was little need for quotas or resource
accounting.

Now that UNIX has gone commercial, buyers have asked for these main-
frame ideas. Hence UNIX now has quotas. Fortunately, quotas have forced
UNIX to clean up some of its problems. In particular, early versions of UNIX

Symbolic LinksAdministrator’s Environment200

liked to act as if they never had to worry about file space. If a user program
accidentally went wild, it could consume all the disk space. In turn, the system
would panic and crash.

In fact, there are very few places where the system itself depends upon
file space being available; however, most programmers have blindly carried
foward the practice of ignoring the failure of write() due to a lack of disk
space. They knew that if their program was out of space, then the system was
also, and it hardly mattered that their program was going to dump core if the
system was going to crash moments later.

8.2.5 Symbolic Links

Hard links allow one to associate (possibly multiple) names to a single
file. These links can only be made to existing files. Their primary shortcoming
is that they cannot span file systems. For example, in some particular file sys-
tem /usr1 and /usr2 might be on different file systems and one could not
directly access a file in /usr2 by linking to it with a file which started with a
/usr1 pathname.

One extremely useful Berkeley innovation was symbolic links. Symbolic
links overcome the single file system limitation of hard links, allowing one to cre-
ate a link to a file in /usr2 which can be made to appear in /usr1. This solves
a number of longstanding problems. For example, suppose you receive a pro-
gram (binary only) that insists upon putting a file in a file system partition where
you don’t have space. You can create a symbolic link from the name the pro-
gram wants to see to a partition where you can afford the space. Of course,
overuse of this can lead to the creation of a spaghetti file system.

Symbolic links have other problems, too. For instance, if you link from
one directory to another, you don’t have a choice of what .. (the parent direc-
tory) is. Symbolic links can link to nonexistent files (although some view this as
a feature). And unlike hard links where there is only one set of permissions for
the file, there is one for each symbolic link.

8.2.6 Find, Xargs

find is one user command that most administrators overlook – the man
page is a little complex, because the syntax is unusual. But it is worth knowing
how to use find. It can save you much effort.

Managing Tapes Administrator’s Environment 201

find lets you perform arbitrary actions on entire directory hierarchies.
For example, if you need to change the protection mode of every file in a large
directory tree you can either do it by hand, or you can have find do it for you.
We suggest you do the latter.

find is extensible. You can limit the operation to files with certain char-
acteristics such as ownership, last modification time, and many other parame-
ters. You could have find remove all object files which have not been
accessed in a week with the following:

% find . \(-name ’*.o’ \) -atime +7 -exec rm {} \;

The nice thing about find is that you can do things with it that the design-
er never thought about. For example, it is not restricted to chmod or rm. It can
execute any command, with any level of complexity.

xargs is similar to find, except that it is not tuned to traversing file sys-
tems. xargs accepts file lists from stdin, such as generated by ls, or even
find. xargs reads stdin for files (and more arguments) and applies a given
command to the files. For example, the following will prompt the user for a list
of files to archive into arch.

ls | xargs -p -l ar r arch

The following command will run diff on successive pairs of arguments
when run as a shell script:

echo $* | xargs -n2 diff

8.3 Managing Tapes

UNIX systems come with a somewhat inadequate set of tape handling
facilities. What you may find in addition varies from system to system, since
everyone has attempted to improve the situation from when they found it.

People often use tar (tape archive) for their own personal backups, as
tar simply copies directory hierarchies to and from tape, and it is easy to use.
Also, tar is available on more UNIX systems than any other tape utility. Unfor-
tunately, tar can only deal with one tape or floppy and is therefore restricted to
dealing with relatively small amounts of data. A few vendors are starting to
provide multi-volume versions but these are rare and you may have more porta-
bility problems.

Managing TapesAdministrator’s Environment202

Tape access in UNIX provides some classic examples of the 10 percent –
90 percent rule. Support for tapes is simple (10 percent of the work), and quite
functional (solves 90 percent of the problems). For example, the lack of utilities
that handle multiple volumes can be traced to the belief that this would be a
very rare occurrence. (Disks were a lot smaller in the ’70s, too.)

Just as there was no file locking facility, and since tapes were treated as
files, there was no way to lock the tape drive, or to inform the system that you
wanted sole access to the drive. This led to problems, such as one user acci-
dentally archiving a file on another’s tape.

A longstanding kludge in tape access is the method of declaring parame-
ters. Since tapes are handled like files, they are opened with the UNIX
open(). However, open() has no place to pass tape information, such as the
tape density. This was not a problem for things like disks which remained
attached to one system, but tapes were read and written on other systems with
different peripherals.

To solve the problem of handling tapes at two different densities, the
UNIX designers just created another logical tape device with a different minor
device number. While the minor device number is supposed to be used by the
driver to differentiate units of the same tape, this is not enforced and the driver
can really do whatever it wants with it. For example, /dev/tape0 and
/dev/tape8 might refer to the same physical drive, but using one in a command
selects a different density. A lot of stupid and hard to remember conventions
were born from this, such as "add 8 to the unit number to get the tape to write
at 6250bpi."

Naturally, people have extended this kludge, so it is quite common to
have other conventions like "add an ‘n’ to the device name, if you don’t want
the tape to rewind."

Terminals and Serial Lines Administrator’s Environment 203

Since tapes are accessed through the file system just the way disks
are, it is possible to mount tapes as if they were disks. Of course,
randomly accessing tape blocks is usually quite slow, so don’t
expect very high performance file systems!

This technique was actually quite popular on PDP-11s which came
with DECtape. DECtapes used fixed-block formats which were
easy and efficient to access randomly. If your system crashed, you
could actually boot from the DECtape and work from it without a
disk. (Of course, if the system decided to swap a process out, you
might have had to wait a couple minutes!)

Random access tapes

8.4 Managing Terminals and Serial Lines

People often claim that the large number of programs to control and
define terminals and serial lines in UNIX are confusing. Ports that people log
into are controlled differently than other ports. Certain terminal characteristics
are defined either in the kernel (with stty) or in the shell (with environment
parameters) or the user program or library. You’re right – it is confusing.

8.4.1 Init and Getty

UNIX manages terminals and serial lines unlike any other operating sys-
tem. Rather than the system itself waiting for users to log in, the init process
is given the responsibility of logging users in. This removes some complexity
from the kernel itself.

What init decides to do is somewhat dependent upon what system you
are using, but the basic idea is as follows. Depending upon whether your sys-
tem is Berkeley or System V based, the file /etc/ttys or /etc/inittab has a
description for each serial line on your system. Each description defines
whether people are allowed to log in or not, as well as the characteristics of the
line, such as the speed and parity. (Actually, the characteristics are stored in a
separate file, but no matter.)

If the serial line is set up to allow people to log in, init monitors the RS-
232 control lines. If they indicate that a user is there, either by detecting a ter-

Init and GettyAdministrator’s Environment204

minal turning on or a modem being called, init forks off a getty. (Some ver-
sions of init fork off a getty to monitor each set of RS-232 control lines. This
is simpler but more wasteful of resources.)

getty prints out the string: login: (or whatever your site has defined),
sets up the terminal appropriately and prompts for a username. It then calls
login which verifies the password and completes the job of logging a user in.
The last step performed by login is to overlay itself with the shell defined for
the user in /etc/passwd.

When the user logs out, the shell returns to the procedure that called it
(i.e., init). init then returns to monitoring the serial line.

As you might suspect, the newsletter ;login: gets its name from the
UNIX login prompt. But what about the initial semicolon?

Well, the string that getty prompted with actually began with an
escape-semicolon sequence. This put Teletype Model 37s into full-
duplex. But most people did not use that type of terminal. Other
terminals would ignore the escape, and print the semicolon followed
by login:. Hence, most UNIX users always used to get prompted
with ;login:

Semicolon-login:?

The nice thing about this whole system is that it doesn’t have to worry
about logging people in. It is all handled by an independent process. And if
your local installation has special requirements like having a system-wide pass-
word or a special environment variable, it is easy to modify the login program.

Annoyingly, UNIX binary licenses are sold for fixed numbers of users.
However, there is nothing inherent in the operating system that prevents more
users from logging in. All you have to do is edit the appropriate files. Even if
your VAR has rewritten the login program to check for multiple users, it is rel-
atively easy to write your own that allows for any number.

Of course, we cannot condone violating the terms of your licensing agree-
ment like this. But we thought you might be interested in this for technical rea-
sons. For example, uucp logins appear as a user, even though there is no
human involved. Thus, you might conceivably have two "people" logged in on
a single-user system.

Termcap and Terminfo Administrator’s Environment 205

8.4.2 Termcap and Terminfo

/etc/termcap is a file that describes the capabilities of terminals. There
is an entry for each kind of terminal (e.g., vt100, adm3, hp2621). Each entry
describes the characteristics of the terminal. The characteristics are read by a
common library (curses) which each character-graphics program uses.

Defining the terminal characteristics only once, and providing a single
means of using it, avoids several problems:

• Programmers do not have to code for each terminal, but only for a
single "virtual" terminal.

• Programmers do not have to think about optimal screen-drawing
procedures, since the system automatically does that.

• Users do not have to wonder if their new terminal is going to run
all their old programs correctly.

When a program such as a screen editor is started, it needs to
know the characteristics of the terminal. First it looks in the
TERM environment variable to find the type of terminal you are
using.

Using the terminal type, it retrieves the terminal characteristics
from the termcap database. If the database is large, this can take
quite a while. One way to reduce this time is to place your terminal
characteristics in the environment variable called TERMCAP.
(This is easy to do with tset.) If the system finds a terminal
description in TERMCAP, it will use that. The result is that
character-graphic programs start much more quickly.

TERMCAP Environment Variable

The sort of information in the termcap database are the character
sequences for cursor positioning, insert/delete character/line, and timing infor-
mation for padding and optimization. It would be nice if terminal manufacturers
supplied us with termcap descriptions, but few do. However, it isn’t too hard to
write them.

termcap was a tour de force in many ways. It worked so well that it has
been applied to many parts of the system (as well as many other operating sys-
tems). For example, there is a capability file to describe printers

sttyAdministrator’s Environment206

(/etc/printcap) and another to describe hosts (/etc/remotes) which parallel
the style of /etc/termcap. The result is an extremely flexible environment.

termcap was originally written at Berkeley. It was very quickly adopted
by AT&T for their own systems, however, AT&T redesigned some of it for
System V. As well as changing the name to terminfo in System V, AT&T reor-
ganized the terminal capability database. Rather than putting all the data into a
single file, each terminal’s characteristics are in a separate file in one of several
directories. This is more efficient than /etc/termcap, but the system works
essentially the same way. There are several public-domain programs available
to convert termcap entries to terminfo entries and vice versa.

8.4.3 Setting Terminal Options – stty

stty (set tty) is used to tell the system certain things about your termi-
nal. For example, you can change your baud rate and flow control with stty.
stty has two major uses. One is to appear in login scripts so that when you
log in, your terminal characteristics will be properly set. The second is to fix
your terminal after a program has ungracefully exited. For example, if a pro-
gram left your terminal in raw mode, you can reset the terminal by typing stty
sane (SV) or stty -raw echo (BSD) followed by a control-J.

It is also possible to set characteristics of other terminals, if you have per-
mission. Note that you cannot use stty on dialup lines because init will
promptly set them back according to the descriptions in /etc/ttys or
/etc/inittab.

It is somewhat annoying that stty is not integrated with termcap. The
problem is not that they do two different things. Rather, stty does so many
things, it is really just the original catch-all for terminal problems. The termcap
designers did the correct thing by ignoring it.

8.5 Managing Users

UNIX has long straddled the line for user management in staying out of
the users way versus providing enough control for a useful system. Early ver-
sions of UNIX generated only some files (in /usr/adm) which logged connect
time and the processes being executed.

 New versions of UNIX are beginning to have more and more tools for
user management and tracking. Both System V and Berkeley UNIX have com-

User Accounts Administrator’s Environment 207

prehensive systems for tracking usage, with breakdowns by user-time versus
kernel-time, I/O operations, and so on. Indeed, it’s rather frightening.

8.5.1 User Accounts

One of the few really essential management tools is the /etc/passwd
file. This file contains one line that describes each user allowed to use the sys-
tem. Talk about being brief!

The /etc/passwd file is a text file and can be edited with any editor. The
format is certainly trivial enough. However, if there is a danger of multiple peo-
ple updating the file concurrently, some lockout mechanism should be used.
vipw is a program designed to do exactly that – it starts up vi on the password
file and prevents anyone else from editing the file until you are done.

A line from /etc/passwd might look like:

dmr:tFLKiPzkWavm:29:5:Dennis Ritchie:/usr/dmr:/bin/ksh

 There are seven fields per line, each separated by a colon. They are:

1. Login name.

2. Encrypted user password.

3. User ID number (called "uid"). This is used by the system internal-
ly to distinguish users.

4. Group ID number. (see next section)

5. GCOS field. Typically the user’s complete name. It can also con-
tain other things such as a phone number, or silly comment. In oth-
er words, it isn’t defined. It is called the GCOS field historically
because it was originally used to define an accounting ID that was
submitted with remote batch jobs to the GCOS system at Bell Labs.

6. Home directory.

7. Shell. Also used to create turn-key systems and login commands.

This simple scheme is enough to provide a very flexible user environ-
ment. It is trivial to add users to the system. You just add a line describing the
users, and create a home directory for them. (In practice, it is also helpful to
give them a couple of prototypical files such as .cshrc and .login or
.profile, but that isn’t absolutely necessary.)

Group AccountsAdministrator’s Environment208

The shell field is particularly useful. By allowing users to run different
shells, it becomes possible to tune the system toward any level of user. Non-
technical users can use a simple shell, such as a menu-oriented program.
Restricted users can have a restricted shell, which can only access games, for
instance. It is also possible to install commands as users. For example, if a
user called who was created with login shell /bin/who, then you could run the
who command by logging in as who. (And when the command finishes, you
would be logged out.)

This file is writeable only by the superuser. By limiting the amount of
information in this file, the amount of information that the user can’t change is
limited. Fields that the user might want to change, like the password field, are
changed by a special program that limits access to just the right field.

Unlike most other operating systems, the /etc/passwd file is readable by
everyone. This is feasible because the passwords are stored in encrypted
form. As such, they are of no use to anyone, except the system itself. Interest-
ingly, the original implementation used a particularly powerful encryption rou-
tine based on the German Enigma cipher machine used in World War II.
Though theoretically possible, it was prohibitively expensive to decrypt a pass-
word. (And besides, it was easier to guess them.)

8.5.2 Group Accounts

The fourth field of the /etc/passwd file defines a group ID (or "gid").
This number is used by the system internally to associate groups of users with
common access permissions. Each user in a group can then access any file
which permits access according to its group permission.

There is a file called /etc/group that looks quite similar to
/etc/passwd. It simply lists groups by group name, password, numeric group
ID and users that are members of the group. The password is optional and
allows other people to use the group even if they do not normally have permis-
sion to use that group. Here is a typical entry from /etc/group:

admin:q3gn89:16:carol,henry,joe,tony,gail

Like the password file mechanism, the group file mechanism is also easy
to use and flexible.

Communication Administrator’s Environment 209

8.5.3 Communication

Since UNIX users and administrators are one and the same, communica-
tion between users and administrators is good. Some of the tools to provide
communication via the computer are:

• mail – sends mail to a user.

• write – writes a message to another user’s terminal.

• wall – writes a message to all active terminals. Good for warning
about impending shutdowns.

A particularly important tool is a bulletin board system of some type for
news. UNIX comes with a rather simplistic one. There are many better in the
public domain that you should acquire immediately. We highly recommend one
of the systems that will let you support Usenet (see the Underground chapter).
These function well even for communication between users on only a single
system.

8.5.4 Uucp

uucp stands for "UNIX-to-UNIX cp." Like cp, uucp copies files. How-
ever, uucp allows you to copy files from one UNIX machine to another. The
syntax of uucp is very similar to cp. The only difference is that file names can
have host prefixes. An exclamation separates the two. For example, the fol-
lowing command would copy /etc/passwd from one machine (lurch) to anoth-
er (kanamit).

uucp lurch!/etc/passwd kanamit!/etc/passwd

Originally, uucp was designed to run over RS-232 serial lines (at any
speed). It has since been enhanced to support many different kinds of commu-
nications media.

uucp has error-detection and correction protocols to ensure files are
transmitted properly. Since it requires no special hardware, you can form store-
and-forward networks of uucp-connected computers with virtually no expense
other than the wires connecting them. uucp also has the capability of using dial-
out and dial-in modems. A large part of the Usenet (see the Underground chap-
ter) works using dial-up uucp connections.

uux is a cousin of uucp which allows remote execution of commands. It
uses the same syntax as uucp except that arbitrary commands may be speci-

Managing System ActivityAdministrator’s Environment210

fied (again, prefaced with an exclamation). The command is executed on the
remote system, after the files have been sent there.

While there are much faster networks available today, uucp networks are
still quite prevalent on UNIX systems. Part of the reason is that uucp is the
only computer-to-computer communication system available on every UNIX
system shipped. uucp networks are slow compared to modern networks, but
for many years they were a particularly cheap and effective way of internet-
working.

8.6 Managing System Activity

A UNIX system requires maintenance to be performed at regular inter-
vals. The most important of these are backups. Secondly, certain log files
should be examined (and truncated) periodically. Lastly, all hardware should
have regular preventative maintenance.

Beyond these tasks, there are always things popping up that will keep a
system administrator busy. For example, you can expect to keep busy constant-
ly adding users and applications and fixing bugs. Don’t ever take a day off.

To start you on your way, it is good to have an idea of what the system
looks like, just so that if something goes wrong, you know how far off center
the system is.

8.6.1 Miscellaneous Files

There are various log files to keep track of system activity. They are
updated and cleaned out automatically. Most of these are in /usr/adm,
/usr/spool and /etc. You might look at them occasionally just to see if the
system is crashing behind your back.

Programs like who reference these log files. If the programs start behav-
ing strangely, you should check the log files themselves.

/tmp and /usr/tmp are used as directories to store files temporarily. For
example, the C compiler may store temporary files there as it works on your
programs. The compiler does this because there is no guarantee it can store
files in your current directory (or even your home directory).

The reason there are two "temp" directories is as follows. When the sys-
tem boots, the first thing it mounts is the root file system with includes /tmp.
The root file system is usually a small logical disk partition, containing the bare

Daemons Administrator’s Environment 211

necessities required to run UNIX. This minimizes the number of things UNIX
depends on, which is important in the event of a crash. If you can get the sys-
tem up with only the root partition mounted, at least you can run the basic utili-
ties (which may need a small temp directory).

Once the system is operating correctly, you can bring UNIX up the rest
of the way and mount the rest of the file systems. /usr/tmp should be on a
large partition with a lot of free space. Programs like troff (which create
large temporary files) can then run, storing their files in /usr/tmp.

If you suddenly find your system out of space, you should look in the
temp directories for leftover files. In general, anything in the temp directories is
subject to removal at a moment’s notice. Indeed, a system reboot generally
cleans out all temporary files.

The spool directories (/usr/spool) can also be combed for excess files,
although you should not be as flippant with recently dated files as they may
actually be spooled up for service.

8.6.2 Daemons and Other Processes

Daemons (pronounced "demons") are background processes that do use-
ful work on behalf of the user. For example, if you send mail, you might com-
pose the letter and then hand it to a mail daemon for delivery. You go on to
something else, while the daemon continues to process the outgoing mail. The
mail daemon could as well wake up (without your explicit action) every so
often to check for incoming mail.

Users can write daemons as easily as any programs. However, there
are some tricky things you should know before starting out. An excellent refer-
ence is "How to Write a UNIX Daemon" by Dave Lennart in ;login:, vol. 12,
no. 4, July/August 1987.

Conceptually, the big difference between most programs and daemons is
that daemons don’t have a stdin or stdout, and they sleep most of the time.
While it may seem wasteful to have a lot of processes that just sleep, it is not
inefficient, and the system is easier to manage. It avoids a monolithic program
that tries to do everything. UNIX systems usually have a lot of daemons. For
example, they almost always come with:

• update: Synchronizes the file system with its image in kernel mem-
ory every so often. (Not in System V.)

DaemonsAdministrator’s Environment212

• cron: General-purpose background task scheduler. If you want a
program such as uucp to run every hour, you can ask cron to do it.

• lpd or lpsched: Line Printer Daemon. Picks up files spooled for
printing and distributes them to printers.

• init: The first process created at system startup time, init is in
charge of creating all the other necessary processes in the system,
as well as creating login processes for each terminal.

• swapper: This process handles kernel requests to swap pages of
memory to and from the disk.

cron is a general-purpose background task scheduler. It allows you to
avoid worrying about the problem of having a task wake up every so often. For
example, if you want to automatically run backups every night, you don’t have
to write a special program – you just tell cron to do it. To tell cron what to do,
just add entries to /usr/lib/crontab.†

Try making an entry for cron so that something strange will happen on
April Fools Day!

Another general-purpose program daemon handler is inetd on Berkeley
systems. inetd monitors network traffic, and when requests for service from
remote systems arrive, inetd will start up the appropriate server. For example,
if mail arrives inetd will start up a mail process to handle the incoming mail.

The line printer daemon is an example of a spooler. This type of daemon
occasionally gets requests for work faster than it can process them. For exam-
ple, you might request that the system print out ten files, but obviously all but
one can print immediately. The spooler will copy your files into a spool directo-
ry (such as /usr/spool/lp) and work on the first file. When it is done, it will
go back and get the next file.

The ps command will give you information about what is running on the
system. You should see all the daemons listed above. If you find processes
that should not be there, you can kill them by issuing the kill command with the
process ID returned from ps.

The kill command doesn’t actually stop processes. Rather, it sends sig-
nals to processes. Since most processes die upon receipt of the signals, howev-

This describes BSD cron. System V cron has a more complicated interface but is func-
tionally equivalent.

†

Security & Insecurity Administrator’s Environment 213

er, kill is aptly named. The best kind of signal to stop a process for sure is sig-
nal 9 which is the signal to kill a process. Thus, to kill process 17, you would
say:

% kill -9 17

In rare circumstances, the process will not go away. This can happen
for a number of reasons:

1. The process will become a "zombie" according to ps. Zombies are
processes that have exited but are kept around in the kernel until
the parent process executes a wait() to get the status of the pro-
cess.

2. The process may be waiting on code inside the kernel, such as in a
device operation. You should satisfy the device request (e.g.,
mount the tape, fiddle with the RS-232 lines) to solve this.

8.7 Security & Insecurity
"When it comes to computer security, paranoia is not enough." - Ralph Jones

UNIX security is quite simplistic. Nevertheless, it solves most security
problems quite easily. (Another example of the 10 percent – 90 percent rule.)
With care, UNIX can be made quite secure, although knowledgeable hackers
can probably get into it or any system.

Much work is currently being done on providing more sophisticated secu-
rity to UNIX, including finer-grain file protections and privilege levels. See the
UNIX Meets the Real World chapter.

There are several good books on UNIX security including UNIX System
Administration by David Fiedler and Bruce Hunter, and UNIX Survival Guide
by Elizabeth Nichols, Sidney Bailin and Joseph Nichols. In addition, UNIX
REVIEW, vol. 6, no. 2, February 1988, contains a collection of extremely well-
written essays on UNIX security.

8.7.1 File Permissions

File permissions are specified for three sets of users: owner, group and
world. The world includes all the users on the system, but the owner and group
are determined by each file. Each file gets a default owner and group when it
is created. You can also change them with the commands chown and chgrp.

SuperuserAdministrator’s Environment214

Permissions for each of these sets of users are further broken down into
read, write and execute permission. For example, here are the permissions on
a typical file (listed with ls -l):

-rwxrwxr-- 1 don 70270 Nov 11 13:37 AdminEnv.doc

The section of the line: -rwxrwxr-- defines the file permissions. The
first – is a placeholder. You will see things like a d for directories or a b for
disks (i.e., Block-oriented devices). The next three characters define read,
write and execute permissions for the owner. Since the letters appear in this
case, the owner (don) has permissions to access the file. The next three letters
are for the group. The remaining three are for everyone else. They indicate
that everyone else is only allowed to read the file.

You can change the file permissions with chmod (change mode). It can
take octal arguments representing the bits (i.e., chmod 664 for -rw-rw-r--) or
a symbolic expression where u stands for user, g for group and o for others. +
adds permissions while – removes them. Thus, chmod o-w removes write per-
mission for others. See your man page for more details.

The umask is a shell variable (in both csh and sh) which consists of three
octal digits that define a default file creation mode. When a file is created, the
umask is used to determine its file protection (along with the mode value from
open()). A typical umask is 022 – this gives read access to everyone, and
write access only to the file owner. Unfortunately, umask works backwards
from the way you would think it should. The umask is X-OR’ed rather than
AND’ed with mode supplied during an open().

One of the nice things about file permissions is that they extend to
devices, since devices are files in the file system. Most other operating sys-
tems have their own special access control techniques for devices that differ
greatly from file protection.

8.7.2 Superuser a.k.a. Root
"Keep your eggs in one basket. And watch it carefully!" – Mark Twain

An exception to the previous rules is the superuser (who logs in as
root). Root has access to everything and nothing can be protected from it,
although the system still protects its own integrity – for example, root cannot
access memory outside its own address space.

Superuser Administrator’s Environment 215

The idea of a superuser with a single privilege level is in stark contrast to
other multiuser operating systems such as IBM’s VM or DEC’s VMS which
have many levels of privileges. Both approaches have their advantages and dis-
advantages. The primary disadvantage to multiple levels of privileges is com-
plexity. In fact, they are so complex, that most users ignore them when they
are in a hurry, treating them like the single superuser privilege level in UNIX.
The primary disadvantage to a single all-powerful privilege level is simply that it
is extremely dangerous.

What is clear is that superuser access should only be given to users who
absolutely need it, such as the system administrator. The superuser password
should be changed often.

8.7.3 Setuid

One of the most well-known parts of UNIX is the setuid mechanism.
The idea of the mechanism is that when programs are designated as setuid,
anyone running them temporarily gains the privileges of the program’s owner.
A simple use might be to create a game that keeps a file of everyone’s high
scores. If players had permission to write the file, they could update their
scores unfairly (using an editor). By designating the game as setuid, users tem-
porarily get the ability to update the score file, but only as the game allows.

Setuid is simple in concept and solves several otherwise difficult security
problems. This was one of the few areas of UNIX that could truly be called
innovative. Indeed, the "setuid-bit" mechanism, invented by Dennis Ritchie, is
the only patented part of UNIX. Amusingly, the patent describes the mecha-
nism in terms of a piece of hardware because, at the time, they were con-
cerned that software could not be patented!

Setgid is analogous to setuid but for group permission. If a program is
setgid, than anyone running that program gains the permissions corresponding
to the group which owns the file. Programs that are setuid show up with an s
instead of an x in place of the user-execute field from ls. Similarly, programs
that are setgid have an s instead of an x in the group-execute field.

Unfortunately, the concepts of setuid and setgid are so simple that people
intuit that programs using them are simple to write. That is not true. Setuid
and setgid programs that are secure are extremely difficult to write, especially
in the face of devious users. Try to avoid writing them if all possible. There
are almost always other ways to achieve the same result, without the risk of
giving away root access.

SuperuserAdministrator’s Environment216

United States Patent

[54] PROTECTION OF DATA FILE CONTENTS
[75] Inventor: Dennis M. Ritchie, Summit, N.J.
[73] Assignee: Bell Telephone Laboratories

Incorporated, Murray Hill N.J.
[21] Appl. No.: 377,591
[22] Filed: Jul. 9, 1973
[51] Int. Cl. G06F 11/10; G06F 13/00
[52] U.S. CI. ...364/200
[58] Field of Search340/172.5;

 364/200 MS File, 900 MS File
[56] References Cited

U.S. PATENT DOCUMENTS
Re. 27,239 11/1971 Ulrich ..340/172.5
Re. 27,251 12/1971 Amdahl et al......................................340/172.5
 3,368,207 2/1968 Beausoleil et al..................................340/172.5
 3,377,624 4/1968 Nelson et al.340/172.5
 3,469,239 9/1969 Richmond..340/172.5
 3,576,544 4/1971 Cordero et al.340/172.5
3,599,159 8/1971 Creech et al.340/172.5
 3,599,159 8/1971 Hoff..364/200

3,683,418 8/1972 Martin ..340/172.5
3,735,364 5/1973 Hatta ...340/172.5
3,742,458 6/1973 Inoue et al. ..340/172.5
3,761,883 9/1973 Alvarez ..364/200

Primary Examiner–James D. Thomas
Attorney, Agent, or Firm–Stephen J. Phillips
[57] ABSTRACT
An improved arrangement for controlling access to data
files by computer users. Access permission bits are used in
the prior art to separately indicate permissions for the file
owner and nonowners to read, write and execute the file
contents. An additional access control bit is added to each
executable file. When this bit is set to one, the identifica-
tion of the current user is changed to that of the owner of
the executable file. The program in the executable file then
has access to all data files owned by the same owner. This
change is temporary, the proper identification being
restored when the program is terminated.

Ritchie
4,135,240

Jan. 16, 1979
[19] [11]

[45]

4 Claims, 2 Drawing Figures

instruction
location
counter

stored
instructions

stored data
user id
owner id
suid bit
owner rd wr ex
non-owners rd wr ex

instruction
decoder

execute file
access

request
read file

access
request
write file
access

request

execute
sequence

login
sequence

access

owner

non-
owner

owner id

suid bit
owner id

user id

actual
user id file

control

effective
user id

comparator

memory

computer

memory
control

First page of Dennis Ritchie’s patent of setuid mechanism

denied

Distributed Security Administrator’s Environment 217

Two good readings on writing setuid programs are "How to Write a Setu-
id Program" by Matt Bishop in ;login:, vol. 12, no. 1, January/February 1987,
and UNIX System Security by Patrick Wood and Stephen Kochan, Hayden
Books.

8.7.4 Security in a Distributed Environment

Maintaining security on a network of systems is like dealing with a
chain – it is only as strong as its weakest link. In order to have an effective net-
work, file transfers, remote execution, and resource sharing must be allowed
among the various systems. Special care must be taken when configuring the
network programs and in defining the access for the systems. On the other
hand, a friendly environment will make life much easier. This is the dilemma
faced by any operating system in a networked environment.

Each network interface (e.g., NFS, RFS, uucp, ftp) defines its own mech-
anisms that must somehow integrate with the UNIX file protection mechanism.
This is complicated by having UNIX communicate with machines that have dif-
ferent protection mechanisms. An excellent article describing the difficulties of
detecting, preventing and tracking an actual computer intruder in a distributed
environment is "Stalking the Wily Hacker" by Clifford Stoll, Communications of
the ACM, vol. 31, no. 5, May 1988.

Section 4

SECTION 4: Outside UNIX

Outside

UNIX

Chapter 9: UNIX Underground
"Congress shall make no law . . . abridging the freedom of speech or of the
press." – First Amendment, U.S. Constitution, 1791

UNIX is unusual among computer systems in that it was not developed
as a commercial product. For many years, it was simply given away to univer-
sities and research institutions – the only cost was for the media and manuals.

During that time, there was a large amount of program and information
sharing between UNIX users. There had to be – the system wasn’t supported.
The documentation was oriented only to a programmer. And there was no
way of formally disseminating programs.

Now, there are more formal ways of seeking UNIX help, information and
programs, but the underground still exists. Much UNIX development and sup-
port still occurs by people who are not interested in commercial gain. These
are the people that we call the UNIX underground. Many commercial vendors
are surreptitiously involved with the underground as well. In this way, compa-
nies can release software that they do not choose to sell or support for some
reason.

This chapter discusses the UNIX underground – such as where to find
public-domain UNIX programs, where to swap bug reports and fixes, and how
to get on Usenet. Our coverage of the underground concludes with a discus-
sion of some games and humor, two areas which never seem to get the support
they really deserve.

9.1 Usenet

Usenet (Users’ network) is a collection of computers providing integrat-
ed network file transfer, archival services, mail, conferencing and news. It is
often simply called "netnews," or even just "news."

221

UsenetUNIX Underground222

The way news works is simple. News may be "posted" by anyone from
any site (computer) on the network. Each site calls their nearest neighbors and
transmits articles to them. The neighbors in turn transmit the articles to their
neighbors, ad infinitum, with the effect of propagating articles across the entire
network. Since most machines are connected to several neighbors, the net-
work is extremely robust.

 Most of the machines are UNIX machines running uucp software over
dial-up phone lines as the underlying transport service, but there are many oth-
er machines as well with gateways to other networks. Most uucp links are
over dial-up lines. By keeping neighbors geographically local and using off-the-
shelf asynchronous modems, costs for transmission are kept very low. There is
no administrative charge for using Usenet.

Besides low cost, Usenet is different from other networks in that 1) the
largest percentage of users on it are UNIX users, and 2) the largest percentage
of any one type of computer system attached to any one type of network are
UNIX machines attached to Usenet.

As you can imagine, Usenet is a great place to find information about
UNIX. However, such information is distinctly different from that found in man-
uals, magazines and books. It has many of the characteristics of electronic
mail. For example, it is typically informal and opinionated. Much of it is also
timely and transient as befits its mode of delivery. Nonetheless, it contains
much useful material. It also contains objective material such as benchmarks
and source listings that could not possibly appear in any other medium.

Usenet spans the gamut from valuable to trivial to silly, although part of
the fun of "the net" is grubbing through all the cruft for the really good gems.
(If you are the type who loves digging through your neighbor’s trash cans,
you’ll love Usenet). Usenet covers topics that are of interest to every UNIX
user. This not only means UNIX, but computers (hey, UNIX runs on comput-
ers), food (hey, all UNIX users have to eat), movies (hey, we all see movies),
humor (you’d better have a sense of it to be reading this book), and just about
anything that more than ten people want to talk about.

Users may post articles (any text, program source or binaries) to the net-
work by running a program called postnews (or any of a number of similar
interfaces). postnews distributes the article to a small set of geographically
local computers that you have made prior arrangements to share articles with.
In turn, they redistribute your article to their neighbors. Distribution takes place

Usenet UNIX Underground 223

both ways, so that at the same time your article is transferred, your system also
gets any new articles that have been posted at other sites.

You don’t have to read them when they are transferred. They are stored
as files on your system and you can read them at your leisure. A variety of pro-
grams can be used to browse through the articles. Popular programs are rn
(for read news), vnews (for visual news) and notes. Each program has its
adherents, and although rn seems to be the most sophisticated, vnews is the
most used because it is bundled with the news software while the others are
not. There are also interfaces from programs such as emacs (which seems to
have interfaces to just about everything).

The articles are stored as files and you could possibly use UNIX com-
mands like cat and ls to look at them; however, there is so much material that
programs like vnews are essential. Furthermore, the news readers will help you
compose followups, or reply directly back to the original author. Some have the
ability to display two articles at once if the second is a reply to the first. Others
have extremely sophisticated features such as screening out (or in) articles
based on user-defined patterns, or following threads of conversations through
different articles.

In a practical sense, Usenet is a piece of software that allows computers
to communicate with each other. Unlike packet or circuit networks, Usenet is
a logical network – it deals with articles, subjects, followups, etc. Physical net-
works (such as uucp and Arpanet) do the lower-level work of actual communi-
cations.

The original network ran on top of uucp (see elsewhere in this book)
between a handful of computers based at Duke and UNC. As more people
started sharing UNIX software (and low-cost modems became more common-
place), this public domain software spread and more sites joined the network.

In the early days of Usenet, typical articles were something like this:

From: ucbvax!vax135!allegra!del
Subject: anybody got a hpz29x driver for PDP-11/23?
Newsgroup: net.unix

I am trying to bring up a hpz29x frisbee under V6. I have
never written a driver before, but I have the source to a
driver for a hpz29q which is pretty similar.

I don’t understand the reference to hpregs->zork.

UsenetUNIX Underground224

Any hints?

Reply to allegra!del

Here we find a user named del, at a site called allegra, trying to inte-
grate a peripheral which his system has no driver for. He made a good start by
finding a driver that was for a very similar device, but eventually needed some
expert assistance. So he sent the question out to the net.

Messages like this would typically get a flurry of answers. Not only
would people answer del’s question about the reference, but invariably some-
one had already faced the same problem and was sending the source back to
del. This type of interaction has not changed. It is extremely unlikely to find a
bug that has not already been found and fixed. Finding out about it is what the
net excels at.

It has become common to distribute drivers, bug fixes for common pro-
grams (especially the kernel), symptoms of problems, etc. Many UNIX compa-
nies do this, too. People also air general complaints, new software, prototypes
of new software, thoughts for prototypes of new software, and bad jokes.

Each type of article is tagged by its newsgroup. The newsgroups are a
general classification of the material in the article. This allows you to request
articles about a particular subject. (You can also request articles much more
explicitly, such as by title or keyword.) For example, comp.unix is a news-
group that contains articles on UNIX. There are other comp. newsgroups,
each having something to do with computers. Jokes, on the other hand, are
kept in rec.humor ("rec" is for recreation). There are hundreds of active news-
groups. Some of them peter out and die and new ones are created as new top-
ics are born. Some, like rec.humor and comp.unix.bugs, will undoubtedly be
around forever.

Statistics indicate that the ten most active newsgroups (in order of activi-
ty) at the beginning of 1987 were:

soc.singles discussions related to being single
soc.women discussions of women’s issues
rec.humor jokes, limericks, and other humor
comp.sys.ibm.pc discussions related to IBM micros and clones
comp.unix.questions questions related to UNIX

Usenet UNIX Underground 225

comp.sources program sources
rec.autos discussions about automobiles
misc.consumers discussions of consumer interests
comp.unix.wizards discussion of experienced UNIX users
comp.lang.c discussion of the C programming language

Yes, that’s right. The topic of interest to most Usenet readers is single’s
issues. From our research, we conclude that a UNIX programmer is three
times more likely to use Usenet to discuss what to do on a date than how to
implement shareable libraries. Just remember to delete the first three news-
groups from the top of this list before trying to use it to justify Usenet to your
local management.

Here are some other interesting statistics about Usenet.† Sites receive
more than 2Mb of articles every day and an average of 15.4Mb a week. There
are 6,760 articles every week (561/day). 2,552 people posted all of that in a
month. There were 235 newsgroups. There were 5,300 sites with an estimated
157,000 readers. Wow!

Besides the volume of data that rolls across Usenet, there are several oth-
er things about it that make it unique.

No central administration. Not only is there no central administration,
there is no one person or body who has absolute power. Consensus and peer
pressure seem to be the way things are decided. If enough people send mail or
articles in agreement of something (it’s never unanimous), something (such as a
newsgroup name) will be changed. In actuality there is a small number of peo-
ple (probably less than 100) who actually discuss the network issues and make
the decisions. Changing software and posting the modifications is another way
of enforcing or encouraging others to change. Of course, they don’t have to lis-
ten. (For that reason, there are about 50 different versions of the news soft-
ware running.)

Access is free. Well, sort of. Unlike commercial networks and funded
research networks such as Bitnet and Arpanet, Usenet is not sponsored by any-
one. There are no employees, no newsletter, no overhead. The only things
that cost are computer time and communications. Most sites run Usenet soft-
ware at night. Since the machine is unloaded, they figure that the CPU cycles
would be wasted anyway. Telephone calls (for uucp) are made within the local

These statistics were generated in January, 1987 from Brian Reid’s Arbitron system. This suite of pro-
grams automatically collects Usenet readership survey data and posts the results to news.list every month.

†

UsenetUNIX Underground226

calling area so they are usually free. Some sites actually do pay for internation-
al connections in order to establish otherwise impossible connectivity. For this
we are eternally grateful.

While there is no central administration to Usenet, it is possible for a
small number of sites to privately use Usenet for a selected set of newsgroups.
Many companies, for example, use Usenet in this manner. They can set up
newsgroups specific to them without forcing the rest of the world to do the
same, and the information posted to these newsgroups remains local to the com-
pany computers.

In this way, it is also possible to create "forbidden" groups that for any
number of reasons cannot be supported by the more public machines. For
instance, people love to imagine that some illicit suppliers of drugs could be
using Usenet to coordinate their activities and prices. Good luck getting on
their distribution.

Most of the newsgroups are unmoderated. This means that everyone
sees everything that anyone posts. On the other hand, moderated groups have
a designated person (called the moderator) who receives all potential articles
as mail, and redistributes them through the newsgroup. The benefit of modera-
tors is that they can cut out all of the useless, repeated, or otherwise inappropri-
ate material. While some people claim that moderation is equivalent to censor-
ship, moderation raises the quality of a newsgroup while cutting down on the
volume. However, acting as a moderator takes a lot of time, so not many peo-
ple do it. Hence, few groups are moderated.

News is documented primarily through its own medium. With the distri-
bution come several documents describing "How to Read News," "How to
Install News," and other topics. A document on posting news is called "Usenet
Etiquette." It tries to point out how computer conferencing is different from oth-
er communication mediums, and why readers in California are not interested in
reading about dinette sets for sale in New Jersey.

There are also many groups dedicated to current information about the
network. For example, there is a newsgroup where the latest network maps
are posted every month, and another which contains an up-to-date list of all
the newsgroups and moderators.

Numerous articles have been written about the Usenet both from techni-
cal aspects as well as social aspects. An excellent comparison of Usenet to
other networks is available in "Notable Computer Networks" by John Quarter-

How to Get on Usenet UNIX Underground 227

man in Communications of the ACM, vol. 29, no. 10, October 1986. Other
worthwhile articles are "A Perspective on the Usenet" by Erik Fair in ;login:
vol. 11, no. 1, January/February 1986, "News Need Not Be Slow" in the Winter
1987 USENIX Proceedings and "Project Stargate" by Lauren Weinstein in the
Summer 1985 USENIX Proceedings.

9.1.1 How to Get on Usenet

There are several steps to getting on Usenet.

1) Establish communications with a site that is already on Usenet. The
first problem here is to find a site close to you that is on the network. The best
way is to go to a local UNIX user group meeting and ask. Undoubtedly, there
will be many sites represented there that are on Usenet. Ask nicely, if they can
"become your Usenet feed." If you can establish outgoing connections (e.g.,
you have a dial-out modem), you should offer to pay the price of the periodic
phone calls. Polling other sites is much appreciated and is a sign of good faith
and social responsibility. (It also means that you are not making your neighbor
pay for the phone calls to you.)

2) Do whatever is necessary to establish a reliable physical connection
between your site and your Usenet feed. This usually entails bringing up uucp.
All the popular UNIX systems come with uucp. If you are not on a UNIX sys-
tem, you should go to your user group meetings (appropriate to your machine)
and find out how people communicate between machines. For example, IBM
mainframes popularly use RSCS, not uucp.

3) Once you have a reliable connection to your Usenet feed, ask your
neighbor to send you the latest Usenet sources (they must have them, if they
are already on the net). They are in the public domain, so there should not be a
problem sending them to you. The most popular source set is available free
from UUNET (see following section) and runs on most UNIX machines and
many non-UNIX machines (e.g., VMS, MS-DOS).

4) Read the enclosed directions.

5) Read news. Post news. Have fun.

9.1.2 Commercial Usenet and Public-access UNIX Systems

Usenet has historically been a noncommercial service. This has some
drawbacks. The primary one is that finding a nearby site willing to feed you

Commercial UsenetUNIX Underground228

news is not necessarily a simple task. Feeding another site means that your
computer will be using its own time (and tying up modems) in order to provide
service to another site, at no direct benefit to you. Many sites cannot justify the
generosity necessary for this. It often leaves sites with the feeling that they are
supporting other sites. This is often true. Fortunately, there have been many
sites that have enough excess computer power and disk space that it is usually
possible to find one, although it often requires some begging and a promise to
pay for the phone calls.

UUNET

To solve this problem, USENIX began a communication service in 1987
called UUNET. UUNET is available to anyone on a pay-for-usage basis. In
1988, it owned a large (Sequent) UNIX machine dedicated towards Usenet,
mail gatewaying and UNIX archives, and was accessed nightly by 250 sub-
scribers. Usenet does not offer login service.

Rates are established only to recoup costs. The prices compare very
favorably with other electronic networks (due to its nonprofit nature), and the
quality of the service is exceptionally high. UUNET provides high-speed
modems, 800 numbers, off-peak rates, access through and to other private net-
works (e.g., Arpanet, Tymnet), and the subscriber’s choice of newsgroups. In
addition, UUNET provides pathalias service, allowing people to mail to other
uucp sites without specifying routing.

Public-access UNIX

Alternatives to UUNET are public-access UNIX systems. These sys-
tems provide login service to all comers. Some are for-profit and charge a
usage fee, while many are free. While it is possible to log into them with the
intent of learning about UNIX, the predominant use is for communication with
other users. Some of them also have substantial disk storage devoted to public-
domain UNIX and C programs which you can copy. Many of the systems are
part of Usenet, and quite a few are also on other networks.

One representative (and particularly well-known) public-access system is
WELL. WELL is owned by Network Technologies Inc. and the Point Founda-
tion (who brought us the Whole Earth Catalog). WELL (Whole Earth
’lectronic Link) provides access to Usenet and other networks. Unlike
UUNET where you download material to your own computer, you actually log
in to WELL and run postnews, readnews or any of the other communications
tools interactively. Indeed, it is possible to use this service with just a terminal

Commercial Usenet UNIX Underground 229

(although a personal computer will provide you with the option of recording ses-
sions, and uploading or downloading files). The rates and phone number of
WELL are listed in the following table.

The WELL provides other services which make it unique. Several maga-
zines are electronically "published" through the WELL. The magazines accept
and provide to users news, art, classifieds, fiction, and so on. A high percent-
age of WELL users are professional editors, writers and artists. WELL is lo-
cated in Sausalito, California and is connected to many other local computers
and networks in that area. Thus, much of the information that passes through it
is of local interest. This is the case with most public-access systems.

Many, many other public-access UNIX systems exist. Unfortunately, we
cannot possibly list and describe them all. Furthermore, many of these systems
(especially the nonprofit ones) can shut down and disappear without any warn-
ing. Therefore, we will list just a few of these systems. Hopefully, they will still
be running by the time this book is published. No guarantees, however.

Phone # Name Location Baud System Type

201-752-2820 unirot NJ NJ 12 Heurikon Unisoft

201-753-9758 acgnj NJ Plainfield 12/24 286 SCO XENIX
no fee, 60 min. limit

206-367-3837 eskimo WA Seattle 3/12 Tandy 6K XENIX
fee $1/mo. 1st 2 weeks free

206-863-0453-6 WA Sumner 12 Tandy 6K XENIX
Micro Magic BBS, $30/yr. $5 shell access

212-420-0527 magpie NY NYC 3/12/24 UNIX SVR2
Magpie BBS, no fee

212-675-7059 marob NY NYC 12/24 286 UNIX SV
AKCS/ERACS BBS, donation requested

212-879-9031 dasys1 NY NYC 12 Unistride SV
$5/mo.

213-376-5714 pnet02 CA Redondo Beach 3/12/24 XENIX
Usenet, mail, conferencing

213-459-7231 stb CA Santa Monica 3/12/24 Tandy 16
Serial Tree BBS, no fee, shell access

214-250-1764 warble TX Plano 12/24 286 SCO XENIX
XBBS, no fee, don’t call between 5AM-5PM

Commercial UsenetUNIX Underground230

214-824-7811 killer TX Dallas 3/12/24 3B2/400 UNIX
no fee

215-275-2429 prapc-1 PA Norristown 12 286 Coherent Sys7
UNaXcess BBS, no fee, 60 min.limit, shell access, login: fhbbs

216-781-6201 ncoast OH Cleveland 3/12/24 PLEXSUS
Usenet, no fee, donation requested, $2/hr. prime, $1/hr. non-prime

217-529-3223 pallas IL Springfield 3/12/24 Convrgnt Minifr SV
Minnie BBS, $25 donation reqested

301-540-3656-9 netsys MD Germantown 12 Altos 986 XENIX
$5/mo.

303-632-4111 chariot CO Colo Sprgs 3/12 Convrgnt Minifr SV
Picospan BBS, $12/mo.

305-584-4440 pinn FL Ft. Lauderdale 3/12/24 AT Microport SV
MAGIC BBS, $12/yr.

313-994-6333 m-net MI Ann Arbor 3/12 Altos 68020 SV
Picospan BBS, fee for extended service

312-272-5912 igloo IL 12 PC7300
Picospan BBS

312-283-0559 chinet IL Chicago 3/12/24 3B2/300 SV
Picospan BBS, fee $50/yr. for Usenet access

312-833-8126 vpnet IL Villa Park 3/12 3B1 UNIX
AKCS/ERACS BBS, no fee, shell access

312-566-8909 ddsw1 IL Mundelein 3/12 286 Microport
ERACS/UX BBS, 1 hr./day free

312-566-8911,2 ddsw1 IL Mundelein 24 286 Microport
ERACS/UX BBS, 1 hr./day free, contribution requested

313-623-6309 nucleus MI Clarkston 12/24 286 UNIX SV
AKCS/ERACS BBS, donation requested

314-947-0895 slacbbs MO St. Louis 3/12 286 SCO XENIX
XBBS, no fee, 60 min. limit, shell access, login: bbs

403-295-2541 xenlink AB Calgary 3/12/24 286 SCO XENIX
Term BBS, no fee, shell access, login: bbs

408-725-0561 portal CA Cupertino 3/12/24 Sun SunOS
Usenet, $10/mo. plus any Telenet charges, conferencing

Accessing Other Networks UNIX Underground 231

415-332-6106 well CA Sausalito 3/12 VAX 750 4.2BSD
Picospan BBS, $8/mo., $3/hr., Telenet $20/hr peak, $4/hr off-peak

618-277-6417 herky IL 3/12/24 386 SCO XENIX
XBBS, no fee, 60 min. limit

619-444-7006 pnet01 CA El Cajon 3/12/24 BSD UNIX
Usenet, login: pnet, id: new, contributions requested, mail, conferencing

714-635-2863 dhw68k CA Anaheim 3/12/24 Unistride 2.1
don’t call between 2-7AM

714-662-7450 turnkey CA Southern 12/24 286 XENIX SV
XBBS

714-842-5851 conexch CA Santa Anna 3/12/24 XENIX
XBBS, $25 quarterly, 714-842-6348 for BBS

714-828-0288 alphacm CA Southern 12/24 286 SCO XENIX
XBBS, no fee, 60 min. limit

714-894-2246 stanton CA Irvine 12/24 286 SCO XENIX
XBBS, donation requested, 240 min. limit

812-334-8453,5 cguild IN Bloomington 12 286 SCO XENIX
XBBS

812-334-1204 nuchat TX Houston 3/12/24 286 Microport
Usenet, mail, shell access

814-333-6728 sir-alan PA Meadville 3/12/24 Tandy XENIX/68K
UNaXcess BBS, anonymous ftp

9.1.3 Accessing Other Networks

Most other noncommercial networks (e.g., Arpanet, Bitnet) can be
accessed from Usenet, although the addressing can be difficult to figure out.
The article "Notable Computers Networks" (as previously mentioned) provides
a table that allows you to correctly address mail between any two (indirectly)
connected networks, given that you know the gateways (connections between
them).

Commerical networks (e.g., the Source, GEnie) can also be accessed
through Usenet, though such gateways have not and cannot be published. The
primary problem is that the commerical companies want to be paid for their ser-
vices, but it is not clear how to charge customers interacting with a noncom-
mercial network. Another problem is one of liability. For example, if a Usenet
user posted an offensive message on Compuserve, it would be extremely diffi-

Usenet HistoryUNIX Underground232

cult for Compuserve management to punish that user. Some systems (e.g.,
BIX) copyright all public correspondence they carry. If they were to dissemi-
nate such material over the network, they would be losing much of the benefit
of their copyright.

9.1.4 Usenet History

V7 UNIX with uucp was released in 1978. Within a year, the ideas that
formed the foundation of news were thought of by Tom Truscott and Jim Ellis,
graduate students at Duke University. The first version of Usenet was written
by Steve Bellovin, a graduate student at the University of North Carolina. Writ-
ten entirely with shell scripts, it serviced two sites: unc and duke. A third site,
phs (also at Duke) was added in 1980. This system was described at the fol-
lowing Usenix conference in January.

 Early Usenet Logical Map (June 1, 1981)

 !- Uucp links
 : Berknet links
 @ Arpanet links

 pdp
 (Misc) ! (NC) (Misc)
 decvax sii reed phs--unc--grumpy duke34 utzoo cincy teklabs
 ! ! ! ! ! ! ! ! ! !
 ! +--+----+-----+-+--+-------------+-------+------+ !
 ! ! !
 ! duke !
 ! ! !
 ! +------+---+-----------------------+--------+ !
 ! ! ! ! ! !
 ucbopt ! hocsr--mhtsa----research allegra harpo-----chico
 : ! ! ! !
 ucbcory ! ! eagle ihnss vax135 (Bell Labs)
 (UCB) : ! ! ! ! !
 ucbvax--++----------+--+--+-----+--+------+--------+
 : @ ! ! ! (Silicon Valley)
 ucbarpa @ (UCSD) sdcsvax ! menlo70--hao
 : @ sdcattb-----+ ! ! !
 ucbonyx @ +-----ucsfcgl sytek sri-unix
 @ phonlab-----+
 cca-unix sdcarl

Steve Daniel and Tom Truscott produced a version of news (the "A"
release) written in C, which was distributed to the public. In April 1981, there
were 35 sites in the US and Canada running news. Since access required a
minimum of hardware (a UNIX machine and a modem), and the cost of joining
was free, participation grew explosively. Intended for less than 100 sites and a

April Fools Day on Usenet UNIX Underground 233

handful of articles per day per newsgroup, the news system quickly reached a
point where the performance was unacceptable.

Mark Horton, a graduate student at Berkeley, and Matt Glickman, then in
high school, revised the software substantially, adding features and optimiza-
tions. In 1982, this became the "B" release, also known as 2.1. It is difficult to
keep track of changes to the software after this as many people have fixed
bugs and contributed enhancements along the way. The list of names scattered
throughout the news source is staggering. Some of the major contributions are
from Kenneth Almquist (vnews), Larry Wall (rn), Ray Essick and Rob Kolstad
(notes), Rick Adams (2.11), Geoff Collyer and Henry Spencer (C news), Brian
Kantor, Phil Lapsley, Erik Fair, Steven Grady and Mike Meyer (NNTP), Lau-
ren Weinstein (Stargate).

The news software is like UNIX in that so many people have had their
hand in it, adding features and bugs, and making it grow ever larger. As you
might have already guessed, numerous versions of news now exist. Nonethe-
less, some standards exist (such as the format of articles). Several are pub-
lished through the Network Information Center at SRI International in Stanford,
CA, while most are defined in the news distribution releases.

9.1.5 April Fools Day on Usenet

There is clearly a sense of humor behind many of the postings on
Usenet. Humorous remarks are often tagged with a smiley such as :-) which
looks like a little smiling face if you turn your head sideways. This ensures that
the reader understands the text is not entirely serious.

One posting (reproduced as follows) that made its way around the world
has become rather famous for fooling so many people into taking it seriously. It
didn’t have a smiley, but it was a hoax nonetheless. (Notice the many refer-
ences to April 1st. Surprisingly, many people didn’t.)

From: kremvax!chernenko
Newsgroup: net.general
Subject: New site - kremvax
Message-Id: <17@kremvax>
Date: 1 Apr 84 16:39:01 GMT
Organization: Moscow Institute for International Affairs

Well, today, 840401, this is at last the Socialist Union of Soviet
Republics joining the Usenet network and saying hallo to everybody.

One reason for us to join this network has been to have a means of
having an open discussion forum with the American and European people

The Future of UsenetUNIX Underground234

and making clear to them our strong efforts towards attaining peacful
coexistence between the people of the Soviet Union and those of the
United States and Europe.

We have been informed that on this network many people have given strong
anti-Russian opinions, but we believe they have been misguided by their
leaders, especially the American administration, who is seeking for war
and domination of the world.
By well informing those people from our side we hope to have a possibility
to make clear to them our intentions and ideas.

Some of those in the Western world, who believe in the truth of what we
say have made possible our entry on this network; to them we are very
grateful. We hereby invite you to freely give your comments and opinions.

Here are the data for our backbone site:

Name: moskvax
Organization: Moscow Institute for International Affairs
Contact: K. Chernenko
Phone: +7 095 840401
Postal-Address: Moscow, Soviet Union
Electronic-Address: mcvax!moskvax!kremvax!chernenko
News: mcvax kremvax kgbvax
Mail: mcvax kremvax kgbvax

And now, let’s open a flask of Vodka and have a drink on our entry on
this network. So:

NA ZDAROVJE!
--

K. Chernenko, Moscow, USSR
...{decvax,philabs}!mcvax!moskvax!kremvax!chernenko

9.1.6 The Future of Usenet

Usenet has long faced the problem of overload. There has never been
any totally effective way of controlling the massive numbers of voices in
Usenet. Typical of the problem is that someone posts a question that many peo-
ple know the answer to, such as "How do I change the speed of my terminal?"
Almost everyone on the net is capable of answering this question correctly, and
it is difficult for many people to resist showing off their knowledge and personal
wit. Other people write nasty messages to the original person, suggesting they
need not use such a powerful medium as Usenet for questions as simple as
that. Sometimes others will write back suggesting that the network is no place
for nasty messages. And so on.

Of particular worry to Usenet is the availability of low-cost workstations,
such as TRS-80s and PCs running UNIX. Since every UNIX system includes

Public-domain Software UNIX Underground 235

uucp, they all can potentially become part of the net. However, this would prob-
ably substantially increase the amount of traffic on the net and the propagation
delays. Further, it would be even harder to control these individuals, except by
threatening them with removal from the net.

Many people continue to work on optimizing Usenet for more and more
computers and traffic. Stargate is just one such project. It transmits Usenet
news on subcarrier frequencies of television broadcasts. This unused band-
width in existing television transmission systems costs nothing, avoiding the
growing charges for dial-up and leased data lines. (Unfortunately, TV stations
are discovering other uses for unused frequencies and will probably begin
charging for this soon.)

At the human interface, many projects exist that attempt to use AI to sift
through massive amounts of text looking for articles of interest. This can be
used by each individual user when reading news. Alternatively, such a system
could substantially cut traffic by replacing the human moderator in already mod-
erated groups. More and more newsgroups are being moderated, but it will
probably be many years before we trust a computer program to do the job.

Usenet is also feeling pressure to become more commercial. Many orga-
nizations have come to depend on it as part of their daily business. And due to
its ever growing size, it needs management and authority. For example, gate-
ways to other networks often require that there be a contact point for the net-
work (e.g., for routing purposes). In order to support such an administrator,
costs will be levied against Usenet members.

While it will probably always retain the flavor of being a highly informal,
technical medium, we predict a much more structured and pay-as-you-go atti-
tude towards Usenet, such as through UUNET. Naturally, some sites may
object to this and fragment themselves from the commercial side of the net-
work. This will lead to two or more networks, with the others remaining totally
fee-free and anarchistic, much like Usenet began.

9.2 Public-domain or Otherwise Free Software

Quite a lot of UNIX software is in the public domain. Why? The early
years of UNIX did not even have profitable distribution channels, only nonprofit
ones. Even now, many people have no interest in the software business or in
making a profit. A lot of programs are not even appropriate for the market-
place and would not sell enough to pay the overhead in running a business.

ArchivesUNIX Underground236

Another source of free software is from students, who rarely have expec-
tations of getting paid. Some software written at universities cannot be mar-
keted commercially depending on who funded it. It can, however, be given
away for free. Some college programming projects have become very popular
computing standards (e.g., emacs). Many universities offer distribution sets of
UNIX software.

There are now many profitable distribution channels for UNIX software;
however, many of the original reasons for public-domain UNIX software still
exist. Furthermore, more people than ever before are writing UNIX software,
and lots of software written for other computer systems is easier than ever to
port to UNIX systems.

Of course, there is a trade-off here. For instance, getting any reasonable
level of support is usually rare with public-domain software. Usually, such soft-
ware is provided "as is." Of course, the good side of the story is that you invari-
ably get the software in source form so you can remove any remaining bugs
and add the features that are of interest to you. If you are a reasonably compe-
tent programmer, it may actually make sense to pass up a vendor-supported
product if you can get the entire source and maintain it yourself.

Please note that while the majority of free software is public domain, this
is not always the case. In particular, some software is copyrighted (e.g.,
MINIX, Mach) preventing you from selling it commercially without prior per-
mission of the author. Copyright allows you to make a "reasonable" number of
copies of the software. Ideally, the result benefits you. For example, the Mach
authors want people to send modifications and bug fixes back to them, so that
they will be able to coordinate all changes and redistribute a single version.
(Mach is discussed in the Future chapter. MINIX is discussed later in this
chapter.)

9.2.1 Archives

Many sites maintain immense archives of public-domain software. Some
of it is kept on-line and is directly accessible via uucp or ftp. Some is too large
to be kept on-line and can be received by request from the specific archive
maintainer. Avoid making requests like "Please mail me all the March 1985
sources." Archive access is provided on a volunteer basis. Expect to supply a
tape and return postage, if you ask for off-line sources.

Since archives are usually kept without help from the local administrator
and budget, it is impossible to document them here. Similarly, they occasionally

Archives UNIX Underground 237

go out of business with little or no notice. The best place to learn about which
sites have current archives and what they contain is in the Usenet newsgroup
comp.sources.d and net.sources.

In July 1988, the following sites were acknowledged archives:

Allegheny College, Dept. of Political Science
Archives: net.sources comp.sources.unix comp.sources.misc
Service: anonymous uucp

814-333-6728, 300/1200/2400 baud, login: pdsrc
Contact: sir-alan!mikes (Michael Squires)

AT&T
Archives: comp.sources.unix
Service: anonymous uucp
Contact: killer!billw (Bill Wisner)

CSNET CIC
Archives: mod.sources
Contact: postmaster@sh.cs.net
Info: mail the following message to Info-Server@sh.cs.net

topic: help
topic: index

DKUUG - Danish UNIX User Group
Archives: comp.sources.unix comp.sources.games GNU emacs
Service: anonymous uucp
Restriction: limited to EUnet users in Denmark
Info: mail the following message to diku!archive

Subject: help

Motorola, Inc.
Service: anonymous uucp

312-576-7902, 1200 baud, login: pduucp password: public
Restriction: limited hours: avoid weekdays 8am-6pm Chicago time.
Contact: Ron Heiby
Info: uucp mcdch1!~/howto.snarf !~/MYNAME/
Info: uucp mcdch1!~/directory !~/MYNAME/

Usenet Source NewsgroupsUNIX Underground238

Perdue University
Archives: comp.sources.unix kermit news rn nntp
Contact: rsk@j.cc.purdue.edu (Rich Kulawiec)
Info: ~ftp/news/comp/sources/unix/volumeX

Pyramid Technology
Archives: comp.sources.unix comp.sources.games
Contact: usenet@pyramid.com (Rick Preston)

University of Australia
Contact: kre@munnari.OZ (Robert Elz)

University of California at San Francisco
Contact: thos@ucbvax!ucsfcgl!cca.UCSF or cca.ucsf.edu

University of Kent
Service: anonymous ftp
Restriction: limited to users in United Kingdom
Contact: Peter Collinson
Info: mail the following message to info-server@ukc

request: comp.sources.unix
topic: help
topic: index

UUNET
Archives: comp.unix.sources
Service: anonymous ftp/uucp
Contact: rick@uunet.uu.net (Rick Adams)
Info: ~ftp/comp.sources.unix/volumeN

9.2.2 Usenet Source Newsgroups

One frequent source of sources are the Usenet source newsgroups.
These newsgroups are for posting various types of sources. For example,
comp.sources.games contains games, comp.sources.amiga is specific to Ami-
ga microcomputers, and comp.sources.bugs carries bug reports and fixes for
sources that have been posted in the source newsgroups.

There are many source newsgroups for other operating systems and the
level of quality is unusually high. (If it isn’t, the authors will get deluged with
bug reports.) Often, software is posted here that would not otherwise become
available. For example, many thesis projects, utility programs, or education

User Group's Software UNIX Underground 239

code fragments appear in this group. For this kind of resource, Usenet is price-
less.

9.2.3 User Group Software

Most user groups offer user-contributed software for nominal distribution
costs. For instance, both /usr/group and Usenix have regular software distribu-
tions to their members. Since the amount of software they have is substantial,
you must request specific software rather than having it sent to you automatical-
ly just because you are a member. They have a variety of releases available
depending on the type of system you own. You may need to show a UNIX
license in order to receive certain software.

Many manufacturers also have user groups that provide software strictly
(i.e. nonportable) for their computers and users. In fact, many of the demos
that are regularly shown at computer conferences were not written by manu-
facturers but by their users. Contact your computer’s manufacturer for more
information.

There is also a heavy base of C software that is coming out of the
PC/MS-DOS world. While not specific to UNIX, much of this software can be
run on any UNIX machine with little or no changes. One of the best places to
keep up with this is in the C magazines, such as the C Users Journal.

9.2.4 GNU and the Free Software Foundation

In response to the strict UNIX software licensing enforced by AT&T
and many other computer companies, the Free Software Foundation was
formed and is "dedicated to eliminating restrictions on copying, redistribution,
understanding and modification of software."

Originally created by Richard Stallman (who wrote the first version of
emacs), the FSF has set about recreating the best of UNIX, all of which is avail-
able for the cost of copying the software. The software is not public domain
but can be freely copied, modified, and given away. The collection of software
from FSF is amusingly called GNU, which stands for "GNU is Not UNIX." It
is pronounced "gä-new′."

A large amount of UNIX software has been rewritten and contributed to
the GNU system. It is important to note that none of the software uses any
copyrighted UNIX software. GNU expects to be able to provide most of the
utilities and kernel (possibly based on CMU’s Mach) of UNIX in the near

MINIXUNIX Underground240

future. GNU also maintains a directory of people who can be contacted for ser-
vice on GNU software, including bug reports, porting, and so on.

As of June 1987, GNU includes GNU Emacs (an extremely sophisti-
cated general purpose extensible editor), GDB (a source-level C debugger),
GCC (a C compiler), BISON (yet another yacc), X Windows (a portable, net-
work transparent window system), MIT Scheme (a lexically-scoped dialect of
Lisp), GNU Chess (a class-C player which can use several machines in paral-
lel for increased playing speed) and Hack (a game of adventure, similar to
Rogue). All of this software is distributed in source form!

The easiest way to get any GNU software is to find someone who
already has it and copy it. There is no one to pay, or license agreement to
sign! GNU software is also available in various archives. The most up-to-date
on-line archive is via Arpanet host prep.ai.mit.edu. For more information,
read the file /u2/emacs/GETTING.GNU.SOFTWARE on that host.

GNU software can also be ordered directly from FSF. There is a nomi-
nal charge to cover the cost of tapes, handling and shipping. FSF accepts tax-
deductible donations of money, as well as software and hardware. FSF is also
interested in reducing unnecessary restrictions on copying in other domains
besides software. For example, they are fighting the proposal to prevent copy-
ing of digital audio signals.

More information about GNU and FSF can be found in Byte, October
1983, where "The GNU Manifesto" was first published. The manifesto,
license, warrantee and other philosophical writings (such as "Some Easily
Rebutted Objections to GNU’s Goals") can also be found in every GNU manu-
al.

9.2.5 MINIX

MINIX (Mini-UNIX) is a V7-compatible UNIX written by Andrew
Tanenbaum at Vrije Universiteit in Amsterdam. ("Mini" refers to the small size
with respect to modern UNIX systems such as Berkeley and System V.)

The software copyright is held by Tanenbaum; however, the system can
be purchased with a book describing the entire system, and the complete
sources very cheaply ($80 in 1988) from Prentice-Hall. The source contains no
AT&T code, so it is entirely free from its licensing restrictions.

Public-domain Hardware UNIX Underground 241

MINIX runs on IBM PCs, XTs, ATs and clones. It supports a hard disk
but can be run with only floppies (and it can read and write MS-DOS floppies).
Like UNIX V7, MINIX is multitasking, and comes with a V7-compatible shell,
K&R C compiler, emacs-like editor, a large set of utilities and libraries. The
complete source is included, except for the C compiler which is available sepa-
rately. Due to its low cost, implementation on a PC, and distribution with com-
plete source, MINIX is an ideal system for someone who wants to learn more
about UNIX and operating systems in general.

MINIX is structured quite differently from V7 internally, although to the
naive user, the two systems function exactly the same. (There are actually
four rarely used V7 system calls that are not supported in MINIX.) The sys-
tem was designed for teaching and is completely described by the MINIX text.
Permission is available for students to copy the software for study and porting
to other CPU’s. The Usenet newsgroup comp.os.minix carries discussion of
MINIX.

The C compiler included with MINIX is based upon the Amsterdam
Compiler Kit. The kit was a very ambitious project to produce compilers with
many common components and a small number of separate front-ends for dif-
ferent languages, and separate back-ends for machine code production on dif-
ferent machines.

The kit is available from UniPress Software, or Transmediair Utrecht
BV. It is described in "A Practical Tool Kit for Making Portable Compilers" by
Tanenbaum et al. in Communications of the ACM, vol. 26, no. 9, September
1983.

9.3 Public-domain Hardware

We’re all familiar with public-domain software, but public-domain hard-
ware? Yes. Several people have designed a system to run UNIX with the spe-
cific goal of having the hardware design in the public domain. The system is
called the PD32. "32" refers to the 32-bit hardware it is based on.

The original desire was a UNIX system with good performance costing
less than $1,000. This includes the price of System V UNIX from AT&T. The
system is built around the NSC32016 processor. The complete hardware
design has been released to the public, including schematics, PAL equations,
interface software and the PCB artwork.

GamesUNIX Underground242

It is important to note that homebrewed hardware systems were much
more popular in the ’70s. This was partially because there was less of an
investment in software designed to run on specific hardware, and also because
personal computers were still not commodity items. But now, the price of
boards and whole systems is low. If you don’t have the desire to muck with
the hardware, it will be cheaper for you to buy a complete system than to build
one from scratch. It’s sad to have to admit this, but the age of building your
own computer system has been over ever since the Asian clone makers
entered the computer market.

Definicon sells the PD32 in kit form (a single board computer for a PC),
or you can simply buy the design and construct it from the bare chips and soft-
ware yourself. For more information about the PD32, refer to Micro C #32, or
contact the PD32 Users Group or Definicon Systems.

9.4 Games

UNIX has always had an enthusiastic attitude towards games. It is
arguable that the first UNIX application (Ken’s Space Travel) was a game.
(And some day, we may even win at cc.)

The original UNIX programmers provided a nice assortment of games
with each distribution, perhaps to attract potential users. These were actually
documented in the manual, just like any system software. In the V6 manuals,
they appeared in section VI (User-maintained Programs). As well as such
semi-useful programs as azel (compute satellite predictions) and factor

(prime numbers), there were such classics as bj (blackjack), chess, cubic (3-
D tic-tac-toe), quiz and wump (hunt-the-wumpus). Certain programs (notably
tbl, the table formatting program) began life here and eventually earned
enough respect to be moved to section I (User Commands).

Some of the games are more amusing simply for the manual pages. For
instance, under the section header BUGS, wump simply says "It will never
replace Space War." cal (print calendar) says "The year is always considered
to start in January even though this is historically naive." graph says "A limit
of 1000 points is enforced silently." chess has the unique section header
WARNING, "Over-use of this program will cause it to go away." The complete
documentation about diagnostics of chess takes one line, "The most cryptic
diagnostic is ‘eh?’ which means that the input was syntactically incorrect."

These kinds of astute, concise remarks are exactly on par with the rest
of UNIX. Much of the rest of the manual tended to try to live up to this style.

Games UNIX Underground 243

Fortunately, most of the games did not go away and are always provided
with the UNIX system. Interestingly, chess doesn’t always appear. This is
because large chunks of it were written in PDP-11 assembler, and that is the
way it is supplied on the AT&T source distributions. UNIX resellers must
either translate the assembler into C, or not offer it at all. (Forget about it and
get GNU chess, which is a much stronger program.)

Those earlier versions of chess eventually evolved into extremely strong
chess-playing programs. Ken Thompson was the primary author of Belle,
which won the title of World Computer Chess Champion. Based on the original
UNIX chess, Belle also used special "chess hardware," which was a PDP-11
with special purpose hardware (built by Joe Condon) dedicated to certain move
calculations.

While no longer the title holder chess program, Belle will probably remain
famous because of a run-in with the U.S. State Department. Belle had been
invited to a chess championship, which happened to be in Moscow that year.
Unfortunately, the PDP-11 was on the State Department’s list of high-
technology items that were not allowed to pass behind the Iron Curtain. The
idea is that modern computers would give the Soviets the same speed in creat-
ing warfare and worldwide catastrophe that the U.S. has. Belle and the PDP-
11 were seized at the airport by the State Department, which led to Ken
remarking, "…the only way you could make a weapon out of it is if you
dropped it out of a plane and it fell on somebody."

Version 7 of UNIX saw the introduction of even more games, again, with
exemplary manual pages. Under DESCRIPTION on backgammon, it says, "This
program does what you would expect." At the other extreme are the rather
inexplicable BUGS of ching.

Once UNIX reached Berkeley, games flourished. We will only suggest
that several kernel additions occurred in order to support certain games. Some
of the most addictive games that you are likely to find on every UNIX system
today are:

adventure – The original adventure game. You invariably give up in a
twisty little maze of passages, all alike.

rogue – a screen-oriented game based on Dungeons & Dragons.

trek – cruise around the universe and protect your files from the Klin-
gons.

Obfuscated CUNIX Underground244

fortune – prints out something likely to be found in a fortune cookie in a
restaurant owned by George Carlin. Many people like to put this in their
.login or .profile. Try the undocumented -o (obscene) option.

Games are often distributed for free, since they are hard to justify to man-
agement. See the previous section on public-domain software.

9.5 Obfuscated C

Many C programmers take their religion quite seriously. To these C dog-
matics, the goal of reaching nirvana can only be achieved by studying the K&R,
turning out programs that are portable between PCs and Crays, and never,
ever writing lines like #define BEGIN {.

While this can make C programmers seem like a dull class of people,
there is humor to be found. Your everyday C humor is stuff like char
broiled; and double trouble;. If you start seeing your coworkers wincing
whenever they read your programs, you might think of entering the Internation-
al Obfuscated C Code Contest. Run annually by Landon Noll and Larry Bas-
sel, the IOCCC provides a forum for code that is so awful to read, it is actually
funny. Viewed in the right light, you might even call it educational. Landon
says:

The contest was motivated by reading some UNIX source code (in
/etc/config from 4.2BSD). I was shocked at how much simple algo-
rithms could be made cryptic, and therefore useless, by a poor
choice of code style. "Could someone be proud of this code?"

It is not possible to reproduce all the winners, but a few should be just
enough to give you the general idea, and perhaps encourage you to go look up
all of them. Each one is guaranteed good for hours of study. Not only do they
show you what not to do, but they teach you how to deal with very strange
code. And you can actually learn some of the finer points of C by studying
these very unusual programs. Unlike the rest of this book, we will follow the
spirit of the contest by not providing any explanation of each program. You are
on your own. The envelope, please…

In 1985, the Award for Best One-Liner was given to Jack Applin (with
help from Robert Heckendorn) of Hewlett-Packard for the following program:

main(v,c)char**c;{for(v[c++]="Hello, world!\n)";(!!c)[*c]&&(v--||--
c&&execlp(*c,*c,c[!!c]+!!c,!c));**c=!c)write(!!*c,*c,!!**c);}

Obfuscated C UNIX Underground 245

In 1987, the Award for Worst Style was given to Spencer Hines of Online
Computer Systems for the following program:

#include <stdio.h>
char *malloc();
main(togo,toog)
int togo;
char *toog[];
{char *ogto, tgoo[80];FILE *ogot; int oogt=0, ootg, otog=79,
ottg=1;if (togo== ottg) goto gogo; goto goog; ggot:
if (fgets(tgoo, otog, ogot)) goto gtgo; goto gott;
gtot: exit(); ogtg: ++oogt; goto ogoo; togg: if (ootg > 0)
goto oggt; goto ggot; ogog: if (!ogot) goto gogo;
goto ggto; gtto: printf("%d goto \’s\n", oogt); goto
gtot; oggt: if (!memcmp(ogto, "goto", 4)) goto otgg;
goto gooo; gogo: exit(ottg); tggo: ootg= strlen(tgoo);
goto tgog; oogo: --ootg; goto togg; gooo: ++ogto; goto
oogo; gott: fclose(ogot); goto gtto; otgg: ogto= ogto +3;
goto ogtg; tgog: ootg-=4;goto togg; gtgo: ogto= tgoo;
goto tggo; ogoo: ootg-=3;goto gooo; goog: ogot= fopen(
toog[ottg], "r"); goto ogog; ggto: ogto= tgoo; goto
ggot;}

In 1985, the Award for Worst Abuse of the C Preprocessor was given to
Col. G. L. Sicherman of the State University of New York at Buffalo for the fol-
lowing program:

#define C_C_(_)~’ ’&_
#define _C_C(_)(’\b’b’\b’>=C_C>’\t’b’\n’)
#define C_C _|_
#define b *
#define C /b/
#define V _C_C(
main(C,V)
char **V;
/* C program. (If you don’t
 * understand it look it
 */ up.) (In the C Manual)
{

char _,__;
while (read(0,&__,1) & write((_=(_=C_C_(__),C)),
C,1)) _=C-V+subr(&V);

}
subr(C)
char *C;
{

C="Lint says "argument Manual isn’t used." What’s that
mean?"; while (write((read(C_C(’"’-’/*"’/*"*/))?__:__-_+
’\b’b’\b’|((_-52)%(’\b’b’\b’+C_C_(’\t’b’\n’))+1),1),&_,1));

}

Obfuscated CUNIX Underground246

And in 1984, the Grand Prize (for all-around obfuscation) was given to
Sjoerd Mullender and Robbert van Renesse of Vrije Universiteit for the follow-
ing program:

/* Portable between VAX11 && PDP11 */

short main[] = {
277, 04735, -4129, 25, 0, 477, 1019, 0xbef, 0, 12800,
-113, 21119, 0x52d7, -1006, -7151, 0, 0x4bc, 020004,
14880, 10541, 2056, 04010, 4548, 3044, -6716, 0x9,
4407, 6, 5568, 1, -30460, 0, 0x9, 5570, 512, -30419,
0x7e82, 0760, 6, 0, 4, 02400, 15, 0, 4, 1280, 4, 0,
4, 0, 0, 0, 0x8, 0, 4, 0, ’,’, 0, 12, 0, 4, 0, ’#’,
0, 020, 0, 4, 0, 30, 0, 026, 0, 0x6176, 120, 25712,
’p’, 072163, ’r’, 29303, 29801, ’e’

};

Results of the IOCCC are posted every year to the Usenet newsgroup
comp.lang.c. The contest is also given a special presentation at the annual
USENIX Conference, and has been published formally in Micro/Systems Jour-
nal.

Chapter 10: UNIX Services
"Less than 10 percent of the code has to do with the ostensible purpose of the
system; the rest deals with input-output, data validation, data structure
maintenance, and other housekeeping." – Mary Shaw

This chapter discusses UNIX services, such as consulting and timeshar-
ing. The Nonprinted Information chapter covers more services related to
education and training.

As with the chapter on UNIX Applications, commercial UNIX services
can also be found listed in /usr/group’s product directory. Besides these listings
and advertisements in the back of, say, UNIXWORLD and UNIX REVIEW,
there is a clear lack of published information about such services. In particular,
we are unaware of a single magazine review of any of the services listed here.
Of course, it is rather difficult to do a scientific comparison of, for example, two
consulting services.

While we cannot give you hard, cold facts about these topics, we can
give some general guidelines, as well as things that we have heard via word of
mouth.

10.1 Benchmarking
"There are lies, there are damn lies and then there are benchmarks." – Anon.

Benchmarking is used to judge the quality of different programs (or
machines, operating systems, etc.) by comparing the length of time (or space,
price, etc.) it takes to get the job done. Benchmarks are often ridiculed
because they are usually used for the basis of an invalid extrapolation, leading
to wildly misleading conclusions. However, it is possible to make intelligent use
of benchmarks for, say, system tuning.

It is said that there are systems which recognize they are running bench-
marks and print out an answer which is precalculated. While this is hard to

247

ConsultingUNIX Services248

believe, good optimizers are capable enough to remove the usually substantial
portions of dead code in most benchmarks, thereby voiding the benchmark
designer’s intent. Whatever the case, be extremely wary of benchmarks. A
much more realistic test of system throughput is to sit down at the system and
try running a sample of your own applications. Don’t forget to make sure it has
a comparable amount of memory and the same speed, disks and network as
the system that you are interested in. (Typical showroom systems are fully
loaded with memory and fast disks.)

Should you choose to ignore our warnings, there are plenty of companies
that sell benchmarks. Some well-known companies include: Aim Technology,
Neal Nelson & Associates and Performance Awareness. It goes without say-
ing that you should especially beware of benchmarks from UNIX vendors them-
selves.

Some good readings on UNIX benchmarking are: "The Evolution of
UNIX System Performance" by J. Feder, in the AT&T Bell Laboratories Tech-
nical Journal, vol. 63, no. 8, October 1984; "Benchmark Confessions" by P.
Marvit and M. Nair in The UNIX System – Encyclopaedia, Yates Ventures,
1984; and "Benchmarking UNIX Systems" by D. Hinnant in BYTE Magazine,
vol. 9, no. 8, August 1984.

10.2 Consulting

While UNIX is a wonderful system, there will come a day when you
need something done that has never been done before, and you are not capable
of doing it. Perhaps you just need some customization. Or you need some infor-
mation so that you can continue your work. Consulting is the answer.

Consultants come from everywhere. UNIX vendors very often have a
team for hire, specifically designed to work on problems about their system.
This is not an escape hatch. Rather, it is more convenient to have people
reserved to work on problems after a system is designed than to try and guess
everything that customers will want in advance.

Consultants also come from independent companies with staffs ranging
from hundreds to a staff of one. The larger companies often provide similar
solutions again and again, such as porting a product. They can be cheaper to
work with than in-house staff on certain types of problems. We have known
many consultants to work for a year or more based at one location, alongside
full-time employees.

Emergency!! UNIX Services 249

When contracting out for consulting services, it is important that you pre-
cisely spell out your needs. The more you can pin it down, the easier it is for
the company to find a person matching your requirements.

Some well-known independent companies offering UNIX consulting are:
Abmind Corporation, Acorn Systems, Ltd., Daniel Farkas and Associates,
Datix Systems, D.L. Buck & Associates, Lachman Associates Inc., Parkridge
Computer Systems Inc., Sobell Associates, Specialized Systems Consultants
Inc., Unidot Inc., and Unisolutions Associates.

There are many small consulting firms, some with only one person. It is
hard to generalize on these. They can be students, needy programmers moon-
lighting on the side, or they can be the very best UNIX wizards. Some of the
more competent UNIX programmers need no full-time staff behind them to line
up jobs. They are so good that word-of-mouth is enough to keep them well-
employed for as long as they want.

Your best bet in finding qualified independents is by making inquiries with
other sites using similar systems.

10.3 Emergency!!

Sometimes you just need a quick, short answer to a problem. Consul-
tants aren’t what you need. The time cost in finding the right one is prohibitive
when you just need the answer to one question fast.

Fortunately, many companies offer support services over the phone.
Most UNIX vendors provide technical support via the phone, specifically to
solve problems and answer questions about their system. You should contact
your vendor to see if they can provide this service. Don’t expect this service to
be free, however. Having UNIX gurus answer phones is just as expensive as
having them do whatever UNIX gurus normally do.

Fewer independent consultants offer this kind of service, since it requires
people to sit by the phone all day. Ideally, there should be several people at the
phones. If you contract with an independent vendor, make sure they have
experience with your system. Also, you should inquire what kind of hours they
keep. Even if you don’t plan on working during the evening, it is nice to be able
to ask them a question on Friday evening and get the answer on Monday morn-
ing. One such service is Dial-A-Guru (Specialized Systems Consultants, Inc.).

Job PlacementUNIX Services250

An alternative to these is the electronic guru. Many UNIX companies
have uucp or some electronic mail address where you can send bugs or ques-
tions. For problems of a more general nature, you can try Usenet (see the
Underground chapter). We have gotten answers to highly technical questions
from halfway ’round the world in less than two days. The only drawback is
that people will send you nasty letters if you ask something too simple. You
have no excuse for not looking it up in the manual first.

When your disk is munged (i.e. trashed, scorched, zapped) you turn to
fsck to repair the damage, and your backup tapes to restore the files. Howev-
er, there are times when neither of these is good enough. For example, you
may have not done a backup recently enough and inadvertently removed a file.

One company that offers a hope (99.5 percent effectiveness claimed) is
the Gawain Group with a product called Data Rescue Service. Simply send
your disk to them and they will salvage whatever they can from it, including the
superblock, i-nodes and data blocks if possible. And cross your fingers.

10.4 Jobs

The UNIX job market is a seller’s market. There are many more job
openings than qualified UNIX people. This will always be the case. (Has there
ever been a glut of any type of computer programmer?)

As in any job or personnel hunt, contacts are important. Knowing the
people can be just as important as knowing the subject matter. Companies will
try known people before resorting to the unfocused employee search through a
personnel department or classified ad. It is quicker, cheaper and more likely to
yield results.

10.4.1 Looking For New Employees

If you have any contacts at all, even if they aren’t suitable, call them and
ask if they know anyone who is. If you are willing to take new college gradu-
ates, you should call up local computer science professors.

A good place to find technical people is at the UNIX conferences. The
technical conferences have a job bulletin board where you can post advertise-
ments, and you can open your suite to prospective employees with the lure of
food and drink, while you get a quick look-see. (You can also find out about the
state of your competition by observing their employee-hunting strategies.)

Looking For New Jobs UNIX Services 251

Many people come to the conferences looking for jobs, or at least with
an eye open for anything that might make them think about changing jobs.
Look for people wearing brand new suits. More experienced technical people
will be wearing jeans.

Another good way to find an employee is to post a job opening on Usenet
in the newsgroup misc.jobs.offered. Many UNIX programmers looking for
employment read this newsgroup! And for some reason, Usenet articles will
hold people’s attention longer than classified ads. Unlike a typical job announce-
ment, these are usually much more informal, possibly humorous, more person-
able and quite a bit longer. This is what people would like to see in the first
place, but most personnel departments can’t seem to fathom the idea.

Resumes are regularly posted to the newsgroup misc.jobs.resumes.
You can also get or send resumes or other information privately through elec-
tronic mail. It is also possible to get an idea of any other attributes of a candi-
date by reading other Usenet postings they may have made. If you are an
equal-opportunity employer, you should properly only look in the technical news-
groups, but you might find an off-the-record peek in the other newsgroups quite
educational as well.

10.4.2 Looking For New Jobs

Before you graduate, it is helpful to get job experience. Take on some
consulting. Work for professors or the computer science department or comput-
er center. Try to write and market your own software. At the very least, you
can go to work for AT&T (although they hire mostly M.S.s). They seem to
have an inexhaustible thirst for UNIX programmers, and there are few UNIX
programmers that they have not employed at one time or another.

A good place for job hunting technical people is at the UNIX confer-
ences. The technical conferences have a job bulletin board where you can
read job advertisements, and you can visit various suites of prospective employ-
ers while they feed you with munchies and booze.

Many companies come to the conferences looking for employees. They
know that this is where the highest concentration of UNIX hackers are and
that this is their best chance at getting one. Go to the talks and exhibits so that
you can at least begin to make contacts. This is all important!

Another good way to find a job is to read the job openings on Usenet in
the newsgroup misc.jobs.offered. Employers post job openings there. You

Mailing ListsUNIX Services252

can also post your resume to misc.jobs.resumes. A lot of companies watch
this newsgroup for resumes. There are drawbacks to posting resumes, but
they should be obvious. For example, your own boss may be reading this news-
group. Another problem is that if you don’t make your job interests precise
enough, you may get too many companies responding.

A nice advantage of Usenet is that you will be talking directly to a techni-
cal person without going through personnel. You can send them resumes
(directly), programs you have written, and followup by electronic mail before
visiting in person.

There are several headhunters (companies that simply find employment
for people) that specialize in UNIX employment. Quite a few of them attend
the UNIX conferences and read and post to Usenet.

Some of the better-known employment services in the UNIX field are:
Nayland Associates, Scientific Placement, Inc., and Software Alliance Inc.

10.5 Mailing Lists

Mailing lists are useful if you want to advertise a new product. With com-
puterized mailing lists, it is possible to cross-match and more effectively target
likely consumers for your product. This allows you to waste a minimum of mon-
ey on your advertising.

Since most user groups and magazines do periodic surveys of their read-
ership, their mailing lists are excellent places to start. Some of these are Uni-
Ops Books, /usr/group, Usenix, UNIXWORLD, and UNIX REVIEW. See the
Information chapters for others.

Another medium for advertisement is Usenet, which has a newsgroup
devoted to announcements of new computer products called comp.newprod.
Note that market-oriented hype is discouraged. Try to write such postings
from a scientific and objective point of view.

10.6 Porting, Integration and Installation

10.6.1 Porting

Since one of the advantages of UNIX is that it is portable, you should not
hesitate to take advantage of this ability. However, porting is not unlike any oth-
er computer problem – it takes some experience to do it well. The problems
are different than in user-level programming but similar between ports.

Integration and Installation UNIX Services 253

Unskilled but competent programmers can port the entire UNIX system
in a year, while an experienced porter can usually complete it in four to five
months, for, say, $60,000. If the hardware is very similar to a previous port, it
might take less. And vice versa. A complete job of porting to "reasonable"
hardware including packaging the rest of the system can take one to two
years. In contrast, most other operating systems cost ten times as much mon-
ey and involve much longer development times.

Major porting companies include Interactive, Unisoft (Uniplus+), SCO
(XENIX), Microsoft (XENIX) and AT&T (System V). See the first two chap-
ters for more information on porting houses.

Most of the major CPU manufacturers have a port of UNIX generic to
their hardware that you can start from. Plus, there are many smaller compa-
nies that specialize in porting entire UNIX systems or just an individual applica-
tion. Some of these are BOSS Systems Inc., Genus Systems Ltd., Glockenspiel
Ltd., HCR Corp., Lachman Associates Inc., Microport Systems Inc., Palomino
Computer Systems Inc., Root Computers Ltd., and Technical Solutions Inc.

10.6.2 Integration and Installation

Integration is the act of taking a port and bringing it up in the customer’s
desired configuration. This is especially useful if you have a nonstandard sys-
tem configuration.

For example, you may already have a copy of XENIX configured for a
PC, but you might have a PC clone with extended memory, five disks and a net-
work device. Figuring out which device drivers to load, the jumpers and switch
settings on each board, and what other support software you might need is the
job of the systems integrator.

Additionally, integrators can configure in a weird piece of hardware, sup-
plying a new device driver if necessary. Like porting, device driver construc-
tion takes experience to do well. It is quite unlike user-level application pro-
gramming.

The last step in getting UNIX up on your system is installation. Complete
installation includes deciding a lot of low-level but necessary information – such
as deciding what background processes run, what the names of machines are,
network configurations, and so on.

Integration and InstallationUNIX Services254

Actually, installation doesn’t stop when UNIX finally runs. Few people
run UNIX "as is" out of the box. You will probably want to tune your system,
set up various administrative procedures, install third-party software, and so on.

RAJAH cartoon goes here

 1984, Ziff Communications

(shrink to fit)

Many companies were created to provide UNIX support, integration, and
installation because originally neither AT&T nor Berkeley provided these ser-
vices. Berkeley still doesn’t. Mt. Xinu supports Berkeley UNIX. They will sup-
ply you with a version of Berkeley UNIX, to which all known bug fixes have
been applied. In addition, they will provide you with real support, such as notify-
ing you about new bugs or answering questions. Cambridge Digital is a compa-
ny which will take Mt. Xinu’s Berkeley UNIX and configure it for whatever set
of devices and hardware you have on your system.

AT&T left many customers behind when it dropped support for UNIX on
DEC’s line of computers. One company supporting such customers is Uniq Dig-
ital Technologies. Many other companies exist – most for BSD, System V and
XENIX integration and installation. Some of them also do complete portings.
A sampling of these companies are: Abmind Corp., Conner Scelza Associates,
Eakins Associates, Inc., The Instruction Set, Lachman Associates, Inc., and
SHL Systemhouse, Inc, and of course, DEC.

Security UNIX Services 255

10.7 Security

Traditionally, UNIX systems have offered relatively little in the way of
security measures. While modern versions offer better protection measures,
they are more complicated than before. Users and system administrators may
not appreciate the subtleties of computer-directed attacks, or they may simply
not have the time to constantly scrutinize computer usage for possible intruders
and misuse.

Here is a brief list of common security problems (some of which are not
unique to UNIX):

• Problems with user environments: trojan horses, odd permissions in
home directories, unprotected files, unauthorized copies of games,
vulnerable or readable temporary files, liberal PATHs.

• Problems with password file: phony logins, easily guessable pass-
words, users with duplicate or root user IDs.

• Problems with other system files: unprotected files, unauthorized
setuid files, hidden trojan horses.

• Vulnerable uucp, mail and other spool files: improper file or com-
mand access via network.

• Known security bugs.

• Physical disasters: fire, earthquake, flooding, power fluctuations,
head crashes.

• Inadequate backups.

Several companies offer security analysis. Such analysis may involve
running programs that try known UNIX loopholes. Alternatively, you can
arrange for your system to be professionally attacked. This is a common test
by the Department of Defense when trying to verify secure systems. Some
companies that offer security analysis are: Lachman Associates, Inc., and Spec-
trum Technology Group, Inc.

10.8 Validation

It is easy to claim that a system is "UNIX compatible" or "meets System
V Interface Definition" or "is ANSI C." However, these are meaningless
unless they have been tested by the tests laid down by a standards body. For
example, AT&T has specified that the SVVS (System V Verification Suite) pro-
grams be used to test for conformance with SVID.

TimesharingUNIX Services256

Getting a system or compiler validated or certified is an important step in
light of UNIX standards. Some companies who provide verification or valida-
tion services for UNIX and/or C are: AT&T Information Systems, COS
(Corporation for Open Systems), Human Computing Resources, MindCraft,
Inc., Plum Hall, Software Research, Inc., Unisoft Corp., and various national
standards agencies such as the U.S. National Bureau of Standards.

10.9 Timesharing

It is occasionally useful to buy UNIX time. For example, consultants
working on short-term projects may buy UNIX time at other UNIX sites, if
they do not have access to the specific type of machine required by the prob-
lem. One company offering such a service is Practical Computing, Inc.

10.10 Typesetting and Publishing

UNIX users have long had the ability to produce high-quality output from
troff. There are many companies who will take that troff output and pro-
duce commercial publications from it.

Many companies also accept other popular UNIX output formats includ-
ing ditroff, T X and PostScript. Large publishers such as Prentice-Hall
accept all these formats. Smaller publishers that specialize in UNIX texts are
also capable of doing the same work. These include: Ace Microsystems Ltd.,
August Mohr Consulting and Publishing, CBM Type, Textset, Inc., Textware
International, and Unicomp.

Chapter 11: UNIX Applications
"I do not fear computers. I fear the lack of them." – Isaac Asimov

UNIX has finally grown up and guess what? If you’ve got an application,
somebody has probably written a UNIX-based solution to your problem. Yes,
everything from office automation or robot control systems to restaurant infor-
mation and swine management systems have been implemented on UNIX-
based systems.

In this chapter, we will survey UNIX third-party software and discuss
some particularly notable products and applications. Notable may mean excel-
lent, first-to-market or just plain popular. We will not attempt to provide an
encyclopedic view of what is on the market. We can’t hope to keep up to date
in this fast-changing market. Our intent is more to try and give you a feeling for
the state of UNIX applications in general.

For up-to-date market reviews and product listings we refer you back to
the chapters on UNIX Information. In particular, /usr/group’s product directory
is a good starting point for listings of virtually all UNIX products. The UNIX
magazines are a good next step for finding in-depth product reviews. And
UNIX conferences give you a chance at hands-on use of products. Also, there
are many public-domain noncommercial implementations that are as good as
anything in the commercial domain. See the Underground chapter for more on
this.

11.1 Vertical Software

Software applications marketed to a narrow slice of consumers are
called vertical software. For example, a "real estate portfolio manager" is of
use to a small fraction of UNIX users. On the other hand, compilers are of
interest to most UNIX users and are therefore considered "horizontal soft-
ware." The rest of this chapter will primarily discuss horizontal software. How-

257

AccountingUNIX Applications258

ever, we will briefly list some categories of vertical software, just to let you
know they exist.

/usr/group has divided UNIX software into the following major vertical
software markets: construction, employment and recruiting, engineering, finan-
cial analysis, government and school administration, insurance, inventory con-
trol, legal, manufacturing/distribution, medical and dental, membership organiza-
tions, nonprofit groups, project management, real estate, retail/point-of-sale,
sales and marketing, typesetting and publications, vehicle management, and Zen
Martian discography. (Just kidding on that last one.)

The point is that there is software to support virtually any application you
need for your UNIX system.

11.2 Accounting and Finance
"What’s the best way to balance a checkbook using a computer? Sell the
computer and deposit the money." – Jon Bentley

The early history of UNIX has absolutely nothing to do with financial
applications. And this is entirely understandable. Would you trust your
accounts to an unsupported operating system that was still under research?
UNIX did not support transaction processing, file or record locking, checkpoint-
ing and many other features that were necessary for financial processing. Fur-
thermore, the system was inherently tuned for interactive use, while banks and
other companies did primarily batch-oriented processing.

Times have changed. UNIX has changed. UNIX now supports file and
record locking, sophisticated databases, and everything one needs for a modern
accounting system. (UNIX even supports COBOL!) UNIX mainframes are
supplanting many IBM systems in established banks. UNIX workstations are
becoming quite popular on Wall Street for forecasting and analysis. These
UNIX systems are just as reliable as any other systems, and they are cheaper.

The trends in accounting systems are to incorporate many techniques
that require interactive use, like spreadsheets, and analysis from other dynamic
sources such as the stock exchange. UNIX tools and multiprocessing provides
just the flexibility that is needed for these problems. We expect that the next
generation of accounting systems will be heavily integrated with databases, and
incorporate expert systems using AI techniques. Along with sophisticated user
interfaces, these systems will demand systems with superior performance. We
think people will find UNIX a good fit.

Artificial Intelligence UNIX Applications 259

While we expect a significant amount of future development in this area
to occur on UNIX systems, most older accounting packages designed on other
systems have been ported to UNIX. Their heritage will be evident by examin-
ing a number of things – in particular, the implementation language. Packages
written in COBOL will have come from the mainframe environment, while
BASIC products will have come from the micro world.

The 1987 UNIX Products Directory lists approximately 300 accounting
packages. Good luck finding out which one is best.

11.3 Artificial Intelligence
"Dave, I know that you and Frank were planning to disconnect me. And that’s
something I cannot allow." – Hal 9000

Like UNIX, AI (artificial intelligence) is a product of universities and
research institutions. AI programmers are likely to be familiar with UNIX con-
cepts even if they don’t develop their applications on UNIX systems.

Early AI research was done on large mainframes or crude timesharing
systems running Lisp. Lisp used a distinctly simple hardware interface, and
had a ferocious demand for memory. Because of these attributes, AI applica-
tions written in Lisp did not make the transition to smaller computers easily.
Instead, a heavy emphasis was placed on designing machines dedicated to
Lisp. These Lisp machines had special Lisp hardware and substantial memo-
ry. They were more expensive then general-purpose computers, but ran Lisp
very efficiently.

 One of the main objectives of Berkeley UNIX was to provide the neces-
sary operating system support for AI systems. This meant large virtual memo-
ry systems. And it meant Lisp. Berkeley was successful. It added both virtual
memory, and Franz Lisp to UNIX. Many large AI systems were built on this
work.

It is now common to run large AI programs on UNIX systems. Further-
more, UNIX workstations have become so cheap and powerful that it is often
more cost effective to buy them than a dedicated Lisp machine. In some
cases, the speed of the proprietary hardware of Lisp machines is being sur-
passed by garden-variety 32-bit processors readily available in UNIX boxes.

Yet another reason we find AI applications migrating to UNIX boxes is
that it has long been common to recode Lisp applications in another language
for speed once development is complete. And C is proving to be universal and

CAD, CAE, CAMUNIX Applications260

efficient enough to be the target language. Many of the expert system tools on
the market have been recoded in C. Naturally, they are quite at home on
UNIX.

It is likely that UNIX workstations will remain the system of choice for
AI applications rather than migrating even further into the PC world. CP/M
and DOS do not support large enough amounts of memory, and even OS-2
lacks support of demand-paged virtual memory. Almost all UNIX workstations
support virtual memory and can be equipped with third-party AI tools and lan-
guages.

Some popular AI systems include Duck (Smart Systems Technology),
KEE (Intellicorp), Knowledge Engineering System (Software A & E), OPS5+
(Artelligence, Inc.), Poplog (Systems Designers Software, Inc.), RuleMaster
(Radian Corporation), and S.1 (Teknowledge, Inc.). In addition, there are many
Lisp and Prolog implementations available. These are listed in the section on
languages elsewhere in this chapter.

11.4 CAD, CAE, CAM

Computer-aided design (CAD), engineering (CAE) and manufacturing
(CAM) are finding very comfortable homes on UNIX workstations. Inexpen-
sive UNIX workstations provide the networking, sufficient file system and com-
puter power as well as peripherals (such as color displays and funky keyboard)
necessary for doing design work. This includes architecture, drafting, circuit
layout and simulation, process planning, finite element modeling and analysis,
geometric modeling, and so on.

Only a few years ago, this type of work was either done on expensive,
proprietary workstations, or it was done in a very limited way, since the cost of
such computations was simply too expensive.

Some well-known CAD products are AutoCAD (Autodesk, Inc.), DD/1
(Unicad, Inc.), N.2 (ENDOT Inc.), CADDS 4X (Computervision), Pro-Series
(CAETEC Systems, Inc.), SDS (Silvar-Lisco), SILOS (SimulCad) and Ver-
saCad (T&W Systems).

11.5 Character Graphics, Form and Menu Systems

termcap, terminfo and curses provide character-based graphics capabil-
ities. Quite often, that is all that is necessary for an application’s user interface.
However, if you need something more sophisticated, like a menu or forms sys-

Communications UNIX Applications 261

tem, you will probably want to buy one from a third-party vendor. You might
also be interested in "improved" versions (such as color curses) or ports to oth-
er operating systems of these basic UNIX utilities.

There are many companies (as well as public-domain versions) providing
such systems. Some companies are Information Concepts, Inc. (FSP), Micro
Applications and Hardware (C-Form), Parkridge Computer Systems Inc.
(TIC/TOC) and Vermont Creative Software (Windows for Data).

11.6 Communications

There was nothing in the original design of UNIX to support communica-
tions with other systems. Everything has been added on. Nonetheless, people
think of uucp and tip (and its predecessor, cu) as the original communications
software because they come with every copy of UNIX.

If you remember, AT&T was actually in the communications business a
while back. Many researchers explored the problems of letting UNIX commu-
nicate with the world. Indeed, Bell Labs had a network between its UNIX sys-
tems as soon as they had two of them. This innovative communications work
included building RJE interfaces, networks (e.g., Datakit) and distributed file sys-
tems (e.g., Spider). Many of these supported heterogenous environments with
non-UNIX machines. AT&T’s latest efforts include streams and RFS, both
included with System VR3.

uucp lives (see the Administrator’s chapter). While originating on UNIX
systems, uucp has since been ported to many other systems including IBM PC
compatibles and DEC’s VAX/VMS. Honey DanBer uucp (or simply "HDB") is
a totally rewritten modernized implementation of the original uucp functions.
HDB uucp is available from AT&T as BNU (Basic Networking Utilities).

Many additional communications packages have been created by other
companies, too. Some of these have been transported from the micro world,
such as the extremely popular Kermit, which is in the public domain. Others
are designed to support communication with mainframe systems using Digital’s
DECnet or IBM’s SNA. There are programs to support communications over
serial lines, Ethernet, broadband links using SNA, CCITT, OSI and DoD and
many other protocols. Often these are bundled with applications such as file
transfer, electronic mail or network file systems.

Communications is an extremely vast field, and the science of networking
is changing year to year. We recommend that you study the needs of your

Databases for UNIXUNIX Applications262

applications to see what kind of communications they require, rather than vice
versa.

11.7 Databases and Database Management Systems
"We promise 2000 transactions a second, and a free Isuzu for every customer."
– Joe Isuzu (Judith Love).

Early UNIX systems did not come with databases – at least by modern
standards. Indeed, the UNIX designers went out of their way to point out how
inadequate the system was for that. (This is discussed at length in the Real
World chapter.)

As a backlash, or maybe because of that (it’s hard to tell), many tools
were created that were able to manipulate text files as databases. And very
well, indeed. It was possible to create database systems without doing any-
thing but writing shell scripts. And it still is, for that matter. This remains a
valuable prototyping technique.

Many small databases exist on UNIX. Some, like /etc/passwd, are
manipulated with simple text tools. Another example is the refer database
which accepts bibliographic references for later automatic referencing by
troff. Larger databases use dbm or a commercial database.

The dbm library (a rewrite of which is available in the public domain) is a
simple database management system that continues to be distributed with most
versions of UNIX. dbm provides a simple keyed-record system, suitable for
many small applications.

Around 1979, the Ingres Project (a relational database system, now mar-
keted by Relational Technology Inc.) was distributed with Berkeley UNIX, lead-
ing to the acceptance of large database systems on UNIX. At the same time,
commercial companies began studying the problems of porting existing
DBMS’s into the UNIX environment. Soon after that, several file locking imple-
mentations were commonly available. One was standardized by /usr/group in
1985. (This was the first identifiable UNIX standard.)

While UNIX now supports many database systems quite successfully,
the database story is by no means over. For example, distributed databases,
heterogenous databases, and knowledge representation databases for AI are
some of the problems that are still quite open. UNIX machines are supporting
much of this research, and we can expect many new database implementations
to appear on UNIX systems first. Two examples of this are the Camelot dis-

Desktop Publishing UNIX Applications 263

tributed transaction research at Carnegie Mellon University and the IMDAS
project for distributed automated manufacturing at the U.S. National Bureau of
Standards.

Of course, many databases that were implemented on micros have also
been ported to UNIX, which is no great feat since their file and operating sys-
tems are typically even cruder than that of UNIX. The result is that UNIX can
share databases with both micros and mainframes.

Other popular UNIX database systems include Boeing Rim (Boeing Com-
puter Service Company), Focus (Information Builders, Inc.), Informix (Informix
Software), Mistress (HCR), Oracle (Oracle Corp.), /rdb (Robinson, Schaffer &
Wright), Unify (Unify Corporation), Zebu (Specialized Systems Consultants,
Inc.)

11.8 Desktop Publishing
"Why isn’t troff more like my Mac, and vice versa?" – John Mashey

UNIX has always come with troff and friends. The programmers at
Bell Labs had access to a phototypesetter, a device that can produce camera-
ready copy directly. (Phototypesetters commonly have resolutions of 1,000 dpi
(dots per inch) and higher.) Thus, UNIX has always included such an inter-
face. Unfortunately, phototypesetters are prohibitively expensive for the majori-
ty of UNIX sites, costing upwards of $100,000.

Around 1975, the only alternatives to phototypesetter were electrostatic
printers. These were not as high quality, but could still do graphics, and were
much cheaper. Unfortunately, they had a number of other drawbacks (required
special paper, output had to be cut apart, and so on). However, they were
quite common at UNIX sites that could not afford a phototypesetter and yet
wished to use the lovely text processing tools that UNIX had.

By 1980, laser printers had become available for a fraction of the price of
a phototypesetter. These were soon interfaced to programs like troff. Four
years later, the price of a 300 dpi laser printer was less than $10,000, making
them more popular than daisy-wheel printers. (Daisy-wheel printers were inex-
pensive – about $3,000 – and produced high-quality output, but lacked software
font control and graphics.)

While laser printers do not equal the quality of phototypesetters, they are
able to handle the majority of tasks that most people need (e.g., reports, papers,

Desktop PublishingUNIX Applications264

letters). (This is another example of the UNIX rule that 10 percent of the effort
(uh...price) solves 90 percent of the problems.)

With the introduction of the Macintosh (not running UNIX!), Apple
brought a different kind of desktop publishing to the world. Apple’s vision was
an easy to use, what-you-see-is-what-you-get (WYSIWYG) interface. troff,
is neither of these. The Apple products were also much cheaper than anything
comparable.

Many companies have since moved this technology and style of desktop
publishing from Macs to UNIX machines. With it, troff has been displaced by
a number of very user-friendly systems. Some of the more popular UNIX desk-
top publishing systems are Interleaf (Interleaf Inc.) and Frame Maker (Frame
Technology). (This book was created using Frame Maker.) Unfortunately,
troff continues to be the only publishing system distributed with bare UNIX,
hence it is still used by the unsuspecting.

Admittedly, troff is extremely flexible, and experts can do amazing
things with it. However, the real reason troff is so ingrained is that it did not
have any serious competition for many years. This has had unfortunate effects
as some publishers (e.g., USENIX) only accept manuscripts in troff format.
Some publishers (e.g., Prentice-Hall) convert all other electronic forms to troff.

ditroff is a rewrite of troff. (It stands for "device-independent troff"
but is pronounced "dit-roff.") Oddly, troff produces output for a specific type-
setter (C/A/T now sold by Wang) which few people have. To use any other
output device, you must pipe the output of troff through a filter which trans-
lates it to a device-independent form. Then another filter translates it to what-
ever form you really need. ditroff produces device-independent output direct-
ly, as well as supporting many other things that troff never did very well (such
as supporting more than four fonts in one document). ditroff is sold by
AT&T and others.

Editors UNIX Applications 265

Picture of authors’ screen while writing Life With UNIX.

11.9 Editors
"vi is a piece of wombat do" - title of 1985 European UNIX User Group debate

UNIX originally came with the line-oriented editor, ed. As soon as
UNIX "went public," its first commercial licensee wrote a screen editor (the
Rand editor). The BSD release of UNIX included the vi screen editor, which
uses most of the ed commands, and became popular with people who didn’t
want to throw away all the time they spent learning ed. vi has been incorpo-
rated into most releases of UNIX. (Ironically, Bill Joy, the author of vi, has
said many times that if he knew how popular vi was going to become, he
would never have written it.)

The most popular screen editor is emacs, originally written in teco by
Richard Stallman for non-UNIX machines. It was reimplemented in C by
James Gosling of CMU. In fact, emacs was already quite popular by the time it
arrived on UNIX. Emacs remains extremely popular today, partially because it

Fourth Generation LanguagesUNIX Applications266

has been implemented for just about every computer and operating system in
existence, and many implementations are in the public domain.

Even though there are public-domain versions of both vi and emacs,
there are now many companies supporting commercial releases of both. You
will have to make a decision for yourself whether you want a public-domain
version or a commercial product, although we think very highly of GNU’s
public-domain emacs. Other companies selling editors include CCA (Emacs),
Custom Software Systems (PC/VI), Enterprising Ideas, Inc. (ae), Lugaru Soft-
ware Ltd. (Epsilon), Fenix Software (Fenix), Grand Software, Inc. (Grand Edi-
tor), Marc Software (WordMarc), and UniPress Software (vi-PLUS, emacs,
cmacs).

Many of these editors support much more than character manipulation.
Most will check spelling and many support a thesaurus. Surprisingly, few com-
pare favorably to the tools known as the Writer’s Workbench (still sold by
AT&T). These programs help writers by identifying grammatical problems
ranging from spelling errors to more complex structural problems such as punc-
tuation, split infinitives, run-on sentences and sexist phrases. The programs sug-
gest alternatives according to the rules built in to the programs as an aid to the
writer.

11.10 Fourth Generation Languages
"The limits of my language stand for the limits of my world." – Ludwig Wittgenstein

Fourth-generation languages (4GLs) are high-level interfaces to high-
level languages (3GLs). Theoretically, the programmer uses the problem speci-
fication as input to the 4GL. The system automatically converts the
specification to code.

In reality, most 4GLs are still procedural. Rather, 4GLs have simply
become a buzzword for languages that allow one to code using English-like sen-
tences along with a good set of libraries for database manipulation, screen for-
matting and user interfaces.

While not obsoleting programmers, a 4GL can immensely speed up cer-
tain types of programming tasks and are especially good at prototyping. The
reason we say this is because they can also be slow. This is analogous to using
a shell script for an application.

Some 4GLs are ABF (Relational Technology), Accell (Unify Corp.),
DataFlex (Data Access Corp.), Empress/32, Informix-4GL (Informix Software

Graphics UNIX Applications 267

Inc.), M-Builder (Rhodnius Inc.), Oracle (Oracle Systems Corp.), Progress
(Data Language Corp.), Today (bbj Computers International) and System Z
(Zortec, Inc.).

11.11 Graphics

UNIX has a couple of rudimentary tools for drawing lines, circles and
splines. This system (known as "plot") is implemented very cleverly using a
number of filters that can be joined together using pipes. While we can’t recom-
mend a specific replacement, we do suggest that you ignore this software. It is
quite inflexible, unfriendly and pales by comparison to third-party graphics soft-
ware.

There are many excellent end-user products for creating graphics in an
application requiring graphics. Simple uses include presentation graphics (e.g.,
bar charts, pie charts) for business and scientific presentations. Some compa-
nies selling presentation graphics tools include AT&T Information Systems, Pre-
cision Visuals, Inc., Data Business Vision, Inc., Graphic Software Systems,
Arens Applied Electromagnetics, and Quality Software Products Co. Probably
the most well known of these is DWB (Documenter’s Workbench) from
AT&T. This includes grap (graphs), pic (pictures), and some other programs
which allow you to set up graphics in troff very easily.

More sophisticated demands occur in applications such as VLSI design
or image processing. Since graphics is a fairly mature field, most systems
come with implementations for at least one of the Core, GKS or PHIGS graph-
ic libraries. They are also available from third-party suppliers such as
Advanced Technology Center, ISSCO, Omnicomp Graphics Corporation, Pere-
grine Computer Systems, Precision Visuals, Inc. and Template Graphics Soft-
ware Inc. Their products can easily support a variety of sophisticated applica-
tions.

More complex and demanding graphics work can be done on UNIX,
though generally on a one-shot basis. The reason such state-of-the-art work is
more feasible on UNIX systems should be understood. As new display sys-
tems are spawned each year, UNIX stands out as being the first to have its
software ported to them. Another reason is that efficiency is often an important
consideration for many graphics applications and writing in C is a good way to
go. (To a large extent, C is replacing Fortran as the vehicle of choice for graph-
ics work.)

Mail, MessagingUNIX Applications268

Research at Berkeley and Bell Labs illustrates both the UNIX
programming philosophy and its relationship to graphics. Carlo
Sequin (from Berkeley) has designed a set of tools, called UNI-
GRAFIX, which can create 3D and 4D objects, and manipulate their
geometry by using pipes and filters. (See "The Berkeley UNI-
GRAFIX Tools," Tech. Report UCB/CSD 86/278). In a similar
style, Tom Duff (from Bell Labs) has produced a number of pro-
grams which work with a common data structure to produce high-
quality computer graphics. (See "Compositing 3-D Rendered
Images" in SigGraph 1985 Proceedings). And Potmesil and Hoffert
(also of Bell Labs) have created FRAMES using some of the same
ideas. (See "Frames: Software Tools for Modeling, Rendering and
Animation of 3D Scenes" in SigGraph 1987 Proceedings).

The implications of this are quite elegant. Rather than having
a single monolithic program which can do all things for all people (in
a confusingly complex way), a number of small utilities can be
joined together as needs demand. For example, one utility gener-
ates a 3D object, the next shades them, another adds a synthetic
camera view, and so on. Plugging in different algorithms for shading
or ray tracing becomes as easy as typing in a UNIX command line.

Graphics Trends

11.12 Mail, Messaging
"How to process 200 messages a day and still get some real work done" – title
of talk by Marshall Rose and John Romine on Rand’s Message Handling System.

Modern electronic mail systems are usually implemented in three parts.
The top part is the user interface (or user agent). Like shells, users like to
write their own mail user interfaces, and thus, many of them exist. You are like-
ly to find more than one on your system (although /bin/mail is always there).

The bottom part is the transport mechanism. This performs the actual
delivery of mail, and is necessarily different for different networks and comput-
ers. For example, SMTP is used for Arpa/Internet mail, and uucp is used for
mail between hosts that are connected by serial lines. Mail transport mecha-
nisms are usually closed related to file transport mechanisms.

The leftover part is the glue that holds the top and bottom halves togeth-
er. It is really just a router, but it gets left doing all the hard work that no one

Mail, Messaging UNIX Applications 269

else wants to solve. The problem is that most mail systems use completely dif-
ferent formats for addresses, so something is needed to do the conversion.

SMTP uucplocal

sendmail

file
system

Arpa Internet

emacs mailMH MS Berkeley mail

delivery

uucp network

Typical UNIX mail system: User gives mail to a user interface program (on top),
which then gives it to sendmail (in middle). sendmail gives it to the correct mailer
(on bottom) for delivery.

Examples of popular mail routers are sendmail and MMDF. Good pre-
sentations on the subject of electronic mail are "An Internetwork Memo Distri-
bution Facility – MMDF" by D. Crocker et al. in the 6th Data Communication
Symposium, Asilomar, November 1979, and "Sendmail – An Internetwork Mail
Router" by Eric Allman, 4.2BSD UNIX Programmer’s Manual, vol. 2C, Universi-
ty of California, Berkeley, July 1983.

 While many mail systems are available from early versions of UNIX,
newer ones are undeniably much better. They understand multiple networks,
interface to heterogenous mail systems and are often graphical or menu-
oriented. Many are bundled and heavily integrated with office automation soft-
ware.

Some mail systems are Calem (AT&T IS), EuroText (Asicom, S.A.),
Handshake Colt Computer Linked Telex (SST Data Inc.), INmail (Interactive

Mathematical ModelingUNIX Applications270

Systems Corp.), IDesk (Intel), Infolink (Clever Connections Ltd.), Office
Telesystem (AT&T IS), Q-Mail (Quadratron Systems, Inc.), R Desk (R Sys-
tems, Inc.), RootMail (Root Computers Ltd.), Take Notice (V-Systems, Inc.),
Teletex (TITN, Inc.), Twice MHS X.400 (TITN, Inc.), UNIX PC Electronic
Mail (AT&T IS), VoiceServer (Digital Sound Corporation).

11.13 Mathematical Modeling

Mathematical models start in capability where spreadsheets leave off.
Some of them have a front-end that looks like a spreadsheet but are far more
sophisticated. Packages are available to solve simultaneous linear equations,
calculus, sorting, correlation and regression analysis, Poisson series, as well as
image processing, mechanical design and electrical engineering problems.
Many of the packages include subroutine libraries so that you can call them
from your own programs.

Many of these packages are not new, having been developed and used
on supercomputers in the ’60s. They were all written in Fortran, with highly
optimized code. Examples of these are NAG (Numerical Algorithms Group)
and SPSS (SPSS Inc.)

More recently developed packages include symbolic systems, originally
written in Lisp for the most part, but now often recoded for speed. Examples of
symbolic systems include Macsyma (Symbolics, Inc.), SMP (Inference Corp.).

Other popular mathematical libraries and programs include GPSS
(Simulation Software Ltd.), Linear Optimizer (Acme Computer Co.),
LP/Protran (IMSL Inc.), Math Advantage (Quantitative Technology Corp.),
Simtec (Terotech), S (AT&T), SORITEC (Sorites Group, Inc.), and SunTrend
(Systems Union Ltd.).

Each type of system is appropriate for particular classes of problems.
However, you will find that almost all of them are supported on UNIX systems.
And with supercomputers (such as the Cray) running UNIX, there are no math-
ematical modeling applications out of reach of a UNIX system.

Office Automation UNIX Applications 271

After finding differences when solving systems of equations on two
different machines running the same version of UNIX, Eugene Spaf-
ford and John Flaspohler (;login:, vol. 11, no. 2, March/April 1986)
decided to find out if there were any other differences. They ran accu-
racy tests for various mathematical functions on 11 different commer-
cially available computers.

Their results were startling. The quality of the mathematical subrou-
tines varied widely. Some machines produced quite inaccurate
results for several tests. Some showed complete loss of significance
on one of the tests. One machine raised errors on values that were
within a function’s domain. Another machine computed measurably
less accurate answers when its floating point accelerator was turned
off. And one machine produced values of minus zero that were not
equal to positive zero.

Some errors were determined as software, some as firmware and
hardware, but the results were clear. There was little standardiza-
tion on mathematic computation. While some of the problems they
noted have been now fixed, it is still the case that people depending
on mathematical accuracy should perform their own testing or demand
well-documented test results.

Negative Zero?

11.14 Office Automation

While UNIX is a general-purpose operating system, it is admirably suited
to office automation tasks. Indeed, one of the original applications of UNIX
was for word processing. Remnants of this can be seen in tools such as spell,
refer and typo as well as the dictionary that can be found in /usr/dict/words.

The first public release of the UNIX system was not particularly user-
friendly. Now, however, many companies have seized upon making UNIX
accessible to people without a degree in Computer Hackery. There is a wide
diversity of offerings. Some integrate the whole of office applications such as
spreadsheets, word processing and communications, while others key in on spe-
cific areas like publishing and typesetting.

There are some disadvantages to this route for office automation. One is
that since UNIX is a general-purpose system, it is necessarily less efficient

Programming LanguagesUNIX Applications272

adapting to applications such as word processing than other systems designed
for this purpose. Lower-priced dedicated systems can adequately do much of
the simpler office automation tasks at much lower cost than a complete UNIX
system.

On the other hand, as office-automation processing demands get more
complex, the slower processors of these cheaper machines become a hin-
drance. Further, in a distributed environment, PC-class machines are much
more limited at sharing files, electronic mail, and so on than a UNIX system.

Some of the more popular office automation systems are Alis (Applix,
Inc.), Uniplex-II Plus (Uniplex Integration Systems, Inc.), XED Integrated
Office System (Computer Methods, Ltd.) and systems by Quadratron Systems,
Inc. and R Systems Inc.

"UNIX Muscles into the OA Market" by Vanessa Schnatmeier in UNIX-
WORLD, vol. 4, no. 6, June 1987, is an extended discussion of this topic. Patri-
cia Seybold’s UNIX in the Office is a periodical dedicated to such coverage.

11.15 Programming Languages
"If you want PL/I, you know where to find it." – Dennis Ritchie

While UNIX comes with a healthy complement of languages, there are
many reasons for buying one from a third-party vendor. For one thing, there
are new languages (and new versions, thanks to the standards committees)
being born every day. There are new machines to support, possibly by cross-
compilers. And there are vendors that are more capable of creating languages
than your original hardware vendor. Since it is now possible to buy UNIX
"unbundled" or piecemeal, shopping for a language is not unlike shopping for a
component to go into your stereo system.

Here are some language vendors you can pursue.

ADA: ALSYS S.A., AT&T Federal Systems, Intermetrics, TeleSoft,
Verdix Corp.

APL: Dyadic Systems, Ltd., I. P. Sharp Associates, Oregon State Univer-
sity, STSC, Inc.

Basic: ABC Development Systems, Inc., AT&T, Basis Inc., Basmark
Corp., Concept Omega Corp., Control-C Software, Cromemco, Inc., Databoard
Inc., HCR Corp., Microsoft Corp., Microware Systems Corp., NKR Research,

Programming Languages UNIX Applications 273

Philon, Inc., Silicon Valley Software, Software Innovations Inc., Tektronix, Inc.,
UX Software, Inc., UniPress Software, Inc.

C: Alcyon Corp., AT&T, Flexible Computer Corp., Free Software Foun-
dation, Interactive Systems Corp., MetaWare Inc., Microsoft, Microware Sys-
tems Corp., Microtec Research, Oasys, Oregon Software, Silicon Valley Soft-
ware, Inc., Software Development Systems, Southwest Technical Products
Corp., Systems & Software, Inc., UniPress Software, Inc., Whitesmiths, Ltd.

While virtually every UNIX system comes with a manufacturer-provided
C compiler, there are valid reasons for buying a third-party version. A typical
reason is for cross-compilation – when you need to generate code for another
machine. Such a feature is rarely provided by the default C compiler.

Another reason is that some companies specialize in producing high-
performance compilers. While these are certainly attractive, most customers
feel more comfortable using the C compiler that comes with their system.
Rather than end users buying these third-party C compilers, we more often see
the UNIX system manufacturers themselves investing in the third-party compil-
er products and embedding them in their final product.

C interpreters: Impacc Associates, Informatix, Lattice, Rational Sys-
tems, Saber Software, Inc.

C++: AT&T, Lifeboat Associates, Inc., Glockenspiel Ltd., Oasys, Oregon
Software

COBOL: Austec, Cromemco, Inc., IBM Corp., Micro Focus, Philon, Inc.

Dibol: Digital Information Systems Corp., IBM, Omtool Corp., Software
Ireland Ltd.

Forth: Adaptive Optics Associates, Laboratory Microsystems, Inc., Spe-
cialized Systems Consultants, Inc., Interactive Systems Corp., Ubiquitous Sys-
tems

Fortran: Absoft Corp., AT&T, Interactive Systems Corp., Microware
Systems Corp., Philon, Inc., Ryan-McFarland Corp., Silicon Valley Software

Lisp: CRIL, Digital Equipment Corp., Franz, Inc., Lucid, Inc., University
of Utah, The r/l group, Systems Designers Software, Inc.

Shell CompilersUNIX Applications274

Modula-2: Ana-systems, Djavaheri Bros., Sun Microsystems

Mumps: Plus Five Computer Services

Pascal: AT&T, HCR Corp., MetaWare Inc., Microtec Research,
Microware Systems Corp., Oregon Software, Silicon Valley Software, UniPress
Software, Inc., Whitesmiths, Ltd.

PL/M: Systems & Software, Inc.

Prolog: ALMA, BIM, CRIL, Logic Programming Associates, Ltd., Log-
icware Inc., Quintus Computer Systems, Inc., Scientia Computer Applications
Pte Ltd., Systems Designers Software, Inc., University of New South Wales

RPG: International Computers Ltd.

Smalltalk: ParcPlace Systems, University of Calif. at Berkeley, Xerox

Snobol: University of Leeds

And here are some vendors selling products that will do language-to-
language conversion.

Basic-to-C: JMI Software Consultants, Inc.

Cobol-to-C: Rapitech Systems, Inc.

Fortran-to-C: Intrinsic OY, Rapitech Systems, Inc.

Pascal-to-C: Holistic Technology

11.16 Shell Compilers

The UNIX shell is an interpreter. This means that it spends a lot of time
interpreting the instructions in shell scripts before it gets around to executing
them. Unlike interpreters, compilers look at a program only once but can exe-
cute them many times. The resulting programs are much faster.

Shell scripts were originally envisioned as prototyping tools, where effi-
ciency didn’t matter. But shell programming turned out to be so easy (and C
programming so hard), that many valuable shell programs have never been con-
verted into compiled programs.

Spreadsheets UNIX Applications 275

Several companies have introduced shell compilers. These take shell
scripts as input and produce executable programs. Depending upon the original
shell script, incredible speedups are possible. Reducing the run-time of a shell
program by 90 percent would be quite believable.

Three shell compilers are CCsh (Comeau Computing), QuickShell
(UniPress Software) and Shacc (Concentric Associates, Inc.). All of these
compile Bourne shell scripts only.

11.17 Spreadsheets

Spreadsheets are yet another tool, that while not developed on UNIX sys-
tems, have made the migration easily. Virtually all of the popular microcomput-
er spreadsheets are available for UNIX. UNIX also runs many of the public-
domain versions. Most of them look exactly like their cousins (or Lotus 1-2-3)
on the smaller machines, and many can even read and write floppies written on
micros, allowing you to transfer spreadsheets back and forth. Some of the
spreadsheets are only part of larger office automation systems.

Of course, running a spreadsheet on UNIX has many advantages. For
instance, UNIX systems typically have much more memory and compute pow-
er than a micro. Thus, you will find your spreadsheets can be larger and more
complex. And if you need more complex capabilities than a spreadsheet can
provide, you can move up to one of the many mathematical modeling systems
that are available for UNIX.

Some popular spreadsheets are 20/20 (Access Technology Inc.), C-Calc
(DSD Corp.), Handle Calc (Handle Technologies, Inc.), iPlan (Intel Corp.),
Impact (Integrated Micro Products), Multiplan (Microsoft Corp.), Prelude
(VenturCom), PubliCalc (Specialized Systems Consultants Inc.), Q-Calc
(Quality Software Products), Q-Plan (Quadratron Systems Inc.), Tactician
(Southwind Software Inc.), Twin (Mosaic Software Inc.), UltraCalc (Olympus
Software Inc.), Unicalq (uniq Digital Technologies), SCO Professional (The San-
ta Cruz Operation Inc.), VC (Software Innovations Inc.), ViewComp (Unicorp
Software, Inc.). A good review of some of these spreadsheets is "Getting the
Most From Spreadsheets" in UNIXWORLD, vol. 4, no. 9, September 1987.
There are also several good UNIX spreadsheets in the public domain, including
VC (Mark Weiser) and SC (James Gosling). See the Underground chapter for
information on how to obtain public-domain software.

System AdministrationUNIX Applications276

11.18 System Administration

UNIX has traditionally provided inadequate tools for system administra-
tion. The old saying that "UNIX was designed for programmers, not for users"
should be amended with "nor for system managers." For example, UNIX lacks
quality backup mechanisms, flexible security systems, and a resource quota sys-
tem. The Administrator’s Environment chapter goes into great detail about this,
describing the many areas of system administration for which UNIX has rather
shabby solutions.

Many companies have attempted to remedy this. Products are now avail-
able to do automated backups, comprehensive security and full-featured spool-
ing which put the original ones to shame. If you want to implement load control
across multiple systems, or manage a tape library, you should investigate these
applications.

Some companies specializing in this area are AIM Technology, COSI,
Flexible Solutions, Intermetrics, Throwaway Software and UNITECH.

11.19 The Toolchest

While not an application, AT&T’s UNIX System Toolchest is appropriate-
ly covered here. The Toolchest is an automated software store.

Using the Toolchest, you can browse through an electronic stockroom of
software, decide what you want, and order it. The software is delivered to
your computer electronically.

The way it works in reality is surprisingly easy. You dial up the Tool-
chest from an intelligent terminal. You can log in as guest the first time, and
order a contract for billing purposes. Next, you can browse through a large col-
lection of software. For example, you can get the latest releases of awk, Honey-
Danber uucp and the Korn shell this way. Several public-domain programs are
available for free. Finally, the software is delivered that night via uucp.

The Toolchest was started as a means of solving the distribution prob-
lems at AT&T internally. With thousands of UNIX systems in-house and hun-
dreds of programmers modifying UNIX programs constantly, how could they
possibly keep all the machines up to date with the latest programs? The
answer was: Don’t try to keep all the machines up to date. Rather, let users
request the latest copies of programs as they need them. This made sense

Windows UNIX Applications 277

since most people didn’t need the latest copies of every program, but if they
stumbled across a bug in one program, they wanted it fixed pronto.

Many other companies have begun to support their own dial-up
toolchests, although AT&T’s is by far the most well known, having several
technical papers about it published in UNIX periodicals. A more comprehen-
sive description of the Toolchest is "Experiences with Electronic Software Dis-
tribution" by Catherine Brooks in the Summer 1985 USENIX Conference
Proceedings. The Toolchest phone number is 201-522-6900 in the U.S., 44-1-
567-7711 in London, and 81-3-431-3670 in Tokyo.

11.20 Windows

The first bitmapped workstation was the Xerox Alto.† While the Alto did
not run UNIX, its ability to provide a windowing system to remote hosts made
it a jewel of a terminal.

Many people seized upon this idea and attempted to abstract out the
essential parts of the Alto that would allow them to provide a terminal with mul-
tiple windows (at a much lower cost – each Alto cost approximately $30,000
including a mouse, Ethernet, 256Kb and a small disk).

Several systems stand out. The AT&T Blit was extremely similar to the
Alto, although the Blit used 1981 technology and was quite a bit cheaper.‡ The
Blit could provide windows to a remote host, and like the Alto, could also run
programs locally, although it did not itself run UNIX. Unlike the Alto, the Blit
communicated over RS-232 connections and did not have a disk. Its operating
system was downloaded from the host computer. The Blit was never commer-
cially sold, but the technology was picked up by ATT/Teletype Corp., and mar-
keted as the 5620 DMD (Dot-Mapped Display).

At the same time, the SUN (Stanford University Network) computer was
being developed at Stanford. This machine was similar to the Blit and Alto,
except that it ran UNIX locally. This was especially attractive, since it relieved
the user of reliance upon a remote host computer. The SUN design was quick-
ly picked up and marketed by dozens of startup companies.

C. P. Thacker et al., "Alto: A Personal Computer," CSL-79-11, August 1979, Xerox Corp.†

The Blit’s creators claim that "Blit" stands for the Bacon, Lettuce and Interactive Toma-
to. However, it is easier to stomach the belief that "Blit" comes from the bitblt (BIT-
BLock Transfer) opcode popularized by the Alto.

‡

WindowsUNIX Applications278

In 1983, Hewlett-Packard began selling the HP Integral PC, the first
portable UNIX machine. Using a ROM’ed UNIX operating system, it included
a windowed bitmapped display and sold for $5,000.

The price of windowing hardware has dropped dramatically since origi-
nally introduced, and most UNIX workstation vendors offer window systems as
an option. While there are many window systems for sale, there seems to be
movement towards settling on two basic "strains" of window systems. Both
have their advantages and disadvantages.

X Windows was developed jointly by DEC and MIT at Project Athena.
X is based on the W window system, written at Stanford for the V operating
system. X has become extremely popular for several reasons. The source
code has been placed into the public domain. X has been ported to virtually
every computer that runs UNIX, and many that do not. It is distributed and sup-
ported by many vendors. Technically, X is not particularly outstanding although
it was the first window system to allow an application to display a window on
an internetworked host’s screen without any change to the software. X is also
being considered as a windowing standard within the Graphics/Windows Work-
ing Group of the IEEE P1003 POSIX Standard.

An alternative to X, is Sun’s NeWS (Network/extensible Window Sys-
tem). Yet another system is Display PostScript. Both NeWS and Display
PostScript use the PostScript language internally.

PostScript is a page-description language originally developed to drive
laser printers. It contains a powerful image model which allows for arbitrarily-
shaped windows. More importantly, all of these PostScript-based window sys-
tems are completely programmable, and can be made to mimic other window
systems such as X. NeWS and Display PostScript are proprietary products,
although many vendors support PostScript itself. PostScript was created by
Adobe Systems.

It is likely that future window systems will be able to support any of a
number of other window systems. For example, AT&T’s System VR4 includes
a windowing system that supports both X and NeWS concurrently.

Chapter 12: UNIX Meets The Real World
"The world is moving so fast these days that the man who says it can’t be done
is generally interrupted by someone doing it." – Elbert Hubbard

During the mid-’70s, many of the students who had been using UNIX at
school, began to graduate. It was a great shock to many of them to find that
real work was being done on inflexible computers and operating systems put
out by IBM, DEC and others. You had no choice in what could be configured
in the operating system. If the vendor supplied source, you could bet it was in
assembler. Code wasn’t portable. Some systems weren’t even interactive. It
seemed as though computing in the real world was back in the dark ages.

These recent graduates were somewhat spoiled by UNIX. However,
some of them managed to bring many of the good concepts of UNIX to other
operating systems, although certain systems did not allow anything remotely
resembling pipes. Some systems did not have hierarchical file systems, interpro-
cess communication, and so on. The epitome of this was work discussed in
Chapter 4 on the Virtual Operating System.

VOS and other UNIX emulators did not appease the masses. UNIX was
available for licensing and prices for hardware were dropping. Several prob-
lems had to be remedied on the way before UNIX was acceptable for commer-
cial use.

Some of these were vague critiques like "UNIX isn’t user-friendly." Oth-
ers were more specific, "We need the ability to lock files." The other primary
complaints were that UNIX wasn’t robust, UNIX wasn’t real-time, and UNIX
wasn’t supported. Some of these issues have turned out to be red-herrings.
For instance, many studies have shown that it doesn’t matter what command
names are – it takes the same amount of time to learn them. Some of these
problems no longer exist (i.e., UNIX is now well supported). Other factors

279

Databases UNIX Meets The Real World280

have turned out to be more critical. For example, a system monitoring a nucle-
ar power plant really does need to be reliable.

This chapter will discuss some of the ordeals that UNIX had to over-
come, either in rumor or substance, on the road to maturity.

12.1 Databases and Database Management Systems
"The kernel needs to provide record locking about as much as it needs to provide
trigonometric functions." – Marc Rochkind

It used to be common knowledge that UNIX did not support databases.
It did not have record locking or job checkpointing, the file system did not sup-
port fancy file access techniques, and there was no way to tell if a file had real-
ly been written to the disk. It was lunacy to even begin to contemplate keeping
a database on a UNIX system!

Interestingly, the following comment appears in the seminal article "The
UNIX Time-Sharing System" by Dennis Ritchie and Ken Thompson which
appeared in the Communications of the ACM, vol. 17, no. 7, July 1974, p. 368:

There are no user-visible locks in the file system, nor is there any
restriction on the number of users who may have a file open for
reading or writing. Although it is possible for the contents of a file
to become scrambled when two users write on it simultaneously, in
practice difficulties do not arise. We take the view that locks are
neither necessary nor sufficient, in our environment, to prevent
interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases main-
tained by independent processes. They are insufficient because
locks in the ordinary sense, whereby one user is prevented from
writing on a file which another user is reading, cannot prevent con-
fusion when, for example, both users are editing a file with an edi-
tor which makes a copy of the file being edited.

The view of the UNIX designers was clear. And yet at the same time,
people always needed to keep data whether it be organized in a traditional
database or otherwise. The many tools and filters on UNIX systems were
more than adept at one form of data: text.

The password file was text. The log files were text. And so on. While
there were exceptions, they really were rare, and programs like cat, ed and
grep didn’t demand any special format file, just text. People began to find that
it was relatively easy to keep textual databases since UNIX already had a fabu-
lous collection of tools for doing exactly that.

Distributed UNIX UNIX Meets The Real World 281

Text files and UNIX tools continue to be the choice for small databases
such as the on-line manual pages and word dictionary. However, such an
approach does not scale up to large applications with real-time demands.

The real answer is to do what is generally done on other operating sys-
tems. Building a database requires a centralized DBMS, so that only one mod-
ule has access to the file system. All users then go through the DBMS. This
solution obviates the need for a kernel modification and puts the decisions and
power where it belongs – in the lap of the database designer. This solution
extends gracefully to distributed database systems, each with multiple data
repositories per computer. In such a system, data is accessed by going through
the per-computer, per-database DBMS.

Most modern UNIX systems provide sufficient support for record lock-
ing, synchronization, semaphores and other database management tools. Addi-
tionally, it is not difficult to build your own device driver on top of a raw UNIX
file system (and you may wish to do this for top speed). Nonetheless, it is not
the case that lack of such support makes sophisticated transaction-oriented
database systems unachievable.

An alternative solution which bypasses the whole question of building
databases in UNIX is to use UNIX systems as front-ends to specifically-
designed high-performance database machines (e.g., Britton Lee). However,
our conclusion should not be that DBMSs and UNIX don’t mix – clearly UNIX
can be and has been extended to handle DBMSs by database companies
(mentioned in the previous chapter). The large amount of work required for a
professional-quality DBMS is not any more so on UNIX than it is on other oper-
ating systems.

12.2 Distributed UNIX

Distributed processing refers to a job (a set of cooperating processes)
running on multiple computers. Distributed processing is a kind of parallel-
processing, but usually implying different instructions are being executed at dif-
ferent processors which are loosely coupled (do not share memory in a com-
mon backplane).

This field is extremely difficult, yet even nonoptimal solutions are worth-
while. For example, if you are compiling a program and troff’ing a paper on
your local computer, the job manager can search out a computer on the net-
work that is idle. If it finds one, it will borrow it by performing the troff there.

Emulators/CoexistenceUNIX Meets The Real World282

These can more than halve compute time if paging and swapping can be
avoided.

With the advent of personal workstations, it is quite likely that there will
be networks of idle computers available. Many UNIX jobs are made up of a
set of processes that are easily decomposable and farmed out to separate com-
puters. There are already systems (e.g., Apollo’s Domain system, Berkeley’s
Maitre d’) which do exactly this. Such a system makes sense, simply because
of the UNIX-process-oriented style of computation, and the easy accessibility
of workstations connected to local area networks. Alternative approaches
(e.g., DUNIX) join together multiple computers under the aegis of a single oper-
ating system, providing transparent distributed processing by fiat.

Distributed processing, however, is not a solved problem. Achieving
good results can be extremely difficult, depending on the application itself. For
example, a single process can be distributed but careful analysis must be made
to be sure that the communication and setup costs do not overwhelm the sav-
ings in time gained by processing the parts at other computers.

Optimal use of every processor’s capabilities is impossible in the general
case. A classic result of computer science is that it is impossible to tell if any
computation may halt without running it first. Given our inability to answer
such basic questions, determining more complicated ones, such as how long a
computation may execute, is out of the question. Thus, heuristics and program-
mer estimates are used for such distributed systems which attempt more sophis-
ticated solutions of load balancing.

Some systems incorporating distributed processing are Domain (Apollo),
DUNIX (Bell Communications Research), DYNIX (Sequent), Locus (Locus
Computing Corp.), Mach (CMU), Maitre d’ (Berkeley), Multimax (Encore
Computer Corp.), M Series (MIPS), and Sprite (Berkeley). Some worthwhile
articles on this subject include "The DUNIX Distributed Operating System" by
Ami Litman in Operating Systems Review, January 1988, "Load Balancing with
Maitre d’" by Brian Bershad in ;login:, vol. 11, no. 1, January/February 1986,
and The Yates Perspective, p. 21, August 1984.

12.3 Emulators and Coexistence
"I’m O.K...You’re O.K." – Thomas Harris
"I’m O.K…You’re a Pain in the Neck" – Albert Vorspan

O.K., we confess – UNIX is not the only operating system in the world.
And we admit it – there are more versions of UNIX than we care to think

Emulators/Coexistence UNIX Meets The Real World 283

about. The question that remains is, what happens when you need to run two
different operating systems on the same machine?

This situation may occur for a variety of reasons – political, economic or
technical. For example, suppose you can only afford one computer but you
want to run both UNIX and something else.

It can be done. Obviously the solutions vary depending on the situation.
And some are less graceful than others. Melding two operating systems that
both want to have complete control of the hardware can be a sticky problem.
Sometimes, it is not really necessary to run both operating systems rather than
provide the functionality of both operating systems.

The simplest case is running two different versions of UNIX at the same
time. Most commands are identical from one UNIX to another, but there are
cases where program, system calls, or library names conflict (i.e., have the
same names but different parameters and functions). To ameliorate this, the
user typically specifies a default version to use. Some systems allow this on a
command-by-command basis; others on a session-by-session basis.

Examples of such systems are Altos (Xenix and System V), and Pyramid
and Wollongong (System V and 4.3BSD). A public-domain implementation of
System V under 4.2BSD is available from the U.S. Army’s Ballistic Research
Laboratory (BRL).

More difficult than getting two versions of UNIX on the same machine is
getting UNIX to live with a non-UNIX operating system. Operating systems
that are complex can emulate enough of the UNIX systems calls so that UNIX
applications can run without change. Since UNIX is so portable, it is not impos-
sible to rip out the machine-dependent parts of the kernel and provide an effi-
cient emulation of the UNIX system calls on top of the native operating sys-
tem. Examples of this are UTS on top of VM (Amdahl Corp.), and Eunice on
top of VMS (The Wollongong Group).

However, while UNIX itself is portable and doesn’t demand a particular
hardware environment, the UNIX-style of programming can cause peculiar
hardships on native operating systems. For example, it is not untypical for a
UNIX process to fork many child processes while executing. On operating sys-
tems where process creation is an expensive operation (e.g., VMS), such a
UNIX application can bring the native operating system to its knees.

Fault ToleranceUNIX Meets The Real World284

On the other hand, since many proprietary operating systems are specifi-
cally designed around the single type of hardware that they run on, they are
often faster than UNIX, which does not take advantage of specialized hard-
ware. It is even possible (and we have actually seen such cases) for emulated
UNIX to be faster than native UNIX!

While UNIX emulations are never seamless, they can be quite livable.
Consider that UNIX was designed for programmers, with the system adminis-
trator getting the short end of the stick. On many other systems, the priorities
seem to be reversed. Hence, UNIX running on top of another operating system
allows the programmers to use UNIX, while the system administrator uses a
completely different (and better) set of tools for system management.

Some companies providing UNIX on top of other systems are: Data Gen-
eral (AOS/VS), Convex, Interactive, HCR & Wollongong (DEC VMS), IBM
(VM), Apollo (Domain).

Just as UNIX can be placed on top of more complex operating systems,
there are systems that are simple enough that can be run on top of UNIX. A
good example is MS-DOS. Since DOS is a relatively simple system (compared
to UNIX), it is easy to provide support for it on top of UNIX itself. Early
DOS/UNIX systems worked by emulating Intel 8088 assembler as well as
BIOS and DOS system calls. Nowadays, prices for PC-compatible boards are
so low that most vendors support DOS by plugging a PC board in the UNIX
backplane and using it as a coprocessor. The result is a flawless DOS environ-
ment running as fast as a real DOS system.

Some vendors that support an MS-DOS environment under UNIX are
AT&T, ICON International, Inc., Interactive Systems Corp., Locus Computing
Corp., Microport Systems, Inc., Prime Computer Inc., The Santa Cruz Opera-
tion, Inc, Sritek, Sun Microsystems, Inc., and TeleVideo Systems, Inc.

12.4 Fault Tolerance, Transaction Processing
"We don’t go down on our customers" – Parallel Computers advertisement

While fault tolerance and transaction processing are different subjects,
they tend to be demanded by the same set of customers. They have also got-
ten the mutual reputation of being difficult to achieve in UNIX systems.

Early versions of UNIX were notorious for requiring arcane knowledge
in order to restore the file system to its former state in the event of a power fail-
ure. Modern versions of UNIX have excellent file system recovery procedures

Fault Tolerance UNIX Meets The Real World 285

which make losing a file extremely rare. (But there isn’t much it can do about
a tornado or lightning).

While program developers are willing to wait a couple of minutes as the
computer is rebooted and the file system restored after a crash, UNIX is no
longer just a developer’s toy, and many applications cannot wait at all (see
"Real-Time Processing" in this chapter). Some applications (e.g., controlling a
space shuttle) cannot afford any loss of the processor, while others (e.g., bank-
ing) can stand some delays but at loss of revenue, sometimes thousands of dol-
lars per minute.

Fault tolerant systems attempt to continue providing service in the face of
partial failure. The typical approach is to provide redundant components, invari-
ably at a high price. The original approach of buying two complete computers
has been refined in many ways by the many vendors of fault-tolerant UNIX sys-
tems.

Systems can fail in many ways. Failure may occur in power supplies,
memory, disks, CPU’s, communications paths, and so on. Providing multiple
access to each of these is more expensive but provides better ability to recover
from redundancy. In order to do any of these things, the result is usually a
heavily modified or completely rewritten UNIX kernel. Extra system calls may
be added to provide checkpoints.

Transaction processing is usually carried out on fault-tolerant systems.
For example, a bank transaction may involve a transfer of money from one
account to another. Not only should the computer system be reliable, but the
transfer must be completed in a given amount of time.

Systems are good for transaction processing only if they are reliable and
can guarantee response time. This requires atomic transactions, fast database
systems, deterministic communications, and recovery facilities in the event of a
crash. High-level demands such as these were impossible in early UNIX sys-
tems because kernels lacked primitives like semaphores, real-time schedulers,
record-oriented databases and efficient support for hundreds of terminals.

Several companies now offer fault-tolerant UNIX systems for transaction-
based processing. It is safe to say that such systems are built on top of kernels
that are drastically different from earlier UNIX kernels. Most of these systems
provide redundant hardware components as well. Achieving fault tolerance
and transaction processing is a difficult goal for any computer system, no less
for a UNIX system.

International UNIXUNIX Meets The Real World286

Some of the leaders in this type of processing are: Origin Corporation,
Parallel Computers, Stratus, Sequoia Systems, Tandem Computers, and Toler-
ant Systems. For more information about fault tolerant UNIX computers, see
the article "Many Roads to Fault Tolerance" by Vanessa Schnatmeier in Com-
mUNIXations, vol. 5, no. 3, April/May 1985.

"Interview with Richard Searle" by Bill Freiboth in UNIX REVIEW, vol.
4, no. 7, July 1986, is an interesting interview with Citicorp/TTI on its use of
UNIX in banking. Discussed is why the company chose UNIX over "bank-
standard" IBM, the modifications that were made to UNIX to support reliable
transaction processing, and how satisfied it was with the results.

12.5 International UNIX

% grep /etc/passwd

UNIX was developed in the U.S. by English-speaking natives. The origin
shows as the use of ASCII is deeply embedded in the system. For example,
the UNIX programs have English phrases (e.g., No such file or directory)
and the character set hard-coded into them.

People often joke about the non-English UNIX command names (e.g.,
grep, ls) as showing no bias towards English speaking, but this is misdirected,
since the result is only that everyone feels equally uncomfortable with them!
As UNIX becomes more user-friendly, we shall see not just English speakers
but all users finding UNIX easier to use. Translating English error messages to
other languages is just one small part of it.

Before solving the problem of using other languages, UNIX faces the diffi-
culty of representing the character sets of other countries. Most UNIX text util-
ities manipulate characters using seven bits (to support ASCII) out of every
byte. Trying to use all eight bits often causes unexpected failures in many utili-
ties (e.g., shells, mailers) which use the extra bit for their own purposes. So
just adding a few characters is difficult. But what about languages like Chi-
nese? It has over 25,000 characters. Such characters cannot be conveniently
represented by single bytes. Multibyte representations are necessary but
require rewriting of support routines (e.g., ctype macros, string subroutines)
and often the applications, also.

Mainframes UNIX Meets The Real World 287

Some languages print in different directions. Depending on context, char-
acters may be capitalized, and multiple characters may be mapped to one (e.g.,
German). Sorting is no longer the simple task of comparing character represen-
tations, since alphabets may not be ordered by the machine’s representation of
them. And some alphabets require sorting from the opposite end of a string,
while others require context of the surrounding word. Regular expression pars-
ing may no longer be powerful enough to match certain patterns in other alpha-
bets, as in English.

Date, times and currency have to be printed in the local conventions. For
example, UNIX has always understood the concept of a time zone, but there
are time zones where multiple designations are used depending upon which
country you are in. Some countries adjust their clock by smaller fractions than
one hour.

The internationalization of UNIX requires extensive research and devel-
opment, but much has been already been done by large, international vendors
on other computer systems. Members of the X/OPEN consortium and other
international organizations are making great headway towards solutions of
these problems. Currently, several vendors sell versions of their product ori-
ented towards other languages, such as the System V Japanese Language Ver-
sion. Eventually, UNIX systems may come with extremely flexible language
support allowing, for example, any message to be changed by the user.

For more information on the use and capability of UNIX in non-U.S. terri-
tory, see the December 1985 issue of UNIX REVIEW which has several arti-
cles on this topic. Another worthwhile article is "Parlez-Vous L’UNIX? The
European Perspective, Past and Future" by Jean Wood & Hans-Joachim Brede
in the Summer 1985 USENIX Conference Proceedings.

12.6 Mainframes and Supercomputers

One of UNIX’s unexpected successes is its popularity on large comput-
ers. While UNIX was originally designed with a small machine in mind, it is
admirably suited towards a wide range of computers. Remember that the
designers of UNIX rejected the "kitchen-in-a-sink" philosophy of MULTICS in
order to support "simple" computing on a minicomputer. This makes it especial-
ly ironic to find UNIX on some of the largest computers in the world.

For a variety of reasons, UNIX is a very suitable choice on many large
computers:

MainframesUNIX Meets The Real World288

1) UNIX is easy to port to new hardware, having been written in a
portable manner and making relatively few demands for special purpose hard-
ware.

2) While a "small" operating system, UNIX is still rich enough in function
that it makes a good operating system for any machine.

3) Being able to run UNIX means you automatically have a large collec-
tion of other software immediately available.

It is almost rare for a large machine not to have an implementation of
UNIX available for it. In general, UNIX porting is so easy (requiring two to six
man-months depending on how novel the architecture is), many of the ports
have been done as "midnight" projects either by students or disgruntled users
of the machine’s native operating system. Often, the manufacturer has taken
over the support for a port, and offers its native operating system and a UNIX
port depending on the customer’s preferences.

Some operating systems have the ability to simulate multiple machines
(e.g., IBM’s VM). In such systems, it is possible to support multiple users each
choosing for themselves whether they want to run UNIX or another operating
system (on the same machine at the same time). In any case, the differences
between UNIX on a minicomputer and a mainframe are minimal. Most notable
is the terminal handling, as the UNIX style of character handling requires tight
interaction with the CPU, which is inefficient on a processor with hundreds of
terminals. Many vendors have obviated this problem by offloading I/O to spe-
cialized I/O processors.

Large computers include understandable improvements and extensions to
UNIX, such as supporting multiple processors and files that span multiple vol-
umes. Schedulers are typically rewritten to support the large number of pro-
cesses and unusual processing requirements.

An interesting article describing the management of a large UNIX site is
"A Strategy of Accommodation" by Alan Fernquist in UNIX REVIEW, vol. 4,
no. 7, July 1986, discussing the NASA Ames Research Center. At the time the
article was written, the center had a network of computers including a Cray-2
running UNICOS, two Amdahl mainframes running UTS, twenty-five Silicon
Graphics IRIS workstations and four DEC VAXen running different versions of
UNIX. Management (i.e., allocation, backup, placement of home directories) of
disk storage alone was a staggering problem. The Cray had 20Gb while the
Amdahl was heading towards 1Tb!

Micros UNIX Meets The Real World 289

Other worthwhile readings on this subject include "Meeting Mainframe
Expectations" by Hal Jespersen in UNIX REVIEW, vol. 4, no. 7, July 1986, and
the USENIX Winter Conference Proceedings, January 1986, which included a
dozen papers in the "UNIX on Big Iron" technical session.

Other manufacturers of UNIX mainframes and supercomputers include
Alliant Computer Systems Corp., Ardent Computer Products Inc., Concurrent
Computer Corp., Convex Computer Corp., Elxsi, and Stellar Systems.

12.7 Micros

UNIX on a micro is an attractive idea. Micros are cheap. You don’t
have to share one with anyone else. They are simple enough to master. It is
easy to see why micros caught on even without a real operating system (e.g.,
CP/M). But the idea of having your favorite operating system, UNIX, which
you have probably gotten used to on larger machines is tantalizing.

Several versions of UNIX are now available for microcomputers. Indeed,
the number of Xenix systems far outnumbers the number of other UNIX sys-
tems of all other types. Based on System V, SCO’s port of Microsoft’s Xenix
runs on IBM PC/XT/ATs and compatibles, as well as other microcomputer sys-
tems. Other implementations of UNIX on PC-class machines include Venix
V/86 by VenturCom, PC/IX written by Interactive Systems Corp. and sold by
IBM, and System V/386 by Microport Systems, Inc. Several UNIX look-alikes
exist for PC-class machines. These include Coherent by Mark Williams Co.,
and Co-Idris by Whitesmiths, Ltd. All of these UNIX and UNIX-like products
range from about $300 to $1,000, depending upon how complete a system you
get. Don’t forget to check out Minix (in the Underground chapter), a V7
rewrite which includes source and sells for the cost of the books and media.

Interestingly, the first versions of UNIX ran on 16-bit machines, which, in
some ways, were superior to the microcomputers of today. Two useful things
they did have that are not common among all microcomputers are memory
management hardware and a generous amount of disk space.

Memory management hardware allows processes to be moved in memo-
ry without their knowledge. It also protects processes from references outside
of their allocated space. While memory management is not necessary for
UNIX, it is very helpful. Certainly, for developers, protected memory is almost
certainly a prerequisite. If memory is not protected, user programmers can
crash the entire system and scribble on the disks. We do not recommend run-

MicrosUNIX Meets The Real World290

ning UNIX on any system without memory management hardware (e.g., PCs,
XTs) unless it is a fully debugged and dedicated application (like a toaster oven).

Unlike MS-DOS, UNIX comes with a large amount of utilities, libraries,
languages and other baggage. Estimating 10Mb to hold UNIX alone, you need
a 20Mb disk to be able to store this, plus whatever applications and personal
files you need. In practice, an even larger disk is desirable. Some versions of
microcomputer UNIX swap. This means that processes are temporarily copied
out of memory on to the disk. In such systems, it is useful to set aside several
megabytes of disk space for this purpose. If possible, this swapping disk or par-
tition should be on a fast disk drive.

Microcomputer systems which do not have enough disk space can still
run UNIX, however. If you are only doing word processing, you don’t need the
software development tools (e.g., C compiler, yacc, lex). Similarly, you may
not need the word processing utilities if you are only doing development. Some
versions of UNIX are sold unbundled (in pieces) so that you can buy only what
you need. Most systems come complete, however, and during installation you
can decide which floppies to read in to your system.

It is also possible to stick with MS-DOS or PC-DOS and add software
that gives you many of the functions of UNIX. For example, most of the utili-
ties (development tools, Writer’s Workbench tools, and so on) have been ported
to the DOS environment. It is even possible to get csh and uucp for the PC.
There are public-domain versions of almost all of these. Many companies offer
special versions of their UNIX products that will run on DOS, plus there are
companies such as Mortice Kern Systems which specialize in porting UNIX
tools to DOS.

The result of all this is that it is possible (in 1988) to get a reasonable
UNIX box for $2,500. This would include an AT compatible, 20Mb disk and
one of the UNIX ports. That’s not bad, considering it would have cost you
about $25,000 for the same thing only six years ago. Of course, for a little more
money ($5,000), it is possible to buy a preconfigured UNIX box, such as an
AT&T 7300, or an HP portable.

Alternatively, you can buy a coprocessor board with a real 32-bit micro-
processor and add it to your existing microcomputer or replacement mother-
board. This way you can still run all the existing software that you ran before
UNIX arrived. Such systems range from $600 to $2,000 and are available from
a variety of vendors including AST, Intel, Opus Systems and others.

Network File Systems UNIX Meets The Real World 291

It is also possible to go the other way. For example, many vendors sell
IBM PC-compatible coprocessor boards that fit into their 32-bit bus. This
would allow you to be able to run existing UNIX software and also begin to run
DOS. See the section on Emulators and Coexistence elsewhere in this chapter
for more on this.

The Future chapter discusses the future of UNIX on a PC. Another
source of related material is "The UNIX System on the IBM PC" by Phil
Hughes in UNIXWORLD, vol. 3, no. 3, March 1986.

12.8 Network File Systems

By using a personal workstation you have complete control of your own
machine’s processing power, but what about its files? You may have some files
that are your own, but it is likely that most files you access are shared. For
example, there is no reason to have your own copy of the C compiler.

Network file systems allow everyone to share files. This allows more
convenient information sharing and provides better disk space usage. Further-
more, it is more cost effective to buy a single large disk rather than provide
small cheap disks at each workstation. The small disks are typically so much
slower that even access over a network makes communication with the large
disk faster. Other advantages are that backups are easier, management is easi-
er, and since UNIX treats devices like files, printers and others peripherals are
just as easily shared.

Shared file systems reduce the need for multiple copies of the same infor-
mation. Expensive resources such as printers, tape drives and special comput-
ing hardware can be shared. Two very popular (but incompatible) systems are
NFS (developed by Sun) and RFS (developed by AT&T).

RFS is designed to provide UNIX file system semantics across a network
of computers. The result is a file system that is quite transparent as to where
your files reside. One drawback of this is that non-UNIX file systems cannot
easily be integrated into RFS, since they do not support UNIX semantics. RFS
is called stateful, because it maintains the state of open files at the file server
where the file resides. This approach is very efficient but can cause difficulties
when a remote file server crashes causing you to lose state. RFS is supplied as
part of System V.

In contrast to RFS, NFS is stateless. This means that no state is main-
tained for open files at the remote server. In theory, this is less efficient since

Network File SystemsUNIX Meets The Real World292

the remote file server may have to reopen a file for each network I/O transac-
tion. However, caching helps dramatically. More importantly, when a remote
file server crashes, recovery is transparent to the client since the server has no
state to lose. Unfortunately, some UNIX semantics are impossible to support if
the remote server does not save state. Thus, NFS does not support all extant
UNIX programs. At the same time, the set of semantics supported is relatively
primitive enough that most non-UNIX file systems can be accessed under NFS.

Both RFS and NFS are well supported and have a large set of adher-
ents. Interestingly, we have seen implementations of NFS on top of RFS and
vice versa for people who just have to have it all. Unfortunately, there is no
clear choice – each system has its advantages and disadvantages. One thing
that is clear is that they are the dominant network file systems at this time and
probably will remain so.

The particular problem of accessing file systems from other operating sys-
tems may turn out to be an unsolvable problem for arbitrary systems. While
NFS can do it, access is limited. For example, it is impossible for a UNIX sys-
tem to understand some other operating system’s protection mechanism. MS-
DOS has no protection system to speak of. VAX/VMS on the other hand, has
access control lists, which cannot possibly be mapped on to the UNIX file sys-
tem. Other problems include mapping user IDs, file names, record formats, and
so on. A paper which discusses the problem faced by a generic file system is
"GFS Revisited – or – How I lived with Four Different Local File Systems" by
Matt Koehler, Summer 1987 USENIX Conference Proceedings.

While not as popular, there are some other file systems that are worth
mentioning. Peter Weinberger’s Version 8 Network File System (described in
the Summer 1984 USENIX Conference Proceedings) served as an example for
many of the other UNIX network file systems, including the Extended File Sys-
tem (EFS) of Masscomp and Todd Brunhoff’s RFS (not to be confused with
AT&T’s RFS) from Tektronix. Especially noteworthy about Brunhoff’s RFS is
that it is available for the cost of the media and postage, and it comes with com-
plete sources. While you may not be interested in running it, the price makes it
worthwhile for simply being able to study the code.

The Newcastle Connection was one of the first popular distributed UNIX
file systems. Unlike the other systems mentioned here, the Newcastle Connec-
tion provided support for distributed files by providing a modified open() routine
in the standard C library. The advantage of this over all the other approaches
was that no change was necessary to the kernel to support it. While it had obvi-

Networking UNIX Meets The Real World 293

ous disadvantages (such as nontransparent file names), it is often mentioned in
research, as many people still use this approach for other distributed problems.
You can read more about it in "The Newcastle Connection or UNIXes of the
World Unite!" by D. Brownbridge et al. in Software – Practice and Experience,
vol. 12, 1982.

CMU’s Andrew has a file system called VICE. VICE was specifically
designed to support a distributed file system of 5,000 workstations. Because of
this, it works differently than the other file systems mentioned here. For exam-
ple, open() normally causes transfer of the entire file to the workstation. This
avoids any network transmission for read() and write(). Given reasonably
sized disks, caching on a per file basis reduces loading on the network and
servers substantially. VICE is further described in "The ITC Distributed File
System" by M. Satyanarayanan, et al., Proceedings of the 10th ACM Sympo-
sium on Operating System Principles, December 1985.

Two other systems that are occasionally found on UNIX class machines
are DEC’s DECnet and Apollo’s DOMAIN network. While both predate NFS
and RFS, they were originally designed for each company’s proprietary operat-
ing system, inhibiting distribution. This is unfortunate as each has interesting
features. Apollo’s network is the most unified of all the networks mentioned
here in that it provides for transparent load sharing on CPUs distributed across
the network.

12.9 Networking

Networking includes the topic of network file systems as well as ranging
from low-level hardware to high-level software problems. While networks are
a subject of intense debates at standards conferences, there are many propri-
etary schemes, site constraints, financial restrictions and changing technolo-
gies. So, approach networking with an open mind. Expect the solutions to
require a lot of design work. There are few easy answers in the real world of
networking.

Simply getting your UNIX machine on a network requires addressing the
low-level hardware and software issues. The network may be a proprietary
network such as Appletalk or a standard network such as IEEE 802.3. You
will need the hardware such as interfaces to Ethernet, fiber optic or twisted
pair, and you will need some software that understands the network protocols.

Once you have your system connected to the network, you need soft-
ware that understands the other machines on the network. This includes net-

NetworkingUNIX Meets The Real World294

worked file systems but can also mean print spooling, electronic mail, window-
ing, remote computation and distributed processing.

 Two of the most common total solutions are TCP/IP based and OSI
based. Many UNIX boxes are sold with TCP/IP support bundled in, making
this very popular. TCP/IP was originally designed under a grant by the U.S.
government to support the Arpanet, a network used by the Defense Depart-
ment. Strictly speaking, it is not a product but a design. However, anyone’s
TCP/IP products are "interoperable" meaning that they allow any machine to
communicate with any other machine no matter what operating system is run-
ning or how many bits in a byte one uses. For more information on TCP/IP,
contact the Arpanet Network Information Center.

Some of the technology used to implement network file systems is
based on the concept of a remote procedure call. Code executing on
one machine may call subroutines on a different machine. Distrib-
uted computing becomes possible with this technique as well.

Remote Procedure Call (RPC)

OSI (Open Systems Interconnect) is a set of international standards that
are also interoperable. However, the standards are much newer, and while
potentially technically superior, have not been implemented by as many vendors
as the TCP/IP protocols have. MAP and TOP are OSI-based standards
designed specifically for particular environments. MAP from General Motors is
used in manufacturing environments, and TOP from Boeing Computer Services
is used in office environments. GOSIP from the U.S. National Bureau of Stand-
ards, is an OSI-based standard for government use.

The idea of interoperability is rather nice in theory but requires a substan-
tial amount of computer power. For example, translating every single byte, say
from EBCDIC to ASCII, can greatly slow down a file transfer. PCs, Macin-
toshes and other small computers are not capable of supporting multiple pro-
cesses or anything requiring heavy computations. Thus, networking UNIX
machines to many personal computers requires much more limited solutions. A
good article on this topic is "PC DOS/UNIX Networking" by Judi Uttal in
UNIXWORLD, vol. 4, no. 10, October 1987.

Parallel Processing UNIX Meets The Real World 295

There are several other forms of networking readily available for UNIX
systems, although not as popular as TCP/IP and OSI. These include SNA
(IBM), XNS (Xerox), DECnet (DEC) and Appletalk (Apple). All of these
started out as proprietary systems. And while some of them are technically
sound, their strength is more due to their large installed bases and support by
their parent company. TCP/IP and OSI, on the other hand, are successful due
to their openness and availability. A good article on SNA in the UNIX environ-
ment is "SNA Communications Under UNIX" by Jerome Yochelson, DEC Pro
Extra, May 1986.

12.10 Parallel Processing
"llooggiinn::"

For physical reasons related to gate delays, finite wire length and the
propagation of electric signals, it is expected that CPU performance will reach
a limit that cannot be broken no matter what technology is used. Our fastest
computers use hardware within an order of magnitude of this limit. In order to
surpass it, we must use multiple processing units at the same time. This is the
basis of parallel processing.

Parallel processing can occur at many levels in a system. The lowest lev-
els in hardware are quite common. For example, busses usually have separate
lines for each address and data bit so they can be active concurrently. Going
up a level, it is also quite common for CPUs to pipeline instruction fetching,
decoding and execution with at least three separate processors working in par-
allel.

Machines with multiple execution units are capable of even richer paral-
lelism. This level is typically the lowest level that is controllable by software
making it the first level of interest to UNIX designers and programmers. And
of course, the software that is concerned first with such hardware is the kernel.

The UNIX kernel was not originally written for parallel processing.
Although device drivers work in parallel with the CPU, they do not have the
same liberties to roam through memory that the CPU does. Modifications that
must be made to the kernel to support multiple processors are typically to pro-
vide some type of protection to data structures that only the primary CPU
accesses. For instance, multiple cooperating processors may share the queue
of processes ready for service. When a processor is finished with one task, it
takes the next ready process. The idea is that if we have say 100 processes
and three processors, we can run in one-third the time required by only one pro-

Real-TimeUNIX Meets The Real World296

cessor. And if we add a processor, we will run in one-fourth the time. In reali-
ty there is some overhead for sharing access to common data structures but
this can be quite minimal compared to user processing time. Systems using this
technique are Encore, Elxsi and Sequent.

Certain types of hardware provide parallelism explicitly under user con-
trol. A limited form of this is when code must be generated to access CPU-
peripherals such as a dedicated floating-point chip. One possible way of signal-
ing this is by calling the C compiler with a different math library. The math
library then accesses the floating-point chip like a peripheral.

A more sophisticated form appears in the VLIW (Very Long Instruction
Word) technology of Multiflow Computer, Inc. Instructions generated by the
VLIW compiler control a large number of dedicated logic units, allowing many
operations to occur in a single cycle. In this case, the compiler effectively pro-
vides the parallelism at the user level, but without any assistance from the
user. (This might be considered taking horizontal microcode to the extreme.)

Classical pipelining is available on supercomputers such as the Cray-2.
Here, parallelism occurs at the user level. Although it is not necessary for the
user to control it directly, algorithms designed for parallel execution show great
improvements when running in such environments. On the other hand, more
flexible communications exhibited by systems such as the BBN Butterfly and
the Intel Hypercube demand much attention to algorithm design to show any
improvement at all.

Good references on such systems are "Parallel Processing," a series of
articles by Omri Serlin that appeared in UNIXWORLD starting in January
1986. The series reviews various types of parallel processing on UNIX
machines. Other UNIX companies producing parallel computers include Alliant
Computer Systems Corp., Arete Systems Corp., Concurrent Computer Corp.,
Elxsi, Encore Computer Corp., EnMasse Computer Corp., Flexible Computer
Corp., Masscomp, Sequent Computer Systems Inc.

12.11 Real-Time Processing, UNIX Executives
"I want it now." – Elizabeth Ressler (at age 4)

Real-time computing refers to a computer system’s ability to trigger and
respond to external events within a known time period. For example, a comput-
er that is controlling a robot arm might have to provide new joint positions 100
times per second in order to produce smooth motion.

Real-Time UNIX Meets The Real World 297

UNIX was developed as a timesharing system with little regard to
response time. There are only very crude tools in most UNIX systems for deal-
ing with the problems of response and latency.

For instance, before BSD 4.2 and System III, it was impossible to get the
system to suspend a process for intervals of less than a second. And even if
you asked to sleep for some number of seconds, the system made no guaran-
tees about when the process would resume saying, "…may be an arbitrary
amount longer because of other activity in the system."

Workarounds to these problems became common, but unfortunately, dif-
fered from site to site. Busy-waiting was the simplest solution for most users,
although it provided no guarantees either. Another was to create an I/O device
in which, reading n bytes from it, would do nothing but have the side effect of
taking n milliseconds to do it. This had the advantage of better response, since
the driver (running in the kernel) could reschedule the process as soon as it
was done. However, there were still no guarantees since another process
could still be executing with higher priority.

Worse, processes could be swapped out to disk while system calls were
executing. There was no way to lock a process or particular pages of a pro-
cess in memory.

Besides timing, there are other longstanding problems with UNIX support-
ing real-time processing. For example, scheduling is crude. The nice system
call provides hints to the scheduler, but in a very limited way. Most systems do
not support creating files contiguously for optimal disk access, or locking pages
of memory, or otherwise communicating with the pager. Many systems have
unreliable or overly complex and expensive signaling and synchronization mech-
anisms for access to shared resources.

Newer versions of UNIX, beginning with System III and 4.2BSD, support
finer levels of control with the addition of extra system calls. These systems
still do not guarantee response times, but they improve the likelihood dramatical-
ly. The resulting systems are sufficiently responsive that real-time tasks can be
implemented. Even better are UNIX systems designed for real-time response
to begin with. While you may see what resembles a UNIX system, do not be
surprised to find that these real-time UNIX systems have completely rewritten
kernels. Some of the companies providing real-time UNIX systems are Alcy-
on, AT&T, Gould, Hewlett-Packard (Spectrum), Honeywell, IBM (AIX/VRM),

SecurityUNIX Meets The Real World298

Integrated Solutions (UniWorks), MassComp (RTU), Modcomp (REALIX),
and Motorola (cXV/RT).

Since UNIX has been so lacking in real-time facilities, many companies
have offered UNIX-like systems built around an entirely new kernel. With
standardization of real-time UNIX extensions expected after 1989, it is entirely
reasonable to look to a non-AT&T based UNIX-workalike. Some companies
providing such real-time UNIX-like systems are Action Instruments (IC-DOS),
Charles River Data Systems (UNOS), Technical Systems Consultants
(UniFLEX).

Yet another alternative for generating fast UNIX systems is a UNIX
executive. Executives are operating systems without a lot of baggage, like a
file system, a shell and all the user-level programs. Again, this is an area that is
not standardized, but typically such systems are used for controllers that require
a set of cooperating applications under control of a minimal UNIX kernel.

Such systems are often completely ROM’ed (a floppy is a luxury here)
and start running at power-on. Good candidates for running under executives
are applications that do not change often, but are complex and have real-time
requirements, such as network gateways, laser printers and robot controllers.

Companies offering these kinds of executives are Emerge Systems
(RTUX), Eyring Research Institute (pDOS), Industrial Programming Inc.
(MTOS), JMI Software (C Executive), Ready Systems (VRTX) and Software
Components Group (pSOS). Many of these also include cross-development
tools such as downloaders, cross-compilers, cross-debuggers and cross-
assemblers.

An excellent reference for further information on real-time UNIX is the
article "UNIX Overcomes Its Real-Time Limitations" by Wendy B. Rauch-
Hindin in UNIXWORLD, vol. 4, no. 11, November 1987.

12.12 Security
"If you give someone who knows about computer systems enough time ..., he’ll
find a way to defeat the existing controls." – David Stryker in Subversion of a
’Secure’ Operating System

UNIX originally had a nominal security system that followed the classic
philosophy of solving 90 percent of the problems with 10 percent of the work.
But while spartan, the security system of UNIX was nonetheless superior to
that of most other operating systems at the time.

Security UNIX Meets The Real World 299

UNIX was also unique in being up front about its security system. The
fascinating papers "On the Security of UNIX" by Dennis Ritchie, and
"Password Security" by Robert Morris and Ken Thompson, document the evo-
lution of UNIX security, including several times when it was successfully com-
promised. The authors note that one of biggest blemishes in UNIX security is
that the concept of a superuser with unlimited privileges means that it possible
to breach an entire system with only one password. This is kind of like putting
the trap door right on your front porch, where everyone knows to start looking
for it. (Serious security is only achieved by buying your own machine, and not
hooking it up to modems or a networks.)

UNIX was originally supplied with an encryption function based on
the German WWII Enigma cipher. Passwords were encrypted this
way, for example. The cipher was known to be breakable, but as
Morris and Thompson point out, key searching using dictionaries,
mailing lists, valid license plate numbers in the state, and so on, was
easier than trying to develop a general method of inverting the
encryption algorithm.

In 1984, Reeds and Weinberger published a paper in the BLTJ
describing several cryptanalytic techniques that could be used to
defeat the UNIX Enigma implementation. In 1986, Bob Baldwin
released the "Crypt Breaker’s Workbench." CBW incorporated
Reeds and Weinberger’s suggestions with several enhancements,
providing a set of tools that allows you to easily crack most ciphered
messages. CBW is available in the comp.source.unix archives.

UNIX is now supplied with the U.S. National Bureau of Standards’
DES (Data Encryption Standard). DES is much stronger than Enig-
ma, and although also theoretically breakable, would require the
resources of a supercomputer for several days even with the CBW
approach. DES is slow when implemented in software, but key
searching on a hardware implementation of DES is probably still a
profitable means of attack.

Export of DES to nonfriendly countries is controlled by the U.S.
Department of Commerce. They have taken a very conservative
stance on DES, and thus a restricted version of System V exists,
solely for export. This International Edition comes without the crypt
command, and various other extensions which use DES.

Crypt Breaker’s Workbench

SecurityUNIX Meets The Real World300

Of course, this was partly for convenience. After all, the designers were
the primary users of the system. And UNIX grew up in research laboratories
and schools, where security was not a priority. The default file protection
allowed anyone to read anyone else’s files.

This was great for learning. For example, when you wanted to see an
example of how to use a function you weren’t familiar with, and there wasn’t
enough (or any) documentation in the manuals, you could just search the entire
system (usually with a grep nested in a find).

Now that UNIX lives in a networked environment, this security (or lack
of it) extends across networks. While networks often enforce a layer of securi-
ty of their own, many LANs bend over backwards attempting to extend the
ease of using UNIX from one machine, to the entire network. (For example,
some local area networks allow a superuser from one machine, root access to
all the machines on the network.)

Nonetheless, people insisted on keeping data secure, and UNIX has cer-
tainly grown in complexity because of this. Most UNIX systems give you a fair
chance at doing a good job of protecting your data, if you use a little common
sense and plug all the right holes. (For example, using long passwords and
changing them frequently is a must on any computer, and no less so on a UNIX
system.)

There are several commercial products that actually prowl through your
UNIX system looking for possible security problems. These include SystemAd-
min (UniSolutions Associates) and USECURE (Unitech Software Inc.). Anoth-
er way to learn about security holes is to read the comp.unix.wizards news-
group on Usenet.

The National Computer Security Center of the U.S. Department of
Defense has established a grading system (known as the Orange Book) for all
computer system’s security. Actually getting a rating requires a lengthy period
(don’t bet on under a year) and a lot of work, so it is not surprising that few
UNIX vendors are even applying for the lowest, weakest rating. As of July
1987, only Gould’s UTX/32S had a C2 (minimal security) rating.

Workstations UNIX Meets The Real World 301

After having the NCSC certify UTX/32S at the C2 level of security,
Gould offered a color television to anyone who could read a particular
protected file, during the 1987 UNIX Expo.

Darryl Wagoner decided the system was indeed secure, but that the
operators weren’t. He convinced one of them to run ls in his directo-
ry, which contained a trojan-horse version of ls. Normally this
would not have been a problem, but the operators had earlier followed
a third-party vendor’s directions while installing some software. The
directions included putting . at the beginning of the path. Once they
had committed that mistake, the trojan horse could execute, and Dar-
ryl had his way.

Secure Doesn’t Mean Idiot-Proof

Unfortunately, modifying UNIX to be more secure means denying some
of the freedom that has made it so attractive in the past. For example, the
superuser notion allows unrestricted freedom to bypass any normal security
conventions. This concept has no place in a secure system.

The article "How Secure is ‘Secure’" by Gary Grossman in UNIX
REVIEW vol. 4, no. 8, August 1986 is recommended for further reading on
UNIX and the Orange Book ratings. Another article on security is "Security
for Superusers, Or How to Break the UNIX System" by Rick Farrow in UNIX-
WORLD, vol. 3, no. 5, May 1986. Two papers on B-level systems appeared in
the Summer 1987 USENIX Conference Proceedings: "UNIX without the Super-
user" by M. S. Hecht et al., and "Partial Model for a B-Level UNIX" by Frank
Knowles. The October 1984 AT&T BLTJ has a set of papers on security,
including the one discussing how to break crypt.

12.13 Workstations

Workstations are difficult to define rigorously. Our definition of a worksta-
tion is a single-user multitasking computer system with at least 4Mb of RAM, a
1,000 x 1,000 pixel screen in either black and white or color, a pointing device
such as a mouse, disk storage of at least 100Mb, and a 1 to 10MIPS CPU. In
practice, this definition may fail to capture certain attributes that are important
to people. For example, many workstations have no disks, accessing files over
a local area network.

WorkstationsUNIX Meets The Real World302

More important than the minutiae of the definition is the spirit of it. Work-
stations are almost as powerful as mainframes for a fraction of the price.
They’re personal – they sit on your desk. No one else steals your cycles. If
your coworker’s workstation crashes, yours continues running.

While UNIX wasn’t born or designed to run on a workstation, it has clear-
ly come to dominate it and reshape it. Yes, it did exist before UNIX infested
the world, but on expensive hardware with proprietary operating systems that
made dedicated applications like CAD/CAM the primary user of such tools.

Besides destroying most other operating systems throughout the worksta-
tion world, the primary thing that UNIX did was to bring down their price.
While some may argue that this was inevitable given time and the ever decreas-
ing price of hardware, UNIX forced vendors to be price competitive as well as
to allow functional comparison of workstations. This was impossible before
UNIX arrived.

Indeed, prior workstation vendors have either left the scene (e.g., Three
Rivers Corp.), admitted UNIX into their universe (e.g., Apollo), or slashed profit
margins to the bare minimum to survive. Whether new workstation vendors
provide UNIX or something much superior and innovative, they face stiff com-
petition in the real world.

Don’t get us wrong – we would willingly give up our UNIX workstations
if only there was something better. We keep careful watch on potential hope-
fuls including the Amiga, the Atari ST, the Mac II and the many Smalltalk
workstations.

After the JAWS wars (covered in the History chapter), the market has
settled out somewhat. A few of the original workstations vendors remain such
as Apollo, Sun and numerous vendors using Microsoft’s and SCO’s XENIX.
Some markets have specialized vendors such as Silicon Graphics and Pixar for
graphics and Masscomp for real-time scientific work. All of the old mainframe
vendors (IBM and the seven dwarfs) have deigned to offer UNIX workstations
to survive including IBM, Data General, DEC, HP and Unisys (the merger of
Sperry, Rand, Univac and countless other companies). Other workstation ven-
dors worthy of note include Intergraph Corp., Prime Computer Inc., and Tek-
tronix Inc.

3B/Journal
(See Owens-Liang Publications, Ltd.)

ABC Development Systems, Inc.
2489 Rice Street, #40
St. Paul, MN 55113
612-482-8584

Abmind Corporation
722 Live Oak Way
San Jose, CA 95129
408-257-7298

Absoft Corp.
4268 N. Woodward Avenue
Royal Oak, MI 48072
313-549-7111

Access Technology, Inc.
6 Pleasant Street
South Natick, MA 01760
617-655-9191

Ace Microsystems Ltd.
Challenger House
125 Gunnersbury Lane, London
England W3 8LH
01-993-5036

Acme Computer Co.
P.O. Box 51193
Seattle, WA 98115
206-522-6655

Acorn Systems, Ltd.
911 South 47th Street
Philadelphia, PA 19143
215-387-6150

Appendix A: Addresses
This appendix contains the addresses of vendors, schools, and groups

referred to throughout the book. A name in parentheses preceding an address
denotes a shorthand name that many refer to the addressee by. For example,
the "Association for Computing Machinery" is usually referred to as "ACM."
(And who can blame them with a name like that?!)

When electronic mail addresses are given, these are preferred over
phone or postal mail.

303

Appendix A: Addresses304

Adaptive Optics Associates
54 Cambridgepark Drive
Cambridge, MA 02140
617-864-0201

Addison-Wesley Publishing Co.
Jacob Way
Reading, MA 01867
800-447-2226

Adobe Systems, Inc.
1585 Charleston Road
P.O. Box 7900
Mountain View, CA 94039-7900
415-961-4400

AGS Computers, Inc.
1139 Spruce Drive
Mountainside, NJ 07092
201-654-4321

AIM Technology
3350 West Bayshore Road, Suite 203
Palo Alto, CA 94303
415-856-8649

Alcyon Corp.
5010 Shoreham Place
San Diego, CA 92122
619-587-1155

Alliant Computer Systems Corp.
42 Nagog Park
Acton, MA 01720
617-263-9110

ALMA
Rue du Tour de l’eau
ZAC de Champ Roman
38400 St. Martin d’Heres
France
33-76-51-23-00

ALSYS S.A.
29 Avenue de Versailles
78170 La Celle Saint-Cloud
3-918-12-44

Altos Computer Systems
2641 Orchard Parkway
San Jose, CA 95134
408-946-6700

Amdahl Corp.
1250 East Arques Avenue
P.O. Box 3470
Sunnyvale, CA 94088
408-737-5489

American Management Systems Inc.
1777 N. Kent Street
Arlington, VA 22209
703-841-6289

AMIX, c/o IPA
P.O. Box 919
Ramat-Gan
Israel, 52109
00972-3-715770
amix@bimacs.bitnet
amix@bimacs.biu.ac.il

Ana-systems
697 Saturn Court
Foster City, CA 94404
415-341-1768

ANSI
1430 Broadway
New York, NY 10018
212-354-3300

Appendix A: Addresses 305

ANSI X3J11 Committee
c/o Thomas Plum, Vice Chair
Plum Hall Inc.
1 Spruce Avenue
Cardiff, NJ 08232

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824
617-256-6600

(ADUS)
Apollo DOMAIN Users’ Society
c/o Andrea Woloski, ADUS Coordina-
tor
Apollo Computer Inc.
330 Billerica Road
Chelmsford, MA 01824
617-256-6600, x4448

Ardent Computer Corp.
880 Maude Avenue
Sunnyvale, CA 94086
408-732-0400

Arete Systems Corp.
2040 Hartog Drive
San Jose, CA 95131
408-263-9711

Arpanet Network Information Ctr.
SRI International
Menlo Park, CA 94025
415-859-3695
NIC@SRI-NIC.ARPA

Artelligence, Inc.
14902 Preston Road, Suite 212-252
Dallas, TX 75240
214-437-0361

Asicom, S.A.
Aragon, 264, 264, 6
08007 Barcelona
Spain
3-2159000

ASP
711 Chemeketa Drive
San Jose, CA 95123
408-226-8819

(ACM)
Association for Computing Machinery
11 West 42nd Street
New York, NY 10036
212-869-7440

Association Francaise des Utilisa-
teurs d’UNIX
Supelec, Plateau du Moulon
91190 Gif-Sur-Yvette
France
1-60-19-1013

AT&T Bell Laboratories Technical
Journal
Room 1H321
101 J. F. Kennedy Parkway
Short Hills, NJ 07078

AT&T Customer Information Center
2833 North Franklin Road
Indianapolis, IN 46219
800-432-6600

Appendix A: Addresses306

AT&T Information Systems
190 River Road
Summit, NJ 07901
201-658-7690

AT&T UNIX Software Licensing
P.O. Box 25000
Salem Building
Greensboro, NC 27420-5000
800-828-8649

AT&T UNIX System Training
P.O. Box 45038
Jacksonville, FL 32232-9974
800-247-1212

August Mohr Consulting & Publishing
2670 Lode Street
P.O. Box 1757
Santa Cruz, CA 95061
408-475-9711

Autodesk, Inc.
2320 Marinship Way
Sausalito, CA 94965

(AUUG)
Australian UNIX Users’ Group
P.O. Box 366
Kensington
N.S.W. 2033
Australia
61-3-344-5225
uunet!munnari!auug
auug@munnari.oz.au

(BRL)
Ballistic Research Lab
ATTN: SLCBR-SE-P
Aberdeen Proving Ground, MD 21005
301-278-6884

Basis Inc.
5700 Harper Drive NE, #290
Albuquerque, NM 87109
505-821-4407

Basmark Corp.
1717 East Ninth Street, #911
Cleveland, OH 44114
216-621-7650

bbj Computers International Inc.
3707 Williams Road
San Jose, CA 95117
408-249-9900

(BellCore)
Bell Communications Research
435 South Street
Morristown, NJ 07960

BIM, S.A.
Kwikstraat 4
B-3078 Everberg
Belgium
2-759-59-25

Boeing Computer Services Company
Software and Education Products Grp.
P.O. Box 24346, Mail Stop 7K-10
Seattle, WA 98124

(BBN)
Bolt Beranek and Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

BOSS Systems
942A Sherwood Avenue
Coquitlam, British Columbia
Canada V3K 1A9
604-522-0661

Appendix A: Addresses 307

Britton Lee, Inc.
14600 Winchester
Los Gatos, CA 95030
408-378-7000

(BSTJ)
See AT&T Bell Laboratories Techni-
cal Journal

BYTE
70 Main Street
Peterborough, NH 03458
603-924-9281

CAETEC Systems, Inc.
1 Dunwoody Park
Suite 130
Atlanta, GA 30338
404-395-7844

Cambridge Digital
P.O. Box 568
65 Bent Street
Cambridge, MA 02139
800-343-5504

Canadian Information Processing
Society
221 Jameson Avenue
Toronto, Ontario
Canada M6K 2Y3

Canadian UNIX Network & Int’l
Xchange
62 Simpson Street
St. Catharines, Ontario
Canada

(CMU)
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213
412-268-2565

CBM Type
549-A Weddell Drive
Sunnyvale, CA 94089
408-734-4300

Clever Connections Ltd.
Unit 2.10, 75 Whitechapel Road
London
England E1 1DU
01-247-7467

Columbia University
Computer Science Department
New York, NY 10027

Comeau Computing
91-34 120 Street
Richmond Hill, NY 11418
718-849-2355

CommUNIXations
(see /usr/group)

Computer Literacy Bookshop
520 Lawrence Expressway
Sunnyvale, CA 94086
408-730-9955

Computer Systems Resources, Inc.
Annette Hall
1170 South Omni International
Atlanta, GA 30303
404-586-9663

Appendix A: Addresses308

Computer Technology Group
310 South Michigan Avenue
Chicago, Illinois 60604
800-323-8649

Computing Systems
(see USENIX Association)

Concentric Associates, Inc.
Harmon Cove Towers, #8A
Secaucus, NJ 07094
201-866-2880

Concept Omega Corp.
102 Old Camplain Road
P.O. Box 1035
Somerville, NJ 08876
201-722-7790

Concurrent Computer Corp.
197 Hance Avenue
Tinton Falls, NJ 07724
201-758-7000

Conner Scelza Associates, Inc.
4204 East Ewalt Road
Givsonia, PA 15044
412-443-3222

Control-C Software Inc.
6441 SW Canyon Court
Portland, OR 97221
503-292-3508

Convex Computer Corp.
701 Plano Road
Richardson, TX 75081
214-952-0200

Cray Research Inc.
608 Second Avenue
Minneapolis, MN 55402
612-333-5889

CRIL
12 Bis Rue Jean Jaures
92807 Puteaux
France
1-47-76-34-37

Cromemco, Inc.
280 Bernardo Avenue
P.O. Box 7400
Mountain View, CA 94039
415-964-7400

Cucumber Bookshop, Inc.
5611 Kraft Drive
Rockville, MD 20852
301-881-2722

C Users’ Group
(see R&D Publications, Inc.)

Custom Software Systems
P.O. Box 678
Natick, MA 01760
617-653-2555

Daniel Farkas and Associates
P.O. Box 74
Katonah, NY 10536
914-232-3875

Data Access Corporation
1400 SW 119 Avenue
Miami, FL 33156
305-238-0012

Appendix A: Addresses 309

Databoard Inc.
323 Vintage Park Drive
Foster City, CA 94404
415-571-8811

Data Language Corporation
47 Manning Road
Billerica, MA 01823
617-663-5000

Datix Systems
30 Rustic Road
Yaphank, NY 11980
516-924-7920

Definicon Systems
31324 Via Colinas #108/9
Westlake Village, CA 91362
818-889-1646

(DEC)
Digital Equipment Corporation
Continental Boulevard
Merrimack, NH 03054
603-884-0884

(DEC Educational Services)
Digital Equipment Corporation
Educational Services BUO/58-12
12 Crosby Drive
Bedford, MA 01730
617-276-4949

(DECUS)
DEC Users Society
219 Boston Post Road
BP02
Marlborough, MA 01752
617-480-3418

Digital Information Systems Corp.
11070 White Rock Road, #210
Rancho Cordova, CA 95670
916-635-7300

Digital Sound Corporation
2030 Alameda Padre Serra
Santa Barbara, CA 93013
805-569-0700

Djavaheri Bros.
697 Saturn Court
P.O. Box 4759
Foster City, CA 94404
415-341-1768

(DKUUG)
Dansk UNIX-system Burger Gruppe
Studiestrade 6
DK-1455 Copenhagen K
Denmark
45-1120115

D.L. Buck & Associates, Inc.
6920 Santa Teresa Boulevard
San Jose, CA 95119
408-972-2825

DSD Corporation
10632 N.E. 37th Circle
P.O. Box 2669
Kirkland, WA 98083
206-822-2252

Dyadic Systems, Ltd.
Park House, The High Street
Alton, Hampshire
United Kingdom GU34 1EN
420-87024

Appendix A: Addresses310

Eakins Associates, Inc.
67 East Evelyn Avenue
Mountain View, CA 94041
415-969-5109

Elsevier Science Publishers Co Inc.
P.O. Box 1663
Grand Central Station
New York, NY 10163

Elxsi
2334 Lundy Place
San Jose, CA 95131
408-942-111

Encore Computer Corporation
257 Cedar Hill Street
Marlborough, MA 01752
617-460-0500

ENDOT, Inc.
11001 Cedar Avenue
Cleveland, OH 44106
216-229-8900

EnMasse Computer Corp.
125 Nagog Park
Acton, MA 01720
617-263-8711

Enterprising Ideas, Inc.
2190 West Drake, Suite 325
Fort Collins, CO 80526
303-223-5345

(EUUG)
European UNIX Systems User Group
Owles Hall
Buntingford, Herfordshire
England SG9 9PL
44-763-73039
uunet!mcvax!inset!euug
euug@inset.co.uk

Fenix Software
P.O. Box 15649
Sarasota, FL 34277
813-351-5532

Flexible Computer Corp.
1801 Royal Lane, Bldg. 8
Dallas, TX 75229
214-869-1234

Frame Technology Corporation
2911 Zanker Road
San Jose, CA 95134
408-433-3311

Franz Inc.
1995 University Avenue
Berkeley, CA 94704
415-548-3600

Free Software Foundation
1000 Mass Avenue
Cambridge, MA 02138
617-876-3296

The Gawain Group
47 Potomac Street
San Francisco, CA 94117
415-626-7581

Appendix A: Addresses 311

GE Consumer Services
Department 02B
401 North Washington Street
Rockville, MD 20850
800-638-9636

General Motors Corp.
BOC HQ – Facilities Engineering
30009 Van Dyke Avenue
Warren, Michigan 48090

Genus Systems Ltd.
9A St. Colme Street
Edinburgh
United Kingdom
031-225-6934

Global Engineering Documents
2805 McGaw
Irvine, CA 92714
714-261-1455

Glockenspiel, Ltd.
30 Iona Crescent
Dublin 9
Ireland
+353-1-735140

Government Computer News
1620 Elton Road
Silver Spring, MD 20903
301-445-4405

Grand Software, Inc.
8464 Kirkwood Drive
Los Angeles, CA 90046
213-650-1089

Handle Technologies Inc.
5429 LBJ Fwy., Suite 720
Dallas, TX 75240
214-458-1415

HCR Corp.
130 Bloor Street West
10th Floor
Toronto, Ontario
Canada M5S 1N5
416-922-1937

(HP)
Hewlett-Packard, Co.
19447 Pruneridge Avenue
Cupertino, CA 95014
408-447-5126

Holistic Technology
Grona Gatan 59
414 54 Gothenburg
Sweden

Icon International, Inc.
774 S. 400 E.
Orem, UT 84058
800-225-6888

IEEE, Computer Society of the
1730 Massachusetts Avenue, N.W.
Washington, DC 20036
714-821-8380

IEEE/CS P1003
Chairperson, c/o James Isaak
Digital Equipment Corp.
ZK03-2/Y24
110 Spit Brook Road
Nashua, NH 03062
603-881-0480
decvax!isaak
isaak@decvax.dec.com

Impacc Associates
P.O. Box 93
Gwynedd Valley, PA 19437
215-699-7235

Appendix A: Addresses312

IMSL Inc.
2500 ParkWest Tower One
2500 City West Boulevard
Houston, TX 77042
713-782-6060

Inference Corporation
5300 W. Century Boulevard
Los Angeles, CA 90045
213-417-7997

InfoPro Systems
P.O. Box 220
Rescue, CA 95672
916-677-5870
infopro!unique

Information Builders, Inc.
1250 Broadway
New York, NY 10001
212-736-4433

Information Concepts, Inc.
1331 H Street, NW
Washington, DC 20005
202-628-4400

Information Technology Coordinator
Carnegie-Mellon University
Pittsburgh, PA 15213
412-268-6700

Informix Software Inc.
4100 Bohannon Drive
Menlo Park, CA 94025
415-322-4100

The Instruction Set
City House, 190 City Road
London
England EC1V 2QH
44-1-251-2128

Integraph Corp.
1 Madison Industrial Park
Huntsville, AL 35807
205-772-6318

Integrated Computer Systems
P.O. Box 45405
Los Angeles, CA 90045
213-417-8888

Integrated Micro Products
1140 Ringwood Court
San Jose, CA 95131
408-943-1902

Intel Corp.
2404 W. Beardsley Road
Phoenix, AZ 85027
602-869-3805

Intellicorp
1975 El Camino Real West
Mountain View, CA 94040
415-965-5700

Intel Scientific Computers
15201 N.W. Greenbrier Parkway
Beaverton, OR 97006
503-629-7608

Interactive Development Environ-
ments
150 Fourth Street, #210
San Francisco, CA 94103
415-543-0900

Interactive Systems Corp.
2401 Colorado Avenue
Third Floor
Santa Monica, CA 90404
213-453-8649

Appendix A: Addresses 313

(IBM)
International Business Machines Corp.
Old Orchard Road
Armonk, NY 10504
814-765-1900

International Computers Ltd.
GSBC, Lovelace Road
Bracknell, Berkshire
England RG12 4T2
01-788-7272

International Data Corp.
5 Speen Street
Framingham, MA 01701
617-872-8200

(ISO)
International Organization for Stan-
dardization
1, rue de Varembe
Geneve, Switzerland

Intrinsic OY
Kauppakatu 3 A
33200 Tampere
Finland
c77@intrin.fi

I.P. Sharp Associates, Inc.
1200 First Federal Plaza
Rochester, N.Y. 14614
(716) 546-7270

Irish UNIX Systems User Group
c/o John Carolan
19 Belvedere Place
Dublin 1 Ireland
353-1-735159

Japan UNIX Society
#505 Towa-Hanzomon Corp. Bldg.
2-12 Hayabusa-cho
Chiyoda-ku, Tokyo 102
Japan
81-03-234-2611

Jim Joyce’s UNIX Bookstore
47 Potomac Street
San Francisco, CA 94117
415-626-7581

JMI Software Consultants, Inc.
904 Sheble Lane
P.O. Box 481
Spring House, PA 19477
215-628-0846

Korean UNIX User Group
ETRI
P.O. Box 8
Daedug Science Town
Chungnam 300-32
Republic of Korea
82-042-822-4455

Laboratory Microsystems, Inc.
3007 Washington Boulevard #230
P.O. Box 10430
Marina del Rey, CA 90295
213-306-7412

Lachman Associates Inc.
1901 North Naper Boulevard
Naperville, IL 60566
312-505-9100

Lifeboat Associates, Inc.
55 South Broadway
Tarrytown, NY 10591
914-332-1875

Appendix A: Addresses314

Locus Computing Corp.
3330 Ocean Park Boulevard, #101
Santa Monica, CA 90405
213-452-2435

Logic Programming Associates, Ltd.
Royal Victoria Patriotic Building, #4
Trinity Road, London
England SW18 3SX
01-871-2016

Logicware Inc.
1000 Finch Avenue W., Ste. 600
Toronto, Ontario
Canada M3J 2V5
416-665-0022

Lucid, Inc.
707 Laurel Street
Menlo Park, CA 94025
800-843-4204

Lugaru Software Ltd.
5740 Darlington Road
Pittsburgh, PA 15217
412-421-5911

Lurnix
Number Fifty-two
2560 Bancroft Way
Berkeley, CA 94707
415-849-2167

Marc Software International, Inc.
260 Sheridan Avenue
Palo Alto, CA 94306
415-326-1971

Mark Williams Company
1430 W. Wrightwood Avenue
Chicago, IL 60614
312-472-4459

(MIT)
Massachusetts Institute of Technology
545 Technology Square
Cambridge, MA 02139

Masscomp
1 Technology Park
Westford, MA 01886
617-692-6200

MetaWare Inc.
903 Pacific Avenue, Suite 201
Santa Cruz, CA 95060
408-429-6382

Micro Applications and Hardware
15 Princess Street
Sausalito, CA 94965
415-331-6459

Micro Focus
2465 East Bayshore Road
Suite 400
Palo Alto, CA 94303
415-856-4161

Microport Systems, Inc.
10 Victor Square
Scotts Valley, CA 95066
408-438-8649

Microsoft Corp.
16011 N.E. 36th Wy.
P.O. Box 97017
Redmond, WA 98073
206-882-8080

Micro/Systems Journal
M&T Publishing, Inc.
501 Galveston Drive
Redwood City, CA 94063
415-366-3600

Appendix A: Addresses 315

Microtek Research
3930 Freedom Circle
Suite 101
Santa Clara, CA 95054
408-551-5554

Microware Systems Corp.
1866 NW 114th Street
Des Moines, IA 50322
515-224-1929

Miller Freeman Publications
Circulation Department
500 Howard Street
San Francisco, CA 94105
415-397-1881

MindCraft, Inc.
953 Industrial Avenue, #125
Palo Alto, CA 94303
415-493-7277

MIPS Computer Systems
930 Arques Avenue
Sunnyvale, CA 94086
408-720-1700

Mortice Kern Systems
35 King Street North
Waterloo, Ontario
Canada N2J2W9
519-884-2251

Mosaic Software Inc.
1972 Massachusetts Avenue
Cambridge, MA 02140
617-491-2434

Motorola Computer Systems Inc.
10700 North De Anza Boulevard
Cupertino, CA 95014
408-864-4122

Mt. Xinu
2560 Ninth Street #312
Berkeley, CA 94710
415-644-0146

Multiflow Computer, Inc.
175 North Main Street
Branford, CT 06405
800-777-1428

(NBS)
National Bureau of Standards
Gaithersburg, MD 20899
301-975-2000

(NCSC)
National Computer Security Center
9800 Savage Road
Fort Meade, MD 20755
301-859-4500

National UNIX User
Group/Netherlands
p/a Xirion bv Strawinskylaan 1135
1077 XX Amsterdam
The Netherlands

Nayland Associates
Route 2, Box 352
Nebo, NC 28761
704-652-1801

Neal Nelson & Associates
185 N. Wabash Avenue, #1908
Chicago, IL 60601
312-332-3242

Appendix A: Addresses316

(NZUSUGI)
New Zealand UNIX Systems User
Group, Inc.
P.O. Box 585
Hamilton
New Zealand
64-9-454000

NKR Research
4040 Moorpark Avenue, Suite 209
San Jose, CA 95117
408-249-2612

Numerical Algorithms Group
1101 31st Street, Suite 100
Downers Grove, IL 60515
312-971-2337

Oasys
60 Aberdeen Avenue
Cambridge, MA 02138
617-491-4180

Oesterreicheische UNIX Benutzer-
gruppe
P.O. Box 119
A-1041 Vienna
Austria
222-58801-4056

Olympus Software Inc.
1733 S. 1100 E.
Salt Lake City, UT 84105
801-487-4534

Omtool Corp.
1445 Main Street #26
P.O. Box 477
Tewksbury, MA 01876
617-851-6245

Oracle Systems Corp.
29 Davis Drive
Belmont, CA 94002
415-854-7350

Oregon Software
6915 S.W. Macadam Avenue
Portland, OR 97219
503-245-2202

Oregon State University
Department of Computer Science
Corvallis, OR 97331

O’Reilly & Associates, Inc.
981 Chestnut Street
Newton, MA 02164
617-527-4210

Owens-Liang Publications, Ltd.
P.O. Box 2409
Redmond, WA 98073-2409
206-868-0913
attmail!alpha!jou

Palomino Computer Systems, Inc.
2111 E. Baseline F-5
Tempe, AZ 85283
602-838-5993

Parallel Computers Inc.
3004 Mission Street
Santa Cruz, CA 95060
408-429-1338

ParcPlace Systems
2400 Geng Road
Palo Alto, CA 94303
800-822-7880

Appendix A: Addresses 317

Patricia Seybold’s Office Computing
Group
148 State Street
Boston, MA 02109

Parkridge Computer Systems Inc.
710 Dorval Drive, Suite 115
Oakville, Ontario
Canada L6K 3V7
416-842-6873

PD32 Users Group
Dan Efron
8910 Westmoreland Lane
Minneapolis MN 55426

Philon, Inc.
641 Avenue of the Americas
New York, NY 10011
212-807-0303

Pixar
P.O. Box 13719
San Rafael, CA 94913
415-258-8100

Plum Hall, Inc.
1 Spruce Avenue
Cardiff, NJ 08232
609-927-3770

Plus Five Computer Services
765 Westwood Drive, #10A
Clayton, MO 63105
314-725-9492

Portal Communications Co.
19720 Auburn Drive
Cupertino, CA 95014
408-973-9111

Practical Computing, Inc.
1030 West Maude Avenue, #511
Sunnyvale, CA 94086
408-749-8900

Prentice-Hall, Inc.
Route 9W
Englewood Cliffs, NJ 07632
201-592-2223

Prime Computer, Inc.
Prime Park
Natick, MA 01760
617-655-8000

Project Athena
MIT E40
77 Massachusetts Avenue
Cambridge, MA 02139

Quadratron Systems Inc.
15260 Ventura Boulevard, 18th Fl.
Sherman Oaks, CA 91403
818-789-8588

Quality Software Products
348 South Clark Drive
Beverly Hills, CA 90211
213-659-1560

Quantitative Technology Corporation
8700 SW Creekside Pl. Suite D
Beaverton, OR 97005
503-626-3081

Quintus Computer Systems, Inc.
2345 Yale Street
Palo Alto, CA 94306
415-494-3612

Appendix A: Addresses318

Radian Corporation
8501 MoPac Boulevard
P.O. Box 9948
Austin, TX 78766
512-454-4797

Rapitech Systems, Inc.
75 Montebello Rd
Suffern, NY 10901
914-368-3000

R&D Publications Inc.
P.O. Box 97
McPherson, KS 67460
316-241-1065

Relational Technology
1080 Marina Village Parkway
Alameda, CA 94501
800-446-4737

Rhodnius Inc.
250 Bloor Street E.
Toronto, Ontario
Canada M4W 1E6
416-922-1743

The r/l group
7623 Leviston Street
El Cerrito, CA 94530
415-527-1438

Robinson, Schaffer & Wright
711 California Street
Santa Cruz, CA 95060
408-429-6229

Root Computers Ltd.
Saunderson House, Hayne Street
London
England EC1A 9HH
44-1-606-7799

R Systems, Inc.
10310 Markison Road
Dallas, TX 75238
214-343-9188

Ryan-McFarland Corp.
609 Deep Valley Drive
Rolling Hills Est., CA 90274
213-541-4828

Saber Software, Inc.
30 JFK Street
Cambridge, MA 02138
617 876-7636

(SCO)
The Santa Cruz Operation, Inc.
400 Encinal Street
P.O. Box 1900
Santa Cruz, CA 95061
800-626-8649

Scientia Computer Applications Pte
Ltd.
10 Anson Road, #24-16A
International Plaza
Singapore 0207
65-2242866

Scientific Placement, Inc.
P.O. Box 19949
Houston, TX 77224
713-496-6100

Sequent Computer Systems Inc.
15450 S.W. Koll Parkway
Beaverton, OR 97006
503-626-5700

Appendix A: Addresses 319

SHL Systemhouse, Inc.
99 Bank Street, 3rd Floor
Ottawa, Ontario
Canada K1P 6B9
613-236-9734

Silicon Graphics Inc.
2011 Sterling Road
Mountain View, CA 94043
415-960-1980

Silicon Valley Software, Inc.
10011 North Foothill Boulevard, #111
Cupertino, CA 95014
408-725-8890

Silvar-Lisco
1080 Marsh Road
Menlo Park, CA 94025
415-324-0700

SimuCad
920 Incline Way, Bldg. 2
Box 3400
Incline Village, NV 89450
702-831-1399

Simulation Software Ltd.
760 Headley Drive
London, Ontario
Canada N6H 3V8
519-657-8229

Singapore UNIX Association
c/o Computer Systems Advisors Ltd.
203 Henderson Road, #1207-1214
Singapore 0315
273-0681

Smart Systems Technology
7700 Leesburg Pike
Falls Church, VA 22043
708-893-0429

Sobell Associates
333 Cobalt Way, #106
Sunnyvale, CA 94086
415-856-3460

Software A & E
1500 Wilson Boulevard
Suite 800
Arlington, VA 22209
703-276-7910

Software Alliance, Inc.
385 Elliot Street
Newton, MA 02164
617-965-5815

Software Development Systems
3110 Woodcreek Drive
Downers Grove, IL 60515
312-971-8170

Software Innovations Inc.
410 Amherst Street, Ste. 325
Nashua, NH 03063
603-883-9300

Software Ireland Ltd.
26 Linehall Street
Belfast
Northern Ireland
44-232-247433

Software Research, Inc.
625 Third Street
San Francisco, CA 94107
415-957-1441

Appendix A: Addresses320

(STUG)
Software Tools User Group
140 Center Street
El Segundo, CA 90245
213-322-2574

Sorites Group, Inc.
8136 Old Keene Mill Road
P.O. Box 2939
Springfield, VA 22152
703-569-1400

Southwest Technical Products Corp.
219 W. Rhapsody
P.O. Box 32040
San Antonio, TX 78216
512-344-0241

Southwind Software Inc.
4250 E. 47th Street S.
Wichita, KS 67210
316-524-9100

Specialized Systems Consultants, Inc.
P.O. Box 55549
Seattle, WA 98155
206-367-8649

Spectrum Technology Group, Inc.
1110 Douglas Avenue, Suite 2040
Altamonte Springs, FL 32714
305-682-1300

Specialized Systems Consultants, Inc.
P.O. Box 7
Northgate Station
Seattle, WA 98125
206-367-8649

Springer-Verlag
175 5th Avenue
New York, NY 10010
212-460-1500

SPSS Inc.
Suite 3000
444 North Michigan Avenue
Chicago, IL 60611
312-329-3680

Sritek
6615 W. Snowville Road
Cleveland, OH 44141
216-526-9433

SST Data, Inc.
4701 W. Schroeder Drive, #100
Milwaukee, WI 53223
414-355-6990

Stanford University
Computer Science Department
Stanford, CA 94305

Stellar Computer Inc.
85 Wells Avenue
Newton, MA 02159
617-964-1000

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415-960-1300

(SUG)
Sun Microsystems User Group, Inc.
2550 Garcia Avenue M/S 10-16
Mountain View, CA 94043
415-691-4343
users@sun.com
sun!users

Appendix A: Addresses 321

(EUUG-S)
Svenska Unixanvandares forening
ENEA DATA Svenska AB
Box 232, S-183 23 Taby
Sweden
46-8-756-7220

Symbolics Inc.
11 Cambridge Center
Cambridge, MA 02142
617-577-7500

Systems & Software, Inc.
3303 Harbor Boulevard
C-11
Costa Mesa, CA 92626
714-241-8650

Systems Designers Software, Inc.
444 Washington Street, Suite 407
Woburn, MA 01801
617-935-8009

Systems Union Ltd.
34 Delancey Street
London NW17NH
England
1-354-3131

Tandy Corporation
1700 One Tandy Center
Fort Worth, TX 76102
817-390-2728

(TC22 WG15)
James Isaak
Chairperson, IEEE/CS P1003
Digital Equipment Corp.
ZK03-2/Y24
110 Spit Brook Road
Nashua, NH 03062
603-881-0480
decvax!isaak
isaak@decvax.dec.com

Technical Solutions, Inc.
P.O. Box 1148
Mesilla Park, NM 88047
505-524-2154

Technology Research Group Inc.
750 Hammond Drive
Bldg 4, Suite 100
Atlanta, GA 30328
404-257-9000

Tech Valley Publishing
444 Castro Street
Mountain View, CA 94041
415-940-1500

Teknowledge, Inc.
525 University Avenue
Suite 200
Palo Alto, CA 94301
415-327-6600

Tektronix, Inc.
26600 S.W. Parkway Avenue
P.O. Box 1000, M/S 60-770
Wilsonville, OR 97070
503-685-2231

Appendix A: Addresses322

TeleSoft
10639 Roselle Street
San Diego, CA 92121
619-457-2700

TeleVideo Systems, Inc.
1170 Morse Avenue
Sunnyvale, CA 94088
800-835-3228

Template Graphics Software Inc.
9685 Scranton Road
San Diego, CA 92121
619-457-5359

Terotech
1 Nottingham Road
Melton Mowbray, Leics. LE13 0NP
England
0664-500423

Texas Internet Consulting
701 Brazos Suite 500
Austin, TX 78701
512-320-9031

Textset, Inc.
416 Fourth Street
P.O. Box 7993
Ann Arbor, MI 48107
313-996-3566

Textware International
P.O. Box 14, Harvard Square
Cambridge, MA 02238
617-864-8398

TITN, Inc.
1601 N. Kent Street, #904
Arlington, VA 22209
703-528-2662

Toshiba America Inc.
9470 Irvine Boulevard
Irvine, CA 92718
800-537-5450

Transmediair Utrecht BV
Melkweg 3
3721 RG Bilthoven
Holland
30-78-18-20

T&W Systems
7372 Prince Drive
Huntington Beach, CA 92647
714-847-9960

Ubiquitous Systems
1333 Bel-Red Road NE
Bellevue, WA 98005
206-641-8030

UNICAD
1695 38th Street
Boulder, CO 80301
303-443-6961

Unicomp
307 Big Horn Ridge Road, N.E.
Albuquerque, NM 87122
505-275-0800

UNICORN
Robert Borochoff
Federal Judicial Center
1520 H Street NW
Washington, D.C. 20005
202-786-6270

Unidot, Inc.
602 Park Point Drive, #225
Golden, CO 80401
303-526-9263

Appendix A: Addresses 323

UniForum
2400 East Devon Avenue
Suite 205
Des Plaines, Illinois 60018

Unify Corp.
3870 Rosin Ct.
Sacramento, CA 95834
916-920-9092

Uni-Ops Books
19995 Mt. View Road
Boonville, CA 95415
707-895-2050

UniPress Software, Inc.
2025 Lincoln Highway
Edison, NJ 08817
201-985-8000

Uniq Digital Technologies
28 S. Water Street
Batavia, IL 60510
312-879-1008

Unique
(see InfoPro Systems)

Unisoft Corp.
6121 Hollis Street
Emeryville, CA 94608
415-420-6400

Unisolutions Associates
6520 Green Valley Circle, #13203
Culver City, CA 90230
213-641-6739

Unitech Software, Inc.
1800 Alexander Bell Drive, Suite 101
Reston, VA 22091
703-264-3301

(UCB or Berkeley)
University of California at Berkeley
Pauline Schwartz
Computer Systems Research Group
University of California
Berkeley, CA 94720
415-642-4948
ucbvax!pauline

University of California Press
2120 Berkeley Way
Berkeley, CA 94720

University of Leeds
Dr. A.P. McCann
Dept. of Computer Studies
University of Leeds
Leeds LS2 9JT
England
+44-532-43

University of New South Wales
Department of Computer Science
P.O. Box 1
Kensignton, N.S.W. 2033
Australia

University of Utah
Dept. of Computer Science
3160 Merrill Engineering Bldg.
Salt Lake City, UT 84112
801-581-5017

UNIXEXPO
National Expositions Co., Inc.
49 West 38th Street, Suite 12A
New York, NY 10018
212-391-9111

Appendix A: Addresses324

UNIX Interessengemeinschaft
Schweiz
Universitat Zurich-Irchel
c/o Institut fur Informatik
CH-8057 Zurich Switzerland
01-2565250

UNIX Magazine
Jouji Ohkubo
c/o ASCII Corp.
jou-o@ascii.junet
81-3-486-4523

UNIX REVIEW
500 Howard Street
San Francisco, CA 94105
415-397-1881

UNIX Systems
Eaglehead Publishing Ltd.
Maybury Road
Woking, Surrey GU21 5HX
England
44-48-622-7661

UNIXuser
210 S. Helberta Avenue
Redondo Beach, CA 90277
213-372-9917

UNIXWORLD
(see Tech Valley Publishing)

USENIX Association
P.O. Box 2299
Berkeley, CA 94710
415-528-8649
{uunet,ucbvax,decvax}!usenix!office
office@usenix.org

USPDI
UNIX and C Seminars
1620 Elton Road
Silver Spring, MD 20903
301-445-4400

/usr/group
4655 Old Ironsides Drive, Suite 200
Santa Clara, CA 95054
408-986-8840

/usr/group/cdn
241 Gamma Street
Etobicoke, Ontario
Canada M8W 4G7
416-259-8122

/usr/group/UK Ltd.
5 Holywell Hill
St. Albans, Hertfordshire
England AL1 1ET
0727-36003

/usr/group Working Group on
Databases
Val Skalabrin
Unify Corp.
1111 Howe Avenue
Sacramento, CA 95825
916-920-9092

/usr/group Working Group on Graph-
ics
Heinz Lycklama
Interactive Systems Corp.
2401 Colorado Avenue, 3rd Fl.
Santa Monica, CA 90404
213-453-8649

Appendix A: Addresses 325

/usr/group Working Group on Interna-
tionalization
Brian Boyle
Novon Research Group
537 Panorama Drive
San Francisco, CA 94131
415-641-9800

/usr/group Working Group on Net-
working
c/o Dave Buck
D. L. Buck and Associates, Inc.
6920 Santa Teresa Bldg, #108
San Jose, CA 95119
408-972-2825

/usr/group Working Group on Perfor-
mance Measurements
Ram Celluri
AT&T Computer Systems
Room E15B
453 Western Avenue
Lisle, IL 60532
312-810-6223

/usr/group Working Group on Real-
time
Bill Corwin
Intel Corp.
5200 Elam Young Pkwy
Hillsboro, OR 97123
503-640-7588

/usr/group Working Group on Security
Steve Sutton
Computer Systems Division
Gould Inc.
1101 East University
Urbana, IL 61801
217-384-8500

UUNET/Usenix
P.O. Box 2299
Berkeley, CA 94710
Attn: Madeline McCall
415-528-8649

UX Software, Inc.
10 St. Mary Street, Suite 300
Toronto, Ontario
Canada M4Y 1P9
416-964-6909

VenturCom
215 First Street
Cambridge, MA 02142
617-661-1230

Verdix Corp.
Sullyfield Business Park
14130-A Sullyfield Circle
Chantilly, CA 22021
703-378-7600

Vermont Creative Software
21 Elm Avenue
Richford, VT 05476
802-848-7731

Vrije Universiteit
Postbus 7161
1007 MC Amsterdam
The Netherlands

V-Systems, Inc.
1700 E. Garry Avenue, #102
Santa Ana, CA 92705
714-261-9333

Whitesmiths, Ltd.
1500 North Beauregard Street, #110
Alexandria, VA 22311
703-379-9700

Appendix A: Addresses326

Wollongong Group, The
1129 San Antonio Road
P.O. Box 51860
Palo Alto, CA 94303
415-962-7200

(Xerox Parc)
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Zaiaz International, Corp.
2225 Drake Avenue, #17
Huntsville, AL 35805
205-881-2200

Zortec, Inc.
1717 Elm Hill Pike, Suite B-3
Nashville, TN 37210
615-360-6217

Zortech, Inc.
366 Massachusetts Avenue, Suite 303
Arlington, MA 02174
617-646-6703

Symbols

 See registered trademark
† See dagger footnote
© See copyright
™ See trademark
! editor escape 140
shell comment 152

#! shell selector 152, 170
#define 179
#include 98, 165
$ arguments, shell 138
% prompt 134, 139
& background 140, 171
* any string 144–145
-me macros 29
-mm macros 31
-ms macros 33
. current directory 144
.. parent directory 144
.cshrc 139, 207
.h suffix 179
.login 139, 207, 244
.profile 139, 207, 244
/ root file system 143, 196
:-) smiley 233
;login: 31, 111, 125

name 204
< > include file 98
< redirect stdin 135
<< redirect stdin 135, 154
> redirect stdout 135, 138
>> redirect stdout 135
? single character 145
[] character class 145

321

^ beginning of line 145
| pipe 136–137, 163, 201
‘ backquote 135

Numerics
10%/90% rule 38, 42, 202, 213, 264, 298
1040 form 157
1BSD 6, 53
2.10BSD 6
2.8BSD 6
2.9BSD 6
2BSD 6, 53
32-bit supermini, first 17
32V 6, 12, 17, 33–34
3B Journal 110, 303
3BSD 6, 17
4.0BSD 6
4.1aBSD 6
4.1BSD 6, 25
4.1cBSD 6
4.2BSD 6, 18, 33, 44, 297

source directories 96, 98
4.3BSD 6, 34, 77

manuals 109
4.4BSD 6
4.X BSD 18–19
4BSD 17, 53
4GLs 266
5.0BSD 18
5620 DMD 277
68000 6, 25, 48
68020 83
80386 83
8086 24, 58
8088 6

Index

 Index322

A

a.out 150, 177
A/UX 66, 79
ABC Development Systems 272, 303
Abmind 249, 254, 303
Absoft 273, 303
absolute pathnames 144
academic 51
Access Technology 303

20/20 275
Accetta, Mike 29, 77
Ace Microsystems 256, 303
ACM 303, 305
Acme Computer 303

Linear Optimizer 270
Acorn Systems 249, 303
Action Instruments

IC-DOS 298
Ada 173–174, 272
Adams, Rick 29, 233, 238
Adaptive Optics 273, 303
adb 30, 150, 180
Addams, Charles 191
Addison-Wesley Publishing 303
administration 109

mainframe UNIX 288
network file system 291

Adobe Systems 278, 304
ADUS 127, 304
Advanced Programmer’s Guide to UNIX System V

100
Advanced Technology Center 267
Advanced UNIX Programming 100, 158
adventure 243
AGS Computers 121, 304
Aho, Alfred 29, 101, 150
AI 16, 45, 235, 258
AIM Technology 248, 276, 304
Alcyon 56, 273, 297, 304
alias 133, 138, 139
All the Chips that Fit 161
Allegheny College 237
Alliant Computer Systems 289, 296, 304
Allman, Eric 29, 113, 269
ALMA 274, 304
Almquist, Kenneth 233
alphabets 287
ALSYS 272, 304
Alto 277
Alto: A Personal Computer 277
Altos Computer Systems 56, 304

System V 283

XENIX 283
Amdahl 26, 48, 57, 59, 304

UTS 283, 288
American Management Systems 304

directory shell 134
Amiga 302
AMIX 304
Amsterdam Compiler Kit 241
Ana-systems 274, 304
Andrew 82, 293
ANSI 71, 304

C 175, 255
X3J11 70
X3J11 committee 304

antitrust
AT&T 12
IBM 64

APL 85, 173–174, 272
Apollo Computer 26, 46, 56–57, 302, 304

DOMAIN/IX 54, 282, 284, 293
Apollo DOMAIN Users’ Society 127, 304
Apple Computer 264, 304

A/UX 53
Appletalk 295
Macintosh 26, 66

Applin, Jack 244
Applix

Alis 272
April Fools Day 212, 233–234
apropos 152
aps 35
ar 176, 201

example 178
Arbitron 225
archive 176, 236
Ardent Computer 289, 304
Arens Applied Electromagnetics 267
Arete Systems 296, 304

Arix 53
armpit 265
Armstrong 56
Arnold, Ken 29, 113, 187
Arpanet 30–32, 45, 81, 167, 223, 225, 228, 231–

232, 269, 294
Network Information Center 294, 305

Artelligence 305
OPS5+ 260

artificial intelligence 259
ASCII 286, 294, 319
Asicom 305

EuroText 269
Asimov, Isaac 257
ASP 99, 305
assembler 65

 Index 323

debugger 150
Association for Computing Machinery 305
Association Francaise des Utilisateurs d’UNIX

126, 305
AST 290
Aston 56
asynchronous

mail notification 147
processes 11, 140

AT 26, 290
AT&T 12, 18, 20, 24, 27–28, 44, 49, 52–53, 55, 56,

58, 75, 237, 254–255, 272–274, 297
Bell Laboratories Technical Journal 101, 305,

306
Computer Systems 320
Customer Communication Center 50
Customer Information Center 73, 305
customer interest survey 117
Federal Systems 272
Information Systems 27, 256, 267, 305

Calem 269
Office Telesystem 270
UNIX PC Electronic Mail 270

RFS 291
S 270
System V 253
their advantage over other SV users 73
UNIX Software Licensing 305
UNIX System Toolchest 276
UNIX System Training 305
working for 251

Atari ST 26, 302
ATT/Teletype 277
ATvanced Office System 134
August Mohr Consulting & Publishing 256, 305
Austec 273
Australia 19
Australian UNIX Users’ Group 125, 305
Autodesk 305

AutoCAD 260
AUUG 305
award

Best One-Liner 244
Emmanuel Piore 35–36
Grace Murray Hopper 32
Turing 35–36
Worst Abuse of the C Preprocessor 245
Worst Style 245

awful syntax See find
awk 29, 32, 36, 101, 122, 150, 154, 276

example 153
AWK Programming Language, The 101
azel 242

B
Babaoglu, Ozalp 29
Bach, Maurice 94, 96, 104
backgammon 243
background process 211, 253

manipulation 141
backquote 136

example 153
backup 198–199

inadequate 255
Bailin, Sidney 213
Baker, W.O. 30
Baldwin, Bob 299
Ballistic Research Laboratory 45, 77, 283, 305
banking 286
BASIC 173–174, 272

to C translator 274
Basic Networking Utilities 261
Basis 272, 305
Basmark 272, 305
Bassel, Larry 34, 244
Batman 199
Bayer, Doug 33
bbj Computers International 305

Today 267
BBN 14–15, 17, 31, 306

Bolt Beranek and Newman 14
Butterfly 296
C machine 34

BBS 229–231
bc 30, 34
beards and shorts 118
Bechtolsheim, Andreas 30
Bell Communications Research 306

DUNIX 282
Bell Labs 12–13, 17, 165

Computer Science Technical Reports 90
patent office 5

Bell System Technical Journal, The 101
Bell Telephone Laboratories 12, 22
BellCore 306
Belle 243
Bellovin, Steve 30, 232
benchmark 117, 247–248

lies 247
Benchmark Confessions 248
Benchmarking UNIX Systems 248
Bentley, Jon 180, 258
ber 34
Berkeley 6, 12, 15–17, 27–28, 56–57, 75, 77, 233,

254, 262, 319
Computer Systems Research Group 319
CSRG 31

 Index324

enhancements 58
extensions 18
Maitre’d 282
sockets 169
Sprite 282

Berkeley Software Distribution 44, 77
Berkeley UNIGRAFIX Tools, The 268
Berkeley UNIX 54–55, 254

and differences between System V 46
manuals 109
undergraduate nature 45

BerkNet 35, 232
Berserkeley 16
Bershad, Brian 282
bfs 35
Biff 30
biff 147
Big Blue: IBM’s Use & Abuse of Power 64
Bilofsky, Walt 14, 30
BIM 274, 306
/bin/mail 268
Biren, Irma 30
bitnet 225, 231
BIX 232
bj 242
blackjack 242
Blit 34, 277
block-oriented devices 161
BNF 184
BNU 261
Boeing Computer Services 306

Boeing Rim 263
TOP 294

Bolsky, Morris 133
Bolt Beranek and Newman 306
booting 193
Borden, Bruce 30
Borochoff, Robert 318
BOSS Systems 253, 306
Bourne shell 12, 30, 33, 132, 151, 275
Bourne, Stephen 12, 30, 108
Boyle, Brian 320
bozo 145
brackets 145
Brede, Hans-Joachim 287
Britton Lee 281, 306
BRL 77, 283, 305

System V emulation for BSD 31
Brooks, Catherine 277
Brooks, Fred 182
Brown University 84
Brown, Bob 30
Brunhoff, Todd 292

BSD 44, 46, 75–76, 254
bss 177
BSTJ 101, 306
BTL 12–13
Buck, Dave 320
buffer 165
bug fixes 224
BUGS 171
Bunch, Steve 30
busy-wait 297
Butler, Samuel 174
buttons 120
bwk 32
Byer, Brent 15, 30
BYTE 240, 306

C
C 11, 174, 273

"improved" dialects 175
advantages and disadvantages 175
ANSI standard 175, 255
BNF 121
cc 151
compiler 62, 151, 290
cryptic coding style 244
first commercial vendor 12
International Obfuscated C Code Contest 244
interpreter 181, 273
machine 34
portable compiler 69
preprocessor 178
Small C 30
standards 68

C Advisor 113
C Answer Book, The 102
C Journal, The 31
C List, The 31
C Programming Language, The 32

First Edition 68, 102
Second Edition 103, 184

C Puzzle Book, The 103
C shell 18, 45, 58, 133, 141
C Users Journal, The 31, 110, 128, 239
C Users’ Group 128, 307
C++ 35, 70, 81, 175, 273
C++ Programming Language, The 80, 103
C/A/T 264
C: A Reference Manual 102
C8002 6
CAD 260, 302
CAE 260
CAE/SAR 57
CAETEC Systems 306

 Index 325

Pro-Series 260
Cain, Ron 30
cal 242
CAM 260, 302
Cambridge Digital 254, 306
camera-ready copy 263
Campbell, Larry 187
Canada 19, 27
Canaday, Rudd 30
Canadian Information Processing Society 306
Canadian UNIX Network & Int’l Xchange 306
Carlin, George 244
Carlson, Roy 173
Carnegie-Mellon University 45, 77, 263, 306, 310

Information Technology Project 82
Carolan, John 311
cartoon 254
casts 12
cat 41, 134–138, 148
catman 89
CB UNIX 6, 27
CBM Type 256, 306
CBW 299
cc 151, 165, 242

-p 185
CCA

emacs 266
CCITT 261
cd 146, 148
CD-ROM 83
cdb 180
Celluri, Ram 320
change directory 146
character-graphics library 177
character-oriented devices 161
Charles River Data Systems

UNOS 59, 298
Chateau NUXI 122
checkpoint 285
Cherry, Lorinda 30, 34
chess 242–243

GNU 243
yachess 93

Chesson, Greg 30
chgrp 213
child 170
Chinese 286
ching 243
chmod 42, 138

example 214
chown 213
Christian, Kaare 107
Clever Connections 306

Infolink 270
client-server model 163
clone 21, 47, 51, 53, 58, 253

as commodities 242
close() 164
CMU 17, 34, 45, 189, 265, 306

Andrew 293
GANDALF 84
Information Technology Coordinator 310
Mach 282

co-resident 48
COBOL 258–259, 273

to C translator 274
Codata 25
Collinson, Peter 238
Collyer, Geoff 233
Columbia University 306
Columbus Bell 27
Comeau Computing 306

CCsh 275
Comer, Douglas 30, 95, 106
command

completion 133
substitution 136

Commentary on the UNIX Operating System, A 96
commercial 51
communication 209
Communications of the ACM 175, 180, 217
CommUNIX 23
CommUNIXations 23, 111, 125, 306
comp.lang.c 225, 246
comp.newprod 252
comp.os.minix 241
comp.source.unix 299
comp.sources 225
comp.std.unix 68
comp.sys.ibm.pc 224
comp.unix 224
comp.unix.bugs 224
comp.unix.questions 224
comp.unix.wizards 225, 300
Compaq 56
Competitive Computer Systems 56
competitors

DOS 65
OS/2 65
VMS 65

compiler tools 184
Compositing 3-D Rendered Images 268
Compuserve 231
Computer Literacy Bookshop 99, 306
Computer Methods

XED Integrated Office System 272
Computer Research Group 3

 Index326

Computer Society of the IEEE 309
Computer Systems Advisors 316
Computer Systems Resources 99, 306
Computer Technology Group 307
computer-aided design 62
Computervision

CADDS 4X 260
Computing Systems – The Journal of the USENIX

Association 110, 125, 307
Concentric Associates 307

Shacc 275
Concept Omega 272, 307

Thoroughbred O/S 59
Concurrent Computer 289, 296, 307
Condon, Joe 243
conferences 115
Conner Scelza Associates 254, 307
consulting 248
context swap 165
Control-C Software 272, 307
control-D 166
control-J 206
Convergent Technologies 56–57
Convex Computer 54, 284, 289, 307
copy files 146
copyright 12, 20, 49, 51
Core 267
core dump 172
Corporation for Open Systems 256
Corwin, Bill 320
COS 256
COSI 276
Counterpoint Computers 56
course notes 116
cp 146–147
CP/M 21, 65, 70, 83, 289
CPATH 35
cpio 31, 128, 138, 198
cpp 151, 178
Cray Research 26, 48, 52, 57, 307

Cray-2 296
UNICOS 288

creat() 158
create directory 147
CRIL 273–274, 307
Crocker, Dave 30, 269
Croft, Bill 30
Cromemco 272–273, 307

Cromix 59
cron 30, 212
cross-assembler 298
cross-compiler 298
cross-debugger 298

cross-development tools 298
Crypt Breaker’s Workbench 299
crypt, how to break 301
csh 32, 36, 133, 290

directory stacks 33
CSNET CIC 237
ctype macros 286
cu 261
cubic 242
Cucumber Bookshop 99, 307
CUG 128
current directory 144
curses 18, 29, 32, 176, 186, 188, 205, 260

documentation 187
Custom Software Systems 307

PC/VI 266
Cyb 25

D
D. L. Buck and Associates 249, 308, 320
daemons 211
dagger footnote 22
daisy-wheel printers 263
Daniel Farkas and Associates 249, 307
Daniel, Steve 232
Danish UNIX User Group 237
Dansk UNIX-system Burger Gruppe 308
DARPA 16–17, 31, 45

Internet 18
Data Access 307

DataFlex 266
Data Business Vision 267
Data Encryption Standard 299
Data General 26, 57, 59, 302

AOS/VS 284
Data Language 307

Progress 267
data sorting 149
database 280, 285

distributed 281
library 177
machines 281

Databoard 272, 307
D-NIX V 53

Datakit 30, 261
date 39, 134, 136, 151
Datix Systems 249, 307
db 180
dbm 29, 262
DBMS 281

centralized 281
dbx 151, 180

 Index 327

dc 30, 34
dcheck 197
dd 198
debugger 150, 180
DEC 4, 17–19, 27, 45, 53, 56–57, 59, 64–65, 254,

273, 278–279, 302, 308, 310
DEC Users Society 308
DEC-10 4–5, 30
DECnet 261, 293, 295
DECtape 203
DECUS UNIX SIG 127
Educational Services 308
ULTRIX 54
VAX 17, 19, 77, 288
VMS 215

DECUS 308
decvax 31
default user interface 131
defines 179
Definicon Systems 242, 307
DeLamarter, Richard T. 64
delete files 148
Department of Defense 255, 294

immense procurements 60
dependencies 181
Design and Implementation of the 4.3BSD UNIX

Operating Sys., The 94, 104
Design of the UNIX Operating System, The 94, 96,

104
deskmate 134
desktop publishing, example screen 265
/dev 161–162
/dev/kmem (kernel memory) 161
/dev/mem (physical memory) 161
/dev/null 18, 162
/dev/pty 29, 167
/dev/tty 166
development tools 62
device 160

as file 143
block-oriented 161
character-oriented 161
determination 161
driver 159, 162, 253
sleep hack 297

df 146–147, 199
DG 57
Dibol 273
diction 30
diff 33, 148, 201
Digital Equipment 4, 18, 54, 308, 317
Digital Information Systems 273, 308
Digital Sound 308

VoiceServer 270
directory 143

absolute 144
as file 160
creation 147
current 144
parent 144
portable access routines 34
relative 144

disk
free 146
quotas 199
usage 147

display multiple sessions 141
Display PostScript 278
distributed

data system 81
processing 281, 294

RPC 294
ditroff 32, 256, 264
Djavaheri 274, 308
DKUUG 237, 308
dmr 35, 207
do 153
Documenter’s Workbench 267
DoD 15–16, 45, 261

TCP/IP 168
Dolotta, Ted 31
DOS 28, 65, 66, 83

not an open system 65
porting to 290
restrictions 65
running on top of UNIX 284
single tasking 65

drugs 120, 226
DSD 308

C-Calc 275
dsh 134
du 146–147, 199
Dual 25, 56
dual universe 54, 283
Duff, Tom 34, 176, 268
Duke 223, 232
dump 198–199
Dungeons & Dragons 243
DUNIX 282
DUNIX Distributed Operating System, The 282
DWB 267
Dyadic Systems 272, 308

E
Eaglehead Publishing 319

 Index328

Eakins 56, 254, 308
EBCDIC 294
echo 136, 148, 154, 201
ed 90, 140, 142, 149, 187, 265
editions 5
EDITOR 139
editor 149, 187

escape 140
Eedie and Eddie 33
efl 31
Efron, Dan 314
egrep 29
eh? 242
eight bits 286
Eighth Edition 83
electromechanical beasts 186
electrostatic printers 263
Ellis, Jim 232
Elsevier Science Publishers 308
Elxsi 289, 296, 308
Elz, Robert 31, 238
emacs 31, 35, 188–190, 236, 265
Emerge Systems

RTUX 298
emergencies 249
Emmanuel Piore award 35–36
Empress/32 266
emulators 46–47, 279, 284
Encore Computer 296, 308

Multimax 282
encryption 299
end users 61
end-of-file 162
ENDOT 308

N.2 260
ENEA DATA 317
English orientation of UNIX 286
Enigma cipher 299
EnMasse Computer 296, 308
ENOTOBACCO 122
Enterprising Ideas 308

ae 266
environment variable 139, 190
EOF 154, 162, 171
eqn 30, 32
error 32
Essick, Ray 233
/etc/group 208

example 208
/etc/halt 194
/etc/inittab 203
/etc/passwd 11, 29, 153, 204, 207–208, 262, 286

example 207

/etc/rc 193, 195
/etc/shutdown 36, 194
/etc/termcap 178, 205
/etc/ttys 203
Ethernet 293
ETRI 311
Euclid 175
Eunice 32
eunuch 37, 254
Europe 19, 31, 53
European UNIX Systems User Group 125, 308

debate 265
EUUG 119, 125, 308

EUUG-S 317
EUUGN 125

Evolution of UNIX System Performance, The 248
EWATERGATE 122
ex 31, 188
exec() 170–171
executive 298

in ROM 298
execve() 42
exit 153–154
exit() 171
Experiences with Electronic Software Distribution

277
expert systems 258
expr 31
Eyring Research Institute

pDOS 298

F
f77 35
Fabry, Robert 31
Fair, Erik 227, 233
Fairley, Richard E. 181
Farrow, Rick 301
fault tolerance 284–286
Feder, J. 248
Feldman, Stu 31, 181
Fenix Software 266, 309
Ferentz, Mel 31
Fernquist, Alan 288
Feuer, Alan 103
fiber optic 293
Fiedler, Dave 31, 109, 213
FIFO
file 149–150

caching 293
descriptor 164, 168
differences 148
format 40

 Index 329

holes in 199
i-node 160
locking 262, 279
multiple names 160
names 144
ordinary 159
permission 213
relative name 144
sharing 291
show type 149
transfer 294
versioning 183

file system 38, 143, 195
Berkeley Fast File System 34
caching 292
check integrity 196
database support 281
designer 30
distributed

first 33, 35
VICE 293

example 143
file access techniques 280
flat 11
hierarchical 11, 279
integrity 196
network 291

public domain 292
recovery 284, 292
salvage 250

filter 148
financial applications 258
find 31, 138, 147, 197, 200–201, 300
FIPS 72, 120
first UNIX users 5
Flaspohler, John 271
Flexible Computer 59, 273, 296, 309
Flexible Solutions 276
fmt 35
Foderero, John 31
fopen 165
for 153
Ford 60, 62
forecasting 258
foreground process 140
fork() 4, 170–171

expensive on some emulators 283
Forth 173, 273
Fortran 173–174, 273

66 15, 174
77 174
library 177
to C translator 274

Fortune 25, 57
fortune 29, 244

-o 244
Fortune 1000 companies 28
fourth-generation languages 266
fprintf 166
fprintf()

example 166
Frame Technology 309

Frame Maker 264
example 265

Frames: Software Tools for ... 3D Scenes 268
Franz 273, 309

Franz Lisp 31, 259
Free Software Foundation 35, 180, 189, 239, 273,

309
freelist 196
Freiboth, Bill 286
French proverb 37
Friedman, Jr., H. George 104, 184
frisbee 223
fsck 32, 46, 196–197, 250

documentation 195
Fsck – The File System Check Program 197
fsdb 34
FSF 239

G
games 29, 50, 244

source 97
unauthorized 255

Gawain Group, The 309
Data Rescue Service 250

GCOS field 207
gdb 180
GE

GE 635 4
GE 645 4
GE Consumer Services 309

Gellis, Herb 31
General Motors 60, 309

MAP 294
generic ports 56
GEnie 231
Genus Systems 253, 309
German 287
getlogin() 98
Getting the Most From Spreadsheets 275
getty 204
Gettys, Jim 31
GFS Revisited - or - How I lived with Four

Different FSs 292
gid 208

 Index330

Gimpel, Scott 102
GKS 267
Glickman, Matt 233
glitz 52
Global Engineering Documents 70, 309
Glockenspiel 253, 273, 309
GM 62

MAP 74
GNU 35, 184, 239

BISON 240
chess 243
debugger 180
GCC 240
GDB 240
GNU Chess 240
GNU Emacs 15, 189, 240
GNU Manifesto, The 240
Hack 240
MIT Scheme 240
X Windows 240

go tournament 33
Goble, George 31
Goldberg, Adele 80
Goldwyn, Sam 178
GOSIP 294
Gosling, James 31, 189, 265, 275
goto 11
Gould 26, 56–57, 297, 320

TV give-away 301
UTX/32S 300

government 51, 60
Government Computer News 309
gprof 34, 185
Grace Murray Hopper Award 32
Grady, Steven 233
Grand Prize for All-Around Obfuscation 246
Grand Software 120, 309

Grand Editor 266
grap 267
graph 242
Graphic Software Systems 267
grep 33, 121, 136, 149, 154, 286, 300

example 153
Grid Systems 83
Groenewold, Glenn 113
Grossman, Gary 31, 301
Groundwater, Neil 120
group ID number 207
GSA 120
guest 276
guru 195
Gurwitz, Rob 31
Gwyn, Doug 31

H
Hagen, Teus 31
Haight, Dick 31
Hal 9000 259
Haley, Chuck 31
Hall, Annette 306
Hall, Dennis 15, 32
halting 193
Handle Technologies 309

Handle Calc 275
Harbison, Samuel 102
hard links 200
Harris, Thomas 282
Harvard 14–15
HCR 36, 120, 253, 256, 272, 274, 284, 309

Mistress 263
head 149
header file 179
headhunter 252
Hecht, M.S. 301
Heckendorn, Robert 244
Heiby, Ron 237
hello, world 166, 244
Henry, Robert 32
Heurikon 56
Hewlett-Packard 26, 75, 82–83, 244, 278, 309

HP-UX 53
Spectrum 297

hierarchical file system 143, 160
Hines, Spencer 245
Hinnant, D. 248
history 133
Hoffert 268
holes 199

in files 199
Holistic Technology 274, 309
Holmgren, Steve 32
home directory 207
HoneyDanBer uucp 261, 276
Honeyman, Peter 32
Honeywell 56, 297
Horton, Mark 32, 233
How Secure is ‘Secure’ 301
How to Install News 226
How to Read News 226
How to Write a UNIX Daemon 211
HP 56–57, 302, 309

calculator 74
Integral PC 278
portable 290

Hughes, Phil 291
Hubbard, Elbert 279
Human Computing Resources 256

 Index 331

Hunter, Bruce 109, 213

I
i-node 5, 160, 197
i-number 160
I.P. Sharp Associates 272, 311
I/O primitives 159
I/O redirection 135
IBM 11, 48, 56–57, 59, 66, 273, 279, 310

AIX 53
AIX/VRM 297
and the seven dwarfs 302
antitrust suit 64
blessing
CMS 11
Interactive System IN/ix 55
IX 53
Microsoft XENIX 55
PC 47–48, 65, 289

AT 26, 289
RSCS 227
RT 77
SCO XENIX 55
SNA 261, 295
VM 215, 284, 288

icheck 197
Icon International 284, 309
IDC 28
ideal 36
IDRIS 21, 34
IEEE 24

802.3 293
Computer Society 309
Graphics/Windows Working Group 278
IEEE/CS P1003 72, 310, 317

if 154
if then fi example 153
IIASA 133
IMDAS 263
Impacc 273, 310
IMSL 310

LP/Protran 270
incarc 138
incremental archive 138
indent 36
Industrial Programming

MTOS 298
inetd 212
Inference 310

SMP 270
InfoPro Systems 310, 318
Information Builders 310

Focus 263

Information Concepts 310
FSP 261

Information Technology Coordinator (CMU) 310
Informatix 273
Informix Software 310

Informix 263
Informix-4GL 266

Ingres 29, 262
init 171, 193, 203, 212
input stream 135
installation 253–254
Institut fur Informatik 319
Institute of Electrical and Electronics Engineers 24
Instruction Set, The 122, 254, 310
Integrated Computer Systems 310
Integrated Micro Products 56, 310

Impact 275
Integrated Solutions 56

UniWorks 298
integration 253–254
Intel 24, 56–57, 290, 310, 320

80386 55
8088 26, 284
chips 55
Hypercube 296
IDesk 270
Intel Scientific Computers 310
iPlan 275

Intellicorp 310
KEE 260

Interactive Development Environments 310
Interactive Systems 20, 36, 56, 58–59, 253, 273,

284, 310
IN/ix 55
INmail 269
PC/IX 289

Interdata 48
Interdata 7/32 34
Interdata 8/32 32

Intergraph 302, 310
Interleaf 264
Intermetrics 272, 276
internal algorithms 104
International Business Machines 310
International Computers 274, 311
International Data 28, 311
International Obfuscated C Code Contest 34, 244
International Standards Organization 24
International User Groups 125
internationalization 75, 286–287
Internet 82
internet daemon 212
Internetwork Memo Distribution Facility – MMDF,

An 269

 Index332

interoperable 294
interprocess communication 168–169, 279

pipe 163
Interview with Bill Joy 45
Interview with Richard Searle 286
Intrinsic OY 274, 311
Introducing the UNIX System 105
Introducing UNIX System V 105
Introduction to Compiler Construction with

UNIX 104, 184
Introduction to UNIX 90
IOCCC 244, 246
Ionesco, Eugene 138
IPA 304
Irish UNIX Systems User Group 311
IS/1 20
Isaak, James 310, 317
ISAM 74
ISO 25, 119, 168, 311

TC22 WG15 72
WG14 71
Working Group on C 71

Isotron 56
ISSCO 267
Isuzu, Joe 262
ITC Distributed File System, The 293
ITT 56

J
JAE 75
Japan 22, 53
Japan UNIX Society 126, 311
JAWS 59, 302
Jespersen, Hal 289
JHU/BRL 34, 45
Jim Joyce’s UNIX Bookstore 99, 311
JMI Software Consultants 274, 311

C Executive 298
job

bulletin board 116, 250–251
checkpointing 280
distributed job management 281
hunting 250
market 250
resume 251
work for AT&T 251

job control 33, 45–46, 58, 133, 141
shell layers 141

Johns Hopkins University 45
Johnson, Stephen 32, 69, 184
Jolitz, Bill 35
Jones, Douglas 184
Jones, Ralph 213

Joy, Bill 17–18, 31–32, 34, 45, 188–189, 265
Judge Greene 27

K
K&P 108
K&R 32, 102–103

as the Bible 68
C compiler 12, 68, 241
C standard 68
over one million copies sold 69

Kantor, Brian 233
Karels, Michael 104
Kashtan, David 32
Katseff, Howard 32
Katz, Lou 32
Kay, Alan 80
Ken 4, 36
Kermit 261
kernel 93, 158, 159, 169, 292

automatic configuration 18, 31
cloning 43
configuration 192
database support 281
divergent 43
environment 158
fault tolerant 285
hacking 23, 29
interface 43
internals 104
minimal 298
modified to support games 243
overlayed 35
parallel processing 295
real-time 298
record locking in the 280
rewritten 21, 76, 297
similarity between UNIX versions 43
small vs large 44
source 98
vs user code 44

kernel-level 93–94
Kernighan, Brian 5, 15, 32, 68, 89–90, 101–102,

103, 108, 150, 158
Kessler, Peter 34
key 29
kgbvax 234
kiddy shell 265
kill 151

example 213
process 151

Klingons 243
Knowles, Frank 301
Knuth, Don 85

 Index 333

Koenig, Andrew 32
Kolstad, Rob 233
Korean UNIX User Group 126, 311
Korn Shell Command and Programming Language,

The 133
Korn, David 32, 133
Kowalski, Ted 32
kremvax 233–234
Kridle, Bob 32
ksh 32, 133
Kulawiec, Rich 238
Kulp, Jim 33

L
L&R 105
Laboratory Microsystems 273, 311
Labs, The 12–14
Lachman Associates 249, 253–255, 311
LALR(1) grammars 183
Langston, Peter 33
Lapin, J.E. 107
Lapsley, Phil 233
laptops 82
laser printers 263
last 32
latency 297
Lattice 273
Lawrence Berkeley Laboratory 15, 32, 35–36
lcomp 36, 185
ld 151
Lee Data 56
Leffler, Sam 33, 94, 104
Lennart, Dave 211
Lesk, Mike 33, 165, 184
lex 33, 62, 104, 151, 173–175, 180, 183–184, 290
lexical analyzer 183
/lib 177
Libes, Don 33, 105, 286
libraries 158, 176

libc.a 177
libcurses.a 177
libdbm.a 177
libF77.a 177
libm.a 177
libplot.a 177
libtermcap.a 178

license 17, 23, 35–36, 51
binary 20, 49, 52
distribution binary 20
educational 20
fixed number of users 204
licensing 12, 49

original policy 13
plate 122
reconfiguration rights 49
restrictive System VR3 license 59
source 20, 49
sublicense 52

lies 247
Life with UNIX 33, 105, 265
Lifeboat Associates 273, 311
line discipline 30
line printer daemon 212
link 143, 160

hard 200
symbolic 29, 200

linker 151, 176
lint 32, 185, 245

/*VARARGS*/ 185
Lions, John 33, 89, 96
Lisp 85, 173–174, 259–260, 273

machine 174, 259
list files 147
Litman, Ami 282
little languages 180
little-used PDP-7 4
Load Balancing with Maitre d’ 282
local area network 81
local user groups 126
Locus Computing 282, 284, 311
log files 193, 210
log out 166
logged in users 152
Logic Programming 274, 311
Logicware 274, 311
login 204

commands 207
name 207

London, Tom 33
Longfellow, Henry Wadsworth 3
look-alike 21, 51, 59
/lost+found 197
love note 13
Love, Judith 262
LPATH 35
LPC 57
lpd 212
lpr 39, 164
lpsched 212
ls 135–136, 139, 143, 145, 147, 201, 286, 301
LSI-11 6, 14, 33
LSX 6, 14, 33
Lucas, Brian 33
Lucasfilm 25
Lucid 273, 311

 Index334

Lugaru Software 311
Epsilon 266

Lurnix 312
Lycklama, Heinz 33, 320
Lyon, Tom 33, 161

M
m3 174
m4 174, 179
m6 174
Mach 34, 76, 77, 236, 239, 282

A New Kernel Foundation for UNIX
Development 77

Macintosh 264, 294
finder 79
Mac II 66, 79, 302

Macq Electronique 56
MAD Intelligent Systems 57
magic numbers 170
mail 35, 151, 209, 255

example 154
mailing list 252
mailx 35
mainframe 287

administration 288
make 31, 65, 151, 181
make directory 147
makefile 181
malloc() 98
man 151

-k 29, 151
macros 95
pages 92

manual pages 151
manuals

Berkeley UNIX 91
POSIX 91
System V 91
X/OPEN 91
XENIX 91

Many Roads to Fault Tolerance 286
MAP 294
Marantz 22
Maranzano, Joe 33
Marc Software International 312

WordMarc 266
Mark Williams 312

Coherent 55, 59, 289
Marsh, Bob 23, 33
Marvit, P. 248
Marx brothers 232
Marx, Groucho 124

Mashey shell 33
Mashey, John 33, 263
Massachusetts Institute of Technology 312
MASSCOMP 56, 296, 302, 312

EFS 292
Extended File System 292
RTU 298

math library 177
McCall, Madeline 320
McCann, Dr. A.P. 319
McGilton, Henry 105
McIlroy, Doug 33
McKusick, Kirk 34, 104, 197
McMahon, Lee 34
McNabb, Paul 30
McPherson, Al 34
mcvax 31
Meeting Mainframe Expectations 289
memory

as device 161
common 65
no memory management 289
no protection 5
page lock 297
protection 289
shared 46, 281
split instruction/data 15, 30
virtual 17, 29, 32, 45–46, 57–58

merging System V, BSD, and XENIX 76
MERT 6, 13–14, 33
MetaWare 273–274, 312
Meyer, Mike 233
MH 30, 36, 269
Micro Applications and Hardware 312

C-Form 261
Micro Focus 273, 312
Micro/Systems Journal 246, 312
Microbar 56
microcode

horizontal 296
UNIX in 34

Microport Systems 56, 253, 284, 312
System V/386 289
System V/AT 55

microprocessor 289
Microsoft 24, 51–52, 56–59, 75, 134, 272, 273, 312

Multiplan 275
XENIX 253, 289, 302
XENIX Version 5.0 55

Microtec Research 273–274, 312
Microware Systems 272–274, 312
Miller Freeman Publications 312
Miller, Richard 34
mince 189

 Index 335

MindCraft 256, 312
Ministry of International Trade and Industry 53
MINIX 36, 106, 236, 240–241, 289
MINIX for the IBM PC, XT and AT 106
MIPS Computer Systems 57, 312

M Series 282
misc.consumers 225
misc.jobs.offered 251
misc.jobs.resumes 251–252
MIT 17, 82, 189, 278, 312
MITI 53
mkdir 147
MMDF 30, 269
MMOS 59
Modcomp

REALIX 298
moderated newsgroups 226
moderator 226
Modula 173

Modula-2 175, 274
mon.out 185
monitor 185
more 35, 149
Morgan, Rachel 105
Morris, Robert 34, 90, 299
Mortice Kern Systems 290, 312
Mosaic Software 312

Twin 275
moskvax 234
Motorola 27, 56–57, 237

Computer Systems 312
cXV/RT 298

move files 147
MP/M 21
MPATH 35
mpx 30
MS 30, 269
MS-DOS 46, 52, 70, 290

lack of file protection 292
running on top of UNIX 284

Mt. Xinu 18, 32, 53, 56, 121, 254, 312
Berkeley UNIX 254
Command of the Month Calendar 122
more/BSD 54

Mullender, Sjoerd 246
multi-user mode 193
MULTICS 3–5, 37, 287
Multiflow Computer 57, 296, 313
MultiMax 77
multiple sessions 141
multiprocessing 55, 139, 169
multitasking 139
multithreaded processes 65
multiuser 52

MultiView 134
Mumps 274
munge 250
Munson, Bill 34
Murphy’s Law 198
Murray Hill, NJ 13
Muus, Mike 34
mv 41, 146, 147

N
NAG 270
Nair, M. 248
named pipes 36
NASA Ames Research Center 288
National Bureau of Standards 313
National Computer Conference 23
National Computer Security Center 300, 313
National Expositions 319
National UNIX User Group/Netherlands 126, 313
national user groups 125
navigation 79
Nayland 252, 313
NBS 25, 72, 313
ncheck 197
NCP 30–32
NCR 56–57
NCSC 301, 313
Neal Nelson & Associates 248, 313
negative zero 271
Nemeth, Alan 34
netnews 221
network 45, 47, 106, 293

3Mb/sec 25
configure 253
disk 81
file system 75, 196, 291–294
first UNIX internetworking 30
interoperable 294
local area 81
proprietary 295
protocol 168, 293
security 255, 300
standards 74
streams 164
wide area 81

Network Information Center 233
Network Technologies 228
Network/extensible Window System 278
New Zealand 19
New Zealand UNIX Systems User Group 126, 313
Newcastle Connection 292
Newcastle Connection or UNIXes of the World

Unite! 293

 Index336

NeWS 31, 74
news 221

"A" release 232
"B" release 233

News Need Not Be Slow 227
newsgroup 224

source 238
NFS 32, 75, 196, 291–293
Nichols, Elizabeth 213
Nichols, Joseph 213
Ninth Edition 83
NKR Research 272, 313
NNTP 233
Noll, Landon 34, 244
non-UNIX system, reason for buying 63
nonstandard enhancements 59
Norand 56
Notable Computer Networks 226, 231
notes 223, 233
Novon Research Group 28, 320
Nowitz, Dan 34
nroff -man 95
NSC 27, 56

32016 241
Genix 54

Numerical Algorithms Group 270, 313
Nutshell Handbooks 105
NUXI 56
NZUSUGI 126, 313

O
O’Reilly & Associates 105, 313
Oasys 273, 313
object-oriented model 79
octal dump 149
od 149
Oesterreicheische UNIX Benutzergruppe 313
office automation 271
Ohkubo, Jouji 319
Olympus Software 313

UltraCalc 275
Omnicomp Graphics Corporation 267
Omtool 273, 313
On the Security of UNIX 299
Online Computer Systems 245
Onyx 21, 33
open system 65
Open Systems Interconnect 294
open() 41, 158, 162, 164–165, 169, 202, 214, 293

modified 292
Operating System Design: Internetworking with

XINU 106

Operating System Design: The XINU Approach 94,
106

operating systems
proprietary with UNIX-like features 61
two on one computer 283

Operating Systems: Design and Implementation 94,
106

Opus Systems 56, 290
Opus5 55

Oracle Systems 313
Oracle 263, 267

Orange Book 300, 301
Oregon Software 273–274, 313
Oregon State University 272, 313
Origin 286
OS/2 46, 65, 66

nightmare 121
OSF 142
OSI 74, 261, 294–295
Ossanna, Joseph 4, 30, 34
output stream 135
Owens-Liang Publications 303, 313

P

page 149
paging 12, 17
Pajari, George 94
Palomino Computer Systems 253, 313
Parallel Computers 286, 313

advertisement 284
Parallel Processing 296
parallel processing 295
ParcPlace Systems 274, 314
Parkridge Computer Systems 249, 314

TIC/TOC 261
Parlez-Vous L’UNIX? The European Perspective,

Past and Future 287
parsing 104
Partial Model for a B-Level UNIX 301
Pascal 32, 173–174, 274

to C translator 274
password 207

file 255, 280
guessable 255

Password Security 299
Password Security: A Case History 90
patch 36
patent 49, 216
PATH

liberal 255
path searching 148
pathalias 32, 228

 Index 337

pathname
absolute 144
relative 144

Patricia Seybold’s Office Computing Group 314
Patricia Seybold’s UNIX in the Office 111
pattern matching 136, 150

shell, in the 39
pattern processing 150
PC 51–52, 253, 290, 294

AT 26, 55
coprocessor boards 291
csh 290
DOS 290
uucp 290

PC DOS/UNIX Networking 294
pcc 32, 35, 69
PD32 241–242

Users Group 314
PDP

PDP-10 33
PDP-11 5–6, 12, 14, 17–18, 33, 48, 53, 246
PDP-11/20 6
PDP-11/45 15, 30
PDP-7 4–6

PECAN system 84
Perdue University 238
Peregrine Computer Systems 267
Performance Awareness 248
perl 36
permission

example 214
odd 255

permuted index 92
Personal Dynamic Media 80
personal workstation 291
Perspective on the Usenet, A 227
PHIGS 267
Philon 273, 314
phototypesetter 263
phs 232
physical disasters 255
pic 32, 267
pid 171
Pike, Rob 34, 89, 108, 158
pipe 33, 136, 163, 168

buffering 163
FIFO
named 36, 163

pipeline 137, 169, 295–296
Pixar 302, 314
PL/I 173
PL/M 274
Plauger, P.J. 15, 34

Plexus 56
plot 267

library 177
Plum Hall 256, 304, 314
Plum, Thomas 304
Plus Five Computer Services 274, 314
PN1 74
Point Foundation 228
point-of-sale transactions 62
Politics of UNIX 13
portability 47–48

achieving 107
hardly 246
not for everyone 47

Portable C and UNIX System Programming 48, 107
Portable C Compiler 32, 69
portable C library 33, 98, 165
Portable Operating System Interface for Computer

Environments 72
portables 82
Portal Communications 314
porting 58, 248, 252, 288

house 55, 253
integration 253

1003.1 POSIX Full Use Standard 73
POSIX 6, 60, 71–72, 120, 278

parts of P1003 72
WeirdNIX 74

posters 121
postnews 222, 228
PostScript 256
Potmesil 268
Practical Computing 256, 314
Practical Tool Kit for Making Portable Compilers,

A 241
Precision Visuals 267
Prentice-Hall 256, 314

MINIX 55
prep.ai.mit.edu 240
Presotto, Dave 34
Preston, Rick 238
Prime Computer 284, 302, 314
print data 149
print working directory 148
printcap 206
printer spooler 35
printf() 158, 166
process 169

foreground 140
group id 171
id 171
locking 297
status 152

 Index338

processing
asymmetric 31
distributed 282, 294
parallel 295
text 5
transaction 284–285

profiling 178, 184
prof 185
profil() 185

Programming Pearls 180
Project Athena 82, 278, 314
Project Stargate 227
Prolog 260, 274
prompt 139

setting the 139
proprietary operating system 63

dinosaurs 65
protocols 261
ps 43, 152, 161, 212
PS/2 66
pseudo-device 162
pseudo-tty 167
PTL Software 56
public access 228–231
public domain 15–16, 47, 244

archives 236
C compiler 30
C software 128
editors 266
hardware 241
network file system 292
spreadsheet 275
System V under 4.2BSD 283
UNIX software 236

publishing 256
purple book 73
puzzles 103
PWB 6, 13, 27, 30–31, 33, 35, 163, 182

PWB 2.0 6
PWB shell 13
PWB/UNIX 6, 14

pwd 146, 148
Pyramid 46, 54, 57, 238, 283

Q
Quadratron Systems 272, 314

Q-Mail 270
Q-Plan 275

Quality Software Products 267, 314
Q-Calc 275

Quantitative Technology 314
Math Advantage 270

Quantum Software Systems
QNX 55, 59

Quarterman, John 104, 226
Quintus Computer Systems 274, 314
quiz 242
quotas 31, 199

R
R Systems 272, 315

R Desk 270
R&D Publications 307, 314
r/l group, The 273, 315
Rabbit Software 48
Radian 314

RuleMaster 260
rajah 254
Rand 14–15, 36, 268, 302

Rand editor 14–15, 30, 36, 186
Rapitech Systems 274, 314
Rashid, Rick 34, 77
ratfor 15, 32, 122
Rational Systems 273
Rauch-Hindin, Wendy 298
raw mode 167
RCS 15, 36, 182
read news 223
read() 162, 164–165, 168–169, 293
readnews 228
Ready Systems

VRTX 298
real-time 46–47, 55, 57, 59, 279, 281, 285, 296,

297–298
UNIX-like 297

rec.autos 225
rec.humor 224
record locking 67, 169, 281
recursion 265, 338
redirection 135
Redman, Brian 34
Reeds 299
Reeves, Bill 34
refer 33, 262, 271
reference cards 99
registered trademark 22
regular expressions 144, 183
Reid, Brian 225
Reiser, John 12, 34
Relational Technology 315

ABF 266
Ingres 262

remote execution 209
remote procedure call 294
remove files 148

 Index 339

remove-user 152–154
rename files 147
Renesse, Robert van 246
research 6, 42
response time 297
Ressler, Sandy 34, 105
RFS 75, 196, 291–293
Rhodnius 315

M-Builder 267
Ridge 57
RISC 48, 84
Ritchie C Compiler 69
Ritchie, Dennis 4, 6, 13–14, 18, 24, 28, 30, 32, 35,

36–37, 42–43, 68–69, 83, 90–91, 102–103,
131, 207, 215–216, 272, 280, 299

rk5 13
rm 41, 138, 148

* 40
-fr 154

rms 35
rn 36, 223, 233
Robinson, Schaffer & Wright 315

/rdb 263
Rochkind, Marc 35, 100, 158, 182, 280
Rodgers, Lawrence 100
roff 5
rogue 36, 243
Romine, John 268
root 154, 214, 255

checking 153
Root Computers 253, 315

Root Mail 270
root file system 143
Rose, Marshall 268
Rosenthal, David 31
Rosenthal, Rob 35
Rosler, Larry 80
RPC 294
RPG 274
RS-232 166, 203, 209
RT 1.0 6
RTFM 120
Rules of the Game 113
run-time analysis 184
runoff 5
Russell, Channing 77
Ryan-McFarland 273, 315

S
Saber Software 273, 315
Santa Cruz Operation, The 24, 284, 315

SCO XENIX System V 55
Satyanarayanan, M. 293

Saxon, Michael 197
SC 275
Scandia Metric 56
SCCS 35, 65, 182
Schaefer, Steve 35
scheduling, crude 297
Scherrer, Deborah 15, 35
Schienbrood, Eric 35
Schmidt, Eric 35
Schnatmeier, Vanessa 272, 286
Schreiner, Axel 104, 184
Schriebman, Jeff 35
Schwartz, Pauline 319
Scientia Computer Applications Pte 274, 315
Scientific Micro Systems 56
Scientific Placement 252, 315
scj 32
SCO 24, 52, 56, 58, 134, 289, 315

SCO Professional 275
system administrator’s shell 134
XENIX 253, 302

sdb 32, 151, 180
SDI 142
Seamons, John 35
security 213, 255, 298–299

analysis 255
B level 301
C2 level 300–301
comp.unix.wizards 300
distributed 217
paranoia 213

Security for Superusers, Or How to Break the UNIX
System 301

sed 34, 149, 187
Seeley, Donn 35
select() 30
semaphore 65, 281, 285
sendmail 29, 269
Sendmail – An Internetwork Mail Router 269
Sequent Computer Systems 228, 296, 315

Balance 77
DYNIX 54, 282

Sequin, Carlo 268
Sequoia Systems 286

TOPIX 54
serial lines 203
Serlin, Omri 296
set 154

-e 152
prompt 139

setenv 190
setuid 215, 255

patent 216
setuid-bit 215

 Index340

Seventh Edition 12
sex 44, 120
sh 11–12, 132, 151
Shannon, Bill 33, 35
Shapazian, Dick 35
sharing files 291
Shaw, Mary 247
Shein, Barry 142
shell 39, 131, 151

$ arguments 138, 153
comments 152
compilers 275
control structures 11
environment variable

example 190
error flag, set -e 152
features 40
kiddy 265
Korn 276
layer 141
Pascal 31
passwd field 207
programming 11
prompt 134
replacing default 11
reserved characters 144
script 132, 137

as tools 155
example 138, 152

script identification 152
simple 132
unfriendliness 40
variable 139

example 153
SHL Systemhouse 254, 315
Shoens, Kurt 35
show screenful 149
Sicherman, Col. G. L. 245
sif 31
SIGALRM 172
SigGraph 116
SIGIO 172
SIGKILL 172
signals 171

sending 151
SIGQUIT 172
Silicon Graphics 56–57, 302, 315

IRIS 288
Silicon Valley Software 273–274, 315
Silvar-Lisco 315

SDS 260
SimuCad 315

SILOS 260

Simulation Software 315
GPSS 270

Sinclair ZX81 48
Singapore UNIX Association 316
single-user

mode 193, 195
systems 52

Sixth Edition 11, 30
Skalabrin, Val 320
Skudlarek, Joseph 161
sleep 297
SLIP 29
Small C 30
small is beautiful 38
Smalltalk 85, 173, 274, 302

browser 79
Smart Systems Technology 316

Duck 260
smiley 233
SMTP 268–269
SNA 261
SNA Communications Under UNIX 295
Snobol 150, 173–174, 274
So You Want to Be a Government Contractor 60
Sobell 249, 316
soc.singles 224
soc.women 224
sockets 164, 167, 168
Software A & E 316

Knowledge Engineering System 260
Software Alliance 252, 316
Software Components Group

pSOS 298
Software Development Systems 273, 316
Software Innovations 273, 316

VC 275
Software Ireland 273, 316
Software Research 256, 316
Software Tools 15
Software Tools Project 16
Software Tools User Group 32, 35–36, 128, 316
Sony 54, 56
Sorites Group 316

SORITEC 270
sort 149
sorting 287
source licenses, low-cost 96
Source, The 231
Southwest Technical Products 273, 316
Southwind Software 316

Tactician 275
Space Travel 4, 242
Spafford, Eugene 271

 Index 341

Specialized Systems Consultants 249, 273, 316
Dial-A-Guru 249
PubliCalc 275
Zebu 263

Spectrum Technology Group 255, 316
spell 32–33, 271
Spencer, Henry 233
Sperry 56, 302
Sphinx 56
Spider 261
spl() 93–94
spool 255

directories 211
spreadsheets 275
Springer-Verlag 316
SPSS 270, 316
SQL 74
Squires, Michael 237
srb 30
SRI International 233, 305
Sritek 284, 316
SSC 99
SST Data 316

Handshake Colt Computer Linked Telex 269
ST 26
Stalking the Wily Hacker 217
Stallman, Richard 35, 189, 239, 265
standard

error 135, 164
input 134, 164
library 177
output 134, 164

standards
/usr/group 24
binary 53
C 70
DES 299
ISO WG14 71
validate 256
X3J11 70

Stanford University 17, 25, 317
Stargate 36, 227, 233, 235
State University of New York at Buffalo 245
stateful 291
stateless 291
stdargs 32
stderr 135, 164, 165, 170
stdin 134–135, 148, 164, 165, 170
<stdio.h> 165
stdio 33, 159, 165

source 97
stdout 134–135, 148, 164, 165–166, 170
Steele, Jr., Guy 102, 183

Stellar Computer 289, 317
Stettner, Armando 35, 122
Stoll, Clifford 217
Strategy of Accommodation, A 288
Stratus 286
stream 135, 164

editor 149
streams 168
Stride 56
string searching 136, 149
strings 149–150
Stroustrup, Bjarne 35, 80, 103
Stryker, David 298
STSC 272
stty 203, 206

-raw 206
STUG 128, 316
style 30
sublicense 52, 58
Subversion of a ’Secure’ Operating System 298
SUG 127, 317
SUN 25, 277

board 30, 35
Sun Microsystems 25, 28, 32, 53, 56–57, 75, 77,

121, 274, 284, 302, 317
NeWS 278
NFS 291
SunOS 45, 54
User Group 127, 317

supercomputer 287, 296
superuser 214, 299
support or lack of it 13, 18, 27, 45, 53, 254, 279

IBM 64
Sutton, Steve 320
SV 44
Svenska Unixanvandares forening 317
Sventek, Joe 15, 36
SVID 73, 107, 255
SVVS 73, 255
swapper 212
swapping 195, 290
symbolic debugger 151
symbolic links 29, 200
Symbolics 317

Macsyma 270
sync 192, 194
synchronization 281
synchronous execution 140
sysadmsh 134
system calls 100, 158, 159
System III 6, 18, 25, 27, 44, 46, 53, 297
System IV 6, 46

 Index342

System V 6, 18–19, 27, 44, 53–54, 56–57, 75–76,
77, 163, 254

advantages 46
and differences between Berkeley UNIX 46
disadvantages 46
Interface Definition 73, 107, 255
International Edition 299
Japanese Language Version 287
streams 169
Verification Suite 255

System V Verification Suite 73
System VR2 6, 28
System VR3 6, 28

restrictive license policy 59
System VR4 6, 18, 278
Systems & Software 273–274, 317
Systems Designers Software 273–274, 317

Poplog 260
Systems Union 317

SunTrend 270
Systime 56

T
T&W Systems 318

VersaCad 260
t-shirt

/nev/dull 122
10th Anniversary USENIX 121
awk 122
grep someone 121
Ratfor 122

Tadpole Technology 56
tail 150
Tandem Computers 286
Tandy 24, 56, 59, 134, 317
Tanenbaum, Andrew 36, 94, 106, 240–241
Tannenbaum, Andy 13
tape

archive 201
kludge 202
management 202
random access 203

tar 31, 121, 128, 198, 201
example 154

tbl 33, 242
TC22 WG15 317
TCP/IP 31, 33, 45, 74, 106, 167, 294–295
tcsh 133
Tech Valley Publishing 317, 319
Technical Solutions 253, 317
Technical Systems Consultants

UniFLEX 298

Technology Research Group 134, 317
teco 265
Teknowledge 317

S.1 260
Tektronix 273, 292, 302, 317

MAGPIE system 84
TeleSoft 272, 317
TeleVideo Systems 284, 317
Template Graphics Software 267, 318
Tenth Edition 83
termcap 18, 32, 45, 48, 178, 186, 205–206, 260
terminal 203

capabilities library 178, 186
driver 166
handling 288
raw mode 167

terminfo 32, 48, 205–206, 260
Terotech 318

Simtec 270
test 11, 153–154

-e 153
TEX 256
Texas Internet Consulting 318
Textset 256, 318
Textware International 256, 318
Thacker, C.P. 277
The Evolution of C – Past and Future 80
third-party software 257
Thomas, Rebecca 36, 100
Thompson, Ken 3–4, 6, 13–14, 16, 30, 35–36, 42,

43, 90–91, 157–158, 242–243, 280, 299
Three Rivers 302
Throwaway Software 276
Tichy, Walter 36, 182
Tilbrook, David 36
Tilson, Mike 34, 120
time zone 287
timeshare 256, 297
tip 33, 261
TITN 318

Teletex 270
Twice MHS X.400 270

tmg 33
/tmp 177, 210
toaster oven 37, 290
Tolerant Systems 286
Tondo, Clovis 102
Toolchest 276–277
tools 145

cross-development 298
language development 174
software development 290
Writer’s Workbench 290

TOP 294

 Index 343

Toshiba America 83, 318
Toy, Michael 36
trade secret 20
trademark 18, 22, 37, 49, 51
transaction processing 258, 284–285
Transmediair Utrecht BV 241, 318
transportable 82
trek 29, 243
troff 5, 22, 34, 48, 90, 256, 262–264, 267, 281
trojan horse 255, 301
TRS-80 234
Truscott, Tom 232
TS

TS 1.0 6
TS 2.0 6
TS 3.0 6

tset 29, 205
tsh 134
ttys 166
tuning 254
Turing Award 35–36, 157
turn-key systems 61, 207
Twain, Mark 214
twisted pair 293
Tymnet 228
typedefs 12
typesetting 256
typo 271

U
U.S. 19, 27, 286

Air Force 60
Army 60, 283
Constitution 221
Department of Defense 15, 300
government 294
National Bureau of Standards 25, 72, 256, 263

DES 299
GOSIP 294

patent 216
State Department 243

Ubell, Michael 36
Ubiquitous Systems 273, 318
UC Berkeley 16, 319
UCB 319
uid 207
ULTRIX 6, 19, 34
UM 45
umask 214
umount 196
unbundling 46, 51, 61, 290
UNC 223
unc 232

Uncle Joe’s farm 59
Uni-Ops 36
Uni-Ops Books 99, 252, 318
Unicad 318

DD/1 260
Unicomp 256, 318
UNICORN 120, 318
Unicorp Software

ViewComp 275
UNICS 5
Unidot 249, 318
unification of file, device and interprocess I/O 11,

40–41, 165
UniForum 118, 318
Unify 263, 318

Accell 266
UNIGRAM * X 112
unions 12
Uniplex Integration Systems

Uniplex-II 272
UniPlus+ 24
UniPress Software 241, 273–274, 318

cmacs 266
emacs 266
QuickShell 275
vi-PLUS 266

Uniq Digital Technologies 254, 318
Unicalq 275

Unique 31, 112, 318
UniSoft 24, 35, 56, 58, 256, 319

Uniplus+ 58, 253
Unisolutions 249, 319

SystemAdmin 300
Unisys 57, 302
Unitech Software 121, 276, 319

USECURE 300
Unity 57
Univac 302
Universitat Zurich-Irchel 319
University of Australia 238
University of California at Berkeley 274, 319
University of California at San Francisco 238
University of California Press 319
University of Kent 238
University of Leeds 274, 319
University of Maryland 45
University of New South Wales 274, 319
University of North Carolina 232
University of Utah 273, 319
UNIX

Achilles heel 44
beginner 113
customers 59
dictionary entry 37

 Index344

evolution 42
executive 62
fracturing the paradigm 42
how to ignore it 64
I/O paradigm 159
licensing 49
mail system 269
merging 54
name, the 5
newsletter 112
objective scrutiny 62
part of the educational establishment 62
picture 159
readings 12, 90
shell 65
source 95
standards 68, 71
strongest critics 62
system manuals 108
tight 42
trademark 22
usage of the name 22
user interface 131
what is it? 41
written in C 48

UNIX Bulletins 114
UNIX in the Office 272
UNIX Interessengemeinschaft Schweiz 319
UNIX Magazine 319
UNIX Muscles into the OA Market 272
UNIX News 31
UNIX on Big Iron 289
UNIX Operating System, The 107
UNIX Overcomes Its Real-Time Limitations 298
UNIX Products Directory 112, 125, 259
UNIX Programmer’s Manual 108

First Edition 5
Seventh Edition 90
Sixth Edition 90

UNIX Programming 90
UNIX Programming Environment, The 108, 158
UNIX REVIEW 31, 113, 213, 252, 319
UNIX Software List, The 31
UNIX Support Group 13
UNIX Survival Guide 213
UNIX System – Encyclopaedia 248
UNIX System Administration 109, 213
UNIX System Administrator’s Manual 108
UNIX System Development Laboratory 27
UNIX System on the IBM PC, The 291
UNIX System User’s Manual 108
UNIX System, The 108
UNIX Systems 319
UNIX Time-Sharing System, The 28, 280

UNIX without the Superuser 301
UNIX-compatible 58
UNIX-like 59
UNIXEXPO 119, 319
UNIXuser 113, 319
UNIXWORLD 28, 113, 252, 275, 319
unmoderated 226
update 194, 211
USDL 6
Usenet 15, 30, 32, 209, 221, 250–252, 300

feed 227
logical map 232
sources 227

Usenet Etiquette 226
USENIX 16, 23, 32, 111, 118, 125, 228, 252, 307,

319–320
Conference 118, 246
Conference Proceedings 114

user friendly 279
user groups 124
user ID number 207
user interface 39, 131

English orientation 286
USG 6, 13–14, 27, 31, 33

shell 13
Using fsck 197
USPDI 319
/usr/adm 206, 210
/usr/dict/words 136–137, 271
/usr/digest 114, 125
/usr/group 23–24, 33, 50, 111, 125, 306

Working Group on Databases 75, 320
Working Group on Distributed File Systems 75
Working Group on Graphics 74, 320
Working Group on Internationalization 75, 320
Working Group on Networking 320
Working Group on Performance Measurements

75, 320
Working Group on Realtime 75, 320
Working Group on Security 75, 320
Working Group on Super Computing 75
product directory 247, 257
software 239

1984 /usr/group Standard 67
/usr/group/UK 126
/usr/include 98, 179
/usr/include/signal.h 171
/usr/include/strings.h 179
/usr/lib 177
/usr/lib/crontab 212
/usr/local/lib 178
/usr/man 95
/usr/spool 210–211

 Index 345

/usr/src 96
/usr/tmp 177, 210
/usr/group 252, 319
/usr/group/cdn 320
/usr/group/UK 320
Uttal, Judi 294
UTX/32S 301
uucp 33, 146, 204, 209, 212, 222, 225, 227, 232,

235, 250, 255, 261, 268–269, 290
example 209
Honey DanBer 32, 34
mapping project 32
packet driver 30

UUNET 29, 227–228, 235, 238, 320
uux 209
UX Software 273, 320

V
V-Systems 320

Take Notice 270
V7 44–45

rewrite 289
V9 45
validate 256
Value-Added Reseller 52
VAR 52
varargs 32
Variations on UNIX for Parallel-Processing

Computers 77
VAX 6, 12, 19, 34, 45, 48, 53, 64, 121, 246

VAX-11/780 31
VC 275
vcat 34
Vendor User Groups 127
Venix 56–57
VenturCom 320

Prelude 275
Venix System V 55
Venix V/86 289

Verdix 272, 320
verify 256
Vermont Creative Software 320

Windows for Data 261
Version

V1 6
V4 6, 15
V5 6, 15
V6 6, 42

kernel source 95–96
V7 6, 12, 18, 32, 42–44, 47, 241

inadequacies 47
V8 6

Network File System 292

V9 6, 45
version control 182
versions 5
vertical software 257
very long instruction word 296
vgrind 34
vi 18, 32, 45, 58, 121, 149–150, 188, 265

multiple windows 189
wombat do 265

VICE 293
vipw 207
virgin UNIX 63
virtual memory 17
Virtual Operating System 15, 279
Virtual Operating System, A 16
visual news 223
VLIW 296
VLSI 16
VM 48, 283

VM/370 33
VMS 17, 19, 48, 64–65, 85, 121, 142, 183, 283

access control lists 292
not portable 65
POSIX-compatible 65

vnews 223, 233
volcopy 198
Vorspan, Albert 282
VOS 15, 16, 23, 32, 35–36, 128, 279
Vrije Universiteit 240, 246, 320
vsh 134

W
W window system 278
Wagoner, Darryl 301
wait() 171, 213
wall 209
Wall Street 59, 258
Wall, Larry 36, 233
Wang 264
Washington, George 265
Waterman, Pamela 77
wc 136–137
WECo 12
Wehr, Larry 36
Weinberger, Peter 36, 45, 101, 150, 185, 292, 299
Weiner, Peter 36
Weinstein, Lauren 36, 227, 233
Weir, Lt. Col. Walt 180
WeirdNIX 74
Weiser, Mark 275
WELL 228–229
Western Electric 12, 20, 27

 Index346

which 148
white book 102
Whitesmiths 12, 21, 34, 273–274, 321

Co-IDRIS 289
IDRIS 55, 59

who 152, 154, 164, 208
Whole Earth ’lectronic Link 228
Whole Earth Catalog 228
Wicat 56
wide area network 81
Willcox, David 36
Williamson, Keith 30
Wilson, Woodrow 44
windows 141, 277

example 142, 265
standards 74

WiPro Information Tehnology 56
Wisner, Bill 237
Wittgenstein, Ludwig 266
wnj 32
Wollongong Group, The 53, 56–57, 283–284, 321

Eunice 283
Eunice SV/BSD 54

Woloski, Andrea 304
Wood, Jean 287
Woody Herman Band 30
WordMarc 266
work-alike 21, 59
workbench, programming 62
workstation 301, 302

personal 282, 291
Smalltalk 302

WORM 78
Wright, Frank Lloyd 67
write 209
write() 158, 162, 164–166, 168–169, 293
Writer’s Workbench 30, 266, 290
Writing Device Drivers 94
Writing Device Drivers for the Sun Workstation 94
wump 242
Wyk, Chris Van 36
WYSIWYG 264

X
X Windows 31, 74, 240, 278
X.25 30
X/OPEN 25, 53, 71, 74, 75, 287

Portability Guide 74, 109
System V Specification 74

X3J11 70
xargs 31, 201

example 201

XENIX 24, 28, 44, 51–54, 56, 58, 75–76, 254, 289
XENIX 2 6
XENIX 3 6
XENIX 5 6

Xerox 274
Alto 25, 277
CEDAR 84
Palo Alto Research Center 321
Parc 321
XNS 295

Xinu 30, 106
XVS 74

Y

yacc 32, 62, 104, 151, 173–175, 180, 183–184, 290
yachess 93
Yates, Jean 36, 100
yet another compiler compiler 183
Yochelson, Jerome 295
Yost, Dave 36, 120
You are not expected to understand this 95, 120

Z
Z8000 6
Zaiaz 56, 321
Zen Martian discography 258
Zerouni, Craig 182
Zilog Z8000 21
Zintz, Walter 36
zippy 145
zombie 213
zork 223
Zortec 321

System Z 267
Zortech 321
Zucker, Steve 36

