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C COMPOSED ENTIRELY OF ONES
N=100
X=1
DO 30 K=1,3

DO 10 I=1,N
G(1,I)=2.0
G(2,I)=-1.0
B(I)=0.0

10 CONTINUE
G(1,1)=1.0+X
G(1,N)=1.0+X
B(1)=X
B(N)=X

C SOLVE THE SYSTEM
MU=2
CALL BPSS(N,MU,G,2,B,N,1,COND)
IWRITE=I1MACH(2)
WRITE(IWRITE,11)X

11 FORMAT(/5H X IS,F15.7)
WRITE(IWRITE,12)COND

12 FORMAT(20H CONDITION NUMBER IS,1PE15.7)
C COMPUTE THE ERROR

ERR=0.0
DO 20 I=1,N

ERR=AMAX1(ERR,ABS(B(I)-1.0))
20 CONTINUE

WRITE(IWRITE,21)ERR
21 FORMAT(22H FOR BPSS THE ERROR IS,F16.8)

X=X/100.
30 CONTINUE

STOP
END

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
the following was printed

X IS 1.0000000
CONDITION NUMBER IS 4.0807862E 03
FOR BPSS THE ERROR IS 0.00000431

X IS 0.0100000
CONDITION NUMBER IS 2.3329148E 04
FOR BPSS THE ERROR IS 0.00002055

X IS 0.0001000
CONDITION NUMBER IS 1.9933923E 06
FOR BPSS THE ERROR IS 0.00491761
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Storage: N real (double precision for DBPSS, complex for CBPSS) locations of scratch storage in the
dynamic storage stack

Time: N×((MU−1)×(MU/2+2×NB+8)+8) additions
N×((MU−1)×(MU/2+2×NB+6)+4) multiplications
N×(MU+1+NB) divisions

Method: BPSS calls BPCE to form the LDLT decomposition, and then calls BPFS for the forward so-
lution, and BPBS for the back solution. See the reference below for the method used to esti-
mate the condition number.

See also: BPBS, BPCE, BPDC, BPFS, BPLD, BPLE

Author: Linda Kaufman

Reference: Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-
tion number, SIAM J. Numer. Anal. 16 (1979), 368-375.

Example: In the following example we solve three problems that might arise from a discretization of a
1-dimensional differential equation. The coefficient matrix in each problem has the form

1+x −1
−1 2 −1

−1 2 −1
−1 2 −1

.
.

−1 2 −1
−1 1+x

with x=1.0, .01, and .0001 defining the three problems. The matrix is singular when x is 0,
and, as our output suggests, the matrix becomes more ill-conditioned as x approaches 0. To
make it easy to detect errors in the solution, the right-hand side has been chosen to make the
solution a vector of all 1’s. The reader should notice in the output the correlation between
the condition number and the error. As with most problems with nearly constant diagonal, it
was very easy to write the code to set up the problem for BPSS.

INTEGER N, K, I, IWRITE, I1MACH, MU
REAL G(2,100), B(200)
REAL X, COND, ERR, AMAX1

C CONSTRUCT MATRIX AND RIGHT-HAND SIDE SO TRUE SOLUTION IS
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use the routine BPLE, which is a little faster than BPSS. Ordinarily, however, the user is
strongly urged to choose BPSS, and to follow it by a test of the condition estimate.

Note 2: Users who wish to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides not all known in advance, should not use BPSS, but should call subpro-
grams BPCE, BPFS and BPBS. (See the example of BPFS.) BPCE is called once to get the
LDLT decomposition (see the introduction to this chapter) and then the pair, BPFS (forward
solve) and BPBS (back solve), is called for each new right-hand side.

Note 3: The LDLT decomposition of A satisfies the equation A = LDLT where L is lower unit trian-
gular (1’s on the diagonal, 0’s above the diagonal) and D is diagonal. On return from BPSS,
the diagonal of D occupies the first row of G and G(i−j+1,i) = l i j for i>j.

Note 4: For complex Hermitian matrices (A = A *, where A * represents the conjugate transpose of
A), the complex version of this subroutine computes the LDL * decomposition and returns
the conjugate of L rather than L in G.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

4 IB < N

5 NB < 1

10 + k* singular matrix whose rank is at least k

10 + N + k* k th principal minor is not positive definite

Double-precision version: DBPSS, with G, B, and COND declared double precision.

Complex Hermitian version: CBPSS with G and B declared complex (see Note 4 above)
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BPSS — band positive definite linear system solution with condition estimation

Purpose: BPSS (Band Positive definite System Solution) solves the system AX = B where A is a band
symmetric positive definite matrix. An estimate of the condition number of A is provided.

Usage: CALL BPSS (N, MU, G, IG, B, IB, NB, COND)

N → the number of equations

MU → the number of nonzero bands on and above the diagonal of A

G → a matrix into which the upper triangular portion of the matrix A has
been placed as follows:

G(j−i+1, i) = a i j for j≥i

(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥MU and KG≥N.

← L and D from the factorization of A into LDLT

(see Note 3)

IG → the row (leading) dimension of G, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB≥N and KB≥NB.

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

COND ← an estimate of the condition number of A (See Note 1)

Note 1: The condition number measures the sensitivity of the solution of a linear system to errors in
the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d − log 10(COND) correct decimal digits. Thus if COND is greater than 10Bd P , there may be
no correct digits.

If the given matrix, A, is known in advance to be well-conditioned, then the user may wish to
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Double-precision version: DBPNM with G and DBPNM declared double precision

Complex version: CBPNM with G declared complex

Storage: None

Time: N × (2 × MU − 1) additions

See also: BPDC, BPLD, BPLE, BPSS, BPCE

Author: Linda Kaufman

Example: Because of roundoff error it is often very difficult to decide whether a matrix is singular. One
criteria often used for symmetric positive definite matrices is to compute the LDLT decompo-
sition of the matrix and declare the matrix singular if any element of the diagonal matrix D is
less than ε  A  where ε is the machine precision and is computed by R1MACH(4).

The following program fragment might be used to indicate whether the symmetric positive
definite banded matrix packed into G is singular or nearly singular. It uses the fact that the
subroutine BPLD, which computes the LDLT decomposition of a banded symmetric matrix,
issues a recoverable error when it detects an element of D less than EPS, an input parameter
to the subroutine.

IWRITE=I1MACH(2)
CALL ENTSRC(IROLD,1)
EPS=BPNM(N,MU,G,IG)*R1MACH(4)
CALL BPLD(N,MU,G,IG,EPS)
IF (NERROR(IERR).EQ.0) GO TO 10

CALL ERROFF
WRITE(IWRITE,1)

1 FORMAT(16H SINGULAR MATRIX)
10 CONTINUE
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February 11, 1993 BPML

BPNM — norm of a banded symmetric positive definite matrix

Purpose: BPNM (Banded Positive definite matrix NorM) computes the norm of a banded symmetric
positive definite matrix A stored in packed form. The infinity norm is defined as

1 ≤ i ≤ n
max

j = 1
Σ
n

a i j 

Type: Real function

Usage: <answer> = BPNM (N, MU, G, IG)

N → the number of rows in A

MU → the number of nonzero bands in A on and above the diagonal

G → a matrix into which the upper triangular portion of the matrix A has
been packed as follows:

G (1 + j−i, i) = a i j for j≥i

i.e. the main diagonal of A is in the first row of G
(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥MU and KG≥N.

IG → the row (leading) dimension of G, as dimensioned in the
calling program

<answer> ←
1 ≤ i≤n
max

j = 1
Σ
n

a i j 

Error situations: (All errors in this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

Linear Algebra
— 29 —

BPNM



-- --

Linear Algebra PORT library

BPML February 11, 1993

C
CALL BPML(N,MU,G,IG,X,B)

C
C SOLVE THE SYSTEM AX=B
C

CALL BPSS(N,MU,G,IG,B,N,1,COND)
C
C PRINT OUT THE TRUE SOLUTION AND THE COMPUTED SOLUTION
C

IWRITE=I1MACH(2)
WRITE(IWRITE,21)

21 FORMAT(34H TRUE SOLUTION COMPUTED SOLUTION)
WRITE(IWRITE,22)(X(I),B(I),I=1,N)

22 FORMAT(1H ,2E16.8)
ERR=0.0
DO 30 I=1,N

ERR=ERR+ABS(B(I)-X(I))
30 CONTINUE

ERR=ERR/SASUM(N,X,1)
WRITE(IWRITE,31)ERR

31 FORMAT(19H RELATIVE ERROR IS ,1PE15.7)
WRITE(IWRITE,32)COND

32 FORMAT(20H CONDITION NUMBER IS,1PE15.7)
STOP
END

When the above program was executed on the Honeywell 6000 machine at Bell Laboratories,
which has a machine precision of 1.×10−8, the following was printed:

TRUE SOLUTION COMPUTED SOLUTION
0.22925607E 00 0.22925608E 00
0.76687502E 00 0.76687504E 00
0.68317685E 00 0.68317687E 00
0.50919111E 00 0.50919112E 00
0.87455959E 00 0.87455962E 00
0.64464101E 00 0.64464103E 00
0.84746840E 00 0.84746842E 00
0.35396343E 00 0.35396345E 00
0.39889160E 00 0.39889160E 00
0.45709422E 00 0.45709422E 00

RELATIVE ERROR IS 3.1985797E−08
CONDITION NUMBER IS 2.1901962E 01

The condition number of the matrix and the precision of the Honeywell suggest that even in
the absence of roundoff error in BPML, a relative error of 2.2×10−7 would not be surprising.
The value computed above is quite reasonable.

Linear Algebra
— 28 —

BPML



-- --
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February 11, 1993 BPML

Storage: None

Time: (2MU−1)×N additions
(2MU−1)×N multiplications

See also: BPBS, BPCE, BPDC, BPLU, BPLE, BPSS

Author: Linda Kaufman

Example: This example checks the consistency of BPML and BPSS the banded system solver. First
the example uses BPML to compute for a given vector x and a given matrix A the vector
b = Ax. Then the problem is inverted, i.e., BPSS is used to find the vector x which satisfies
Ax = b. This x is then compared with the original vector. The vector x is generated ran-
domly and the 10×10 matrix A is given by

4 −1 −1
−1 4 −1 −1
−1 −1 4 −1 −1

−1 −1 4 −1 −1
. . .

−1 −1 4 −1 −1
−1 −1 4 −1

−1 −1 4

INTEGER IG, N, MU, I, IWRITE, I1MACH
REAL G(3,20), X(20), B(20)
REAL UNI, ERR, COND, SASUM, ABS
IG=3
N=10
MU=3

C
C CONSTRUCT MATRIX A AND PACK IT INTO G
C

DO 10 I=1,N
G(1,I)=4.0
G(2,I)=-1.0
G(3,I)=-1.0

10 CONTINUE
C
C CONSTRUCT A RANDOM VECTOR
C

DO 20 I=1,N
X(I)=UNI(0)

20 CONTINUE
C
C CONSTRUCT B=AX
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BPML — banded positive definite matrix - vector multiplication

Purpose: BPML (Banded Positive definite matrix MuLtiplication) forms the product Ax where A is a
symmetric banded positive matrix stored in packed form.

Usage: CALL BPML (N, MU, G, IG, X, B)

N → the length of x

MU → the number of nonzero bands on and above the diagonal of A

G → a matrix into which the upper triangular portion of the matrix A has
been packed as follows:

G(1 + j−i,i) = a ij for j ≥ i.

(See the introduction to this chapter.) G should be dimensioned
(IG, KG) in the calling program, where IG≥MU and KG≥N.

IG → the row (leading) dimension of G, as dimensioned in the calling pro-
gram

X → the vector x to be multiplied

B ← the vector Ax

Error situations: (All errors in this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

Double-precision version: DBPML with G, X, and B declared double precision.

Complex Hermitian version: CBPML with G, X, and B declared complex
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G(MU,I)=-1.0
20 CONTINUE

G(2,I)=0.0
30 CONTINUE

C
C SET UP RIGHT HAND SIDE SO SOLUTION IS ALL 1’S
C

DO 40 I=1,N
X(I)=1.0

40 CONTINUE
CALL BPML(N,MU,G,IG,X,B)

C
C SOLVE THE SYSTEM
C

CALL BPLE(N,MU,G,IG,B,100,1)
C
C COMPUTE THE ERROR
C

ERR=0.0
DO 50 I=1,N

ERR=AMAX1(ERR,ABS(B(I)-1.0))
50 CONTINUE

IWRITE=I1MACH(2)
WRITE(IWRITE,51)ERR

51 FORMAT(31H ERROR IN SOLUTION FROM BPLE IS,F15.8)
STOP
END

When the above code was run on the Honeywell 6000 machine at Bell Laboratories, the fol-
lowing was printed:

ERROR IN SOLUTION FROM BPLE IS 0.00000012
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See also: BPBS, BPCE, BPDC, BPFS, BPLD, BPSS

Author: Linda Kaufman

Example: The matrix in this example is derived from the usual five-point approximation to the Laplace
operator on the unit square with an 11×11 mesh. The 100×100 matrix A has the form

C −I
−I C −I

−I C −I
........

−I C −I
−I C

where I is the identity matrix of order 10 and C is the matrix

4 −1
−1 4 −1

−1 4 −1
...
−1 4 −1

−1 4

To make it easy to detect errors in the example, the right-hand side has been chosen to make
the solution a vector of all 1’s. To construct the right-hand side the subroutine BPML is used
which produces b=Ax where A is a band symmetric positive definite matrix packed into the
matrix G.

INTEGER IG, N, MU, MLM1, I, KBLOK, KK, J
INTEGER IWRITE, I1MACH
REAL G(11,100), B(100), X(100)
REAL ERR, AMAX1
IG=11
N=100
MU=11

C
C SET UP MATRIX FOR ELLIPTIC PDE IN 2 DIMENSIONS
C

MLM1=MU-1
I=0
DO 30 KBLOK=1,MLM1

DO 20 KK=1,MLM1
I=I+1
G(1,I)=4.0
G(2,I)=-1.0
DO 10 J=3,MLM1

G(J,I)=0.0
10 CONTINUE
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Note 3: The LDLT decomposition of A satisfies the equation A = LDLT where L is lower unit trian-
gular (1’s on the diagonal, 0’s above the diagonal) and D is diagonal. On return from BPLE,
the diagonal of D occupies the first row of G and G(i− j + 1 ,i) = l i j for i>j.

Note 4: For complex Hermitian matrices (A = A *, where A * represents the conjugate transpose of
A), the complex version of this subroutine computes the LDL * decomposition and returns
the conjugate of L rather than L in G.

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

4 IB < N

5 NB < 1

10 + k* singular matrix whose rank is at least k

10 + N + k* k th principal minor is not positive definite

Double-precision version: DBPLE with G and B declared double precision

Complex Hermitian version: CBPLE with G and B declared complex (see Note 4).

Storage: None

Time: N×((MU−1)×(MU/2+2×(NB+1))+1) additions
N×(MU−1)×(MU/2+2×NB) multiplications
N×(MU−1+NB) divisions

Method: BPLE calls BPDC to form the LDLT decomposition, and then calls BPFS for the forward so-
lution, and BPBS for the back solution.
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BPLE — band symmetric positive definite linear system solution

Purpose: BPLE (Banded symmetric Positive definite Linear Equation solution) solves the system
AX = B where A is a banded symmetric positive definite matrix

Usage: CALL BPLE (N, MU, G, IG, B, IB, NB)

N → the number of equations

MU → the number of nonzero bands on and below the diagonal of A

G → a matrix into which the upper triangular portion of the matrix A has
been packed as follows:

G ( j−i + 1 ,i) = a i j for j ≥ i

(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥MU and KG≥N.

← L and D from the factorization of A into LDLT (see Note 3)

IG → the row (leading) dimension of G, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB≥N and KB≥NB.

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

Note 1: Unless the given matrix A is known in advance to be well-conditioned, the user should use
BPSS instead of BPLE.

Note 2: Users who wish to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides not all known in advance, should call subprograms BPLE, BPFS and
BPBS. (See the example in BPFS.) BPLE is called once to get the LDLT decomposition
(see the introduction to this chapter) and to solve for the first solution and then the pair,
BPFS (forward solve) and BPBS (back solve), is called for each additional right-hand side.

Linear Algebra
— 22 —

BPLE



-- --

PORT library Linear Algebra

February 11, 1993 BPLD

Example: As noted above, after execution of BPLD, the determinant of the matrix stored in G is the
product of the elements stored in the first row of G. The subroutine computes this product
taking care to avoid underflow and overflow. The subroutine UMKFL is used to decompose
a floating-point number, F, into a mantissa, M, and an exponent E such that F = MbE where
b is the base of the machine and 1/b ≤ M ≤ 1

SUBROUTINE BPDET(N,MU,G,IG,DETMAN,IDETEX)
C
C THIS SUBROUTINE COMPUTES THE DETERMINANT OF A
C BAND SYMMETRIC POSITIVE DEFINITE MATRIX STORED IN G.
C IT IS GIVEN BY DETMAN*BETA**IDETEX
C WHERE BETA IS THE BASE OF THE MACHINE
C AND DETMAN IS BETWEEN 1/BETA AND 1
C

REAL G(IG,N),DETMAN
REAL ONOVBE,M
INTEGER E
INTEGER IDETEX
CALL BPLD(N,MU,G,IG,0.0)

C
C THE DETERMINANT IS THE PRODUCT OF THE ELEMENTS OF ROW 1 OF G
C WE TRY TO COMPUTE THIS PRODUCT IN A WAY THAT WILL
C AVOID UNDERFLOW AND OVERFLOW
C

ONOVBE=1.0/FLOAT(I1MACH(10))
DETMAN=ONOVBE
BETA=FLOAT(I1MACH(10))
IDETEX=1
DO 10 I=1,N

CALL UMKFL(G(1,I),E,M)
DETMAN=DETMAN*M
IDETEX=IDETEX+E
IF(DETMAN.GE.ONOVBE) GO TO 10

IDETEX=IDETEX-1
DETMAN=DETMAN*BETA

10 CONTINUE
RETURN
END

Linear Algebra
— 21 —

BPLD



-- --

Linear Algebra PORT library

BPLD February 11, 1993

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

10 + k* singular matrix whose rank is at least k

10 + N + k* the k th principal minor is not positive definite

Double-precision version: DBPLD with G and EPS declared double precision

Complex Hermitian version: CBPLD with G declared complex (see Note 3 above)

Storage: None

Timing: N×(MU−1)×MU/2 additions
N×(MU−1)×MU/2 multiplications
(MU−1)×N divisions

Method: Gaussian elimination without pivoting

See also: BPBS, BPCE, BPDC, BPFS, BPLE, BPSS

Author: Linda Kaufman
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BPLD — LDLT decomposition of a band symmetric positive definite matrix

Purpose: BPLD (Band Positive definite LDLT decomposition) decomposes a banded symmetric posi-
tive definite matrix A into LDLT where L is lower triangular and D is diagonal. It allows the
user to provide a threshold for considering a matrix singular BPLD is called by the decompo-
sition routines BPCE and BPDC.

Usage: CALL BPLD (N, MU, G, IG, EPS)

N → the number of equations

MU → the number of nonzero bands on and above the diagonal of A

G → a matrix into which the upper triangular portion of the matrix A has
been packed as follows:

G(j−i + 1, i) = a i j for j≥i

(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥MU and KG≥N.

← the LDLT decomposition suitable for input into BPFS and BPBS (see
Note 2)

IG → the row (leading) dimension of G, as dimensioned in the
calling program

EPS → if there exists an index k such that  d kk  ≤ EPS then A is considered
singular

Note 1: After the execution of BPLD, (if the matrix has not been found singular), the determinant of
A is the product of the elements of the first row of G.

Note 2: The LDLT decomposition of A satisfies the equation A = LDLT where L is lower unit trian-
gular (1’s on the diagonal, 0’s above the diagonal) and D is diagonal. On return from BPLD,
the diagonal of D occupies the first row of G and G(i−j+1,i) = l i j for i>j.

Note 3: For complex Hermitian matrices (A = A *, where A * represents the conjugate transpose of A
), the complex version of this subroutine computes the LDL * decomposition and returns the
conjugate of L rather than L in G.
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DO 50 I=1,N
B(I)=B(I)+R(I)
RNORM=RNORM+ABS(R(I))

50 CONTINUE
IF(RNORM.LT.R1MACH(4)*BNORM) GO TO 70

60 CONTINUE
WRITE(IWRITE,61)

61 FORMAT(18H REFINEMENT FAILED)
C COMPUTE NEW ERROR

70 ERR=0.0
DO 80 I=1,N

ERR=AMAX1(ERR,ABS(B(I)-1.0))
80 CONTINUE

WRITE(IWRITE,81)IT,ERR
81 FORMAT(24H ERROR AFTER REFINEMENT ,I4,3H IS,E14.7)

X=X/100.0
90 CONTINUE

STOP
END

When the above program was executed on the Honeywell 6000 at Bell Laboratories, the fol-
lowing was printed

X IS 1.00000000
FOR BPLE THE ERROR IS 0.00000431
ERROR AFTER REFINEMENT 2 IS 0.

X IS 0.01000000
FOR BPLE THE ERROR IS 0.00002055
ERROR AFTER REFINEMENT 3 IS 0.

X IS 0.00010000
FOR BPLE THE ERROR IS 0.00491761
ERROR AFTER REFINEMENT 4 IS 0.

This problem was chosen because as x approaches 0, the matrix becomes more ill-
conditioned, the error in the solution grows, and more steps of iterative refinement are re-
quired. The reader should be aware that in this example we were able to represent the matrix
and the right-hand side precisely, but due to roundoff error this is not always the case. Often
the iterative refinement algorithm produces an exact, but useless, solution to a slightly incor-
rect problem.
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The following program has been specifically tailored to the three problems.

INTEGER N, ML, IG, NM1, K, I, IWRITE, I1MACH, IT, IEND, ITER
REAL G(2,100), B(200), R(200)
REAL X, ERR, AMAX1, RNORM, BNORM, R1MACH, ABS
DOUBLE PRECISION DBLE

C CONSTRUCT MATRIX AND RIGHT HAND SIDE SO TRUE SOLUTION IS
C COMPOSED ENTIRELY OF 1S

N=100
X=1
ML=2
IG=2
NM1=N-1
DO 90 K=1,3

DO 10 I=1,N
G(1,I)=2.0
G(2,I)=-1.0
B(I)=0.0

10 CONTINUE
G(1,1)=1.0+X
G(1,N)=1.0+X
B(1)=X
B(N)=X

C SOLVE THE SYSTEM
CALL BPLE(N,ML,G,IG,B,N,1)
IWRITE=I1MACH(2)
WRITE(IWRITE,11)X

11 FORMAT(/5H X IS,F16.8)
C COMPUTE THE ERROR

ERR=0.0
DO 20 I=1,N

ERR=AMAX1(ERR,ABS(B(I)-1.0))
20 CONTINUE

WRITE(IWRITE,21)ERR
21 FORMAT(22H FOR BPLE THE ERROR IS,F16.8)

IEND=I1MACH(11)*IFIX(R1MACH(5)/ALOG10(2.0)+1.0)
C FIND THE NORM OF THE SOLUTION

BNORM=0.0
DO 30 I=1,N

BNORM=AMAX1(BNORM,ABS(B(I)))
30 CONTINUE

C REFINE THE SOLUTION
DO 60 ITER=1,IEND

IT=ITER
C COMPUTE THE RESIDUAL R=B-AX, IN DOUBLE PRECISION

DO 40 I=2,NM1
R(I)=DBLE(B(I-1))+DBLE(B(I+1))-2.D0*DBLE(B(I))

40 CONTINUE
R(1)=X+B(2)-DBLE(1.0+X)*DBLE(B(1))
R(N)=X+B(N-1)-DBLE(1.+X)*DBLE(B(N))

C SOLVE A(DELTAX)=R
CALL BPFS(N,ML,G,IG,R,N,1)
CALL BPBS(N,ML,G,IG,R,N,1)

C DETERMINE NORM OF CORRECTION AND ADD IN CORRECTION
RNORM=0.0
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Example: In the following example we solve three problems that might arise from a discretization of a
1-dimensional differential equation. The coefficient matrix in each problem has the form

1+x −1
−1 2 −1

−1 2 −1
−1 2 −1

.
.

−1 2 −1
−1 1+x

with x=1., .01, and .0001 defining the three problems. To make it easy to detect errors in the
solution, the right-hand side has been chosen to make the solution a vector of all 1’s.

The program below is an encoding of an iterative refinement algorithm which may be used to
obtain a highly accurate solution to a system of linear equations with an ill-conditioned ma-
trix. When the condition number is not excessively high, the iterative refinement algorithm
usually returns a solution that is accurate to the working precision of the machine. The itera-
tive refinement algorithm is essentially:

(1) Solve Ax = b
(2) Set tol = ε Σ x i

where ε is the precision of the machine
(3) Compute in double precision the residual, Ax−b,

and put it in the real vector r.
(4) Solve A δx = r
(5) Compute norm = Σ δx i
(6) Set x to x + δ x
(7) If norm ≤ tol stop, else return to step 3

In our code, step (1) is accomplished using the the linear equation solver for band positive
definite matrices, BPLE. The subroutine BPLE leaves in the G matrix a decomposition which
may be used by BPFS and BPBS to solve problems with the same coefficient matrix but dif-
ferent right-hand sides as in step(4). Since it is possible that the matrix will be so ill-
conditioned that the iterative refinement algorithm will diverge, steps (3) through (7) in our
code are performed only a finite number of times. This number is chosen to be an upper
bound on number of of bits in the mantissa of the floating-point number supported by the ma-
chine.

This algorithm is not included in PORT because for double-precision matrices part of the
computation would have to be done in extended precision.
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PORT library Linear Algebra

February 11, 1993 BPFS

Note 2: Users who have to solve a sequence of problems with the same coefficient matrix, but differ-
ent right-hand sides, not all known in advance, should not call BPSS or BPLE repeatedly, but
should use BPDC to find the LDLT decompostion of the coefficient matrix, which can then
be used repeatedly (and efficiently) for the sequence of forward solutions (using BPFS) and
back solutions (using BPBS) for each set of right-hand sides.

Error situations: (All errors in this subprogram are fatal —
see Error Handling, Framework Chapter)

Number Error

1 N < 1

2 ML < 1

3 IG < ML

4 IB < N

5 NB < 1

Double-precision version: DBPFS, with G and B declared double precision

Complex Hermitian version: CBPFS with G and B declared complex
G should contain the conjugate of L

Storage: None

Time: N×(ML−1)×NB additions
N×(ML−1)×NB multiplications

See also: BPBS, BPCE, BPDC, BPLD, BPLE, BPSS

Author: Linda Kaufman
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BPFS — band symmetric lower (unit) triangular linear system solution

Purpose: BPFS (Banded symmetric Positive definite matrix Forward Solution) solves LX = B where L
is a banded unit lower triangular matrix, (i.e. 1’s on the diagonal, 0’s above the diagonal).
BPFS can be used for the forward solution phase of a band symmetric positive definite linear
system. (It is used in this way by the routines BPSS and BPLE.)

Usage: CALL BPFS (N, ML, G, IG, B, IB, NB)

N → the number of equations

ML → the number of nonzero diagonals on and below
the diagonal of L

G → a matrix (which may contain the results obtained by the routines
BPCE, BPDC, or BPLD) into which L is packed as follows:

G(1+i−j, i) = l i j for i>j

(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥ML and KG≥N.

IG → the row (leading) dimension of G, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB≥N and KB≥NB.

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

Note 1: BPFS and BPBS can be used directly on the output matrix produced by BPDC, BPLD, or
BPCE to solve a general linear system.
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PORT library Linear Algebra

February 11, 1993 BPDC

TIME FOR BPDC 6450
TIME FOR BPCE 13170

N IS 48 ,NUMBER OF UPPER DIAGONALS IS 17
TIME FOR BPLD 7143
TIME FOR BPDC 8227
TIME FOR BPCE 12722

N IS 96 ,NUMBER OF UPPER DIAGONALS IS 17
TIME FOR BPLD 15001
TIME FOR BPDC 17160
TIME FOR BPCE 49809

As the example indicates, the cost of computing the condition estimate can be substantially
greater than the cost of factoring the matrix when the width of the band is small. The ratio of
BPCE to BPDC does not always decrease as N increases, as it does in the case of general lin-
ear systems, but depends rather on the scaling that is sometimes done by BPCE to prevent
overflow during the calculation of the condition estimate. If no scaling is done, the ratio of
the times for BPCE to BPDC remains constant, but for some examples most of the time is
spent scaling and the time ratio increases as N increases.
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30 CONTINUE
DO 50 I=1,N

DO 40 J=1,MU
G2(J,I)=G(J,I)
G3(J,I)=G(J,I)

40 CONTINUE
50 CONTINUE

WRITE(IWRITE,51)N,MU
51 FORMAT(/6H N IS ,I4,30H ,NUMBER OF UPPER DIAGONALS IS,I3)

C TIME DECOMPOSITION BY BPLD
IT=ILAPSZ(0)
CALL BPLD(N,MU,G,IG,0.0)
IT=ILAPSZ(0)-IT
WRITE(IWRITE,52)IT

52 FORMAT(14H TIME FOR BPLD,I7)
C TIME DECOMPOSITION BY BPDC

IT2=ILAPSZ(0)
CALL BPDC(N,MU,G2,IG)
IT2=ILAPSZ(0)-IT2
WRITE(IWRITE,53)IT2

53 FORMAT(14H TIME FOR BPDC,I7)
C TIME DECOMPOSITION BY BPCE

IT3=ILAPSZ(0)
CALL BPCE(N,MU,G3,IG,COND)
IT3=ILAPSZ(0)-IT3
WRITE(IWRITE,54)IT3

54 FORMAT(14H TIME FOR BPCE,I7)
60 CONTINUE

MLM1=MLM1*2
70 CONTINUE

STOP
END

When the above code was run on the Honeywell 6000 at Bell Laboratories with an optimiz-
ing compiler the following was printed

N IS 48 ,NUMBER OF UPPER DIAGONALS IS 5
TIME FOR BPLD 959
TIME FOR BPDC 1413
TIME FOR BPCE 3670

N IS 96 ,NUMBER OF UPPER DIAGONALS IS 5
TIME FOR BPLD 1868
TIME FOR BPDC 2673
TIME FOR BPCE 7965

N IS 48 ,NUMBER OF UPPER DIAGONALS IS 9
TIME FOR BPLD 2395
TIME FOR BPDC 3181
TIME FOR BPCE 6377

N IS 96 ,NUMBER OF UPPER DIAGONALS IS 9
TIME FOR BPLD 4854
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PORT library Linear Algebra

February 11, 1993 BPDC

The matrix in the example is derived from the traditional 5-point approximation to the La-
place operator on the unit square. The N×N matrix A has the form

C −I
−I C −I

−I C −I
........

−I C −I
−I C

where I is the identity matrix and C is the matrix

4 −1
−1 4 −1

−1 4 −1
...
−1 4 −1

−1 4

In this problem we vary the sizes of the blocks C and I which changes the bandwidth. For a
given blocksize, the number of blocks is varied which changes N.

The subroutine ILAPSZ is a timer on the Honeywell 6000 with about 1% accuracy. It counts
in 1/64 milliseconds.

INTEGER IG, MLM1, IWRITE, I1MACH, K, N, MU
INTEGER NBLOK, KBLOK, KK, I, J, IT, ILAPSZ, IT2
REAL G(17, 100), G2(17, 100), G3(17, 100)
REAL COND
IG=17
MLM1=4
IWRITE=I1MACH(2)
DO 70 K=1,3

DO 60 N=48,96,48
MU=MLM1+1
I=0
NBLOK=N/MLM1

C
C SET UP THREE MATRICES FOR ELLIPTIC PDE IN 2 DIMENSION
C

DO 30 KBLOK=1,NBLOK
DO 20 KK=1,MLM1

I=I+1
G(1,I)=4.0
G(2,I)=-1.0
G(MU,I)=-1.0
DO 10 J=3,MLM1

G(J,I)=0.0
10 CONTINUE
20 CONTINUE

G(2,I)=0.0
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Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

10 + k* singular matrix whose rank is at least k

10 + N + k* the kth principal minor is not positive definite

Double-precision version: DBPDC, with G declared double precision.

Complex Hermitian version: CBPDC with G declared complex (see Note 2).

Storage: None

Time: N×(MU−1)× MU/2 + N×(2MU−1) additions
N×(MU−1)× MU/2 multiplications
N×(MU−1) divisions

Method: BPDC calls BPLD after setting EPS = Aε, where ε is machine precision, i.e. the value
returned by R1MACH(4) (or, for double precision, by D1MACH(4)).

See also: BPBS, BPCE, BPFS, BPLD, BPLE, BPSS

Author: Linda Kaufman

Example: This example is designed to indicate the relative efficiency of BPDC, BPLD, and BPCE as a
function of the width of the band. All three subroutines compute the same factorization, but
the criterion for singularity is treated differently in each of the three. In all the subroutines
the matrix is considered singular if for some i, d i ≤ EPS. In BPLD the user provides EPS; in
BPDC the subroutine computes EPS (see Method); in BPCE, 0.0 is used as EPS. (However,
BPCE also provides an estimate of the condition number of the matrix.)
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February 11, 1993 BPCE

BPDC — LDLT decomposition of a band symmetric positive definite matrix A

Purpose: BPDC (Banded symmetric Positive definite matrix DeComposition) decomposes a banded
symmetric positive definite matrix A into LDLT where L is lower unit triangular (1’s on the
diagonal and 0’s above the diagonal) and D is diagonal. It is called by BPLE as the first step
of the solution of a banded symmetric positive definite linear system.

Usage: CALL BPDC (N, MU, G, IG)

N → the number of equations

MU → the number of nonzero bands on and above the diagonal of A

G → a matrix into which the upper triangular portion of the matrix A has
been packed as follows:

G(j−i + 1, i) = a i j for j≥i

(See the introduction to the chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥MU and KG≥N.

← LDLT decomposition suitable for input into BPFS and BPBS (see Note

1)

IG → the row (leading) dimension of G, as dimensioned in the
calling program

Note 1: The LDLT decomposition of A satisfies the equation A = LDLT where L is lower unit trian-
gular (1’s on the diagonal, 0’s above the diagonal) and D is diagonal. On return from BPDC,
the diagonal of D occupies the first row of G and G(i− j + 1 ,i) = l i j for i>j.

Note 2: For complex Hermitian matrices (A = A *, where A * represents the conjugate transpose of
A), the complex version of this subroutine computes the LDL * decomposition and returns
the conjugate of L, rather than L, in G.
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C SOLVE AX=B TO GET ITH COLUMN OF A(INVERSE)
CALL BPFS(N,MU,G,IG,B,N,1)
CALL BPBS(N,MU,G,IG,B,N,1)

C FIND NORM OF COLUMN
AINORM=0.0
DO 30 J=1,N

AINORM=AINORM+ABS(B(J))
30 CONTINUE

IF(AINVNO.LT.AINORM)AINVNO=AINORM
40 CONTINUE

COND=4.0*AINVNO
WRITE(IWRITE,41)COND

41 FORMAT(25H TRUE CONDITION NUMBER IS,E15.8)
X=X/100.0

50 CONTINUE
STOP
END

When the above code was executed on the Honeywell 6000 machine at Bell Laboratories, the
following was printed:

WHEN X IS 0.100000E 01
CONDITION ESTIMATE IS 0.40807862E 04
TRUE CONDITION NUMBER IS 0.50999824E 04

WHEN X IS 0.100000E-01
CONDITION ESTIMATE IS 0.23329148E 05
TRUE CONDITION NUMBER IS 0.24899523E 05

WHEN X IS 0.100000E-03
CONDITION ESTIMATE IS 0.19933923E 07
TRUE CONDITION NUMBER IS 0.19950487E 07

The comparison above of the condition number estimated by BPCE with the true condition
number indicates that the order of magnitude (which is all one usually is interested in) of the
estimated condition number is correct. Note that the inverse of a band matrix is usually a full
n×n matrix and should rarely be calculated.
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Example: In the following example we obtain estimates of the condition numbers of the matrix

1+x −1
−1 2 −1

−1 2 −1
−1 2 −1

.
.

−1 2 −1
−1 1+x

with x=1., .01, and .0001. The matrix is singular when x is 0, and becomes more ill-
conditioned as x approaches 0.

In this example we compare the condition number K =  A   A − 1   with the estimate
obtained from BPCE. In the code below A − 1 is computed one column at a time and K is
computed using the 1-norm. In the 1-norm,  A  is the maximum column sum in absolute
value, which is obviously 4.

INTEGER N, MU, IG, K, I, IWRITE, I1MACH, J
REAL G(2,100), B(200)
REAL X, COND, AINVNO, AINORM, ABS
N=100
X=1.0
MU=2
IG=2
DO 50 K=1,3

C CONSTRUCT MATRIX
DO 10 I=1,N

G(1,I)=2.0
G(2,I)=-1.0

10 CONTINUE
G(1,1)=1.0+X
G(1,N)=1.0+X

C GET ESTIMATE OF CONDITION NUMBER FROM BPCE
CALL BPCE(N,MU,G,IG,COND)
IWRITE=I1MACH(2)
WRITE(IWRITE,11)X

11 FORMAT(/10H WHEN X IS,E14.6)
WRITE(IWRITE,12)COND

12 FORMAT(25H CONDITION ESTIMATE IS ,E15.8)
C SINCE CONDITION NUMBER IS NORM(A)*NORM(INVERSE(A)),
C FIND THE NORM OF EACH COLUMN OF INVERSE(A). GENERATE
C THE COLUMNS ONE AT A TIME AND REUSE SPACE

AINVNO=0.0
DO 40 I=1,N

C GENERATE ITH COLUMN OF IDENTITY MATRIX AS RIGHT HAND SIDE
DO 20 J=1,N

B(J)=0.0
20 CONTINUE

B(I)=1.0
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Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 MU < 1

3 IG < MU

10 + k* singular matrix whose rank is at least k

10 + N + k* the kth principal minor is not positive definite

Double-precision version: DBPCE with G and COND declared double precision

Complex Hermitian version: CBPCE with G declared complex (see Note 3 above).

Storage: N real (double precision for DBPCE, complex for CBPCE) locations of scratch
storage in the dynamic storage stack

Time: N × ((MU−1) × (10+MU/2)+8) additions
N × ((MU−1) × (6+MU/2)+4) multiplications
N × (MU+1) divisions

Method: Gaussian elimination without pivoting
See the reference below for the method used to estimate the condition number.
BPCE calls BPLD with EPS=0.0

See also: BPBS, BPDC, BPFS, BPLD, BPLE, BPSS

Authors: Doris Ryan and Linda Kaufman

Reference: Cline, A. K., Moler, C. B., Stewart, G. W., and Wilkinson, J. H., An estimate for the condi-
tion number, SIAM J. Numer. Anal. 16 (1979), 368-375.
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PORT library Linear Algebra

February 11, 1993 BPBS

BPCE — LDLT decomposition with condition estimation

Purpose: BPCE (Banded symmetric Positive definite matrix Condition Estimation) gives a lower
bound for the condition number of a banded symmetric positive definite matrix A. It also re-
turns the LDLT decomposition of A and may be used in a linear equation package.

Usage: CALL BPCE (N, MU, G, IG, COND)

N → the order of the matrix A

MU → the number of nonzero bands on and above the diagonal of A

G → a matrix into which the upper triangular portion of the matrix A has
been packed as follows:

G(j−i + 1, i) = a i j for j≥i

(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥MU and KG≥N.

← LDLT decomposition suitable for input into BPFS and BPBS (see Note

2)

IG → the row (leading) dimension of G, as dimensioned in the
calling program

COND ← an estimate of the condition number of A (see Note 1)

Note 1: The condition number measures the sensitivity of the solution of a linear system to errors in
the matrix and in the right-hand side. If the elements of the matrix and the right-hand side(s)
of your linear system have d decimal digits of precision, the solution might have as few as
d − log 10 (COND) correct decimal digits. Thus if COND is greater than 10Bd P , there may be
no correct digits.

Note 2: The LDLT decomposition of A satisfies the equation A = LDLT where L is lower unit trian-
gular (1’s on the diagonal, 0’s above the diagonal) and D is diagonal. On return from BPCE,
the diagonal of D occupies the first row of G and
G(i − j+1,i) = l i j for i>j.

Note 3: For complex Hermitian matrices (A = A *, where A * represents the conjugate transpose of A)
, the complex version of this subroutine computes the LDL * decomposition and returns the
conjugate of L rather than L in G.
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Example: The program fragment below solves a linear system AX = B, where A is a symmetric posi-
tive definite band matrix. It is assumed that the A matrix has been packed into G according
to the scheme G(j−i+1, i)=a i j . The subroutine BPCE factors A into LDLT, where L is unit
lower triangular and D is diagonal. The factors are returned in G so that BPFS can forward
solve (solve LY=B) and BPBS can back solve (solve DLTX=Y).

The subroutine BPCE also provides an estimate of the condition number of A. In the code
below if the condition number is larger than the reciprocal of the machine precision (given by
R1MACH(4)), the matrix is considered too ill-conditioned and the system is not solved.

IWRITE=I1MACH(2)
CALL BPCE(N,ML,G,IG,COND)
IF (COND .GT. 1.0/R1MACH(4)) GO TO 10
CALL BPFS(N,ML,G,IG,B,IB,NB)
CALL BPBS(N,ML,G,IG,B,IB,NB)
GO TO 20

10 WRITE(IWRITE,11)
11 FORMAT(26H MATRIX TOO ILL-CONDITIONED)
20 CONTINUE
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February 11, 1993 BPBS

Error situations: *(The user can elect to ‘recover’ from those errors marked with an asterisk — see Er-
ror Handling, Framework Chapter)

Number Error

1 N < 1

2 ML < 1

3 IG < ML

4 IB < N

5 NB < 1

10 + k* singular D with kth diagonal element 0.0

Double-precision version: DBPBS, with G and B declared double precision

Complex Hermitian version: CBPBS with G and B declared complex

Storage: None

Time: NB×(ML−1)×N additions
NB×(ML−1)×N multiplications
NB×N divisions

See also: BPCE, BPDC, BPFS, BPLD, BPLE, BPSS

Author: Linda Kaufman
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BPBS — band positive definite upper triangular linear system solution

Purpose: BPBS (Banded symmetric Positive definite matrix Back Solve) solves DRX = B where D is
diagonal and R is banded unit upper triangular (1’s on the diagonal and 0’s below the diago-
nal). It can be used for the back solution phase of a banded linear system solution. (It is used
in this way by the routines BPSS and BPLE.)

Usage: CALL BPBS (N, ML, G, IG, B, IB, NB)

N → the number of equations

ML → the number of nonzero diagonals of R (including the
unit diagonal)

G → a matrix (which may contain results obtained by the
routines BPLD, BPCE, or BPDC) into which D and R are packed as
follows:

G(1, i) = d i

G(j−i + 1, i) = r i j for j > i

(See the introduction to this chapter.)
G should be dimensioned (IG,KG) in the calling program, where
IG≥ML and KG≥N.

IG → the row (leading) dimension of G, as dimensioned in the
calling program

B → the matrix of right-hand sides, dimensioned (IB, KB) in
the calling program, where IB≥N and KB≥NB.

← the solution X

IB → the row (leading) dimension of B, as dimensioned in the
calling program

NB → the number of right-hand sides

Note: BPFS and BPBS can be used directly on the output matrix produced by BPDC, BPLD, or
BPCE to solve a banded symmetric positive definite linear system.
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Appendix 4

BANDED< SYMMETRIC< POSITIVE-DEFINITE MATRICES

BPBS - Back Solve
BPCE - Condition Estimation
BPDC - DeComposition
BPFS - Forward Solve
BPLE - Linear Equation solution
BPLD - LDL T decomposition
BPML - MuLtiplication
BPNM - NorM
BPSS - System Solution


