PORT library

--

February 11, 1993

Linear Algebra

--

Complex version: CSWAP with X and Y declared complex

See also: MOVExx (Utility Chapter)

Author: Linda Kaufman

- **Reference:** Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic linear algebra subprograms for Fortran usage, *ACM Trans. Math. Software 5*, 3 (1979), 308-323.
- **Example:** In this example the rows of an \$m times n\$ matrix A, dimensioned (IA,N) are permuted so that the (1,1) element of A is the largest in modulus of the elements in the first column of A. The subroutine ISAMAX computes the index of the element of a vector having maximum modulus.

J=ISAMAX(M,A,1) CALL SSWAP(N,A,IA,A(J,1),IA)

Linear Algebra

SSCAL

--

SSWAP — interchange two vectors

Purpose:	SSWAP interchanges two vectors			
Usage:	CALL SSWA	CALL SSWAP(N, X, INCX, Y, INCY)		
	Ν	\rightarrow the number	per of affected elements in X and Y	
	Х	\rightarrow the first ve	vector	
		$\leftarrow \text{ the vector}$	or Y	
	INCX		ents are spaced at intervals of INCX in X: 1+INCX),, X(1+(N-1)INCX)	
	Y	\rightarrow the second	nd vector	
		\leftarrow the vector	or X	
	INCY		ents are spaced at intervals of INCY in Y: 1+INCY),, Y(1+(N-1)*INCY)	
Note 1:	If N=0, no act	ion is performed.		
Note 2:			column-wise order, we can use SSWAP to deal with the rows he example below.	
Error situati	Error situations: (All errors in this subprogram are fatal — see <i>Error Handling</i> , Framework Chapter)			
	N	umber	Error	
	1		N<0	
		2	INCX≤0	
		3	INCY≤0	

Double-precision version: DSWAP with X and Y declared double precision

SSWAP

--

February 11, 1993

Linear Algebra

SSCAL

--

Author: Linda Kaufman

Reference: Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic linear algebra subprograms for Fortran usage, *ACM Trans. Math. Software 5*, 3 (1979), 308-323.

Example: In this example the rows of an \$m times n\$ matrix A, dimensioned (IA,N) are scaled so that the sum of the modulus of the elements in each row is 1.0. The function SASUM returns the sum of the absolute values of the elements of a vector.

```
DO 10 J=1,M
SC=1.0/SASUM(N,A(J,1),IA)
CALL SSCAL(N,SC,A(J,1),IA)
10 CONTINUE
```

Linear Algebra

SDOT

--

February 11, 1993

SSCAL — scale a vector

Purpose:	SSCAL multiplies a vector \$x\$ by a scalar A			
Usage:	CALL SSCA	(N, A, X, INCX)		
	Ν	\rightarrow the number of affected elements in X		
	А	\rightarrow the scaling factor		
	Х	\rightarrow the vector to be scaled		
		$\leftarrow \text{ the scaled vector}$		
	INCX	→ the elements are spaced at intervals of INCX in X: X(1), X(1+INCX),, X(1+(N-1)*INCX)		
Note 1:	If N=0, no act	n is performed.		
Note 2:	Note 2: Since Fortran stores arrays in column-wise order, we can use SSCAL to deal with the rows of a 2-dimensional array as in the example below.			
Error situations: (All errors in this subprogram are fatal — see <i>Error Handling</i> , Framework Chapter)				
	Ν	mber Error		
		1 N<0		
		2 INCX≤0		
Double-precision version: DSCAL with X and A declared double precision				
Complex ver		ith X and A declared complex th X declared complex and A declared real		
~ -				

See also: SAXPY

PORT library

February 11, 1993

Linear Algebra

SDOT

--

Error situations:	(All errors in this subprogram are fatal — see <i>Error Handling</i> , Framework Chapter)		
	Number	Error	
	1	N<0	
	2	INCX≤0	
	3	INCY≤0	

Double-precision version: DDOT with X and Y declared double precision

Complex versions: CDOTU with X and Y declared complex. CDOTC with X and Y declared complex. CDOTC \$= sum from i=1 to n x bar sub i y sub i\$, i.e. the conjugate of the elements of X are used.

- Author: Linda Kaufman
- **Reference:** Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic linear algebra subprograms for Fortran usage, *ACM Trans. Math. Software 5*, 3 (1979), 308-323.
- **Example:** The following program fragment forms the product \$A bold x\$ where \$A\$ is an \$m times n\$ matrix dimensioned (IA,N), and puts the result in an array Y:

Because of page faults, the execution of this program fragment on certain machines might require an excessive amount of time. The program fragment given in the example in SAXPY, which accesses the elements of A one column at a time, would be preferable in this case.

SAXPY

--

SDOT — dot product of two vectors

Purpose:	SDOT determines the inner product of two vectors $x\$ and $y\$, $sum from i=1$ to n x sub i y sub i		
Туре:	Real function		
Usage:	<answer> = SD</answer>	OT(N	, X, INCX, Y, INCY)
	Ν	\rightarrow	the number of elements to be summed
	Х	\rightarrow	the first vector
	INCX	\rightarrow	the elements are spaced at intervals of INCX in X: X(1), X(1+INCX),, X(1+(N-1)*INCX)
	Y	\rightarrow	the second vector
	INCY	\rightarrow	the elements are spaced at intervals of INCY in Y: Y(1), Y(1+INCY),, Y(1+(N-1)*INCY)
	<answer></answer>	\leftarrow	X(1)*Y(1)+X(1+INCX)*Y(1+INCY)++ X(1+(N-1)*INCX)*Y(1+(N-1)*INCY)
Note 1:	Since Fortran stores arrays in column-wise order we can use SDOT to deal with the rows of a 2-dimensional array as in the example below.		
Note 2:	If N=0, SDOT=0.0 is returned.		

Note 3: No attempt is made to prevent underflow or overflow in the subroutine.

PORT library

February 11, 1993

Linear Algebra

SAXPY

--

See	also:	SSCAL

Author: Linda Kaufman

Reference: Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic linear algebra subprograms for Fortran usage, *ACM Trans. Math. Software 5*, 3 (1979), 308-323.

Example: The following program fragment forms the product A\$x\$ where A is an \$m times n\$ matrix and puts the result in an array Y:

	DO 10 I=1,M
	Y(I)=0.0
10	CONTINUE
	DO 20 I=1,N
	CALL SAXPY($M, X(I), A(1,I), 1, Y, 1$)
20	CONTINUE

Matrix by vector multiplication is usually done using inner products as in the example in SDOT, but on a paged machine using the above program fragment can be preferable because FORTRAN stores two-dimensional arrays column-wise and this program refers to the array A one column at a time.

SASUM

--

SAXPY — add multiple of one vector to another

Purpose:	SAXPY scales a vector \$x\$ by a scalar \$a\$ and adds the result to a vector \$y\$.			
Usage:	CALL SAXF	CALL SAXPY (N, A, X, INCX, Y, INCY)		
	Ν	\rightarrow the numl	ber of affected elements in X and Y	
	А	\rightarrow the scala	r variable	
	Х	\rightarrow the vector	or which is to be scaled	
	INCX	•	ents are spaced at intervals of INCX in X: 1+INCX),, X(1+(N-1)*INCX)	
	Y	\rightarrow the vector	or which is to be added	
		$\leftarrow AX + Y$		
	INCY	•	ents are space at intervals of INCY in Y: 1+INCY),, Y(1+(N-1)*INCY)	
Note:	If N=0, no ac	tion is performed.		
Error situat		ors in this subprog or Handling, Fram		
	1	Number	Error	
		1	N<0	
		2	INCX≤0	

Double-precision version: DAXPY with X and Y declared double precision

Complex version: CAXPY with X and Y declared complex

3

INCY≤0

--

February 11, 1993

Linear Algebra

--

Complex version: SCASUM with X declared complex (see Note 3).

Author: Linda Kaufman

- **Reference:** Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic linear algebra subprograms for Fortran Usage, Report SAND77-0898, Sandia Laboratories, Albuquerque, New Mexico 87115, October 1977.
- **Examples:** The following program fragment computes the 1-norm of an \$m times n\$ matrix A. The 1-norm is defined by \$max from $1 \le j \le n$ sum from i=1 to $m \mid a$ sub $i,j^{n} \mid \$$

```
ANORM1=0.0
DO 10 J=1,N
ANORMJ = SASUM(M,A(1,J),1)
IF (ANORMJ .GT. ANORM1) ANORM1 = ANORMJ
10 CONTINUE
```

The next program fragment computes the infinity norm of an \$m times n\$ matrix A, dimensioned (IA,N). The infinity norm is defined as \$max from $1 \le i \le m$ sum from j=1 to $n \mid a$ sub $i,j^{\sim} \mid \$$

```
ANORM=0.0
DO 10 I=1,M
ANORMI = SASUM(N,A(I,1),IA)
IF (ANORMI .GT. ANORM) ANORM=ANORMI
10 CONTINUE
```

ISAMAX

--

--

SASUM — 1-norm of a vector

Purpose:	SASUM computes the sum of the absolute values of a vector: $sum from i=1$ to n x sub i ^ \$			
Туре:	Real function			
Usage:	<answer> = SA</answer>	SUM	(N, X, INCX)	
	Ν	\rightarrow	the number of elements to be summed	
	Х	\rightarrow	the vector of elements	
	INCX	\rightarrow	the elements are spaced at intervals of INCX in X: X(1), X(1+INCX),, X(1+(N-1)INCX)	
	<answer></answer>	\leftarrow	X(1) + X(1+INCX) + + X(1+(N-1)INCX)	
Note 1:	Since Fortran stores arrays in column-wise order we can use SASUM to deal with the rows of a 2-dimensional array as in the example below.			
Note 2:	If N=0, SASUM=0.0 is returned.			
Note 3:	For complex vectors, SCASUM computes $sum from i=1$ to n ($ Re(x sub i) + Im(x sub i) $).			
Note 4:	Note 4: No attempt is made to prevent or give warning of underflow or overflow.			
Error situations: (All errors in this subprogram are fatal — see <i>Error Handling</i> , Framework Chapter)				
	Nu	mber	Error	
		1	N<0	
		2	INCX≤0	

Double-precision version: DASUM with X declared double precision

--

February 11, 1993

Linear Algebra

ISAMAX

--

Example: In this example the columns of an \$m times n\$ matrix A, dimensioned (IA,N) are permuted so that the (1,1) element of A is the largest in modulus of the elements of the first row in A. The subroutine SSWAP interchanges two vectors.

J=ISAMAX(N,A,IA) CALL SSWAP(M,A,1,A(1,J),1)

ISAMAX — index of the maximum magnitude element of a vector					
Purpose:	ISAMAX looks through a vector to find the (first) component with maximum magnitude. The integer position of that component in the vector is returned.				
Туре:	Integer function				
Usage:	<answer> = ISA</answer>	MAX(N, X, INCX)			
	Ν	\rightarrow the number of elements to be compared			
	Х	\rightarrow the vector of elements			
	INCX	\rightarrow the elements are spaced at intervals of INCX in X: X(1), X(1+INCX),, X(1+(N-1)*INCX)			
	<answer></answer>	$\leftarrow M, \text{ the position of the (first) component of maximum magnitude:} \\ If INCX = 1, X(M) \text{ is largest.} \\ In general, X(1 + (M - 1) * INCX) \text{ is largest.} \end{cases}$			
Note 1:		ores arrays in column-wise order we can use ISAMAX to deal with the rows nal array as in the example below.			
Note 2:	If N=0, ISAMA	X=0 is returned.			
Error situati	,	in this subprogram are fatal — Handling, Framework Chapter)			
Number Error					
		1 N < 0			
		2 INCX ≤ 0			
Double-precision version: IDAMAX with X declared double precision					
Complex version: ICAMAX with X declared complex					
See also:	See also: SAMAX, ISMAX				
Author:	Linda Kaufman				

Reference: Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh, F. T., Basic linear algebra subprograms for Fortran usage, *ACM Trans. Math. Software 5*, 3 (1979), 308-323.

Appendix 5

BASIC LINEAR ALGEBRA MODULES

ISAMAX	-	index if the largest element of a vector
SASUM	-	1-norm of a vector
SAXPY	-	add multiple of one vector to another
SDOT	-	dot product of two vectors
SSCAL	-	scale a vector
SSWAP	-	interchange two vectors