
Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 1 - 

FILE MANAGER(c) 

PA-1C600-0l 
Section 14 (c) 

Issue 1, 10/1 /77 
AT&TCo SPCS 

FILE MANAGER(c) 

INTRODUCTION TO FILE MANAGER MESSAGES 

The types of messages which the file manager is programmed to accept are: 

READ 1 
WRITE 2 
OPEN 3 
CLOSE 4 
EXEC 5 
FORK 6 
DELCAP 7 
CREAT 8 
LINK 9 
UNLINK 10 
MDATE 11 
CHOIR 12 
INIT 13 
MKNOD 14 
CHMOD 15 
CHOWN 16 
SYNC 17 
STAT 18 
FSIZE 19 
FSTAT 20 
SMOUNT 21 
SUMOUNT 22 
MOVE 23 
ALLOC 24 
OPENI 25 
TRUNC 26 
NMCODE 27 

read from file 
write to file 
open file 
close file 
open file for execution 
increment count on open files 
delete capability 
create file 
link to a file 
remove link from file 
modify date of file 
change directory 
initialization message 
make a node 
change mode of file 
change owner of file 
update file systems on secondary 
get status of file 
get size of file 
get status of open file 
mount file system 
unmount file system 
move file into contiguous area 
allocate contiguous space for file 
open file by inode number 
truncate file length to given value 
get segment name 

For messages sent to the file manager, the first four words of the body of the message must contain the 
capability and the user and group ID's. The rest of the message contains various arguments depending 
on the message type. The structure of a message to the file manager is given by: 

struct { 
struct msghdr; /* 6 word message header * I 
struct cp _clist { 

int 
int 
int 

cpm_num; 
cpm_owner; 
cpmcap; 

/* capability number * / 
/* capability owner * / 
/* capability * / 

}; 
char fmuid; 
char fm_gid; 
int frnargl}; 

/* user ID * I 
/* group ID * / 
/* list of arguments * / 

The capability owner cpm_owner and the capability value cpm_cap are actually filled in by the kernel 
EMT from the PCB of the process which sent the message. The capability list p_clist{} is a list of the 
valid "capabilities" which the process has. A capability is a two-word entry which is put in the PCB by 
the memory manager process. A process may be given a capability only by the "owner" of the capabili- 



Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

FILE MANAGER(c) 

- 2 - PA-1C600-01 
Section 14 (c) 

Issue 1, 10/1/77 
AT&TCo SPCS 

FILE MANAGER(c) 

ty. Typically, upon opening a file, the file manager will send an "add capability" message to the memory 
manager process. The memory manager will bring the PCB into its address space, find an empty capa 
bility slot and put the owner (file manager process number (4)) into the owner field of the capability 
and the capability itself into the capability field. The capability for the file manager is encoded as fol 
lows: 8 bits for in-core inode, 2 bits for read/write permissions and 6 bits for inode usage value. When 
a read or write message is sent to the file manager, a capability must be specified; this is checked for 
valid access permissions on the file by the file manager. Upon closing a file, the file manager sends a 
"delete capability" message to the memory manager. 

The fm_uid and fm_gid identifiers are used to determine the message sender's access privileges to partic 
ular files. For all messages, error codes are passed back to the sender in msstat. A system error is indi 
cated by a -1 value of msstat. The meanings of the possible error codes from the file manager are the 
same as the standard UNIX error codes as explained in section II of this manual. If the message type 
sent is illegal, an error code is also returned. The additional error codes are: 

63 EBADTPYE bad message type 

In messages which require a file name to be specified, the file pathname (a null-terminated string) is 
copied into the body of the message. A pathname may be up to 64 characters long. The start of each 
pathname string is specified by a byte offset into the body of the message starting at fm_arg[O]. 

The individual manual sections describing messages to the file manager list the arguments required as 
input. Here argument O is stored in fm_arg{O], argument 1 in fm_arg{J], etc. Again the returned values 
also refer to values returned in fm_arg{i] where i specifies the argument number. All messages to the 
file manager require a capability to be specified. In all cases this is the capability which refers to the 
current working directory or to the particular file being accessed. 


