
Bell Telephone Laboratories, Incorporated 
PROGRAM APPLICATION INSTRUCTION 

- 1 - PA-1C600-0l 
Section 4 (II) 

Issue 1, 1 October 1977 
AT&TCo SPCS 

WAIT(II) WAIT(II) 

NAME 
wait - wait for process to terminate 

SYNOPSIS 
(wait = 7.) 
sys wait 
(process ID in r0) 
(status in r l ) 

wait (status) 
int *status; 

DESCRIPTION 
Wait causes its caller to delay until one of its child processes terminates. If any child has died 
since the last wait, return is immediate; if there are no children, return is immediate with the 
error bit set (resp. with a value of -1 returned). The normal return yields the process ID of 
the terminated child (in r0). In the case of several children several wait calls are needed to 
learn of all the deaths. 

If no error is indicated on return, the r1 high byte (resp. the high byte stored into status ) con 
tains the low byte of the child process r0 (resp. the argument of exit) when it terminated. The 
r1 (resp. status ) low byte contains the termination status of the process. See signal (II) for a 
list of termination statuses (signals); 0 status indicates normal termination. If the 0200 bit of 
the termination status is set, a core image of the process was produced by the system. 

If the parent process terminates without waiting on its children, the initialization process (pro 
cess ID = 1) inherits the children. 

SEE ALSO 
exit (II), fork (II), signal (II) 

DIAGNOSTICS 
The error bit (c-bit) is set if there are no children not previously waited for. From C, a re 
turned value of -1 indicates an error. 

BUGS 
If you do not wait for children, the system will terminate you since exit messages will build up 
on your copy of the UNIX supervisor. Currently, users that acquire one third of the message 
buffer pool are terminated. Since exit messages require 2 message buffers, a process that has 6 
dead children will be terminated on a system that has 32 message buffers (see sgen(e)). 


