
Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 1 - PA-1C600-01 
Section 13 (b) 

Issue 1, 10/1/77 
AT&TCo SPCS 

INTRO(b) INTRO(b) 

INTRODUCTION TO KERNEL EMT CALLS 

Section B of this manual lists all the kernel EMT entries into the kernel from the kernel mode 
processes. In most cases two calling sequences are specified, one of which is usable from assembly 
language, and the other from C. Most of these calls have an error return. From assembly language an 
erroneous call is always indicated by turning on the c-bit of the condition codes. The presence of an er 
ror is most easily tested by the instructions bes and bee ("branch on error set (or clear)"). These are 
synonyms for the bes and bee instructions. 

From C, an error condition is indicated by an otherwise impossible returned value. Almost always this 
is -1; the individual sections specify the details. 

A kernel process is defined in the kernel in a DCT (dispatcher control table) entry. The structure of a 
DCT entry is: 

struct dct { 
int d_stat; 
int d_link; 
int d_sleep; 
int *d _msg; 
int d_timeout; 
int d_events; 
int d_prc; 
char d_chan; 
char d_ucnt; 
int d_pcb; 

char d_iprior; 
char d_cprior; 
char d _msgcnt; 
char d_age; 

/* process status bits * / 
/* pointer to next process on this queue at this hardware priority * / 
/* sleep bit pattern*/ 
/* pointer to first message on input queue * / 
/* time-out value in 60ths of a second * / 
/* event flags * / 
/* process number * / 
/* control channel * / 
/* process user count * / 
/* physical block address of start of code for kernel process, PCB 
segment ID for supervisor-user process * / 
/* initial priority (not used for kernel process) */ 
/* current priority (not used for kernel process) * / 
/* count of messages on process input queue * / 
/* used by scheduler * / 

A kernel mode process runs at its specified hardware priority in d_srar and uses I-space only to 
provide protection for the kernel tables in D-space. The code for a kernel process must begin 
at address 060000 and may be up to 12K words long. Kernel base register 3 (KBR3) is set up 
to the beginning of the code. KBR4 and KBR5 are only set up if required. However KBR5 is 
used by the iomap emt call to set up a transfer directly into a supervisor or user segment for 
character I/0. KBR6 is always set up for access to the kernel library routines, such as the gen 
eral tty routines. A kernel process uses the kernel stack. It also has access to the I/0 address 
space by means of KBR 7 and to the kernel message buffers by means of KBR0. 

Each kernel process has a 27 word header preceding the actual code with the following struc 
ture: 

struct k pcb { 
struct { 

int sar; 
int sdr; 

) kr[6]; 

/* segment address register * / 
/* segment descriptor register * / 
/* kernel base register settings for KBR3, KBR4, KBR5 (I and D) 



Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 2 - 

INTRO(b) 

PA-1C600-0l 
Section 13 (b) 

Issue 1, 10/1 /77 
AT&TCo SPCS 

INTRO(b) 

int 
int 
int 

k_segid[6]; 
k_sav; 
k_ent[3]; 

int k_pn; 
char k_intflg; 

char k_nubmap; 
int *k_fubmap; 
int k_rsave[3]; 

*/ 
/* segment ID's (I and D) */ 
/* pointer to base register save routine in kernel * / 
/* process entry points: 

event entry point 
emt entry point 
fault entry point * / 

/* kernel process number * / 
/* interrupt flag set by kernel when interrupt occurs for this process 
*/ 
/* number of UNIBUS map registers used by this process*/ 
/* pointer to first UNIBUS address map register * / 
/* register save area upon entry to this kernel process*/ 

The variable k_pn is externally referred to by process in a kernel-mode process driver. The vari 
able process is globally defined. The kernel process is dispatched to by means of an interrupt or 
by the PIR (programmed interrupt request) triggered by an event. A kernel process does not 
need to be attached to an interrupt vector. In this case the process is dispatched to by means of 
an EMT call from the supervisor (EMT code > = 192.). Upon entry to the kernel process, the 
kernel saves the current settings of KBR3 and of KBR4 and KBR5 only if used. The base re 
gisters are restored on exit. 

The kernel processes as well as the supervisor processes communicate via messages. However, 
kernel processes may read and write the message buffer area directly. EMT trap calls are pro 
vided to allocate and free messages in the kernel buffer area. The message consists of a six 
word header and up to 106 words of data. The size of the message may be a multiple of 16 
words up to a total of 112 words. The layout of the message is defined by the structure: 

struct { 
int "rnslink; 
int msfrom; 
int msto; 
char mssize; 

bit 3: 
bit 4: 
bit 5: 
bit 6: 

char mstype; 
int msident; 
char msstat; 

char msseqnum; 

/* link to next message on input queue * / 
/* process from which message was received * / 
/* process to which message is to be sent * / 
/* bits 0-2: size in multiples of 16 words 
allocated bit 
acknowledgement bit 
iolock bit 
message contains capability 
/* message type * / 
/* message .identification wordonly used by sender * / 
/* status byte set by receiver in acknowledgment message or by sys 
tem if receiver process does not exist * / 
/* message sequence number * / 

The data in the body of the message must be filled in directly by the sender of the message. 



Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 1 - PA-1C600-0l 
Section 13 (b) 

Issue 1, 10/1/77 
AT&TCo SPCS 

ALOCMSG(b) ALOCMSG(b) 

NAME 
alocmsg - allocate message buffer 

SYNOPSIS 
(alocmsg = 12.) 
alocmsg (nwords) 
int nwords; /* number of words * / 

DESCRIPTION 
A /ocmsg allocates a contiguous piece of kernel memory in the message buffer pool. The size of 
message allocated is a multiple of 16 words and equal to or greater than nwords plus the size of 
the message header msghdr. The allocate bit and message size bits are set in the mssize byte of 
the message header. The rest of the message buffer is zeroed out. A pointer to the beginning 
of the message is returned in C. 

In assembly language, rO must contain the size of message buffer required in words. A pointer 
to the message buffer is returned in rO. 

SEE ALSO 
queuem(b), messink(b), dequeuem(b), freemsg(b), dqtype(b), queuemn(b) 

DIAGNOSTICS 
A O is returned from C if no message buffer space exists or if the size of message requested is 
greater than 112 words minus the message header size (6 words). 

In assembly language, the c-bit is set to indicate an error. 

FUTURE AND DMERT DIAGNOSTICS 
A null pointer is returned if no message buffer space exists or if the size of message requested 
is greater than MAXMSG bytes minus the message header size . 


