
Twig Reference Manual

Steven W.K. Tjiang

Twig is a language for manipulating trees. A twig program consists of a
set of pattern-action rules together with associated declarations. Patterns
describe trees to be matched. Actions calculate costs, perform tree ma-
nipulations and other functions such as emitting code. A twig program
is translated by the twig compiler into subroutines and tables in a host
language. In the current implementation, the host language is C.

A twig program manipulates trees by �rst �nding a minimumcost covering
of the input tree. The actions of the rules whose pattern parts composes
the covering is then executed. The minimum cost covering is determined
using dynamic programming. This technique naturally resolves many am-
biguities that may be in the speci�cations.

The prime purpose of twig is to create tree manipulation programs. One
interesting application of tree manipulation is code generation and twig

has been used to implement a code generator for the pcc2 compiler on the
VAX.

Contents

1 Introduction 2

2 Motivation 2

3 The Twig Language 5
3.1 Lexical Issues and Conventions : 5
3.2 Rules : 6
3.3 Tree Patterns : 6
3.4 Costs : 7
3.5 Trees : 7
3.6 Prologue and Inserts : 8
3.7 Declarations : 8
3.8 Costs and Action code : 9

4 Pattern Matcher Operation 9
4.1 The Costing Phase : 10
4.2 The Execution Phase : 10

5 Some Examples 11
5.1 Expression Trees to Pre�x : 11
5.2 Short Circuited Boolean Evaluation : 14
5.3 Code Generation : 14

6 How to run Twig 14

7 Organization of the Twig Compiler 16

8 Performance 19

1

1 Introduction

Twig is a language for writing tree manipulation programs. A twig program does this by
using a matcher to �nd a minimal cost covering of a tree. The covering is composed of
user supplied templates. Trees are manipulated by executing the actions associated with
the templates of their coverings. These actions may rewrite the tree, update other data
structures, or generate output.

Figure 1 gives an overview of the twig system. The round boxes in the �gure indicates �les
and the sharp cornered boxes are processing programs. The user writes the twig speci�cation
�le. This �le is then compiled by the twig compiler into host language �les. In the current
version of twig, the host language is C. The host language �les are then compiled and linked
with other user supplied �les. The resulting program represented by the large box at the
bottom of �gure 1 is the tree manipulation program. The details of this box will be discussed
later.

2 Motivation

Although Twig is a language for manipulating trees it was originally motivated by pattern
directed code generation. In many compilers, the typical structure is a front end and a
back end. The front end reads the input source program, checks its syntax and contextual
conditions, and builds an intermediate representation of the program. The language used to
do this representation is often called the intermediate representation and will be abbreviated
as IR. The back end takes the IR and translates it into the target machine code.

That isn't the whole story but it's close. Both ends may be sets of programs rather
than one program. There may also be a middle that performs transformations on the IR.
The intention of these transformations is to improve the target code that comes out of the
compiler. For this discussion, we can ignore the middle.

IRs can vary greatly from compiler to compiler. However the IRs are implemented, they
are encodings of graphs. Usually three types of graphs are evident[4]. There is a owgraph
whose nodes are basic blocks and the edges corresponds to transfer of control between the
basic blocks. Basic blocks are not featureless. They are graphs themselves. Some compilers
will represent them as a forest of directed acyclic graphs or DAGs. The nodes are data values
and operations. Since operations yields values, one can think of nodes as corresponding to
values. An edge exists from node a to node b if and only if the value corresponding to a
depends on the value corresponding to b. Other compilers will use trees instead of DAGs.
Trees are not as general as DAGs and these compilers overcome that by using some type of
labelling or copying.

Writing a front end usually involves writing a recognizer for the source language, design-
ing a symbol table, and determining an error recovery strategy. What has made this process
easy are parser generators like YACC[8]. They separate out the task of recognizing the source
language from the other details. This makes the task intellectually more manageable. The

2

'

&

$

%

Tree
ADT

Cost
ADT match()

?

compiler
&

linker

- �

?�
�

�
�

�
�

�
�

rest of
user

program
walker.h

'

&

$

%
walker.c

&
symbols.h

?

Twig
preprocessor

?

�
�
�
�

twig
speci�cation

�

�
�

�
�walker.xx

Figure 1: The Twig system

3

compiler implementor now speci�es the source language via grammar productions. Symbol
table manipulations, and IR construction rules are attached to productions and activated
when a source language construct is recognized. The front end is then automatically gen-
erated by processing the speci�cation with a parser generator. The result is a high quality
front end whose performance is close to that of a hand-crafted front end.

Providing the same type of facilities for automatically building back ends has been much
more di�cult. Extending current front end parsers to do back ends has been workable but
not entirely successful. The basic idea is that the back end implementor writes a machine

grammar for the IR and code generation occurs as actions that are executed when patterns
are found in the IR[5, 6]. Unfortunately, these grammars are large and ambiguous. Using
parsers to handle them have usually met with many combinatorial problems [6]. Further-
more, these code generators are slow although their output is often of high quality. The
software engineering advantages one see with parsers in the front end are not so evident in
this circumstance. Instead of having to deal with the complexities of code generation, the
implementor now has to deal with the complexities of the very large machine grammar.

Another approach at automatically building back ends is to start with known good al-
gorithms for generating code. From these algorithms, we can build an abstract interpreter
and then speci�cations can be written to drive them. We hope that by doing this we can
derive a much more natural code generation speci�cation technique. Twig is one possible
result of this approach. The algorithms that form the basis of twig are presented in [3] and
[7]. Twig speci�cations are much less complex than parser based speci�cations. Ambiguities
are handled naturally and do not complicate the speci�cations.

In [3], it is shown how optimal code can be generated for an expression tree given a
description of a machine's instruction set. This description is in term of tree templates.
The algorithm �rst determines a minimal cost covering of an expression tree using dynamic
programming. The covering is composed from the templates in the description. The code
generated is then the instructions represented by the templates in the covering. This algo-
rithm was shown to generate the shortest code sequences for an abstract machine and its
running time was shown to be linear in the number of nodes in the expression tree in [3].

This is all very well in theory but what about in practice. Code length is not always the
quantity that one wishes to minimize. One might wish to minimize the number of memory
accesses or machine cycles executed by the generated code. Fortunately, the algorithm can
also minimize these quantities. In fact, it can minimize any strictly increasing cost function.
Let I denote a machine instruction and I0I1I2:::In denote a sequence of instructions. Then
a cost function f is strictly increasing if and only if f(I0I1I2:::In) < f(I0I1I2:::InIn+1) for all
instruction sequences I0I1I2:::In and instruction In+1. Another shortcoming in [3] is that no
e�cient algorithm is given for matching the templates in the tree. This is where [7] comes
in. In that paper, two algorithms are presented for tree matching. Twig combines the work
presented in the two papers.

Twig di�ers from the algorithm as presented in [3] in the following ways:

� It provides a convenient speci�cation language for the templates.

4

� Tree templates in [3] were labelled with either Register or Memory. This label being
the storage class that the instruction corresponding to the template would put a result.
Twig generalize tree labels so that they can be any symbol.

� Instead of associating an instruction with each template, twig associates an action.

� In [3], code is generated by a bottom up traversal of the minimum cost covering. Twig
allows a top down traversal of the cover and also the ability for the actions to rewrite
parts of the tree.

� The algorithm in [3] determines the evaluation order which gives the optimal code.
Twig does not do this. The evaluation order determination was omitted based on the
conjecture that most of the time, simple left to right evaluation of the leaves will yield
near optimal results. In situations where a nonstandard evaluation order is required,
a new twig pattern could be added that codes the order explicitly (see Section 4.2).

In this manual, a brief discussion will be given of the twig language and how twig programs
can be incorporated with C.

Many statements have been made in this manual without proof. If the reader wishes to
pursue it further, more details about the algorithms will be presented in an upcoming paper,
[2].

3 The Twig Language

3.1 Lexical Issues and Conventions

Currently the following identi�ers are reserved keywords of twig:

action cost insert
label node prologue

;:(),= are special characters. All blanks, tabs, formfeeds and newlines are ignored by twig but
they may not appear inside identi�ers and numbers. Identi�ers are nonempty strings made
of letters, digits or underscores and starting with a letter. Numbers are nonempty string
of digits. Code fragments or action parts are enclosed in braces. Inside code fragments, C
lexical rules must be obeyed except that strings of the form $:::$ that are not inside C strings
have special meaning to twig. In the following sections, id denotes an identi�er; int1, int2
denotes numbers; ccode denotes C code fragments; ::: indicates repetition of the previous
item; [:::] indicates that ::: is optional.

The input to the twig program will be referred to as the subject tree.

5

id const

plus

plus

id

J
JJ

J
JJ

plus(id, plus(id, const))

Figure 2: A Tree and its pre�xed form

3.2 Rules

The fundamental unit of a twig program is a rule.

label id : tree pattern [cost] [= action]

Intuitively, the pattern is used to match a subtree. The cost code fragment is then evaluated.
The resulting cost is recorded by the matcher for use in dynamic programming. The action
is executed if the rule is part of the least cost cover of the tree. The details of pattern
matching will be discussed in Section 4.

If the cost part is missing, twig will insert default code that returns the special value,
DEFAULT COST. A missing action part indicates that nothing will be done when a match is
found.

3.3 Tree Patterns

Tree patterns are speci�ed in pre�x parenthesized form and can be described by the following
BNF:

tree pattern! node id j label id
tree pattern! node id (tree list)
tree list! tree ; tree list j tree

Figure 2 gives an example of a tree pattern and its pre�x parenthesized form.

6

There are two types of symbols: node ids and label ids. Node ids are used to denote
internal nodes and leaves. Label ids label tree patterns and are analogous to nonterminals
in context free grammars. For example, the following twig rules without their action parts
describe simple expression trees with the plus operator.

expr: plus(expr, expr)

expr: identifier

expr: constant

Here, identifier and constant are node ids representing leaves, and plus is a node id
representing an internal node whereas expr is a label id. Pattern leaves that are label ids
are called labelled leaves. In the �rst rule, both leaves of the pattern are labelled.

Twig associates an integer with each node symbol and label symbol. These integers are
used by the twig pattern matcher as encodings for the symbols. As the matcher traverses the
tree, a user supplied subroutine is called to provide an integer corresponding to each node.

3.4 Costs

To increase the exibility of representing costs, the tree matcher views costs as an abstract

data type or ADT. For example, costs may be represented as an integer or as a vector of
integers with each element representing the cost of a speci�c resource. A cost ADT suitable
for twig must have the following four de�nitions:

� COST is a C type. Although the proper functioning of the tree matcher does not depend
on the internal details of the COST type, it must have the type information for storage
allocation purposes.

� INFINITY is the maximum attainable cost value. The matcher uses INFINITY to ini-
tialize its data structures.

� DEFAULT COST is the cost value returned by rules without a cost part.

� COSTLESS is a function of two cost values. It must return true if and only if the �rst
argument is less than the second.

3.5 Trees

As with costs, trees are treated as an ADT. Here, using an ADT is even more important
because trees come in a variety of shapes and representations. Twig would be overly com-
plicated if it had to know any more than the fundamental properties of trees. Thus, twig
treats trees as an acyclic directed graph of almost featureless nodes with one distinguished
node, the root. Each node has only one feature and that is an integer corresponding to the
node ids discussed above. To provide this view to twig, the user must provide the following
de�nitions and subroutines.

7

� NODEPTR is the type of a node. The actual details of the NODEPTR are irrelevant and
twig uses this de�nition only for storage allocation and declaration purposes.

� NULL is used to denote a null NODEPTR value. In the current implementation this is the
same NULL used by the C standard I/O package and need not be de�ned by the user.
This restricts the NODEPTR representation to be a pointer.

� mtGetNodes(r;n) returns the nth child of r where r is a NODEPTR. The leftmost child is
mtGetNodes(r;1). If n > degree(r) then the function should return NULL. Twig expects
the expression mtGetNodes(NULL; 0) to denote the root node of the subject tree.

� mtValue(r) returns the integer associated with r (See section 3.3).

� mtSetNodes(r;n; c) replaces the nth child of r with c. This routine may be used to
replace whole subtrees with others. mtSetNodes(NULL; 0; c) is used by twig to set the
root of the subject tree to c.

3.6 Prologue and Inserts

prologue ccode;

signals to twig that ccode should be inserted at the beginning of the output source �le.
Ccode should contain de�nitions relevant to the C code in rules that are de�ned later in the
twig source �le.

insert ccode;

causes ccode to be placed into the source �le. There can be multiple inserts and they will
be placed into the source �le in the order that they appear.

3.7 Declarations

All twig identi�ers are declared before they are used.

node id[(int1)][= int2]:::;

A node declaration declares one or more identi�er to be associated with nodes of the subject
tree. The identi�ers are assigned numbers by twig but the user can overide the assigned
number by specifying int2. The degree of the node identifer, the number of children, is
assumed to be �xed. Normally, twig will deduce the degree when id is used in a rule.
However, the user may explicitly give the degree by specifying int1.

label id:::;

A label declaration indicates that the following id's are to be used as labels of rules.

8

3.8 Costs and Action code

Code fragments such as the cost and action clauses of a rule are spec�ed by enclosing C
code in braces. All legal C constructs are permitted in code fragments. In addition, the
following are provided for convenient access to the subject tree and internal data structures
of the matcher.

� $%n$ denotes a pointer value to the matcher data structure for the nth labelled leaf.
Thus to access the cost value associated with that leaf, the notation $%n$!costmay
be used.

� $$ denotes a pointer value to the root of the subject tree.

� $n1:n2:n3: ... :nk�1:nk$ denotes a pointer value to the nkth child of the nk�1th child of
the nk�2th child of ... of the n1th child of the root of the subject tree. Each ni is a
positive non-zero integer.

Some special constructs are available to code fragments in the cost part of the speci�-
cation. The statement \ABORT;" when encountered during the execution of the cost code,
signals to the matcher that this pattern is to be rejected. When a \REWRITE;" statement
is encountered, control is returned to the matcher and the rule will become a rewrite mode
match. When the end of the cost code fragment is reached, control is returned to the matcher
and the rule becomes a defer mode match. The statement \TOPDOWN;" is like \REWRITE;"
except that the mode of the match becomes topdown. The meanings of these modes will be
explained in Section 4.

Cost values are returned to the matcher by assigning to the \cost" variable in the
cost clause. If no assignment is made to the cost variable then the returned cost will be
DEFAULT COST.

Action clauses are expected to return a new tree which will replace the subject tree. This
is done by returning using the \return(new tree);" statement. where new tree is of type
NODEPTR. If execution reaches the end of the action clause, the matcher resumes execution
and the subject tree is not modi�ed.

4 Pattern Matcher Operation

The pattern matcher operates in two phases: the costing phase and the execution phase.
During the costing phase, a minimal cost covering of the subject tree is found. The execution
phase invokes the actions that are associated with the patterns making up the covering.
Execution phases may begin during the costing phase to execute the covering of a subtree
as described in Section 4.2.

9

e: plus(e,e)

e: plus(e, plus(e,e))

e: id

e: const

S ! e
e! plus(e; e)
e! plus(e; plus(e; e)
e! id
e! const

Figure 3: Pattern and Grammar

4.1 The Costing Phase

Let the patterns of the twig speci�cations be interpreted as grammar productions with la-

bel ids as non-terminals and node ids as terminals. If we add a production S ! label id for
all label ids where S is the start symbol, then a covering for a tree is analogous to a deriva-
tion for the pre�xed form of the tree. Figure 3 shows some patterns and its corresponding
grammar. The productions of the form S ! label id reect the fact that any label id may
start a cover.

The matcher �nds the least cost cover by doing a preorder traversal of the subject tree.
At the same time, it builds a skeleton tree that is structurally isomorphic to the subject tree.
When a match is discovered the cost clause of the pattern is invoked to calculate the cost.
Many patterns with di�erent labels could match at any given node but only the lowest cost
pattern for each label is recorded in the skeleton.

When a pattern is matched, its label is then used as input to the pattern matcher so that
matching of patterns with labelled leaves can begin. This process is analogous to a reduce
action in bottom up parsers.

4.2 The Execution Phase

The execution phase starts when the costing phase is complete or when a su�ciently low
cost rewrite mode rule is encountered. Let M be a matching rule and L1; L2; L3; :::; Ln be
the labelled leaves of the matching pattern. The following procedure is used to execute the
action parts of M .

10

Procedure Execute

� If M is a deferred mode match then execution occurs by �rst applying Execute to the
Lis from left to right. That is, in the order that they appear in the pre�x form of the
tree. When all the Lis are executed, the action part of M is invoked.

� If M is a rewrite mode match then just the action part of M is executed. When the
action part returns the matcher deletes the skeleton corresponding to the subtree that
M matched and rescans the new subtree that may have been substituted by executing
M .

� IfM is a topdown mode match then only the action part of M is executed. To execute
a labelled leaves, Li, M 's action part may do so explicitly by using the tDO($%i$)
macro. This allows the user to arbitrary order the execution of the labelled leaves.

When the costing phase is over, the execution phase is started by picking the lowest cost
match at the root of the subject tree. This will be the root of the minimum cost cover. The
match is executed as described above.

The execution phase may begin before the costing phase is over. This occurs when a
rewrite rule matches and its cost is lower than all other matches at that subtree. In this
situation the rewrite rule is executed immediately and the new rewritten subtree is scanned
once more. The prescence of rewrite rules throws a wrench in the theoretical niceties of
the matching algorithm. For example, there is now no guarantee that the algorithm will
terminate because the tree can be repeatedly enlarged. Rewrite rules can be dangerous.
They can be triggered unintentionally if the user is not careful to abort them in situations
where they are not wanted. However, if used with care they can help to reduce the size of
the twig speci�cation.

5 Some Examples

5.1 Expression Trees to Pre�x

A twig program to print out the pre�x form of expression parse trees is shown in Figure 4.

� The rules do not have cost calculations. Since there are no ambiguities costs are not
necessary.

� The second rule is a topdown mode rule. This is essential in printing the pre�x form.
If it was omitted the post�x form would be printed.

� Before any matching can begin matchinitmust be called. Trees can then be processed
by calling match after arranging that the call mtGetNodes(NULL; 0) returns the root
of the subject tree.

11

prologue f

typedef struct node � NODEPTR;
#de�ne COST int
#de�ne INFINITY 100000
#de�ne DEFAULT COST 0

NODEPTR Root;
struct code f

char op; =� null if node is a leaf �=
NODEPTR left, right;
char �id;

g;

g;

node nOp nIdent;
label lExpr;

lExpr: nIdent
= f printf(\%s", id); g;

lExpr: nOp(lExpr,lExpr)
f TOPDOWN;g
= f

putchar($$!op);
tDO($%1$);
tDO($%2$);

g;

insert f

mtValue(root)
NODEPTR root;

f
if(root!op==0)

return(nIdent);
else

return(nOp);
g

Figure 4: Printing Expression trees to Pre�x form

12

mtGetNodes(r,n)
NODEPTR r;
int n;

f
if(n==1)

return(r!left);
else if(n==1)

return(r!right);
else if(n==0 && r==NULL)

return(Root);
else return(NULL);

g

mtSetNodes(r,n, c)
NODEPTR r, c;
int n;

f
if(n==1)

r!left = c;
else if(n==2)

r!right = c;
else if(n==0)

Root = c;
g

main(argc,argv) =� called by user only �=
char ��argv;

f
matchinit(); =� initialize the matcher �=
::: get a tree and set Root to it

match(); =� do the match �=
g
g

Figure 4: (cont.) Printing Expression trees to Pre�x form

13

5.2 Short Circuited Boolean Evaluation

Short circuited boolean evaluation is naturally topdown. A fragment of twig program that
implements this is shown in Figure 5.

� Labels for true and false branches are passed down to rules below by putting them into
the nodes. Another way of accomplishing this is to use an auxillary argument stack.

� The rules assume that every test generates a branch to both the false and true label.
On conventional machines, extra branches can be eliminated by recognizing that one
could generate code that falls through to its true or false labels. This can be done
by separating lTest into lTrueTest and lFalseTest which branches only when true and
false respectively. Rules can then be written to take advantage of this.

5.3 Code Generation

Figure 6 is an example of twig program that can be used to generate VAX code for the
subtract instruction:

� Rules 3 and 4 form a loop. The potential loop: temp!operand!temp!operand::: is
broken by the matcher recognizing that the cost of the second match of temp does not
cost less than the �rst match of temp.

� In the cost clause of rule 5, the cost is the sum of the leaves plus the cost of the subtract
instruction. The action clause emits code to add the two operands and leave the result
in a temporary location. The temporary is returned as a substitution for the subject
tree.

� Rule 6 handles a special case where the left operand is already in a temporary and the
constant is one. In this case, the temporary is directly decremented and returned as
the new tree.

6 How to run Twig

Once a user has written the speci�cation, twig is used to compile it into a subroutine.
Figure 1 gives an overview of how twig does this. In Figure 1, rounded boxes indicate �les
and sharp cornered boxes are processing programs. The user creates the twig speci�cation
which is represented by the top box. The speci�cation �le must have the su�x \.mt". Let's
say we have one called arbor.mt. To invoke the twig compiler we type:

twig [{wxx] arbor.mt

14

prologue f

#include \otherdefs.h"
union node f

::: =� de�nition of other node types �=
union f

int operation;
NODEPTR left, right;
LABEL falselab, truelab; =� LABEL will de�ned elsewhere �=
::: =� other de�nitions relevant to test nodes �=

g test; ::: =� de�nition of other node types �=
g;

g;

node nAnd nOr nNot nLess;
label lTest lExpr;

lTest: nAnd(lTest,lTest)
f TOPDOWN; g
=f

1 !test.falselab = $$!test.falselab;
1 !test.truelab = getlabel();
tDO($%1$);
printlab(1 !test.truelab);
2 !test.falselab = $$!test.falselab;
2 !test.truelab = $$!test.truelab;
tDO($%2$);

g;

lTest: nOr(lTest,lTest)
f TOPDOWN; g
=f

1 !test.falselab = getlabel();
1 !test.truelab = $$!test.truelab;
tDO($%1$);
2 !test.truelab = $$!test.truelab;
2 !test.falselab = $$!test.falselab;
tDO($%2$);

g;

Figure 5: Short circuited Boolean Evaluation

15

lTest: nNot(lTest)
f TOPDOWN; g
=f

1 !test.truelab = $$!test.falselab;
1 !test.falselab = $$!test.truelab;
tDO($%1$);

g;

lTest: nLess(lExpr,lExpr) =� not topdown anymore �=
=f ::: generate code for comparison ::: g;

Figure 5: (cont.) Short circuited Boolean Evaluation

The proprocessor reads arbor.mt and if there are no errors will create two �les: symbols.h
and walker.c. To build walker.c, twig uses a template �le called walker.xx where xx is
the argument of the optional {w ag. If the ag is omitted then xx defaults to \c1".

Symbols.h and walker.c can then compiled and linked with the other modules of the
user's program. These other modules should provide the Tree and Cost ADTs described
above. Walker.h is an auxilliary include �le that is referenced by walker.c. A typical
compile command is:

cc { Iinclude dir -c walker.c

The {Iinclude dir argument causes cc to look for walker.h in include dir. The exact value
of include dir will depend on where the �les are stored at your site. The tree matcher is
initialized by calling matchinit and matching can begin by calling match from the user
program.

7 Organization of the Twig Compiler

The preprocessor is written completely in C and YACC. It can be roughly broken up into
four modules:

� Lexer | The lexer performs lexical analysis. The input is tokenized by this module
and passed to the parser as required. Identi�ers are looked up in the symbol table and
space is reserved for them if they have never been encountered.

� Parser | This part is written in YACC and recognizes the twig language. When
a language construct is recognized actions are invoked. Declarations, prologues and
inserts will invoke symbol table operations when recognized. Rules are broken up and

16

prologue f
=� otherdefs.h will have a type de�nition for NODEPTR �=
#include \otherdefs.h"
#de�ne TEMP COST 5
#de�ne SUB COST 30
#de�ne DEC COST 10
NODEPTR gettemp();
g;

node long constant sub;
label operand temp;

operand: long; =� rule 1 �=
operand: constant; =� rule 2 �=
operand: temp; =� rule 3 �=

temp: operand =� rule 4 �=
f cost = TEMP COST+$%1$!cost;g
= f

NODEPTR t = gettemp();
emit(\mov", $$, t, 0);
return(t);

g;

operand: sub(operand,operand) =� rule 5 �=
fcost = $%1$!cost + $%2$!cost+SUB COST;g
=f

NODEPTR t = gettemp();
emit(\sub", 1, 2, t, 0);
return(t);

g;

temp: sub(temp,constant) =� rule 6 �=
f

if(value(2)==1)
cost = $%1$!cost+DEC COST;

else ABORT;
g=f

emit(\dec", 1, 0);
return(1);

g;

Figure 6: Small Code Generation Example

17

stored in the symbol table too. The tree patterns in the rules are unattened and
passed to the machine builder.

� Machine Builder | This module takes tree patterns and incrementally builds an in-
ternal representation of the matching automaton. The builder takes this tree and then
enumerates each of the possible paths from the root to the leaves. These paths are
treated as strings and a string matching automaton is built as described in [1] and [7].

Inside the builder the partially built machine is kept in a linked list form. Each machine
state is a linked list and each node represents a state transition. When the tables for
the machine are written out into walker.c, the linked list structure is translated into
a table of sixteen bit integers. Each transistion is stored as two integers. The �rst is
the integer corresponding to the symbol that causes the transistion and the second is
the index of the next state in the table.

� Symbol Table | The central data structure in this symbol table is the hash table.
Each entry in the hash table is a bucket | a linked list of symbol table entries. There
is no rehashing. All colliding items are placed in the linked list. This is a simple and
adequately e�cient arrangement. Depending on the type of symbols, the entry may
point to other data structures. Entries for label ids point to lists of trees. Node id
entries record the integers that have been associates with them. Other entries may
point to data structures holding a textual representation of C code that forms action
and cost parts.

Here is a list of the �les that form the twig compiler's source and their approximate
function.

� common.h | This �le contains data de�nitions for how trees are represented in the
parser. It also contains type de�nitions for external functions.

� code.h | This �le contains de�nitions for how code fragments are stored.

� sym.h | This �le de�nes the major data structures in the symbol table.

� machine.h | This �le de�nes the how the matching automaton is represented inter-
nally.

� twig.y | This is the parser.

� sym.c | This is the symbol table manager.

� path.c | The path string enumerator.

� machine.c| The machine builder.

� lex.c | The lexer.

� tree.c, io.c, and code.c|Miscellaneous routines for manipulating trees, performing
I/O and manipulating code fragments.

18

8 Performance

So far, the only experience we have with twig is a VAX code generator written for the pcc2
compiler. The twig code generator is 25% faster than the original code generator. The
maintainability and modi�ability of the code generator has improved. For example adding
the indexed addressing mode into the code generator took only a few hours. The target code
quality is just as good as the original code generator.

The twig table generation algorithm is fast. For the VAX machine description which
consist of 109 rules, the generation time was 4.2 seconds on a 780. The generation time
could be increased by two orders of magnitude before other table driven system can compete
with twig on this basis. Furthermore, the tables are small. The VAX description is only
7.5K and the text space for the walker is 30K. Again this is much smaller than those of other
table driven systems.

Twig is currently a research tool. Several things can be done to improve twig's perfor-
mance.

� Twig does a lot of procedure calls. Every machine transition require at least one
procedure call. Contrast this to YACC where a machine transition is done in line.

� Twig performs a very expensive closure operation with respect to unit rules. A unit
rule is the analogue of a unit production and has the form:

label1: label2;

This closure is done at run time. It requires many procedure calls and manipulates
complex data structures. We are looking at ways of doing this at table generation time
or to hash the results of the closures so that redundant calculations can be avoided.
The problem with doing them in the table generator is the possible explosion in its
running time.

� Many of the cost parts for the rules are similar and hence some tests are performed and
recalculated many times on a node. Twig should be clever enough to factor out some
of these tests and do them only once. However, the information required for twig to
do this is not easily available. It is hidden in the C code fragments.

� The current compact representation of the matching automaton require linear searching
except at the start state where the large branching factor compelled us to use an array
scheme. Using another representation would speed up the matcher. For example,
implementing the VAX description as an array is estimated to use about 50K bytes
but may provide performance improvement.

19

References

[1] Alfred V. Aho and M. J. Corasick. E�cient string matching: An aid to bibliogrpahic
search. Communications of the ACM, 18(6):333{340, June 1975.

[2] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code generation using
tree matching. to be published.

[3] Alfred V. Aho and Stephen C. Johnson. Optimal code generation for expression trees.
Journal of the ACM, 23(3):458{501, July 1976.

[4] Alfred V. Aho and Je�rey D. Ullman. Principles of Compiler Design. Addison Wesley,
April 1979.

[5] Mahadevan Ganapathi. Retargetable Code Generator and Optimization using Attribute

Grammars. PhD thesis, University of Wisconsin { Madision, 1980.

[6] Robert Rettig Henry. Graham-Glanville Code Generators. PhD thesis, University of
California at Berkeley, May 1984.

[7] Christoph M. Ho�mann and Michael J. O'Donnell. Pattern matching in trees. Journal
of the ACM, 29(1):68{95, January 1982.

[8] Stephen C. Johnson. Yacc { yet another compiler-compiler. Comp. Sci. Tech. Rep. 32,
AT&T Bell Laboratories, July 1975.

20

