
Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 1 - PA-1C600-0l
Section l l

issue 1, October 1977
AT&TCo SPCS

MERT PROGRAMMER'S MANUAL

Second Edition (MER T Release 0)
Program Generic PG-JC600 issue 1

H. Lycklama, D. L. Bayer (Authors)
Edited by Department 8234

October 19 7 7

.,. This manual is for use within the Bell System only.-.
@) Bell Laboratories, Murray Hill, New Jersey, 07974

Bell Telephone 'Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 2 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

AUTHORS' PREFACE
to MERT Second Edition

We are grateful to the first users of the MERT system for their in­
itial support and encouragement. These include : S. L. Arnold, W ..
A. Burnette, L. L. Hamilton, J.E. Laur, J. J. Molinelli, R. W.
Peterson, M. A. Pilla and T. F. Tabloski. They made suggestions
for additions and improvements, many of which were incorporated
in MERT, and make MERT what it is today. We are particularly
appreciative of the members of Department 8234, G. W. R.
Luderer, E. A. Loikits and T. M. Raleigh who have done much to
aid in the documentation and preparation of an exportable MER T
system.

H. Lycklama
D. L. Bayer

This manual was photocornposed in the Murray
Hill Computation Center. The text of the manual
was prepared using the u 1x* ed text editor and
troff formatting program, as well as a Stare graphic
hardcopy device for assistance in the proof correc­
tion process.

* U IX is a Trademark of the Bell System.

First Printing

Reproduction, assembly and distribution:
Technical Documentation Department

Bell Laboratories, Whippany, New Jersey

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 3 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

TABLE OF CONTENTS
MERT PROGRAMMER'S MANUAL

AUTHORS' PREFACE to Second Edition

TABLE OF CONTENTS

PERMUTED INDEX TO MERT PROGRAMMER'S MANUAL

INTRODUCTION TO MERT PROGRAMMER'S MANUAL

page 2 - Section 11

page 3 - Section 11

page 7 - Section 11

page 19 - Section 11

A. SUPERVISOR PROCESS CALLS
Intro-a
addseg
add user
alockseg
alocseg
attach
clrevent
copyseg
cwait
detach
dropseg
enevent
event
execute
freeseg
getchar
getcsw
getime
getmsg
getty
gettype , .
growseg
inhibit
ioqueuem
jobchg
lockid
lockseg
mgetlim
mgettype
mreceive
msgtype
openseg
permit
pstart
pswap
punswap
putchar
receive
rmovseg
rti
segname
sendcpmsg
sendmsg

. Section 12
INTRO. TO SUPERVISOR EMT TRAPS

add a segment to the process address space
increment user count on a process

lock a segment in memory and set write back
. create a segment
attach process to interrupt vector

clear event flag (s)
make a copy of a segment
conditional wait for event

detach process from interrupt vector
drop a segment from a process virtual address space

enable event flag(s)
send event to a process

. execute new process
remove a segment ID from proc-sgrn-table

get characters from kernel process
get console switch register setting

get time
. get a message
get state of tty driver process
get a message of given type

increase or decrease the size of a segment
run process at priority one

. send an 1/0 message
change control to next process

increment the lock count on a segment
. lock a segment in memory

get a message of type between given limits
. • . . . • . . get a message of given type

get a message of type -1 (acknowledgement)
. get a message of given type
add a segment id to the process segment table

run process at priority zero
. start process
remove non-swap status from a process
. make a process non-swap

output characters to character device driver
. get a message

remove a segment from a process virtual address space
return from trap

get segment name
send a capability message
. . . . send a message

Bell Telephone Laboratories, Incorporated
PROO RAM APPLICATION INSTRUCTION

- 4 - PA-1C600-0I
Section 11

Issue 1, October 1977
AT&TCo SPCS

send port
setdspac

send message through port
set user-supervisor ct-space bits

setime set time
setmap set access, mode and starting segmentation register
setprior set priority of process
setty set state of tty driver process
sizeseg get size of segment
sleep set a bit pattern to sleep on
sndmsgfrom send a message from a process
spacaloc allocate space for segment; add it to the proc. virtual addr. space
sswap remove non-swap status from a segment
sunswap make a segment non-swap
sysproc system process
toutset
ulockid
ulockseg
unblkseg
wakeup
writeseg

B. KERNEL PROCESS CALLS
Intro-b
alocmsg
atchintr
dequeuem
dqtype
dtchintr
freemsg
getarg
getime
iolock
iomap
ioqueuem
messink
psignal
psleep
ptimer
putarg
pwakeup
queuem
queuemn
rite back
segname
sendevent
setime
timleft
uniolock

. . . . set time-out
decrement lock count of segment
decrement lock count of segment

unblock a named segment
wakeup all processes sleeping on a pattern

force a segment to be written back

. Section 13
INTRO. TO KERNEL EMT CALLS

allocate message buffer
attach a process to an interrupt
. . . . dequeue a message

dequeue a particular message type
detach a process from an interrupt
. . . . free up message buffer

get argument from SUP address space
. get system time
. lock segment for 1/0
map segid/ offset to virtual address
send message to 1/0 device driver
. return a message

send events to processes on a control channel
put process to sleep on bit pattern

. . . . set time-out value for process
put argument into SUP address space

wake up processes sleeping on bit pattern
. . . . queue message on input queue

queue message with no acknowledgement expected
set altered bit on a segment

get name of segment
send event to a process

set system time
get time-out value for process

unlock segment for 1/0

C. INTERPROCESS MESSAGE FORMATS Section 14
Intro-c INTRO. TO INTERPROCESS MESSAGE FORMATS
lntro-frn INTRO. TO FILE MANAGER MESSAGES
chdir change working directory
chmod change mode of file
chown change owner of file
close close a file

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 5 - PA-1C600-0l
Section 11

Issue 1, October 1977
AT&TCo SPCS

creat
delcap
exec
falloc
fmove
fork
fsize
fstat
ftrunc
init
link
mdate
mknod
mount
nmcode
open
openi
read
stat
sync
umount
unlink

. creat a new file
delete capability from process PCB
. . . . open file for execution
allocate contiguous space for a file
move file into a contiguous area

change count on open files and add capabilities
. . . . get size of file

get status of open file
truncate file to given size

initialize file system manager
. link to a file
. . . . modify date of file

make a directory or a special file
mount file system

get name code for segment
. open file

open file specified by inode number
read from file

write
1/o-messages
Process-mgr
(P-Mgr)P _CREAT
(P-Mgr)MSTERM
(P-Mgr)pinit
(P-Mgr)pwait
(Mem-Mgr)load
(Mem-Mgr)lock
(Mem-Mgr) term
(System Scheduler) term

D. FILE SYSTEM UTILITIES
Intro-ct
falloc
fmove
icat
iclr
JCOn

idrnp
isnp
recdmn
recon

E. MERT-UNIX PROGRAMS
Intro-e
acp
errproc
kdb
kdmp
kpkill
ktime
ldp

get file status
update super-block

dismount file system
remove directory entry

. . . . write to file
INTRO. TO 1/0 PROCESS-MESSAGES

INTRO. TO PROCESS-MANAGER MESSAGES
create a process from a file

. terminate a process and dump core

. initialize the process manager
message at termination of process-mgr-created process

. . . . to memory manager: load a process
to memory manager: process lock a segment
to memory manager: terminate a process
to system scheduler: terminate a process

. Section 15
INTRO. TO FILE SYSTEM UTILITY PROGRAMS

allocate contiguous file space
move file into contiguous area
. . . . concatenate i-node
. clear i-node

do consistency check of i-nodes
. . . . dump i-node

snap i-node contents
reconfiguration daemon
reconfigure file system

. Section 16
INTRO. TO MERT UTILITY PROGRAMS

asynchronous copy
. error logger
. kernel debugger
dump system state into core file

terminate a kernel process (superuser)
give detailed kernel time of a command
. load a process

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

PA-1C600-0l
Section 11

Issue 1, October 1977
AT&TCo SPCS

ldu
pep
pio
pk ill
run
sgen
startty
stoptty
tdrnp
tkill
xusr

F. MERT-UNIX SYSTEM CALLS
Intro-f
falloc
fmove
getseg
lock
msg
msgport
msgrecv
msgsend
pcreat
plock
qsleep
qwait
sendev
setio
statio
sysproc
waitev

G. MERT FILE FORMATS
Intro-g
fs
kprc
pfile

- 6 -

load a user process with public libraries
. physical copy
. physical 1/0
terminate a process (superuser)
run an environment (superuser)

system generation program
. start up tty
. stop tty
dump system state into core file

terminate all processes associated with a terminal
extract user core image from process core dump

. Section 17
INTRO. TO MER T UNIX SYSTEM CALLS

allocate space for contiguous file
move file into contiguous area

. get user segment
semaphores (USG Version)

send and receive messages (USG Version)
send message to a process connected to a port

receive message
send message to a process

creat new process
lock process in memory

stop execution for small interval
check for child process termination

. send event (s)
set 1/0 mode of file

get status of asynchronous 1/0
system ports

wait for an event

. . . . Section 18
INTRO. TO MERT FILE FORMATS
format of MERT file system volume

kernel process translation file
process file format produced by ldp

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 7 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

PERMUTED INDEX OF MERT PROGRAMMER'S MANUAL

mreceive(a) get a message of type
setmap(a) set

queuemn (b) queue message with no
mreceive(a) get a message of type -I

openseg(a)
addseg(a)

fork (c) change count on open files and
spacaloc(a) allocate space for segment;
for segment; add it to the proc. virtual

addseg (a) add a segment to the process
drop a segment from a process virtual

getarg(b) get argument from SUP
putarg(b) put argument into SUP

remove a segment from a process virtual
iomap(b) map segid/offset to virtual

fallocfd)
falloc(c)

alocmsg(b)
falloc(f)

virtual addr. space ... spacalocta)

rite back (b) set
fmove(c) move file into a contiguous
fmove(d) move file into contiguous
fmove(f) move file into contiguous

getarg (b) get
putarg(b) put

tkill(e) terminate all processes
acp(e)

statio(f) get status of

atchintr(b)
attach (a)

lock a segment in memory and set write
writeseg(a) force a segment to be written

writeseg(a) force a segment to
mgetlim (a) get a message or type

riteback (b) set altered
sleep (a) set a

psleep(b) put process to sleep on
pwakeup(b) wake up processes sleeping on

setdapacta) set user-supervisor d-space
alocmsg (b) allocate message
lreernsg (b) free up message 1

lntro-b(b) INTRO. TO KERNEL EMT
lntro-f(f) INTRO. TO MERT UNIX SYSTEM

fork (c) change count on open files and add
ctelcap(c) delete

sendcpmsg (a) send a
jobchg(a)

fork (cl
chmod(c)
chown (c)
chdir(c)

send events to processes on a control

-I (acknowledgement)
access, mode and starting segmentation register
acknowledgement expected
(acknowledgement)
acp(e) asynchronous copy
add a segment id to the process segment table
add a segment to the process address space
add capabilities
add it to the proc. virtual addr. space
addr. space ... spacalocta) allocate space
address space
address space ... dropseg (a)
address space
address space
address space ... rmovseg (a)
address
addseg(a) add a segment to the process address space
adduser(a) increment user count on a process
allocate contiguous file space
allocate contiguous space for a file
allocate message buffer
allocate space for contiguous file
allocate space for segment; add it to the proc.
alockseg(a) lock a segment in memory and set write back
alocmsg (b) allocate message buffer
alocseg(a) create a segment
altered bit on a segment
area
area
area
argument from SUP address space
argument into SUP address space
associated with a terminal
asynchronous copy
asynchronous 1/0
atchintr(b) attach a process to an interrupt
attach a process to an interrupt
attach process to interrupt vector
attach (a) attach process to interrupt vector
back ... alockseg (a)
back
be written back
between given limits
bit on a segment
bit pattern to sleep on
bit pattern
bit pattern
bits
buffer
buffer
CALLS
CALLS
capabilities
capability from process PCB
capability message
change control to next process
change count on open files and add capabilities
change mode of file
change owner of file
change working directory
channel. .. psignal (b)

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 8 - PA-1C600-0l
Section 11

Issue 1, October 1977
AT&TCo SPCS

putchar(a) output characters to character device driver
getchar (a) get characters from kernel process

putchar(a) output characters to character device driver
chdir(c) change working directory

qwait(f) check for child process termination
icon (d) do consistency check of i-nodes

qwait (f) check for child process termination
ch mod (c) change mode of file
chown (c) change owner of file

clrevent(a) clear event flag(s)
iclr (d) clear i-node

close(c) close a file
close (c) close a file
clrevent(a) clear event flag(s)

nmcode(c) get name code for segment
ktime(e) give detailed kernel time of a command

icat (d) concatenate i-node
cwait(a) conditional wait for event

msgport (f) send message to a process connected to a port
icon (d) do consistency check of i-nodes

getcsw (a) get console switch register setting
isnp(d) snap i-node contents

fmove(c) move file into a contiguous area
fmove(d) move file into contiguous area
fmove(f) move file into contiguous area

falloctd) allocate contiguous file space
falloctf') allocate space for contiguous file

falloc(c) allocate contiguous space for a file
psignal (b) send events lo processes on a control channel

jobchg(a) change control to next process
copyseg(a) make a copy of a segment

acp(e) asynchronous copy
pcp(e) physical copy

copyseg(a) make a copy of a segment
extract user core image from process core dump ... xusr(e)

kdmp(e) dump system state into core file
tdmp(e) dump system state into core file

xusr(e) extract user core image from process core dump
terminate a process and dump core ... (P-Mgr)MSTERM (c)

ulockid (a) decrement lock count of segment
ulockseg(a) decrement lock count of segment
adduser(a) increment user count on a process

lockid(a) increment the lock count on a segment
fork (c) change count on open files and add capabilities

creat (c) creat a new file
pcreat (f) creat new process

creat (c) creat a new file
(P-Mgr)P_CREAT(c) create a process from a file

alocseg(a) create a segment
cwait(a) conditional wait for event

recdmn (d) reconfiguration daemon
mdate(c) modify date of file

kdb(e) kernel debugger
growseg(a) increase or decrease the size of a segment

ulockid(a) decrement lock count of segment
ulockseg(a) decrement lock count of segment

delcap(c) delete capability from process PCB
delete capability from process PCB
dequeue a message
dequeue a particular message type
dequeuem (b) dequeue a message
detach a process from an interrupt

delcap(c)
dequeuem (b)

dqtype(b)

dtchintr(b)
detach (a)

ktime(e) give
ioqueuem (b) send message to 1/0

detach process from interrupt vector
detach (a) detach process from interrupt vector
detailed kernel time of a command
device driver

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 9 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

putchar(a) output characters to character
unlink (c) remove
mknod (c) make a

chdir (c) change working
umount(c)

getty (a) get state of tty
setty(a) set state of tty

ioqueuem (b) send message to 1/0 device
output characters to character device

dropseg (a)
address space ...

setdspacta) set user-supervisor

(P-Mgr)MSTERM (c) terminate a process and
idmp(d)
kdmp(e)
tdmp(e)

extract user core image from process core
lntro-b(b) INTRO. TO KERNEL

lntro-a(a) INTRO. TO SUPERVISOR
enevent(a)

unlink (c) remove directory
run (e) run an

errproc(e)

cl re vent (a) clear
enevent(a) enable

event (a) send
sendevent(b) send

cwait(a) conditional wait for
psignal (b) send
sendev (f) send

waitev (f) wait for an

execute(a)

qsleep(f) stop
exectc) open file for

queue message with no acknowledgement
xusr(e)

device driver
directory entry
directory or a special file
directory
dismount file system
dqtype(b) dequeue a particular message type
driver process
driver process
driver
driver ... putchar(a)
drop a segment from a process virtual address space
dropseg(a) drop a segment from a process virtual
ct-space bits
dtchintr(b) detach a process from an interrupt
dump core
dump i-node
dump system state into core file
dump system state into core file
dump ... xusr(e)
EMT CALLS
EMT TRAPS
enable event flag(s)
enevent(a) enable event flag(s)
entry
environment (superuser)
error logger
errprocte) error logger
event flag (s)
event flag(s)
event to a process
event to a process
event (a) send event to a process
event
events to processes on a control channel
event(s)
event
exec(c) open file for execution
execute new process
execute(a) execute new process
execution for small interval
execution
expected ... queuemn (b)
extract user core image from process core dump
falloc(c) allocate contiguous space for a file
falloc(d) allocate contiguous file space
falloc(f) allocate space for contiguous file

exectc) open file for execution
pfile(g) process file format produced by ldp

lntro-g lg) INTRO. TO MERT FILE FORMATS
fmovc(c) move file into a contiguous area
fmove(d) move file into contiguous area
fmovc(f) move file into contiguous area

lntro-fm(c) INTRO. TO FILE MANAGER MESSAGES
falloc(ct) allocate contiguous file space

openi(c) open file specified by inocte number
stat(c) get file status

init(cl initialize file system manager
Iruro-d id) INTRO. TO FILE SYSTEM UTILITY PROGRAMS
fs(g) format of MERT file system volume

mount(c) mount file system
recon (d) reconfigure file system
umount(c) dismount file system

ftrunc(c) truncate file to given size
fork (c) change count on open files and add capabilities

clrevent(a) clear event flag(s)
enevent{a) enable event flag(s)

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

writeseg (a)

fs(g)
pfilc (g) process file

Intro-de) INTRO. TO INTERPROCESS MESSAGE
lntro-g(g) INTRO. TO MERT FILE

freemsg(b)

sgen (el system
gettype(a)

mgettype (a)
msgtype(a)
mreceive (a)
mgetlim(a)
getmsg(a)
receive (a)
getarg (b)
getchar(a)
getcsw (a)

stat(c)
nmcode(c)
segname(b)
segname(a)

fsize(c)
sizeseg(a)
getty (a)
statio (f)
fstat (c)

getime(b)
getime(a)
timleft(b)
getseg(f)

ktime(e)
mgetlim (a) get a message of type between

ftrunc(c) truncate file to
gettype(a) get a message of

mgettype(a) get a message of
msgtype (a) get a message of

freeseg(a) remove a segment
openseg(a) add a segment

xusr(e) extract user core
growseg(a)

lock id (a)
adduser(a)

- 10 -

fmove(c) move file into a contiguous area
fmove(d) move file into contiguous area
fmove(f) move file into contiguous area
force a segment to be written back
fork (c) change count on open files and add capabilities
format of MERT file system volume
format produced by ldp
FORMATS
FORMATS
free up message buffer
freemsg(b) free up message buffer
freeseg(a) remove a segment ID from proc-sgm-table
fs(g) format of MERT file system volume
fsize (c) get size of file
fstat(c) get status of open file
ftrunctc) truncate file to given size
generation program
get a message of given type
get a message of given type
get a message of given type
get a message of type -I (acknowledgement)
get a message of type between given limits
get a message
get a message
get argument from SUP address space
get characters from kernel process
get console switch register setting
get file status
get name code for segment
get name of segment
get segment name
get size of file
get size of segment
get state of tty driver process
get status of asynchronous 1/0
get status of open file
get system time
-get time
get time-out value for process
get user segment
getarg(b) get argument from SUP address space
getchar(a) get characters from kernel process
getcsw (a) get console switch register setting
getime(a) get time
getime(b) get system time
getmsg (a) get a message
getseg (f) get user segmeni
getty (a) get state of tty driver process
gettype(a) get a message of given type
give detailed kernel time of a command
given limits
given size
given type
given type
given type
growseg(a) increase or decrease the size of a segment
icat (ct) concatenate i-node
iclr(d) clear i-node
icon (ct) do consistency check of i-nodes
ID from proc-sgrn-table
id to the process segment table
idmp(d) dump i-node
image from process core dump
increase or decrease the size of a segment
increment the lock count on a segment
increment user count on a process

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 11 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCoSPCS

init(c)
(P-Mgr)pinit(c)

isnp(d) snap
openi (c) open file specified by

icat (d) concatenate
iclr (d) clear

idmp(d) dump
icon (d) do consistency check of
queuem (b) queue message on

Intro-de) INTRO. TO
attach (a) attach process to

detach (a) detach process from
atchintr(b) attach a process to an

dtchintr(b) detach a process from an
qsleep(f) stop execution for small

lntro-fm (c)
Intro-ct (d)
Intro-de)

1/o-messages(c)
lntro-b(b)
lntro-g(g)
Intro-f'(f')
lntro-e(e)

Process-mgr (c)
lntro-a(a)

ioqueuem (b) send message to
ioqueuem (a) send an

setio (f) set
1/o-messages(c) INTRO. TO

iolock (b) lock segment for

pio (e) physical

statio (f) get status of asynchronous
uniolock (b) unlock segment for

spacalocta) allocate space for segment; add

kdb(e)
lntro-b(b) INTRO. TO

kpk ill (e) terminate a
kprc(g)

getchar(a) get characters from
ktime(c) give detailed

pfile (g) process file format produced by

ldu (c) load a user process with public
get a message of type between given

link (c)

ldp(e)
(Mem-Mgr)load(c) to memory manager:

ldu(e)
alockseg (a)
lockseg (a)

inhibit(a) run process at priority one
init (c) initialize file system manager
initialize file system manager
initialize the process manager
i-node contents
inode number
i-node
i-node
i-node
i-nodes
input queue
INTERPROCESS MESSAGE FORMATS
interrupt vector
interrupt vector
interrupt
interrupt
interval
INTRO. TO FILE MANAGER MESSAGES
INTRO. TO FILE SYSTEM UTILITY PROGRAMS
INTRO. TO INTERPROCESS MESSAGE FORMATS
INTRO. TO 1/0 PROCESS-MESSAGES
INTRO. TO KERNEL EMT CALLS
INTRO. TO MERT FILE FORMATS
INTRO. TO MERT UNIX SYSTEM CALLS
INTRO. TO MERT UTILITY PROGRAMS
INTRO. TO PROCESS-MANAGER MESSAGES
INTRO. TO SUPERVISOR EMT TRAPS
1/0 device driver
1/0 message
1/0 mode of file
1/0 PROCESS-MESSAGES
1/0
iolock (b) lock segment for 1/0
iomap(b) map segid/offset to virtual address
1/o-messages(c) INTRO. TO 1/0 PROCESS-MESSAGES
1/0
ioqueuem (a) send an 1/0 message
ioqueuem (b) send message to 1/0 device driver
1/0
1/0
isnp(d) snap i-node contents
it to the proc. virtual addr. space
jobchg(a) change control to next process
kdb(e) kernel debugger
kdmp(e) dump system state into core file
kernel debugger
KERNEL EMT CALLS
kernel process (superuser)
kernel process translation file
kernel process
kernel time of a command
kpkill(e) terminate a kernel process (superuser)
kprctg) kernel process translation file
ktime(e) give detailed kernel time of a command
tdp (e) load a process
ldp
ldu (e) load a user process with public libraries
libraries
limits ... mgctlim (a)
link to a file
link (c) link to a file
load a process
load a process
load a user process with public libraries
lock a segment in memory and set write back
lock a segment in memory

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

PA-1C600-0l
Section 11

Issue 1, October 1977
AT&TCoSPCS

(Mem-Mgr)lock(c) to memory manager: process
· ulockid (a) decrement

ulockseg(a) decrement
lock id (a) increment the

plock (f)
iolock (b)

errprocte) error
copyseg(a)
mknod(c)

punswap(a)
sunswap(a)

(Mem-Mgr)load(c) to memory
lntro-fm (c) INTRO. TO FILE
(Mem-Mgr)lock(c) to memory
(Mern-Mgr lterrnfc) to memory

init(c) initialize file system
(P-Mgr) pin it (c) initialize the process

iomap(b)

- 12 -

alockseg(a) lock a segment in
(Mem-Mgr)load(c) to
(Mem-Mgr)lock (c) to
(Mem-Mgr lterm tc) to

iockseg(a) lock a segment in
plock (f) lock process in

(P-Mgr)pwait (c)
alocmsg (b) allocate
freemsg (b) free up

Intro-de) INTRO. TO INTERPROCESS
sndmsgfrom (a) send a

gettype(a) get a
mgettype(a) get a
msgtype(a) get a
mreceive(a) get a
mgetlim (a) get a

queuem (b) queue
send port (a) send
msgport (f) send
msgsend (f) send

ioqueuem (b) send
dqtype (b) dequeue a particular

queuemn (b) queue
dequeuem (b) dequeue a.

getrnsg (a) get a
ioqueuem (a) send an 1/0

messink (b) return a
msgrecv (f) receive

receive(a) get a
msg(f) send and receive

sendcpmsg (a) send a capability
sendmsg (a) send a

lntro-fm(c) INTRO. TO FILE MANAGER
Process-mgr(c) INTRO. TO PROCESS-MANAGER

lock a segment
lock count of segment
lock count of segment
lock count on a segment
lock process in memory
lock segment for 1/0
lock (f) semaphores (USG Version)
lock id (a) increment the lock count on a segment
lockseg(a) lock a segment in memory
logger
make a copy of a segment
make a directory or a special file
make a process non-swap
make a segment non-swap
manager: load a process
MANAGER MESSAGES
manager: process lock a segment
manager: terminate a process
manager
manager
map segid/offset to virtual address
mdate(c) modify date of file
(Mem-Mgr)load(c) to memory manager: load a process
(Mem-Mgr)lock(c) to memory manager: process lock a
(Mem-Mgr lterrntc) to memory manager: terminate a process
memory and set write back
memory manager: load a process
memory manager: -process lock a segment
memory manager: terminate a process
memory
memory
message at termination of process-mgr-created process
message buffer
message buffer
MESSAGE FORMATS
message from a process
message of given type
message of given type
message of given type
message of type -I (acknowledgement)
message of type between given limits
message on input queue
message through port
message to a process connected to a port
message to a process
message to 1/0 device driver
message type
message with no acknowledgement expected
message
message
message
message
message
message
messages (USG Version)
message
message
MESSAGES
MESSAGES
messink (b) return a message
mgetlim (a) get a message of type between given limits
mgettype(a) get a message of given type
mknod (c) make a directory or a special file

setmap(a) set access, mode and starting segmentation register
ch mod (c) change mode of file

setio(f) set 1/0 mode of file

segment...

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 13 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

mdate(c)
mount(c)

fmove(c)
fmove(d)
fmove(f)

nmcode(c) get
segname (b) get

unblkseg(a) unblock a
segname(a) get segment

jobchg(a) change control to

queuemn (b) queue message with
pswap(a) remove
sswap(a) remove

punswap(a) make a process
sunswap(a) make a segment

openi (c) open file specified by inode
inhibit(a) run process at priority
sleep (a) set a bit pattern to sleep

exec(c)
openi (c)

fstat (c) get status of
open (c)

fork (cl change count on

putchar(al
chown (c) change

dqtype (b) dequeue a
sleep(a) set a bit

psleep(bl put process to sleep on bit
wake up processes sleeping on bit
wakeup all processes sleeping on a

delcap(c) delete capability from process

pcp(e)
pio (e)

process-mgr-created process ...
send message to a process connected to a

sendport(a) send message through
sysproctf) system

set prior (a) set
inhibit(a) run process at
permit (a) run process at

allocate space for segment; add it to the
tkill (e) terminate all

psignal (b) send events to
wakeup(a) wakeup all
pwakeup(b) wake up

modify date of file
mount file system
mount(c) mount file system
move file into a contiguous area
move file into contiguous area
move file into contiguous area
mreceive(a) get a message of type -1 (acknowledgement)
msg(f) send and receive messages (USG Version)
msgport (f) send message to a process connected to a port
msgrecv(f) receive message
msgsend (f) send message to a process
msgtype(a) get a message of given type
name code for segment
name of segment
named segment
name
next process
nmcode(c) get name code for segment
no acknowledgement expected
non-swap status from a process
non-swap status from a segment
non-swap
non-swap
number
one
on
open file for execution
open file specified by inode number
open file
open file
open files and add capabilities
open (cl open file
openi(c) open file specified by inode number
openseg(a) add a segment id to the process segment table
output characters to character device driver
owner of file
particular message type
pattern to sleep on
pattern
pattern pwakeu p (b)
pattern wakeup(a)
PCB
pcp(e) physical copy
pcreat (f) creat new process
permit (a) run process at priority zero
pfile Ig) process file format produced by ldp
physical copy
physical 1/0
pio (el physical 1/0
pk ill (e) terminate a process (superuser)
plock (f) lock process in memory
(P-Mgr)MSTERM(c) terminate a process and dump core
(P-Mgr)P _CREAT(cl create a process from a file
(P-Mgr)pinit(c) initialize the process manager
(P-Mgr)pwail (c) message at termination of
port. .. rnsgport (f)
port
ports
priority of process
priority one
priority zero
proc. virtual addr. space ... spacalocta)
processes associated with a terminal
processes on a control channel
processes sleeping on a pattern
processes sleeping on bit pattern

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

Process-mgr(c) INTRO. TO PROCESS-MANAGER MESSAGES
to memory manager: terminate a
1/o-messages(c) INTRO. TO 1/0

(P-Mgr)pwait(c) message at termination of
at termination of process-mgr-created

to system scheduler: terminate a
freeseg(a) remove a segment ID from

pfile (g) process file format
lntro-d(d) INTRO. TO FILE SYSTEM UTILITY

lntro-e(e) INTRO. TO MERT UTILITY
psignal(b) send events to processes on a control channel
psleep(b) put process to sleep on bit pattern
pstart (a) start process
pswap(a) remove non-swap status from a process
ptimer(b) set time-out value for process
public libraries
punswap (a) make a process non-swap
put argument into SUP address space
put process to sleep on bit pattern
putarg(b) put argument into SUP address space
putchar(a) output characters Lo character device driver
pwakeup(b) wake up processes sleeping on bit pattern
qsleep(f) stop execution for small interval

queuem (b) queue message on input queue
queuemn (b) queue message with no acknowledgement expected·

queuem (b) queue message on input queue
expected.. queuemn (b) queue message with no acknowledgement

queuem (b) queue message on input queue
qwait(f) check for child process termination

read (c) read from file

ldu (e) load a user process with

putarg(b)
psleep(b)

msgrecv(f)
msg (f) send and

recdmn (d)
recon (d)

getcsw(a) get console switch
set access, mode and starting segmentation

rmovseg(a)
freeseg(a)
unlink (c)
pswap(a)
sswap(a)

messink (b)
rti (a)

address space ...

run(e)
inhibit(a)
permit (a)

(System Schedulcr nermfc) lo system
process ... (System

iomap(b) map
spacalocta) allocate space for

iolock (b) lock
uniolock (b) unlock
dropseg (a) drop a

rmovseg (a) remove a
freeseg (a) remove a

openseg (a) add a
alockseg (a) lock a
lockseg (a) lock a

_, 14 -

process ... (Mem-Mgr)term (c)
PROCESS-MESSAGES
process-mgr-created process
process (P-Mgr)pwait (c) message
process (System Sched u !er) terrii (cj
proc-sgrn-table
produced by ldp
PROGRAMS
PROGRAMS

read (c) read from file
recdmn (ct) reconfiguration daemon
receive message
receive messages (USG Version)
receive (a) get a message
recon (ct) reconfigure file system
reconfiguration daemon
reconfigure file system
register setting
register ... setmap (a)
remove a segment from a process virtual address space
remove a segment ID from proc-sgm-table
remove directory entry
remove non-swap status from a process
remove non-swap status from a segment
return a message
return from trap
riteback (b) set altered bit on a segment
rmovseg(a) remove a segment from a process virtual
rti (a) return from trap
run an environment (superuser)
run process at priority one
run process at priority zero
run(e) run an environment (superuser)
scheduler: terminate a process
Schedulerlterm (c) Lo system scheduler: terminate a
segid/ offset to virtual address
segment; add it to the proc. virtual addr. space
segment for 1/0
segment for 1/0
segment from a process virtual address space
segment from a process virtual address space
segment ID from proc-sgm-table
segment id to the process segment table
segment in memory and set write back
segment in memory

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 15 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

segname(a) get
sunswap(a) make a

openseg (a) add a segment id to the process
writeseg (a) force a

addseg (a) add a
set map (a) set access, mode and starting

increase or decrease the size of a
to memory manager: process lock a

lock (f)
sendcpmsg (a)

sndmsgfrom (a)
sendmsg(a)

ioqueuem (a)
msg(f)

event(a)
sendeven t (b)

psignal (b)
sendev(f)

send port (a)
msgport(f)
msgsend(f)

ioqueuem (b)

sleep(a)
setmap(a)
riteback (b)

setio (f)
setprior(a)

setty (a)
setime(b)
ptimer(b)
toutset (a)
setime(a)

setdspac (a)
alockseg(a) lock a segment in memory and

register ...

gercsw (a) get console switch register

growseg(a) increase or decrease the
fsize(c) get

sizcseg (a) get
ftrunckl truncate file to given

pslccp(h) put process 10

sleeptu) set a bit pattern to

wakcuptu) wakeup all processes
pwakeup(b) wake up processes

qsleep(r) stop execution for
isnp(d)

the proc. virtual addr. space ...
Ialloctc) allocate contiguous

falloc(f) allocate

segment name
segment non-swap
segment table
segment to be written back
segment to the process address space
segmentation register
segment...growseg (a)
segment. .. (Mem-Mgr)lock (c)
segname(a) get segment name
segname(b) get name of segment
semaphores (USG Version)
send a capability message
send a message from a process
send a message
send an 1/0 message
send and receive messages (USG Version)
send event to a process
send event to a process
send events to processes on a control channel
send event(s)
send message through port
send message to a process connected to a port
send message to a process
send message to 1/0 device driver
sendcpmsg(a) send a capability message
sendevent(b) send event to a process
sendev (f) send event (s)
sendmsg(a) send a message
send port (a) send message through port
set a bit pattern to sleep on
set access, mode and starting segmentation register
set altered bit on a segment
set 1/0 mode of file
set priority of process
set state of tty driver process
set system time
set time-out value for process
set time-out
set time
set user-supervisor ct-space bits
set write back
setdspacta) set user-supervisor d-space bits
setime (a) set time
setime(b) set system time
setio (f) set 1/0 mode of file
setmap(a) set access, mode and starting segmentation
set prior (a) set priority of process
setting
setty(a) set state of tty driver process
sgen (c) system gencrution program
size of a segment
size or file
size of segment
size
sizeseg (a) gel size ol' segment
sleep on bit pattern
sleep on
sleep(a) set a bit pattern to sleep on
sleeping on a pattern
sleeping on bit pattern
small interval
snap i-node contents
sndmsgfrorn (a) send a message from a process
spacalocta) allocate space for segment; add it to
space for a file
space for contiguous file

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

P A-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

space ... spacalocfa) allocate space for segment; add it to the proc. virtual addr.
add a segment to the process address space addseg(a)

a segment from a process virtual address space dropseg(a) drop
fallocfd) allocate contiguous file space

getarg(b) get argument from SUP address space
putarg(b) put argument into SUP address space
a segment from a process virtual address space rmovseg(a) remove
segment; add it to the proc. virtual addr. space spacaloc(a) allocate space for

mknod (c) make a directory or a special file
openi(c) open file specified by inode number

sswap(a) remove non-swap status from a segment
pstart (a)
star tty (e)

setmap (a) set access, mode and

kdmp(e) dump system
tdmp(e) dump system

getty (a) get
setty (a) set

pswap(a) remove non-swap
sswap(a) remove non-swap

statio(f) get
fstat (c) get

stat (c) get file
qsleep(f)
stoptty {e)

getarg ib) get argument from
putarg(b) put argument into

sync (c) update
kpkill (e) terminate a kernel process

pk ill (e) terminate a process
run (e) run an environment

lntro-a(a) INTRO. TO
getcsw (a) get console

lntro-f(f) INTRO. TO MERT UNIX
sgen (e)

init (c) initialize file
sysproc(f)
sysprocta)

(System Scheduler Jtcrrn (c) to
terminate a process ...

kdmp(e) dump
tdmp(e) dump
getime (b) get
setime(b) set

lntro-d(d) INTRO. TO FILE
fs(g) format of MERT file

add a segment id to the process segment

terminate all processes associated with a
kpkill(e)

(P-Mgr)MSTERM (c)
pkill(e)

(Mem-Mgr)term (c) to memory manager:
Schedulerlterm(c) to system scheduler:

tkill(e)
(P-Mgr)pwait(c) message at

qwait (f) check for child process
send port (a) send message

- 16 -

start process
start up tty
starting segmentation register
staruy (e) start up tty
stat (c) get file status
state into core file
state into core file
state of tty driver process
state of tty driver process
statio (f) get status of asynchronous 1/0
status from a process
status from a segment
status of asynchronous 1/0
status of open file
status
stop execution for small interval
stop tty
stoptty (e) stop tty
sunswap(a) make a segment non-swap
SUP address space
SUP address space
super-block
(superuser)
(superuser)
(superuser)
SUPERVISOR EMT TRAPS
switch register setting
sync(c) update super-block
sysprocfa) system process
sysproctf') system ports
SYSTEM CALLS
system generation program
system manager
system ports
system process
system scheduler: terminate a process
(System Scheduler)term (c) to system scheduler:
system state into core file
system state into core file
system time
system time
SYSTEM UTILITY PROGRAMS
system volume
table ... openseg (a)
tdmp(e) dump system stale into core file
terminal. .. tkill (e)
terminate a kernel process (superuser)
terminate a process and dump core
terminate a process (superuser)
terminate a process
terminate a process ... (System
terminate all processes associated with a terminal
termination of process-mgr-created process
termination
through port

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 17 - PA-1C600-0l
Section 11

Issue 1, October 1977
AT&TCo SPCS

ktime(e) give detailed kernel
getime(a) get

getime(b) get system
ptimer(b) set
timleft (b) get
toutset(a) set
setime(a) set

setime(b) set system time
timleft(b) get time-out value for process

terminal... tkill(e) terminate all processes associated with a
toutset (a) set time-out

kprcfg) kernel process translation file
rti (a) return from trap

lntro-a(a) INTRO. TO SUPERVISOR EMT TRAPS
truncate file to given size
tty driver process
tty driver process
tty
tty
type -I (acknowledgement)
type between given limits
type
type
type
type
ulockid(a) decrement lock. count of segment
ulockseg(a) decrement lock count of segment
umount(c) dismount file system
unblkseg(a) unblock a named segment
unblock a named segment
uniolock (b) unlock segment for 1/0
unlink (c) remove directory entry

uniolock (b) unlock segment for 1/0
synctc) update super-block

xusr(e) extract user core image from process core dump
adduser(a) increment user count on a process

ldu (e) load a user process with public libraries
getseg (f) get user segment

setdspacfa) set user-supervisor ct-space bits
lock (f) semaphores (USG Version)

msg(f) send and receive messages (USG Version)
lntro-d(d) INTRO. TO FILE SYSTEM UTILITY PROGRAMS

lntro-ete) INTRO. TO MERT UTILITY PRQGRAMS
ptimer(b) set time-out value for process
tim left (b) get time-out value for process

attach (a) attach process to interrupt vector
detach (a) detach process from interrupt vector

lock (I') semaphores (USG Version)
msg(f) send and receive messages (USG - Version)

space for segment: add it to the proc. virtual addr. space ... spacatocta) allocate
dropseg(a) drop a segment from a process virtual address space

rmovseg(a) remove a segment from a process virtual address space
iomap(b) map segid/olfset to virtual address

fs(g) format of MERT file system volume
waitev(f) wait for an event

cwait(a) conditional wait for event
waitev(f) wait for an event
wake up processes sleeping on bit pattern
wakeup all processes sleeping on a pattern
wakeup(a) wakeup all processes sleeping on a pattern
working directory
write back ... alockseg (a)
write to file
write(c) write to file
writeseg(a) force a segment to be written back
written back

ftrunctc)
getty(a) get state of
setty(a) set state of
startty (e) start up

stoptty (e) stop
mreceive(a) get a message of
rngetlim (a) get a message of

dqtype(b) dequeue a particular message
gettype(a) get a message of given

mgettype(a) get a message of given
msgtype(a) get a message of given

un blkseg (a)

pwakeuptb)
wakeup(a)

chdir(c) change
lock a segment in memory and set

write(c)

writeseg(a) force a segment to be

time of a command
time
time
time-out value for process
time-out value for process
time-out
time

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 18 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCoSPCS

xusr(e) extract user core image from process core dump
permit (a) run process at priority zero

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 19 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

INTRODUCTION TO MERT PROGRAMMER'S MANUAL

This manual provides a description of the internal features of the MERT operating system. It is meant
to be used as a supplement to the UNIX PROGRAMMER'S MANUAL. A more general overview of
the MERT operating system is provided by the two technical memoranda:

H. Lycklama, D. L. Bayer, A Structured Operating System for a PDP-11/45, TM-75-1352-4, May
6, 1975.

D. L. Bayer, H. Lycklama, MERT, A Multi-Environment Real-Time Operating System, TM-75-
1352-7, July 18, 1975. Also published in: ACM Operating Systems Review, Volume 9,
Number 5, November 1975, pp.33-42.

Within the area it surveys, this manual attempts to be as complete and timely as possible. A conscious
decision was made to describe each program in exactly the state it was in at the time its manual section
was prepared. In particular, the desire to describe something as it should be, not as it is, was resisted.
Inevitably, this means that many sections will soon be out of date.

This manual is divided into seven sections:

A. Supervisor Process Calls
B. Kernel Process Calls
C. Inter-Process Message Formats
D. File System Utilities
E. MER T- UNIX Programs
F. MERT-UNIX System Calls
G. MERT File Formats (new)

The PCB (Process Control Block) of a supervisor-user process is described in section A. A supervisor­
user process has entries into the kernel by means of EMT traps. Each one of these is described in de­
tail. The binary object code for each routine is kept in the library file "/lib/libe.a".

The kernel process header is described in section B. A kernel process has entries into the kernel by
means of another set of EMT traps. Each of these is described in detail here. The binary object code
for each routine is kept in the library file "/lib/Iibk.a".

Inter-process communication is achieved mainly by means of messages. The header of a message is
described in section C along with the contents of the various message types which are recognized by the
basic system processes. These processes include kernel 1/0 drivers, file manager, process manager,
memory manager and system process scheduler.

Section D describes the utility programs which deal with the file system. For those which are not
described, the reader is referred to the UNIX PROGRAMMER'S MANUAL.

Section E describes the various utility programs which are used to build special MERT files such as pro­
cess images and the boot image. It also includes desriptions of programs which will run under MERT­
UNIX making use of the new "system call's" added to the MERT version of the UNIX supervisor.

Section F describes all of the new "UNIX system call's" added to the MERT-UNIX supervisor. The
binary object code for each routine is kept in the library file "/lib/libr.a".

Section G describes the format of various files, most notably the layout of a file system volume and the
i-node structure.

Bell Telephone Laboratories, Incorporated
PROGRAM APPLICATION INSTRUCTION

- 20 - PA-1C600-01
Section 11

Issue 1, October 1977
AT&TCo SPCS

Most sections begin with an introduction section. Each section consists of a number of independent
entries of a page or so. Entries within each section are alphabetized behind the introduction section,
except for Section C where these rules apply only to the first part dealing with file manager messages.
The last part of Section C deals with various resource management processes; see the table of contents
to understand the organization. The page numbers of each entry start at 1.

All entries are based on a common format, not all of whose subsections will always appear.

The name section repeats the entry name and gives a very short description of its purpose.

The synopsis summarizes the use of the program being described. A few conventions are used,
particularly in the Commands section:

B o 1 d f a c e words are considered literals, and are typed just as they appear.

Square brackets ([]) around an argument indicate that the argument is optional. When an
argument is given as "name", it always refers to a file name.

Ellipses " ... " are used to show that the previous argument-prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a
minus sign "-" is often taken to mean some sort of flag argument even if it appears in a posi­
tion where a file name could appear. Therefore, it is unwise to have files whose names begin
with "-".

The description section discusses in detail the subject at hand.

The files section gives the names of files which are built into the program.

A see also section gives pointers to related information.

A diagnostics section discusses the diagnostic indications which may be produced. Messages which
are intended to be self-explanatory are not listed.

The bugs section gives known bugs and sometimes deficiencies. Occasionally also the suggested fix
is described.

