‘ UNIX
A.1.1

UNIX—Overview and Synopsis of Facilities

T. A. Dolotta
R. C. Haight
A. G. Petruccelli

Bell Laboratories
Murray Hill, New Jersey 07974

OVERVIEW

. 1. UNIX TIME-SHARING SYSTEM

The UNIXT Time-Sharing System is a general-purpose, multi-user, interactive operating system
specifically engineered to make the designer’s, programmer’s, and documenter’s computing
environment simple, efficient, flexible, and productive. UNIX contains features such as:

A hierarchical file system.

A flexible, easy-to-use command language (can be “‘tailored’ to meet specific user needs).
Ability to execute sequential, asynchronous, and background processes.

A powerful context editor. ;

Very flexible document preparation and text processing systems.

A high-level programming language conducive to structured programming (C).

Other languages, including FORTRAN 77, EFL, and variants of SNOBOL and BASIC.
Symbolic debugging systems.

A variety of system programming tools (i.e., lexical analyzers, compiler-compilers, etc.).
Sophisticated ‘‘desk-calculator’’ packages.

Inter-machine communication by both hard-wired and dial-up facilities.

A system designed to help control changes to source code and files of text (SCCS).

A graphical plotting package.

Currently, UNIX runs on the Western Electric Co. 3B-20; Digital Equipment Corporation’s
(DEC) PDP-11/23, /34, /45, /70, VAX-11/780, and VAX-11/750; and IBM System/370 and
equivalent. The cost per user-hour of UNIX is significantly lower than that of most other
interactive computer systems; UNIX typically runs unattended.

The UNIX file system consists of a highly-uniform set of directories and files arranged in a
tree-like hierarchical structure, Some of its features are:

e Simple and consistent naming conventions; names can be absolute, or relative to any direc-
tory in the file system hierarchy.

e Mountable and de-mountable file systems and volumes.

e File linking across directories.

¢ Automatic file space allocation and de-allocation that is invisible to users. _

e A complete set of flexible directory and file protection modes, allowing all combinations of
read, write, and execute access, independently for the owner of each file or directory, for a
group of users (e.g., all members of a project), and for all other users; protection modes can

be set dynamically.
@ e Facilities for creating, accessing, moving, and processing files, directories, or sets of these in
a simple, uniform, and natural way.
Each physical 1/O device, from interactive terminals to main memory, is treated like a file,
allowing uniform file and device 1/0.

t UNIX is a trademark of Bell Laboratories.




2.

4.

Overview and Synopsis of Facilities

UNIX COMMAND LANGUAGE

Unlike other interactive command languages, the UNIX shell is a full programming language.
The shell provides variables, conditional and iterative constructs, and a user environment that
can be tailored to an individual’s or group’s needs. Any user can to create new commands sim-
ply by writing shell scripts.

DOCUMENT PREPARATION AND TEXT PROCESSING

In a software development project of any appreciable size, the production of usable, accurate
documentation may well consume more effort than the production of the software itself.
Several years of experience with many projects that use UNIX have shown that document
preparation should not be separated from software development, and that the combination of a
flexible operating system, a powerful command language, and good text processing facilities
permit quick and convenient production of many kinds of documentation that might be other-
wise unobtainable, impractical, or very expensive. '

In UNIX, one also obtains a very useful ‘“‘word processing’’ system—an editing system, text for-
matting systems, a typesetting system, and spelling and typographical error-detection facilities.
The document preparation and text processing facilities of UNIX include commands that
automatically control pagination, style of paragraphs, line justification, hyphenation, multi-
column pages, footnote placement, generation of marginal revision bars, generation of tables of
contents, etc., for specialized documents such as program run books, or for general documents
such as letters, memoranda, legal briefs, etc. There are also excellent facilities for formatting
and typesetting complex tables and equations. This document was produced in its entirety by
these facilities.

REMOTE JOB ENTRY

The RIE facility provides for the submission and retrieval of jobs from an IBM host system
(e.g., a System/360 or System/370 computer using HASP, ASP, JES2, or JES3). To the host sys-
tem, RJE appears to be a System/360 work station.

At the request of a UNIX user, RJE gathers the job control statements and source code from
files created and stored on UNIX, sends them to the host IBM system and, subsequently,
retrieves from the host the resulting output, either placing it in a convenient UNIX file for later
perusal, or using that output as the standard input to a specified shell procedure. Automatic
notification of the output’s arrival is also available.

SOURCE CODE CONTROL SYSTEM

The UNIX Source Code Control System (SCCS) is an integrated set of commands designed to -
help software development projects control changes to source code and to files of text (e.g.,
manuals). It provides facilities for storing, updating, and retrieving, by version number or
date, all versions of source code modules or of documents, and for recording who made each
software change, when it was made, and why. SCCS is designed to solve most of the source
code and documentation control problems that software development projects encounter when
customer support, system testing, and development are all proceeding simultaneously. Some of
the main characteristics of SCCS are: :

e The exact source code or text, as it existed at any point of development or maintenance, can
be recreated at any later time.

o All releases and versions of a source code module or document are stored together, so the
common code or text is stored only once.

o Releases in production or system test status can be protected from unauthorized changes.

e Enough identifying information can be automatically inserted into source code modules to
enable one to identify the exact version and release of any such module, given only the
corresponding load module or its memory dump.




Overview and Synopsis of Facilities 3

. SOFTWARE, FACILITIES, AND DOCUMENTATION

Often-used UNIX commands are listed below. Every command, including all its options, is
issued as a single line, unless specifically described below as being “‘interactive.’” Interactive
programs can be made to run from a prepared ‘‘script’’ simply by redirecting their input. All
commands are fully described in the UNIX User’s Manual (see Section 6.1 below). Commands
for which additional manuals and tutorials are provided are marked with [m] and [t], respec-
tively. All indicated manuals and tutorials are listed in Section 6.2 below.

File processing commands that go from standard input to standard output are called “‘filters”
and are marked with [f]. The “‘pipe’ facility of the shell may be used to connect filters directly
to the input or output of other filters and programs thus creating a ‘‘pipeline.”’

Almost all of UNIX is written in C. UNIX is totally self-supporting: it contains all the software
6 that is needed to generate it, maintain it, and modify it. Source code is included except as
noted below. -

1. BASIC SOFTWARE

Included are the operating system with utilities, an assembler, and a compiler for the program-

ming language C—enough software to regenerate, maintain, and modify UNIX itself, and to

write and run new applications. Due to hardware constraints, not all the commands listed
| below will work on all the supported hardware configurations.

1.1. Operating System

B UNIX [m] This is the basic resident code, also known as the kernel, on which every-
thing else depends. It executes the system calls, maintains the file system,
and manages the system’s resources; it contains device drivers, I/O buffers,

. and other system information. A general description of UNIX design philo-
sophy and system facilities appeared in the Comnunications of the ACM. A
more extensive survey is in the Bell System Technical Journal for July-
August 1978. Further capabilities include:

e Automatically-supported reentrant code.

e Separation of instruction and data spaces (machine dependent).

e Timer-interrupt sampling and interprocess monitoring for debugging and
measurement.

B Devices [m] All 1/0 is logically synchronous. Normally, automatic buffering by the sys-
tem makes the physical record structure invisible and exploits the
hardware’s ability to do overlapped 1/O. Unbuffered physical record 1/0 is
available for unusual applications. Software drivers are provided for many
devices; others can be easily written.

1.2. User Access Control

B LOGIN Signs on a new user:

e Adapts to characteristics of terminal.
e Verifies password and establishes user’s individual and group (project)
identity.
o Establishes working directory.
s e Publishes message of the day.
e Announces presence of mail.
e Lists unseen news items.
e Executes an optional user-specified profile.
e Starts command interpreter (shell) or other user-specified program.

B PASSWD Changes a password:

e User can change own password.
e Passwords are kept encrypted for security.




B sU

‘- B NEWGRP

B STTY

B TABS

Overview and Synopsis of Facilities

Assume the permissions and privileges of another user or root (super-user)
provided that the proper password is supplied.

Changes working group (project ID). This provides access with protection
for groups of related users.

Sets up options for optimal control of a terminal. In so far as they are j
deducible from the input, these options are set automatically by LOGIN: ;
e Speed.

e Parity.

e Mapping of upper-case characters to lower case.

Carriage-return plus line-feed versus new-line.
Interpretation of tab characters.

Delays for tab, new-line, and carriage-return characters.
Raw versus edited input.

Sets terminal’s tab stops. Knows several ‘‘standard’’ formats.

1.3. Manipulation of Files and Directories

B ED [m,t]

B SED [f,m]
B CAT [f]

B PR [f]

B SPLIT
B CSPLIT
H SuM
B DD [f]

m Cp

B LN
B MV

Interactive line-oriented context editor. Random access to all lines of a file.
It can:

e Find lines by number or pattern (regular expressions). Patterns can
include: specified characters, ‘‘don’t care’’ characters, choices among
characters, (specified numbers of) repetitions of these constructs, begin-
ning of line, end of line.

Add, delete, change, copy, or move lines.

Permute contents of a line.

Replace one or more instances of a pattern within a line.

Combine or split lines.

Combine or split files.

Do any of above operations on every line (in a given range) that
matches a pattern.

e Escape to the shell (UNIX command language) during editing.

A stream (one-pass) editor with facilities similar to those of ED.

Concatenates one or more files onto standard output. Mostly used for
unadorned printing, for inserting data into a “‘pipe,”’ and for buffering out-
put that comes in dribs and drabs.

Prints files with title, date, and page number on every page:

e Multi-column output.
e Parallel column merge of several files.

Splits a large file into more manageable pieces.
Like SPLIT, with the splitting controlled by context.
Computes the check sum of a file.

Physical file format translator, for exchanging data with non-UNIX systems,
especially 0S/360, VS1, MVS, etc.

Copies one file to another or many files to a directory. Works on any file
regardless of its contents.

Links another name (alias) to an existing file.

Moves one or more files. Usually used for renaming files or directories.







