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interrupt vector 
interrupt vector 
interrupt 
interrupt 
interval 
INTRO. TO FILE MANAGER MESSAGES 
INTRO. TO FILE SYSTEM UTILITY PROGRAMS 
INTRO. TO INTERPROCESS MESSAGE FORMATS 
INTRO. TO 1/0 PROCESS-MESSAGES 
INTRO. TO KERNEL EMT CALLS 
INTRO. TO MERT FILE FORMATS 
INTRO. TO MERT UNIX SYSTEM CALLS 
INTRO. TO MERT UTILITY PROGRAMS 
INTRO. TO PROCESS-MANAGER MESSAGES 
INTRO. TO SUPERVISOR EMT TRAPS 
1/0 device driver 
1/0 message 
1/0 mode of file 
1/0 PROCESS-MESSAGES 
1/0 
iolock (b) lock segment for 1/0 
iomap(b) map segid/offset to virtual address 
1/o-messages(c) INTRO. TO 1/0 PROCESS-MESSAGES 
1/0 
ioqueuem (a) send an 1/0 message 
ioqueuem (b) send message to 1/0 device driver 
1/0 
1/0 
isnp(d) snap i-node contents 
it to the proc. virtual addr. space 
jobchg(a) change control to next process 
kdb(e) kernel debugger 
kdmp(e) dump system state into core file 
kernel debugger 
KERNEL EMT CALLS 
kernel process (superuser) 
kernel process translation file 
kernel process 
kernel time of a command 
kpkill(e) terminate a kernel process (superuser) 
kprctg) kernel process translation file 
ktime(e) give detailed kernel time of a command 
tdp (e) load a process 
ldp 
ldu (e) load a user process with public libraries 
libraries 
limits ... mgctlim (a) 
link to a file 
link (c) link to a file 
load a process 
load a process 
load a user process with public libraries 
lock a segment in memory and set write back 
lock a segment in memory 
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(Mem-Mgr)lock(c) to memory manager: process 
· ulockid (a) decrement 

ulockseg(a) decrement 
lock id (a) increment the 

plock (f) 
iolock (b) 

errprocte) error 
copyseg(a) 
mknod(c) 

punswap(a) 
sunswap(a) 

(Mem-Mgr)load(c) to memory 
lntro-fm (c) INTRO. TO FILE 
(Mem-Mgr)lock(c) to memory 
(Mern-Mgr lterrnfc) to memory 

init(c) initialize file system 
(P-Mgr) pin it (c) initialize the process 

iomap(b) 
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alockseg(a) lock a segment in 
(Mem-Mgr)load(c) to 
(Mem-Mgr)lock (c) to 
(Mem-Mgr lterm tc) to 

iockseg(a) lock a segment in 
plock (f) lock process in 

(P-Mgr )pwait (c) 
alocmsg (b) allocate 
freemsg (b) free up 

Intro-de) INTRO. TO INTERPROCESS 
sndmsgfrom (a) send a 

gettype(a) get a 
mgettype(a) get a 
msgtype(a) get a 
mreceive(a) get a 
mgetlim (a) get a 

queuem (b) queue 
send port (a) send 
msgport (f) send 
msgsend (f) send 

ioqueuem (b) send 
dqtype (b) dequeue a particular 

queuemn (b) queue 
dequeuem (b) dequeue a. 

getrnsg (a) get a 
ioqueuem (a) send an 1/0 

messink (b) return a 
msgrecv (f) receive 

receive(a) get a 
msg(f) send and receive 

sendcpmsg (a) send a capability 
sendmsg (a) send a 

lntro-fm(c) INTRO. TO FILE MANAGER 
Process-mgr(c) INTRO. TO PROCESS-MANAGER 

lock a segment 
lock count of segment 
lock count of segment 
lock count on a segment 
lock process in memory 
lock segment for 1/0 
lock (f) semaphores (USG Version) 
lock id (a) increment the lock count on a segment 
lockseg(a) lock a segment in memory 
logger 
make a copy of a segment 
make a directory or a special file 
make a process non-swap 
make a segment non-swap 
manager: load a process 
MANAGER MESSAGES 
manager: process lock a segment 
manager: terminate a process 
manager 
manager 
map segid/offset to virtual address 
mdate(c) modify date of file 
(Mem-Mgr)load(c) to memory manager: load a process 
(Mem-Mgr)lock(c) to memory manager: process lock a 
(Mem-Mgr lterrntc) to memory manager: terminate a process 
memory and set write back 
memory manager: load a process 
memory manager: -process lock a segment 
memory manager: terminate a process 
memory 
memory 
message at termination of process-mgr-created process 
message buffer 
message buffer 
MESSAGE FORMATS 
message from a process 
message of given type 
message of given type 
message of given type 
message of type -I (acknowledgement) 
message of type between given limits 
message on input queue 
message through port 
message to a process connected to a port 
message to a process 
message to 1/0 device driver 
message type 
message with no acknowledgement expected 
message 
message 
message 
message 
message 
message 
messages (USG Version) 
message 
message 
MESSAGES 
MESSAGES 
messink (b) return a message 
mgetlim (a) get a message of type between given limits 
mgettype(a) get a message of given type 
mknod (c) make a directory or a special file 

setmap(a) set access, mode and starting segmentation register 
ch mod (c) change mode of file 

setio(f) set 1/0 mode of file 

segment... 
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mdate(c) 
mount(c) 

fmove(c) 
fmove(d) 
fmove(f) 

nmcode(c) get 
segname (b) get 

unblkseg(a) unblock a 
segname(a) get segment 

jobchg(a) change control to 

queuemn (b) queue message with 
pswap(a) remove 
sswap(a) remove 

punswap(a) make a process 
sunswap(a) make a segment 

openi (c) open file specified by inode 
inhibit(a) run process at priority 
sleep (a) set a bit pattern to sleep 

exec(c) 
openi (c) 

fstat (c) get status of 
open (c) 

fork (cl change count on 

putchar(al 
chown (c) change 

dqtype (b) dequeue a 
sleep(a) set a bit 

psleep(bl put process to sleep on bit 
wake up processes sleeping on bit 
wakeup all processes sleeping on a 

delcap(c) delete capability from process 

pcp(e) 
pio (e) 

process-mgr-created process ... 
send message to a process connected to a 

sendport(a) send message through 
sysproctf) system 

set prior (a) set 
inhibit(a) run process at 
permit (a) run process at 

allocate space for segment; add it to the 
tkill (e) terminate all 

psignal (b) send events to 
wakeup(a) wakeup all 
pwakeup(b) wake up 

modify date of file 
mount file system 
mount(c) mount file system 
move file into a contiguous area 
move file into contiguous area 
move file into contiguous area 
mreceive(a) get a message of type -1 (acknowledgement) 
msg(f) send and receive messages (USG Version) 
msgport (f) send message to a process connected to a port 
msgrecv(f) receive message 
msgsend (f) send message to a process 
msgtype(a) get a message of given type 
name code for segment 
name of segment 
named segment 
name 
next process 
nmcode(c) get name code for segment 
no acknowledgement expected 
non-swap status from a process 
non-swap status from a segment 
non-swap 
non-swap 
number 
one 
on 
open file for execution 
open file specified by inode number 
open file 
open file 
open files and add capabilities 
open (cl open file 
openi(c) open file specified by inode number 
openseg(a) add a segment id to the process segment table 
output characters to character device driver 
owner of file 
particular message type 
pattern to sleep on 
pattern 
pattern pwakeu p (b) 
pattern wakeup(a) 
PCB 
pcp(e) physical copy 
pcreat (f) creat new process 
permit (a) run process at priority zero 
pfile Ig) process file format produced by ldp 
physical copy 
physical 1/0 
pio (el physical 1/0 
pk ill (e) terminate a process (superuser) 
plock (f) lock process in memory 
(P-Mgr)MSTERM(c) terminate a process and dump core 
(P-Mgr)P _CREAT(cl create a process from a file 
(P-Mgr)pinit(c) initialize the process manager 
(P-Mgr)pwail (c) message at termination of 
port. .. rnsgport (f) 
port 
ports 
priority of process 
priority one 
priority zero 
proc. virtual addr. space ... spacalocta) 
processes associated with a terminal 
processes on a control channel 
processes sleeping on a pattern 
processes sleeping on bit pattern 
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Process-mgr(c) INTRO. TO PROCESS-MANAGER MESSAGES 
to memory manager: terminate a 
1/o-messages(c) INTRO. TO 1/0 

(P-Mgr)pwait(c) message at termination of 
at termination of process-mgr-created 

to system scheduler: terminate a 
freeseg(a) remove a segment ID from 

pfile (g) process file format 
lntro-d(d) INTRO. TO FILE SYSTEM UTILITY 

lntro-e(e) INTRO. TO MERT UTILITY 
psignal(b) send events to processes on a control channel 
psleep(b) put process to sleep on bit pattern 
pstart (a) start process 
pswap(a) remove non-swap status from a process 
ptimer(b) set time-out value for process 
public libraries 
punswap (a) make a process non-swap 
put argument into SUP address space 
put process to sleep on bit pattern 
putarg(b) put argument into SUP address space 
putchar(a) output characters Lo character device driver 
pwakeup(b) wake up processes sleeping on bit pattern 
qsleep(f) stop execution for small interval 

queuem (b) queue message on input queue 
queuemn (b) queue message with no acknowledgement expected· 

queuem (b) queue message on input queue 
expected.. queuemn (b) queue message with no acknowledgement 

queuem (b) queue message on input queue 
qwait(f) check for child process termination 

read (c) read from file 

ldu (e) load a user process with 

putarg(b) 
psleep(b) 

msgrecv(f) 
msg (f) send and 

recdmn (d) 
recon (d) 

getcsw(a) get console switch 
set access, mode and starting segmentation 

rmovseg(a) 
freeseg(a) 
unlink (c) 
pswap(a) 
sswap(a) 

messink (b) 
rti (a) 

address space ... 

run(e) 
inhibit(a) 
permit (a) 

(System Schedulcr nermfc) lo system 
process ... (System 

iomap(b) map 
spacalocta) allocate space for 

iolock (b) lock 
uniolock (b) unlock 
dropseg (a) drop a 

rmovseg (a) remove a 
freeseg (a) remove a 

openseg (a) add a 
alockseg (a) lock a 
lockseg (a) lock a 
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process ... (Mem-Mgr)term (c) 
PROCESS-MESSAGES 
process-mgr-created process 
process (P-Mgr )pwait (c) message 
process (System Sched u !er) terrii (cj 
proc-sgrn-table 
produced by ldp 
PROGRAMS 
PROGRAMS 

read (c) read from file 
recdmn (ct) reconfiguration daemon 
receive message 
receive messages (USG Version) 
receive (a) get a message 
recon (ct) reconfigure file system 
reconfiguration daemon 
reconfigure file system 
register setting 
register ... setmap (a) 
remove a segment from a process virtual address space 
remove a segment ID from proc-sgm-table 
remove directory entry 
remove non-swap status from a process 
remove non-swap status from a segment 
return a message 
return from trap 
riteback (b) set altered bit on a segment 
rmovseg(a) remove a segment from a process virtual 
rti (a) return from trap 
run an environment (superuser) 
run process at priority one 
run process at priority zero 
run(e) run an environment (superuser) 
scheduler: terminate a process 
Schedulerlterm (c) Lo system scheduler: terminate a 
segid/ offset to virtual address 
segment; add it to the proc. virtual addr. space 
segment for 1/0 
segment for 1/0 
segment from a process virtual address space 
segment from a process virtual address space 
segment ID from proc-sgm-table 
segment id to the process segment table 
segment in memory and set write back 
segment in memory 
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segname(a) get 
sunswap(a) make a 

openseg (a) add a segment id to the process 
writeseg (a) force a 

addseg (a) add a 
set map (a) set access, mode and starting 

increase or decrease the size of a 
to memory manager: process lock a 

lock (f) 
sendcpmsg (a) 

sndmsgfrom (a) 
sendmsg(a) 

ioqueuem (a) 
msg(f) 

event(a) 
sendeven t (b) 

psignal (b) 
sendev(f) 

send port (a) 
msgport(f) 
msgsend(f) 

ioqueuem (b) 

sleep(a) 
setmap(a) 
riteback (b) 

setio (f) 
setprior(a) 

setty (a) 
setime(b) 
ptimer(b) 
toutset (a) 
setime(a) 

setdspac (a) 
alockseg(a) lock a segment in memory and 

register ... 

gercsw (a) get console switch register 

growseg(a) increase or decrease the 
fsize(c) get 

sizcseg (a) get 
ftrunckl truncate file to given 

pslccp(h) put process 10 

sleeptu) set a bit pattern to 

wakcuptu) wakeup all processes 
pwakeup(b) wake up processes 

qsleep(r) stop execution for 
isnp(d) 

the proc. virtual addr. space ... 
Ialloctc) allocate contiguous 

falloc(f) allocate 

segment name 
segment non-swap 
segment table 
segment to be written back 
segment to the process address space 
segmentation register 
segment...growseg (a) 
segment. .. (Mem-Mgr)lock (c) 
segname(a) get segment name 
segname(b) get name of segment 
semaphores (USG Version) 
send a capability message 
send a message from a process 
send a message 
send an 1/0 message 
send and receive messages (USG Version) 
send event to a process 
send event to a process 
send events to processes on a control channel 
send event(s) 
send message through port 
send message to a process connected to a port 
send message to a process 
send message to 1/0 device driver 
sendcpmsg(a) send a capability message 
sendevent(b) send event to a process 
sendev (f) send event (s) 
sendmsg(a) send a message 
send port (a) send message through port 
set a bit pattern to sleep on 
set access, mode and starting segmentation register 
set altered bit on a segment 
set 1/0 mode of file 
set priority of process 
set state of tty driver process 
set system time 
set time-out value for process 
set time-out 
set time 
set user-supervisor ct-space bits 
set write back 
setdspacta) set user-supervisor d-space bits 
setime (a) set time 
setime(b) set system time 
setio (f) set 1/0 mode of file 
setmap(a) set access, mode and starting segmentation 
set prior (a) set priority of process 
setting 
setty(a) set state of tty driver process 
sgen (c) system gencrution program 
size of a segment 
size or file 
size of segment 
size 
sizeseg (a) gel size ol' segment 
sleep on bit pattern 
sleep on 
sleep(a) set a bit pattern to sleep on 
sleeping on a pattern 
sleeping on bit pattern 
small interval 
snap i-node contents 
sndmsgfrorn (a) send a message from a process 
spacalocta) allocate space for segment; add it to 
space for a file 
space for contiguous file 
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space ... spacalocfa) allocate space for segment; add it to the proc. virtual addr. 
add a segment to the process address space addseg(a) 

a segment from a process virtual address space dropseg(a) drop 
fallocfd) allocate contiguous file space 

getarg(b) get argument from SUP address space 
putarg(b) put argument into SUP address space 
a segment from a process virtual address space rmovseg(a) remove 
segment; add it to the proc. virtual addr. space spacaloc(a) allocate space for 

mknod (c) make a directory or a special file 
openi(c) open file specified by inode number 

sswap(a) remove non-swap status from a segment 
pstart (a) 
star tty (e) 

setmap (a) set access, mode and 

kdmp(e) dump system 
tdmp(e) dump system 

getty (a) get 
setty (a) set 

pswap(a) remove non-swap 
sswap(a) remove non-swap 

statio(f) get 
fstat (c) get 

stat (c) get file 
qsleep(f) 
stoptty {e) 

getarg ib) get argument from 
putarg(b) put argument into 

sync (c) update 
kpkill (e) terminate a kernel process 

pk ill (e) terminate a process 
run (e) run an environment 

lntro-a(a) INTRO. TO 
getcsw (a) get console 

lntro-f(f) INTRO. TO MERT UNIX 
sgen (e) 

init (c) initialize file 
sysproc(f) 
sysprocta) 

(System Scheduler Jtcrrn (c) to 
terminate a process ... 

kdmp(e) dump 
tdmp(e) dump 
getime (b) get 
setime(b) set 

lntro-d(d) INTRO. TO FILE 
fs(g) format of MERT file 

add a segment id to the process segment 

terminate all processes associated with a 
kpkill(e) 

(P-Mgr)MSTERM (c) 
pkill(e) 

(Mem-Mgr)term (c) to memory manager: 
Schedulerlterm(c) to system scheduler: 

tkill(e) 
(P-Mgr)pwait(c) message at 

qwait (f) check for child process 
send port (a) send message 
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start process 
start up tty 
starting segmentation register 
staruy (e) start up tty 
stat (c) get file status 
state into core file 
state into core file 
state of tty driver process 
state of tty driver process 
statio (f) get status of asynchronous 1/0 
status from a process 
status from a segment 
status of asynchronous 1/0 
status of open file 
status 
stop execution for small interval 
stop tty 
stoptty (e) stop tty 
sunswap(a) make a segment non-swap 
SUP address space 
SUP address space 
super-block 
(superuser) 
(superuser) 
(superuser) 
SUPERVISOR EMT TRAPS 
switch register setting 
sync(c) update super-block 
sysprocfa) system process 
sysproctf') system ports 
SYSTEM CALLS 
system generation program 
system manager 
system ports 
system process 
system scheduler: terminate a process 
(System Scheduler)term (c) to system scheduler: 
system state into core file 
system state into core file 
system time 
system time 
SYSTEM UTILITY PROGRAMS 
system volume 
table ... openseg (a) 
tdmp(e) dump system stale into core file 
terminal. .. tkill (e) 
terminate a kernel process (superuser) 
terminate a process and dump core 
terminate a process (superuser) 
terminate a process 
terminate a process ... (System 
terminate all processes associated with a terminal 
termination of process-mgr-created process 
termination 
through port 
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ktime(e) give detailed kernel 
getime(a) get 

getime(b) get system 
ptimer(b) set 
timleft (b) get 
toutset(a) set 
setime(a) set 

setime(b) set system time 
timleft(b) get time-out value for process 

terminal... tkill(e) terminate all processes associated with a 
toutset (a) set time-out 

kprcfg) kernel process translation file 
rti (a) return from trap 

lntro-a(a) INTRO. TO SUPERVISOR EMT TRAPS 
truncate file to given size 
tty driver process 
tty driver process 
tty 
tty 
type -I (acknowledgement) 
type between given limits 
type 
type 
type 
type 
ulockid(a) decrement lock. count of segment 
ulockseg(a) decrement lock count of segment 
umount(c) dismount file system 
unblkseg(a) unblock a named segment 
unblock a named segment 
uniolock (b) unlock segment for 1/0 
unlink (c) remove directory entry 

uniolock (b) unlock segment for 1/0 
synctc) update super-block 

xusr(e) extract user core image from process core dump 
adduser(a) increment user count on a process 

ldu (e) load a user process with public libraries 
getseg (f) get user segment 

setdspacfa) set user-supervisor ct-space bits 
lock (f) semaphores (USG Version) 

msg(f) send and receive messages (USG Version) 
lntro-d(d) INTRO. TO FILE SYSTEM UTILITY PROGRAMS 

lntro-ete) INTRO. TO MERT UTILITY PRQGRAMS 
ptimer(b) set time-out value for process 
tim left (b) get time-out value for process 

attach (a) attach process to interrupt vector 
detach (a) detach process from interrupt vector 

lock (I') semaphores (USG Version) 
msg(f) send and receive messages (USG - Version) 

space for segment: add it to the proc. virtual addr. space ... spacatocta) allocate 
dropseg(a) drop a segment from a process virtual address space 

rmovseg(a) remove a segment from a process virtual address space 
iomap(b) map segid/olfset to virtual address 

fs(g) format of MERT file system volume 
waitev(f) wait for an event 

cwait(a) conditional wait for event 
waitev(f) wait for an event 
wake up processes sleeping on bit pattern 
wakeup all processes sleeping on a pattern 
wakeup(a) wakeup all processes sleeping on a pattern 
working directory 
write back ... alockseg (a) 
write to file 
write(c) write to file 
writeseg(a) force a segment to be written back 
written back 

ftrunctc) 
getty(a) get state of 
setty(a) set state of 
startty (e) start up 

stoptty (e) stop 
mreceive(a) get a message of 
rngetlim (a) get a message of 

dqtype(b) dequeue a particular message 
gettype(a) get a message of given 

mgettype(a) get a message of given 
msgtype(a) get a message of given 

un blkseg (a) 

pwakeuptb) 
wakeup(a) 

chdir(c) change 
lock a segment in memory and set 

write(c) 

writeseg(a) force a segment to be 

time of a command 
time 
time 
time-out value for process 
time-out value for process 
time-out 
time 
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xusr(e) extract user core image from process core dump 
permit (a) run process at priority zero 
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INTRODUCTION TO MERT PROGRAMMER'S MANUAL 

This manual provides a description of the internal features of the MERT operating system. It is meant 
to be used as a supplement to the UNIX PROGRAMMER'S MANUAL. A more general overview of 
the MERT operating system is provided by the two technical memoranda: 

H. Lycklama, D. L. Bayer, A Structured Operating System for a PDP-11/45, TM-75-1352-4, May 
6, 1975. 

D. L. Bayer, H. Lycklama, MERT, A Multi-Environment Real-Time Operating System, TM-75- 
1352-7, July 18, 1975. Also published in: ACM Operating Systems Review, Volume 9, 
Number 5, November 1975, pp.33-42. 

Within the area it surveys, this manual attempts to be as complete and timely as possible. A conscious 
decision was made to describe each program in exactly the state it was in at the time its manual section 
was prepared. In particular, the desire to describe something as it should be, not as it is, was resisted. 
Inevitably, this means that many sections will soon be out of date. 

This manual is divided into seven sections: 

A. Supervisor Process Calls 
B. Kernel Process Calls 
C. Inter-Process Message Formats 
D. File System Utilities 
E. MER T- UNIX Programs 
F. MERT-UNIX System Calls 
G. MERT File Formats (new) 

The PCB (Process Control Block) of a supervisor-user process is described in section A. A supervisor­ 
user process has entries into the kernel by means of EMT traps. Each one of these is described in de­ 
tail. The binary object code for each routine is kept in the library file "/lib/libe.a". 

The kernel process header is described in section B. A kernel process has entries into the kernel by 
means of another set of EMT traps. Each of these is described in detail here. The binary object code 
for each routine is kept in the library file "/lib/Iibk.a". 

Inter-process communication is achieved mainly by means of messages. The header of a message is 
described in section C along with the contents of the various message types which are recognized by the 
basic system processes. These processes include kernel 1/0 drivers, file manager, process manager, 
memory manager and system process scheduler. 

Section D describes the utility programs which deal with the file system. For those which are not 
described, the reader is referred to the UNIX PROGRAMMER'S MANUAL. 

Section E describes the various utility programs which are used to build special MERT files such as pro­ 
cess images and the boot image. It also includes desriptions of programs which will run under MERT­ 
UNIX making use of the new "system call's" added to the MERT version of the UNIX supervisor. 

Section F describes all of the new "UNIX system call's" added to the MERT-UNIX supervisor. The 
binary object code for each routine is kept in the library file "/lib/libr.a". 

Section G describes the format of various files, most notably the layout of a file system volume and the 
i-node structure. 
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Most sections begin with an introduction section. Each section consists of a number of independent 
entries of a page or so. Entries within each section are alphabetized behind the introduction section, 
except for Section C where these rules apply only to the first part dealing with file manager messages. 
The last part of Section C deals with various resource management processes; see the table of contents 
to understand the organization. The page numbers of each entry start at 1. 

All entries are based on a common format, not all of whose subsections will always appear. 

The name section repeats the entry name and gives a very short description of its purpose. 

The synopsis summarizes the use of the program being described. A few conventions are used, 
particularly in the Commands section: 

B o 1 d f a c e words are considered literals, and are typed just as they appear. 

Square brackets ( [ ] ) around an argument indicate that the argument is optional. When an 
argument is given as "name", it always refers to a file name. 

Ellipses " ... " are used to show that the previous argument-prototype may be repeated. 

A final convention is used by the commands themselves. An argument beginning with a 
minus sign "-" is often taken to mean some sort of flag argument even if it appears in a posi­ 
tion where a file name could appear. Therefore, it is unwise to have files whose names begin 
with "-". 

The description section discusses in detail the subject at hand. 

The files section gives the names of files which are built into the program. 

A see also section gives pointers to related information. 

A diagnostics section discusses the diagnostic indications which may be produced. Messages which 
are intended to be self-explanatory are not listed. 

The bugs section gives known bugs and sometimes deficiencies. Occasionally also the suggested fix 
is described. 


