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A formulation is presented for partial differential equations in two space variables
which facilitates their numerical solution. An algorithm taking full advantage of this for-
mulation is briefly outlined.

An implementation of the algorithm in portable Fortran, called TTGR (Transient
Tensor Galerkin for partial differential equations on Rectangles), is described. The pack-
age is especially easy to use since only the spatial mesh and the accuracy desired in the
solution of the equations in time need to be specified. The time evolution is then auto-
matically carried out to achieve the desired accuracy. A user’s guide to TTGR is given
along with many examples.

The examples are available through electronic mail.

There are 6 examples and the fortran for each is available in single or double pre-
cision. For example, the command

mail research!netlib
send only ttgrx1 from port
send only dttgrx6 from port
.

will cause you to receive in the mail the first example in single and the sixth example in
double precision.
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1. Introduction.

Many physical problems require the solution of partial differential equations (pde’s) in two space
variables. Typically these equations are sufficiently complex that their solution must be carried out numeri-
cally.

This paper describes a formulation for solving systems of pde’s in two spatial variables, on a rectan-
gle, and time. The formulation allows for terms of the form u, u x x , u y y , u t t , u x xt t , u y yt t , u x xx x , u x xx xt t , u x xy y , u x xy yt t , u y yy y ,
u y yy yt t in the pde’s, and u, u x x , u y y , u t t , u x xt t , u y yt t in the boundary conditions ( bc’s ), where u is a vector of pde
variables, and u x x denotes ∂u / /∂x x, etc. The mathematical formulation is given in section 2.

Getting Started.

If you have not read this screed before, want to solve a simple pde and have no interest in fancy
things having nothing to do with your immediate needs, just do the following

• Read section 2, Statement of the Problem, p 3.

• Read section 4, Formulation, Example 1, p 6.

• Skim section 5, Software, pp 11-16.

• Read Appendix 4, Programs, Example 1, pp 1-9.

• Copy the example program ( either from a file or the paper ).

• Run it and make sure it works as advertised.

• Alter it to solve your problem; see the start of Appendix 4 for the steps involved here.

With luck, your problem is now solved. The above scheme typically involves changing only a couple of
dozen lines of code in the example to get a problem solved.

The Examples

If the above "Getting Started" reading does not seem to address your problem, there are many exam-
ples discussed in section 4. One of them is quite likely to be of help. The examples are

• A simple pde, the heat equation, see Example 1, p-6.

• A coupled system of pdes, see Example 2, p 6.

• A material interface, see Example 3, p 7

• A non-rectangular domain, see Example 4, p 8

• A static problem, see Example 5, pp 8-9

• Error estimation, see Example 6, pp 9-10
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A Principle.

The guiding principle used during the design of TTGR was

It is better a user complain the package runs slowly than
complain the package cannot solve the problem at hand.

As a result, people wanting to solve various model equations in a hurry, so they can get on to other models
and problems ( that is, people whose time is more valuable than machine time ), should find TTGR very
useful. However, people wanting to solve the same problem many times in a production environment may
find TTGR, with the default settings, slow for their needs; see section 6 for ways to speed TTGR up consid-
erably.

The numerical solution technique employs Galerkin’s method in space, using B-splines, and a vari-
able order, variable time-step extrapolated backward difference procedure in time; see section 3 for an out-
line. Many examples are formulated in section 4. Section 5 is a user manual for the software called TTGR
for Transient Tensor product Galerkin for partial differential equations on Rectangles. Section 6 describes
ways of making TTGR run faster than the default settings allow and also describes alternative ways of
entering and using the package.

Appendix 1 gives a brief tutorial on B-splines. Appendix 2 gives a brief tutorial on extrapolation.
Appendix 3 discusses improvements that could be made in TTGR. Appendix 4 presents the programs used
to solve the examples discussed in section 4.

Appendix 5 summarizes the basic procedures available in TTGR, along with their arguments, and
gives a list of error states and problems that may arise when using TTGR, along with the common causes of
such difficulties.

A Warning.

This software is in an infant state. Bugs may be anywhere, and there are oodles of corners in which
they can lurk. The code has been created modularly, using the best tools at hand. The goal is to create a
robust and widely applicable package for solving two-dimensional pdes. However, this modularity has
hurt a bit. For example, the ode solver IODE from the Port Library has been used to solve the spatially dis-
cretized equations. Thus, the user can change the name of the pde defining subroutine, but not that for the
bcs: IODE only has one subroutine name it can pass below it. This is a learning experience for that soft-
ware as well. The spatial discretization scheme is very robust, but slow. The linear algebra is robust, but
not necessarily optimal in run-time and space. However, to quote a user: "Expensive solutions are better
than none at all." The bottom line here is: be careful with and mistrustful of this code. Please use it any
way you see fit, report any bugs or anomalous behavior to us, and let us know generally how things go with
it. Since we plan many improvements to TTGR, see Appendix 3, your comments are both welcome and
likely to be effective. Our electronic mail addresses are

research!lck
research!nls

The examples are available through electronic mail.

There are 6 examples and the fortran for each is available in single or double precision. For exam-
ple, the command

mail research!netlib
send only ttgrx1 from port
send only dttgrx6 from port
.

will cause you to receive in the mail the first example in single and the sixth example in double precision.
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2. Statement of the Problem.

The general form of equations that can be handled by TTGR is an essentially classical, text-book
divergence-form pde with a general set of boundary conditions ( bcs ).

The pde-bc Formulation.

The general pde-bc form that can be solved with the approach used in TTGR is given by the follow-
ing equations, where u is a vector of pde variables of length n n u u . Since all physical laws that are second
order in space can be written in divergence form, the pde’s are assumed to be in semi-linear, divergence-
form

∂x x
∂_ __ a( 1 ) (t t , x x , y y , u , u x x , u y y , u t t , u x xt t , u y yt t ) + +

∂y y
∂_ __ a( 2 ) (t t , x x , y y , u , u x x , u y y , u t t , u x xt t , u y yt t ) = = (2.1)

f(t t , x x , y y , u , u x x , u y y , u t t , u x xt t , u y yt t ) ,

where a and f are vector-valued functions of their arguments, for L L x x ≤ x x ≤ R R x x and L L y y ≤ y y ≤ R R y y . It is
required that the length of a and f be equal to n n u u , the number of pde variables, that is, the length of the vec-
tor u. The boundary conditions are assumed to have the form

b ( t t , x x , y y , u , u x x , u y y , u t t , u x xt t , u y yt t ) = = 0 (2.2)

where b is a vector-valued function, of length n n u u , of its arguments. Any identically zero component of the
bc vector b is treated as an inactive bc. If each of the pde’s is second order in space, then each of the bc’s
will have to be active. If any of the pde’s are of order less than 2 in space, some of the bc’s must accord-
ingly be inactive. Initial conditions (ic’s) u( 0 ,x x ,y y) must be supplied, but need not satisfy the bc’s (2.2).

A classical example of the above form ( with n n u u = = 1 ) is the heat equation [22]

u u t t = = u u x xx x + + u u y yy y on [ 0 , 1 ] × [ 0 , 1 ]

subject to boundary conditions

u u(t t ,x x ,y y) = = g g(x x ,y y)

with initial conditions

u u( 0 ,x x ,y y) = = 0.

Note that these initial conditions do not satisfy the bc’s, unless g g(x x ,y y) ≡ 0. For this equation we have

a a ( 1 ) = = u u x x , a a ( 2 ) = = u u y y and f f = = u u t t

with bcs

b = = u u − − g g . .

Note that the form of (2.1)-(2.2) encompasses parabolic ( u u t t = = u u x xx x + + u u y yy y ), elliptic ( u u x xx x + + u u y yy y = = 0
) and hyperbolic ( u u t t = = u u x x + + u u y y ) problems. It also encompasses pde’s that have no solution, such as

u ux x
2 + + u uy y

2 = = − − 1

over the real field.

History.

Several other Fortran software packages are available for solving pde’s in two spatial variables, for
example [28,29]. These packages assume that the pde has a form like

u t t = = f( t t , x x , y y , u , u x x , u y y , u x xx x , u y yy y , u x xy y ) (2.3)

with boundary conditions of the form
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u = = α α(t t)

or

α α(t t ,x x ,y y ,u) + + β β(t t ,x x ,y y ,u) u N N = = γ γ(t t ,x x ,y y ,u). (2.4)

where u N N is the normal derivative. There are slight variations on this theme. For example, [29] allows no

∂x x ∂y y
∂2 u_ _____ terms in the pde (2.3). Also, [28] allows no dependence of u in the coefficients of the bcs in (2.4),

and only applies to s sc ca al la ar r pdes. While formulation (2.3)-(2.4) covers a wide range of physically interesting
problems, it does not cover problems with u x xt t or u x xx xt t terms [32], nor does it deal with problems having tan-
gential components in their bcs [34].

3. General Method of Solution.

Let the solution u(t t ,x x ,y y), for a given instant in time, be approximated by a tensor-product of B-
splines [27,1,2,3] of order k k x x and k k y y on meshes X X( 1 ) ≤ . . . ≤ X X(N NX X), and Y Y( 1 ) ≤ . . . ≤ Y Y(N NY Y), see
Appendix 1. That is, for any fixed y y, each component of the solution will be approximated in x x by a
piecewise polynomial function of degree less than k k x x , with k k x x − − 2 continuous derivatives, where k k x x ≥ 2 is
any integer the user desires; a similar statement holds about the degree in y y. Let B B p p (x x) be the basis
functions in x x and C C q q (y y) be those in y y. Then

u u i i (t t ,x x ,y y) = =
p p
Σ

q q
Σ U U q q,p p,i i (t t) B B p p (x x) C C q q (y y) . . (3.1)

If we set h h x x = =
i i

max   X X(i i + + 1 ) − − X X(i i)  , and h h y y similarly, then the error,

    u u i i − − u û i i    ∞ ≡
x x,y y

max   u u i i (t t ,x x ,y y) − − u û i i (t t ,x x ,y y)  , is O O(h hx x
k kx x + + h hy y

k ky y ), for some B-spline u û i i , see [3]. Since k k x x

and k k y y may be taken to be any integer ≥ ≥ 2, this gives a powerful technique for approximating the solution
u(t t ,x x ,y y) in space. We can use the Rayleigh-Ritz-Galerkin (R-R-G) method [31,25] to find essentially the
projection of the solution of the pde onto the space of B-splines we have selected. This reduces the pde’s
in space and time to ode’s in time [15,31] for the coefficients U U q q,p p,i i (t t) in the expansion (3.1).

Thus, after the spatial discretization, only ode’s in time remain to be solved. Since these ode’s are
known to be in general "stiff" [9,10], an implicit differencing scheme must be used to solve them. This vir-
tually requires that the partial derivatives of the a and f in (2.1) and of the b in (2.2), with respect to their
arguments be known, either analytically or numerically.

The next step is the solution of these time-varying ode’s. Here we assume that some basic one-step
ode solver is available. For example, a backwards-Euler or Crank-Nicholson scheme [22], or an
exponentially-fitted technique [18], or even an explicit method such as Gragg’s modified mid-point rule
[17,18], could be used. TTGR uses backwards-Euler as the default time discretization scheme. See [26]
for a description of the method used to solve the nonlinear equations arising at each time-step.

All the above techniques, and many others, have the property that for a given time-step δ they pro-
duce an approximate solution accurate to O O(δγ ), where typically γ is 1 or 2. Moreover, if the equations are
solved using time-steps of δ and δ/ /2, the results of these two computations can be combined using extrapo-
lation [5,17] to obtain a result accurate to O O(δ2γ ). This process can be repeated indefinitely, so a basic pro-
cess of accuracy δγ can be used to generate a sequence of processes of accuracy O O(δγ ), O O(δ2γ ) , . . . ,
O O(δP Pγ ) , . . . , see Appendix 2.

A step-size and order monitor is available [23,24] for carrying out this extrapolation process and
a au ut to om ma at ti ic ca al ll ly y deciding what time-step δ and order P Pγ should be used, given the accuracy desired in the
solution. The user need only specify how accurately the solution in time should be computed, and the time
integration then proceeds automatically, with no need for the user to worry about choosing δ.

The algorithm implemented by TTGR for solving such pde’s then consists of 3 steps:

1) Discretize the equations in space using R-R-G with B-splines.

2) Produce a one-step method for solving the resulting ode’s.

3) Feed that one-step process to the extrapolation step-size and order monitor.
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Section 6 gives a somewhat more detailed outline of the spatial discretization process and the various
parameters that describe the solution procedure.

4. Examples - Formulation.

This section gives the formulation of many examples in terms of (2.1)-(2.2). See Appendix 4 for pro-
grams that solve these problems using TTGR.

Example 1 - A Simple Heat Equation.

As a simple example of the use of TTGR, consider solving the scalar heat equation

u u t t + + u u x x + + u u y y = = u x x + + u x xx x + + . .1 u x xy y + + u y y + + u y yy y + + . .1 u x xy y + + g g(t t ,x x ,y y) , (4.1)

on the unit square [ 0 , 1 ] ×[ 0 , 1 ], where the source term g g(t t ,x x ,y y) is chosen so that the solution is a known
function, u u(t t ,x x) = = t t .x x .y y. The boundary conditions are then taken to be

u u(t t ,x x ,y y) = = t t .x x .y y (4.2)

with initial conditions

u u( 0 ,x x ,y y) = = 0 . . (4.3)

The pde (4.1) is equivalent to (2.1) with

a a ( 1 ) = = u u + + u u x x + + . .1 u u y y ,

a a ( 2 ) = = u u + + u u y y + + . .1 u u x x ,

f f = = u u t t + + u u x x + + u u y y − − g g(t t ,x x ,y y)

while the bcs (4.2) are equivalent to (2.2) with

b = = u u(t t ,x x ,y y) − − t t x x y y . .

See example 1 in Appendix 4 for code solving this problem.

Example 2 - Two Heat Equations.

Consider solving the coupled system of heat equations

u u 2t t = = u u 2x xx x + + u u 2y yy y − − u u 1 u u 2 + + g g 2

u u 1t t = = u u 1x xx x + + u u 1y yy y − − u u 1 u u 2 + + g g 1
(4.4)

on the unit square [ 0 , 1 ] ×[ 0 , 1 ], where g g 1 and g g 2 are chosen so that the solution is given by

u u 1 (t t ,x x ,y y) = = e e t t (x x − − y y) and u u 2 (t t ,x x ,y y) = = e e − − t t(x x − − y y) . .

The boundary conditions are then taken to be

u u 1 (t t ,x x ,y y) = = e e t t(x x − − y y) and u u 2 (t t ,x x ,y y) = = e e − − t t(x x − − y y) (4.5)

with initial conditions

u u 1 ( 0 ,x x ,y y) = = 1 = = u u 2 ( 0 ,x x ,y y). (4.6)

The pde (4.4) is equivalent to (2.1) with

a a1
( 1 ) = = u u 1x x , a a2

( 1 ) = = u u 2x x ,

a a1
( 2 ) = = u u 1y y , a a2

( 2 ) = = u u 2y y ,

f f 1 = = u u 1t t + + u u 1 u u 2 − − g g 1 , f f 2 = = u u 2t t + + u u 1 u u 2 − − g g 2

while the bcs (4.5) are equivalent to (2.2) with

b b 1 = = u u 1 (t t ,x x ,y y) − − e e t t(x x − − y y) and b b 2 = = u u 2 (t t ,x x ,y y) − − e e − − t t(x x − − y y) . .
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See example 2 in Appendix 4 for code solving this problem.

More Meaty Examples

There are many excellent schemes for spatially discretizing (2.1)-(2.2), reducing them to a system of
ode’s, and thus solving the problem. The most elegant and most acceptable to people in the physical sci-
ences is Galerkin’s method [25,31]. That method has the property that the term a ( .) in (2.1) is forced to be
continuous everywhere, see [25]. Since a ( .) is a flux, physically, and physicists expect fluxes to be contin-
uous, this means that Galerkin’s method gives the solution the physicists want. Other spatial discretization
methods such as finite-differences, least-squares and collocation do not automatically make a ( .) continu-
ous. Most of the rest of the examples in this section are stripped down versions of real problems and the
use of Galerkin’s method in TTGR is important in their formulation.

Example 3 - Interfaces

This example shows how to deal with material interfaces. Assume a layered structure with three rect-
angles piled one on another, each with its own material constant, κ (x x ,y y). For a heat flow problem, the
modeling equations might look like

u t t = = ∇ . ( κ (x x ,y y) ∇ u ) + + g g(t t ,x x ,y y) (4.7)

on the domain [ 0 , 1 ] ×[ 0 , 3 ], where κ is piecewise constant on the different rectangles, say,

κ ≡





 1/ /32 < < y y≤3

1/ /21 < < y y≤2

10≤y y≤1

and g g is chosen so that

u u ≡





 3t t (y y − − 1 ) 2 < < y y≤3 . .

t t ( 2y y − − 1 ) 1 < < y y≤2

t ty y0≤y y≤1

The bcs on the bottom and top are given by, say, insulation

u N N = = 0 (4.8a)

where u N N is the normal derivative, and on the sides Dirichlet data

u = = s s(t t ,x x ,y y) (4.8b)

is used, for some known s s.

The pde is equivalent to (2.1) with

f f = = u t t − − g g . .

a a ( 2 ) = = κ (x x ,y y) u y y

a a ( 1 ) = = κ (x x ,y y) u x x

The bottom and top bcs are equivalent to (2.2) with

b = = u u y y

and those on the side are equivalent to

b = = u − − s s(t t ,x x ,y y) . .

The sporting aspect of this problem is that the normal component of κ ∇ u, that is κ u u y y , across each mate-
rial interface is expected to be continuous by any physical scientist. Galerkin’s method in fact forces this to
be the case. See Example 3 of Appendix 4 for code solving this problem.
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Example 4 - A Non-Rectangular Domain.

Suppose you wanted to solve the pde

u t t = =
∂x x
∂_ __ ( u u x x − −

10

u u y y_ __ ) + +
∂y y
∂_ __ ( u u y y − −

10

u u x x_ __ ) + + g g (4.9)

on the domain

y

x

(0,-1)

(0,0)

(1,1)

(1,0)

Figure 1
where g g is chosen so that u u ≡ t t x x y y. We prescribe consistent Neumann data on the top and bottom, and
consistent Dirichlet data on the left and right hand sides.

How do you solve this? Well, it is easy to map that domain onto a rectangle, namely [ 0 , 1 ] ×[ 0 , 1 ].
Just map

y y = = − − 1 + + ξ + + η
x x = = ξ

(4.10)

and the equation may be solved on the new rectangular ξ ,η domain [ 0 , 1 ]2. That is,
( x x , y y ) ( ξ , η ) ≡ (x x ( ξ , η ) ,y y ( ξ , η ) ) maps [ 0 , 1 ] × [ 0 , 1 ] into Figure 1. Then, TTGR is told to solve
for

w( t t , ξ , η ) ≡ u ( t t , (x x ,y y) ( ξ , η , t t ) )

on the domain [ 0 , 1 ]2, with the pde and bcs mapped into that domain as well. See Example 4 of Appendix
4 for code solving this problem.

Example 5 - A Static Problem

This example shows how to solve a static pde and also shows that using a non-uniform grid can be
very useful and effective. Let the pde be Laplace’s equation

u u x xx x + + u u y yy y = = 0 (4.11)

on the domain [ 0 , 1 ] ×[ 0 , 1 ]. Since the Real part of any analytic function solves Laplace’s equation, let’s
pick u u to be the Real part of z z log ( z z ), where z z = = x x + + i i y y. We choose Dirichlet bcs on the left, right and
top of the domain, consistent with that choice for u u. For the bottom we choose Neumann data u u y y = = 0.
This gives
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u u( 0 ,y y) = =
2

− − π y y_ ____

u u(x x , 1 ) = = R Re ea al l(z z l lo og g(z z) )

u u( 1 ,y y) = = R Re ea al l(z z l lo og g(z z) )

u u y y (x x , 0 ) = = 0

(4.12)

Note that even though the coefficients of (4.11) and (4.12) are analytic, the solution of this static problem
has singular first partials at z z = = 0.

The pde is equivalent to (2.1) with

f f = = 0

a a ( 2 ) = = u y y

a a ( 1 ) = = u x x

The boundary conditions are equivalent to (2.2) with

b = =







u u( 0 ,y y) + +

2
π y y_ ___

u u(x x , 1 ) − − R Re ea al l(z z l lo og g(z z) )

u u( 1 ,y y) − − R Re ea al l(z z l lo og g(z z) )

u u y y (x x , 0 )

The fact that there is no u t t term in f f is ok, since TTGR does not require it.

The logarithmic singularity will result in slow convergence unless a non-uniform grid is used. See
example 5 in Appendix 4 for code solving this problem.

Example 6 - Estimating the Error in the Computed Solution.

Picking a spatial mesh and an accuracy requirement for the time evolution of a pde guarantees abso-
lutely nothing about the accuracy of the computed solution. Without at least a little preliminary error esti-
mation, the computed results may look nice and be garbage. The error in a computed solution can be easily
estimated however.

There are two sources of error in the computed solution of (2.1)-(2.2). The first is the error due to the
spatial discretization and the second is due to the time discretization. Crudely speaking, the error in a solu-
tion u is of the form

O O ( h h k k ) + + O O ( e e 1    u   ∞ + + e e 2 ) (4.13)

where h h is the spatial mesh spacing and e e 1 and e e 2 are user settable numbers controlling the time evolution
error. To make sure that u is as accurate as we want, some testing of the size of the two components of
(4.13) is in order.

Assume that the solution u has been obtained on the mesh x×y using e for the error tolerances. Then
let u h h be the solution of the same problem but on a mesh x h h ×y h h whose mesh spacing is half that of x×y.
Also, let u e e be the solution of the same problem on the mesh x×y but using e/ /10 for the error controls. We
can then estimate the O O( h h k k ) error term in (4.13) as

    u − − u h h    ∞ ,

because u h h is so much more accurate than u that it can be regarded as the true solution of the problem.

Similarly, we estimate the O O( e e 1    u    ∞ + + e e 2 ) term in (4.13) as

    u − − u e e    ∞ ,

because, again, u e e is so much more accurate than u that it can be regarded as the true solution of the prob-
lem.

We can assemble the above two estimates for the terms in (4.13) to obtain
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    u − − u t tr ru ue e    ∞ ≤     u − − u h h    ∞ + +     u − − u e e    ∞ (4.14)

The estimate (4.14) is easily computable in practice since everything on the right hand side is known.

The first term is easily evaluated, see Appendix 4. The second term is a little trickier to estimate, but
it has a pretty result. We have, using (3.1),

    u − − u e e    ∞ ≡    
q qp p
Σ ( U U q qp p − − U U e eq qp p ) B B p p C C q q    ∞ ≤

q qp p
Σ   U U q qp p − − U U e eq qp p   B B p p C C q q ≤

q qp p
Σ     U − − U e e    ∞ B B p p C C q q = =     U − − U e e    ∞

q qp p
Σ B B p p C C q q = =     U − − U e e    ∞ . .

This gives the estimate

    u − − u e e    ∞ ≤     U − − U e e    ∞ . . (4.15)

See example 6 in Appendix 4 for code implementing the above estimation scheme.

5. Software for the pde-bc Problem.

This section is a brief user’s manual for a software package called TTGR, (Transient Tensor Galerkin
method for pdes on Rectangles), implementing the algorithm outlined in section 3.

Before invoking TTGR the user must

• Make B-spline meshes for x x and y y.

• Make initial conditions for the B-spline coefficients U in (3.1).

• Write subroutines

• AF - to evaluate a and f in (2.1).

• BC - to evaluate b in (2.2).

• HANDLE - to output (print) the solution results.

Each of these preparatory steps are illustrated in Appendix 4 and will not be described here.

The outer layer of the TTGR package is called TTGR and is invoked by

Call TTGR (U,nu,kx,X,nx, ky,Y,ny,
tstart,tstop,dt,
AF,BC,
errpar,
HANDLE)

The input to TTGR is

U - The B-spline coefficients (3.1) for the initial values of the pde variables u.
U(i i , j j ,l l), for i i = = 1 , . . . , nx-kx, j j = = 1 , . . . , ny-ky, are the coefficients for u u l l ,
l l = = 1 , . . . , nu. See below for ways to get the initial conditions, TSL2W.

nu - The number n n u u of pde variables u.

kx - The B-spline order to be used in x x. kx ≥ 2 is necessary.

X - The B-spline mesh to be used in x x. The multiplicity of X(1) and X(nx) must be kx,
see Appendix 1. The Port Library routines for making uniform meshes, UMB and
LUMB, guarantee the first and last mesh points have multiplicity kx.

nx - The length of the mesh array X.

ky - The B-spline order to be used in y y. ky ≥ 2 is necessary.

Y - The B-spline mesh to be used in y y. The multiplicity of Y(1) and Y(ny) must be ky,
see Appendix 1. The Port Library routines for making uniform meshes, UMB and
LUMB, guarantee the first and last mesh points have multiplicity ky.
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ny - The length of the mesh array Y.

tstart - Start integration at time tstart.

tstop - Stop integration at time tstop. tstop should be a variable, n no ot t a constant, in
the program calling TTGR; see output description below.

dt - The initial choice for the time-step. The performance of TTGR is substantially inde-
pendent of the initial value of dt chosen. It is sufficient that dt be within several
orders of magnitude of being "correct." The value of dt will automatically be
adjusted by TTGR to obtain the solution to the desired accuracy at the least possi-
ble cost. Thus, dt should be a variable, n no ot t a constant, in the user’s calling
program.

AF - A subroutine for specifying the a and f terms in the pde (2.1). AF must be
declared External in the user’s calling program. This user-supplied subprogram
will be described later.

BC - A subroutine for specifying the boundary conditions b in (2.2). BC must be
declared External in the user’s calling program. This user-supplied subprogram
will be described later. If there are no bcs then the dummy subroutine TTGRP may
be used in place of BC.

errpar - A Real vector of length 2 for determining the error desired (to be allowed) in the
solution of the equations in time. The two components govern, roughly, the relative
and absolute error in the computed solution. For the i i t th h component of the pde solu-
tion u, the error at each time-step in the time integration will be at most

errpar( 1 ) * *   u u i i   ∞ + + errpar( 2 )

Thus, errpar(1)=0 gives the solution accurate to an absolute error of errpar(2),
and errpar(2)=0 gives the solution accurate to a relative error of errpar(1).
The choice of errpar(1) and errpar(2) is highly problem dependent. A sound
technique is the following: If the scale of the problem is such that S S is the smallest
value for which a prescribed relative error tolerance is desired, then the choice

errpar(1) = = 10 − − 2 ; errpar(2) = = 10 − − 2 × S

will essentially give 1% relative accuracy in all values down to around S in size.
Values below S will have absolute error smaller than 10 − − 2 × S. Users should be
very careful to avoid setting errpar(2) = = 0 when the solution is zero at any point
in either space or time, or the integration will die for the obvious reasons.

HANDLE - A user-supplied subroutine that will be called by TTGR at the end of each time-step.
HANDLE must be declared External in the user’s calling program. This subprogram
will be described later. If no output is desired, then the dummy subroutine TTGRH
may be used in place of HANDLE.

The output from TTGR is

U - The B-spline coefficients for the pde solution u at time tstop.

tstop - The time at which integration stopped. tstop may be altered by the user-supplied
subroutine HANDLE. If an error state exists on return (see Appendix 5), tstop is set
to the last instant in time when the solution was known accurately. Thus, tstop
should be a variable, n no ot t a constant, in the user’s call to TTGR.

dt - The final value of the "optimal" time-step.

Static Problems

For static problems, where t t, u u t t , u u x xt t and u u y yt t do not appear in the pde, tstart, tstop and dt must
be chosen consistently but they may be otherwise arbitrary. For example,
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tstart = 0
tstop = 1
dt = tstop

is a fine choice.

Choosing the initial dt to go less than all the way to the final time will waste run-time by solving the
static problem once on the first time-step and then solving it again and again until the final time is reached.
TTGR raises the time-step rapidly when solving a static problem, but it is wasteful to solve a problem more
than once.

A "restart" in HANDLE, see below, for a static problem is a disaster − the user should STOP right
there. TTGR thinks that by lowering dt it can make the problem easier, a correct assumption if the prob-
lem is transient, but lowering the time-step for a static problem changes nothing. The difficulty is that
Newton’s method cannot converge from the initial conditions, or the initial guess in this case.

Scratch Space Used.

The amount of scratch space used on the dynamic stack of the Port Library [14] is, neglecting lower order
terms, when the default setting are used,

n n u u n n x x n n y y ( 3 H H − − 1 )

Real words (storage units), where H H ≡ n n u u ( k k x x + + ( n n x x − − k k x x ) (k k y y − − 1 ) ) is the half-band-width of the
Jacobian, n n u u is the number of pdes, n n x x is the number of points in the spatial mesh for x x, k k x x is the B-spline
order for the mesh x x, n n y y is the number of points in the spatial mesh for y y and k k y y is the B-spline order for the
mesh in y y. For sufficiently large values of n n x x and n n y y , the storage is roughly 3 ( k k y y − − 1 ) n nu u

2 n nx x
2 n n y y . See

section 6 for ways of causing TTGR to use much less space.

All scratch space for TTGR is taken from the stack. Solving pdes is a non-trivial process, requiring
substantial work space. For virtually all problems solved by TTGR the user will have to declare and initial-
ize the PORT stack to a size larger than the default size of 1000 Real words. This process will be illus-
trated in the first example of Appendix 4.

Run-time.

The run-time of TTGR is proportional to n n u u n n x x n n y y ( H H − − 1 )2 for the default settings. See section 6
for ways to make TTGR run much faster.

The storage and run-time of TTGR are far from optimal with the default settings, being on the order
of n n 3 and n n 4, respectively, for an n n by n n grid. Optimal space and time would be O O( n n 2 ). The reasons for
the default use of a banded, pivoting matrix solver are detailed in section 6. That section also shows how to
make the package run much faster, albeit on a smaller class of problems (parabolic), and use much less
space.

Double Precision Version.

The Double Precision version of TTGR is called DTTGR. The calling sequence for DTTGR is precisely the
same as that for TTGR, with a al ll l floating-point arguments Double Precision, e ex xc ce ep pt t errpar, which
remains Real. The amount of scratch space used by DTTGR on the dynamic stack of the Port Library [14]
is, neglecting lower order terms,

n n u u n n x x n n y y ( 3 H H − − 1 )

Double Precision words (storage units).

AF and BC Descriptions.

The user-supplied subroutines AF and BC, which define the pde -bc problem to be solved, are now
described. When TTGR needs to compute a and f, it will
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Call AF(t,Xe,Ye,nxe,nye,Nu, U,Ut,Ux,Uy,Uyt,Uxt,
A,AU,AUt,AUx,AUy,AUxt,AUyt,
F,FU,FUt,FUx,FUy,FUxt,FUyt)

Before TTGR calls AF, it sets to 0 the 14 arrays A through FUyt and provides the i in np pu ut t values

t - The current value of time.

Xe - A list of points x x where a and f are to be evaluated. This Xe is n no ot t the B-spline mesh X.
The points Xe at which a and f are desired are determined by the quadrature rule used by
TTGR to implement Galerkin’s method.

nxe - The length of Xe.

Ye - A list of points y y where a and f are to be evaluated. This Ye is n no ot t the B-spline mesh Y.
The points Ye at which a and f are desired are determined by the quadrature rule used by
TTGR to implement Galerkin’s method.

nye - The length of Ye.

nu - The number n n u u of pde variables u.

U - The v va al lu ue es s of u at the Xe(p p) and Ye(q q), not the B-spline coefficients U of (3.1).
U(p p ,q q , j j) = u u j j(t,Xe(p p),Ye(q q)), p p = = 1 , . . . , nxe, q q = = 1 , . . . , nye and j j = = 1 , . . . , nu.

Ut - The values of u t t at the Xe(p p) and Ye(q q), stored as above.

Ux - The values of u x x , stored as above.

Uy - The values of u y y , stored as above.

Uxt - The values of u x xt t , stored as above.

Uyt - The values of u y yt t , stored as above.

AF must return as o ou ut tp pu ut t

A - The value of a at the Xe(p p) and Xe(q q). A(p p ,q q , j j) = a a j j(t,Xe(p p),Ye(q q)), for
p p = = 1 , . . . , nxe, q q = = 1 , . ... , nye and j j = = 1 , . . . , nu.

AU - The partial derivatives of a with respect to u at the Xe(p p) and Ye(q q). AU(p p ,q q ,i i , j j) =
∂a a i i / /∂u u j j (t, Xe(p p),Ye(q q)), for p p = = 1 , . . . , nxe, q q = = 1 , . ... , nye and i i , j j = = 1 , . . . , nu.

AUt - The partial derivatives of a with respect to u t t , as above.

AUx - The partial derivatives of a with respect to u x x , as above.

AUy - The partial derivatives of a with respect to u y y , as above.

AUxt - The partial derivatives of a with respect to u x xt t , as above.

AUyt - The partial derivatives of a with respect to u y yt t , as above.

F - The value of f at the Xe(p p) and Ye(q q). F(p p ,q q , j j) = f f j j(t,Xe(p p),Ye(q q)), for
p p = = 1 , . . . , nxe, q q = = 1 , . ... , nye and j j = = 1 , . . . , nu.

FU - The partial derivatives of f with respect to u at the Xe(p p) and Ye(q q). FU(p p ,q q ,i i , j j) =
∂ f f i i / /∂u u j j (t, Xe(p p),Ye(q q)), for p p = = 1 , . . . , nxe, q q = = 1 , . ... , nye and i i , j j = = 1 , . . . , nu.

FUt - The partial derivatives of f with respect to u t t , as above.

FUx - The partial derivatives of f with respect to u x x , as above.

FUy - The partial derivatives of f with respect to u y y , as above.

FUxt - The partial derivatives of f with respect to u x xt t , as above.

FUyt - The partial derivatives of f with respect to u y yt t , as above.

When TTGR needs the boundary conditions it will
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Call BC(t,Xe,nxe,Ye,nye,Lx,Rx,Ly,Ry,
U,Ut,Ux,Uy,Uxt,Uyt,nu,
B,BU,BUt,BUx,BUy,BUxt,BUyt)

Before TTGR calls BC, it sets to 0 the 7 arrays B through BUyt, and provides the i in np pu ut t

t - The current value of time.

Xe - A list of points x x where b is to be evaluated. This Xe is n no ot t the B-spline mesh X. The
points Xe at which b is desired are determined by the quadrature rule used by TTGR to
implement Galerkin’s method.

nxe - The length of Xe.

Ye - A list of points y y where b is to be evaluated. This Ye is n no ot t the B-spline mesh Y. The
points Ye at which b is desired are determined by the quadrature rule used by TTGR to
implement Galerkin’s method.

nye - The length of Ye.

Lx - The left-hand end-point of the x x spatial domain.

Rx - The right-hand end-point of the x x spatial domain.

Ly - The left-hand end-point of the y y spatial domain.

Ry - The right-hand end-point of the y y spatial domain.

U - U(p p ,q q ,i i) = u u i i(t,Xe(p p),Ye(q q)) for i i = = 1 , . . . , nu, p p = = 1 , . ... , nxe and q q = = 1 , . . . , nye.

Ut - Ut = = u t t , stored as above.

Ux - Ux = = u x x , as above.

Uy - Uy = = u y y , as above.

Uxt - Uxt = = u x xt t , as above.

Uyt - Uyt = = u y yt t , as above.

nu - The number n n u u of pde variables u.

BC must return as o ou ut tp pu ut t

B - B(p p ,q q ,i i) = b, i i = = 1 , . . . , nu, p p = = 1 , . ... , nxe and q q = = 1 , . . . , nye. see (2.2).

BU - BU(p p ,q q ,i i , j j) = ∂b b i i / /∂u u j j(Xe(p p),Ye(q q), i i , j j = = 1 , . . . , nu and p p = = 1 , . ... , nxe and
q q = = 1 , . . . , nye.

BUt - BUt(p p ,q q ,i i , j j) = ∂b b i i / /∂u u j j t t , as above.

BUx - BUx(p p ,q q ,i i , j j) = ∂b b i i / /∂u u j j x x , as above.

BUy - BUy(p p ,q q ,i i , j j) = ∂b b i i / /∂u u j j y y , as above.

BUxt - BUxt(p p ,q q ,i i , j j) = ∂b b i i / /∂u u j j t tx x , as above.

BUyt - BUyt(p p ,q q ,i i , j j) = ∂b b i i / /∂u u j j t ty y , as above.

HANDLE Description.

The user-supplied output and control subroutine HANDLE is now described. The numerical solution at an
instant in time is obtained only after some rather lengthy and complex calculations involving trying several
small sub-steps in time; see Appendix 2 for more detail. When TTGR has finally come up with a solution
as accurate as requested by the user, it just has to tell the user the good news. At the end of each time-step,
TTGR will

Call HANDLE(t0,U0,t,U,lU,dt,tstop)

so that the user may look at, print out, plot, fondle, or do whatever is desired with the solution. If the out-
put at the end of each time-step is not desired, and only the solution at time tstop is needed, the "Return-
End" HANDLE subroutine TTGRH may be used.
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TTGR also invokes HANDLE whenever it tries to take a time step and fails to obtain the user desired
accuracy. This may be caused by the time step dt being too large. Or it may mean that there is something
"funny" going on near time t. In either case, the user may want to know that TTGR failed at time t. Such
things are called "restarts" and are typically expensive and worth knowing about.

The input provided by TTGR to HANDLE is

t0 - Time at the beginning of the time-step just completed.

U0 - pde solution u at time t0 is given by B-spline coefficients U0. This array is Real of
length lU = = n n x x n n y y n n u u . The coefficients are stored as if U0 were dimensioned
(nx,ny,Nu), where the x x grid has nx points, similarly for y y and there are Nu pdes.

t - Time at the end of the time-step just completed. The "current" value of time.

U - pde solution u at time t is given by B-spline coefficients U. If t0 = t, then a restart is
in progress and the values in U are meaningless.

lU - The length of the array U.

dt - The current "optimal" value of dt.

tstop - The current final value for time.

The use of lU above is a botch required by the use of IODE to solve the spatially discretized problem - the
output routine calling sequence is fixed. In the example code of Appendix 4, the needed values of nx, ny
and Nu are obtained, magically, from Common regions internal to TTGR. This botch will probably be
fixed in the next edition of TTGR.

The output from HANDLE is

t - May be altered by the user. Not too many people want to do this, but it is allowed.

U - May be altered by the user. For example, the user may want to force the solution to be
non-negative or monotone.

dt - May be altered by the user. The user may want to choose dt so that some particular
value of time is achieved on the next time-step.

tstop - May be altered by the user. For example, the user may only want to integrate until u t t is
"small enough" and then stop.

Evaluating the Solution.

To evaluate the solution created by TTGR, simply

Call TSD1(p, k, t, it, nt, a, e, ie, ne, m, f) .

This is general purpose, multi-dimensional tensor spline evaluation software written by E. H. Grosse and
distributed with TTGR to make evaluation easier for both users and the authors. Example 1 in Appendix 4
shows TSD1 at work. The argument descriptions below are from that software, and users should think of p
as 2. The input to TSD1 is

p - The number of coordinates, that is, 2.

k - The order of the tensor product spline. Note that k, it, nt, ie, ne and m are vectors of length
p with an independent value for each coordinate. Think of k(1)=kx and k(2)=ky.

t - An array containing the meshes for each spatial coordinate. t(it(1)),...,t(it(1)-
1+nt(1)) contains the mesh for the first coordinate (x x), t(it(2)),...,t(it(2)-
1+nt(2)) for the second (y y), and so on.

it - The pointers to the meshes in each coordinate, as used above.

nt - Number of mesh points in each dimension.

a - B-spline coefficients, stored as if dimensioned ( nt(1)-k(1),...,nt(p)-k(p) ).
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e - The grid on which evaluation is to be done. It is stored like t, it and nt.

ie - Evaluation indices in each dimension, as with it above.

ne - The number of evaluation points in each dimension.

m - Order of the partial derivatives. See f below.

The output of TSD1 is

f - Derivative values, stored as if dimensioned ( ne(1),...,ne(p) ). The derivative is of
order m(1) with respect to the first coordinate, m(2) with respect to the second, and so on.

That is, f(i,j) = =
∂x x m m( 1 )

∂m m( 1 )
_ _____

∂y y m m( 2 )

∂m m( 2 )
_ _____ s s(x x i i , y y j j ), where s s is the spline whose coefficients are in

a, for i = = 1 , . ... ,ne(1) and j = = 1 , . ... ,ne(2). This means that m = (0,0) gives the func-
tion value, for example.

The double precision version of TSD1 is DTSD1 with all Real arguments typed double precision.

Obtaining Initial Conditions.

If your initial conditions are constant, setting the initial values for U in (3.1) is easy: simply set
U U q qp p ≡ constant. If your initial data is not constant, then you can

Call TSL2W(p, k, t, it, nt, e, ie, w, iw, ne, f, a)

This is general purpose, multi-dimensional tensor spline fitting software written by E. H. Grosse [19] and
distributed with TTGR to make fitting easier for both users and the authors. The argument descriptions
below are from that software, and users should think of p as 2. The input to TSL2W is

p - The number of coordinates, that is, 2.

k - The order of the tensor product spline. Note that k, it, nt, ie and ne are vectors with an
independent value for each coordinate.

t - The mesh on which the spline is defined. See the introduction to the PORT chapter on approx-
imation for advice on laying out the mesh; t(it(1)),...,t(it(1)-1+nt(1)) con-
tains the mesh for the first coordinate, t(it(2)),...,t(it(2)-1+nt(2)) for the sec-
ond, and so on.

it - Mesh point indices.

nt - Number of mesh points in each dimension.

e - The grid on which data is defined. It is stored like t, it and nt.

ie - Data indices in each dimension.

w - Weights, stored like e. The weight for the (i1,i2,...) data point is w(iw(1)-1+i1)
* w(iw(2)-1+i2) * ...

iw - Indices for the weights in each dimension.

ne - The number of data points in each dimension.

f - Data values, stored as if dimensioned (ne(1),...,ne(p)).

The output of TSL2W is

a - B-spline coefficients, stored as if dimensioned (nt(1)-k(1), ... , nt(p)-k(p)).

The double precision version of TSL2W is DTSL2W with all Real arguments typed double precision.

Other Ways to Use and Speed-Up TTGR.

There are many "knobs" in TTGR; section 6 describes their use.
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Trouble in AF or BC.

If, for one reason or another, the user cannot evaluate the appropriate functions when AF or BC are
called, this fact can be communicated to TTGR through the named Common region

Common / TTGRF / Failed ; Logical Failed .

Before TTGR calls AF or BC, it sets Failed = .False. . Thus, if the user doesn’t use or even know of
the existence of TTGRF, TTGR assumes that everything has been correctly computed on return from those
subroutines. If, however, the user has a problem, uses TTGRF, and sets Failed = .True., TTGR will
automatically lower the time-step in an attempt to obtain a more accurate, and hence more reasonable,
numerical solution so that AF and BC can do their job.

The Double Precision version of TTGRF is DTTGRF.

Mapping Software

There are many ways to map ink-blots onto a rectangle, with conformal mapping preferable. How-
ever, conformal mapping is a tricky business and is not strictly speaking necessary when solving pdes.
Much simpler non-conformal maps can often be used. For example, suppose you want to map a domain
like

R(t) L(t)

f(t,x)

g(t,x)

x

y

Figure 2
onto the unit rectangle, where f f and g g are nice, smooth functions of x x. The mapping

y y = = f f ( t t ,x x ) + + η ( g g(t t ,x x) − − f f (t t ,x x) )

x x = = L L(t t) + + ξ ( R R(t t) − − L L(t t) )
(4.1)

takes the unit square in ξ ,η into the domain of Figure 2. Moreover, the mapping is smooth. This implies
that the mesh in ξ ,η need only be fine where the domain or the solution is kinky.

Mappings like the one above are so common that they have been canned for use by TTGR. If you
wish to map some ξ ,η pairs into x x ,y y pairs, then the

Call BTMAP(t,c,e,nx,ny, LR,BT, x,y,D)

will do the job. The input arguments are

t - The time t t.
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c - The ξ values to be used in the mapping.

e - The η values to be used in the mapping.

nx - The length of the ξ array.

ny - The length of the η array.

LR - The name of a subroutine, declared External in the program calling BTMAP, for giving
information about L L(t t) and R R(t t).

When BTMAP wants the values of L L(t t) and R R(t t) it will

Call LR(t,L,R,Lt,Rt)

The input to LR is

t - Time t t.

The output from LR is

L - The value of L L(t t).

R - The value of R R(t t).

Lt - The value of L L ′ ′(t t).

Rt - The value of R R ′ ′(t t).

BT - The name of a subroutine, declared External in the program calling BTMAP, for giving
information about f f (t t ,x x) and g g(t t ,x x).

When BTMAP wants to evaluate f f and g g it will

Call BT(t,x,f,g,fx,gx,ft,gt)

The input to BT is

t - The time t t.

x - The point x x for which f f (t t ,x x) and g g(t t ,x x) are desired.

The output from BT is

f - The value of f f (t t ,x x).

g - The value of g g(t t ,x x).

fx - The value of
∂x x
∂ f f_ __ (t t ,x x).

gx - The value of
∂x x
∂g g_ __ (t t ,x x).

ft - The value of
∂t t
∂ f f_ __ (t t ,x x).

gt - The value of
∂t t
∂g g_ __ (t t ,x x).

The output from BTMAP is

x - x(p p ,q q) = = x x(ξ(p p) , η (q q) ), for p p = = 1 , . ... , nx and q q = = 1 , . ... , ny.

y - y(p p ,q q) = = y y(ξ(p p) , η (q q) ), for p p = = 1 , . ... , nx and q q = = 1 , . ... , ny.

D - An array giving the partial derivatives of x x and y y wrt. ξ, η and t t. This information is neces-
sary in the pde mapping software to be described shortly.
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D(p p ,q q , 1 , 1) = =
∂ ξ
∂x x_ __ (t t ,ξ(p p) ,η (q q) )

D(p p ,q q , 1 , 2) = =
∂ η
∂x x_ __ (t t ,ξ(p p) ,η (q q) )

D(p p ,q q , 1 , 3) = =
∂t t
∂x x_ __ (t t ,ξ(p p) ,η (q q) )

D(p p ,q q , 2 , 1) = =
∂ ξ
∂y y_ __ (t t ,ξ(p p) ,η (q q) )

D(p p ,q q , 2 , 2) = =
∂ η
∂y y_ __ (t t ,ξ(p p) ,η (q q) )

D(p p ,q q , 2 , 3) = =
∂t t
∂y y_ __ (t t ,ξ(p p) ,η (q q) )

The above example is given to show the ease with which domains can be mapped onto rectangles. In
fact, here is the Ratfor source for BTMAP, which maps the domain of Figure 2 onto the unit square

Subroutine BTMAP(t,c,e,nx,ny, LR,BT, x,y,D)

# To map (c,e): (0,1)x(0,1) to Left-right x Bottom-top.

Double Precision t,c(nx),e(ny),x(nx,ny),y(nx,ny),D(nx,ny,2,3)
Integer nx,ny
External LR,BT

Double Precision L,R,Lt,Rt,f,g,fx,gx,ft,gt,l
Integer p,q

Do p = 1, nx
{
Call LR(t,L,R,Lt,Rt) # Get (L,R)(t) and (L’,R’)(t).
l = R-L

Do q = 1, ny
{
x(p,q) = L+c(p)*l
D(p,q,1,1) = l
D(p,q,1,2) = 0
D(p,q,1,3) = Lt+c(p)*(Rt-Lt)

Call BT(t,x(p,q),f,g,fx,gx,ft,gt) # Get (f,g,fx,gx,ft,gt)(t,x).

y(p,q) = f+e(q)*(g-f)
D(p,q,2,1) = (fx+e(q)*(gx-fx))*l
D(p,q,2,2) = g-f
D(p,q,2,3) = ft + e(q)*(gt-ft) + ( fx + e(q)* ( gx-fx ) )*D(p,q,1,3)
}

}

Return

End

The programs for performing such maps are trivial and new ones can easily be created for other types of
domains.
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pde Mapping Software.

The mapping (4.1) is a specific example of a general mapping (x x ,y y) ( ξ ,η , t t) which can be used to
transform a pde for solution by TTGR. TTGR has general purpose mapping transformation procedures for
taking the results of a map (x x ,y y) ( ξ , η , t t ) and converting the pdes and bcs from u ( t t , x x , y y) to
w( t t , ξ , η ) ≡ u ( t t , (x x ,y y) (ξ , η , t t) ) coordinates, where ( x x , y y ) ( ξ , η ) maps a rectangle onto the user’s
physical domain.

The user tells TTGR to solve for w, but the pde and bc definition can be made in the physical u sys-
tem using the software to be described shortly.

The pde mapping proceeds as follows. We have

w( t t , ξ , η ) ≡ u( t t , (x x ,y y) ( ξ , η , t t ) )

and thus w t t ≡ u x x d dt t
d dx x_ __ + + u y y d dt t

d dy y_ __ + + u t t , w ξ ≡ u x x x x ξ + + u y y y y ξ , w η ≡ u x x x x η + + u y y y y η . . This implies that

pdes which began in the form (2.1) now have the form

∂ ξ
∂_ __ ( − − x x η a( 2 ) + + y y η a( 1 ) ) + +

∂ η
∂_ __ ( − − y y ξ a( 2 ) + + x x ξ a( 1 ) ) = = ( x x ξ y y η − − x x η y y ξ ) .f . .

assuming that the mapping (x x ,y y) (ξ ,η ) has continuous second partials.

At the beginning of the user’s AF procedure it is necessary to convert from the internal coordinate
system of TTGR, namely w and ξ ,η, to the user’s physical coordinate system, u and x x ,y y. To accomplish
this the user must calculate the value of the map (x x ,y y) ( ξ ,η , t t) at the ξ ,η input to AF and its partials
with respect to time, ξ, η, etc. That is, the "x" in the calling sequence to AF should be called "xi", similarly
for "y", and the values of (x x ,y y) (ξ , η , t t) should be computed by the user inside AF. Then

Call TTGRU(nx,ny,D, Ux,Uy,Ut,Nu)

will do the mapping from internal ( w ) to User ( u ) coordinates. Example 4 of Appendix 4 illustrates the
use of TTGRU. The arguments to TTGRU are now described. The input to TTGRU is

nx - The number of ξ points.

ny - The number of η points.

D - An output array as described above in BTMAP.

Ux - The input argument of AF of the same name.

Uy - The input argument of AF of the same name.

Ut - The input argument of AF of the same name.

Nu - The input argument of AF of the same name.

The output of TTGRU is

Ux - The derivatives u x x .

Uy - The derivatives u y y .

Ut - The derivatives u t t .

With the map of w into user coordinates u done using TTGRU above, the user then continues with AF
as if there were no mapping being used at all. That is, the user can then think only in terms of the original
variables, u and x x ,y y.

However, before leaving AF the user must map the physical coordinates u back into the internal sys-
tem TTGR is using, w. This is done by

Call TTGRG(nx,ny,D, Nu, A,AU,AUx,AUy, F,FU,FUx,FUy)

just before leaving AF.

The input arguments to TTGRG are as in TTGRU above.

The output of TTGRG is
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A - a for the w w and ξ ,η coordinate system.

AU - The partials of a with respect to w.

AUx - The partials of a with respect to w ξ.

AUy - The partials of a with respect to w η .

F - f for the w and ξ ,η system.

FU - The partials of f with respect to w.

FUx - The partials of f with respect to w ξ.

FUy - The partials of f with respect to w η .

The Double Precision versions of TTGRG and TTGRU are called DTTGRG and DTTGRU, respectively,
with all Real arguments typed Double Precision.

Example 4 of Appendix 4 shows TTGRU and TTGRG at work.

Mapping Boundary Conditions

The bc mapping paradigm generally follows that for the pde mapping software described above. At
the beginning of the user’s BC procedure it is necessary to convert from the internal coordinate system of
TTGR, namely w and ξ ,η, to the user’s physical coordinate system, u and x x ,y y. To accomplish this the user
must calculate the value of the map (x x ,y y) ( ξ ,η , t t ) at the ξ ,η input to BC and its partials with respect to
time, ξ, η, etc. Then TTGRU should be invoked, the bcs entered in terms of u and x x ,y y, and then TTGRB
invoked before returning from BC.

At the start of BC the user calls a mapping procedure to do the map from internal TTGR coordinates
ξ ,η, the BC input arguments "xi,eta", to x,y coordinates. The

Call TTGRU(nx,ny,D, Ux,Uy,Ut,Nu)

will do this mapping from internal ( w ) to user ( u ) coordinates. The input to TTGRU is as described
above.

With the map of w into user coordinates u done using TTGRU above, the user continues with BC as if
there were no mapping being used. That is, the user can then think only in terms of the original variables, u
and x x ,y y.

However, before leaving BC the user must map the physical coordinates u back into the internal sys-
tem TTGR is using, w. This is done by

Call TTGRB(nx,ny,D, BUx,BUy,BUt)

just before leaving BC.

The input arguments to TTGRB are as above, and the outputs are the values of
∂w
∂b_ ___, etc.

Example 4 in Appendix 4 shows TTGRB, TTGRG, TTGRU, as well as BTMAP, hard at work.

6. Advice for the Sporting User

This section describes, in gory detail, the various "knobs" and ways of overriding the default options
and subprograms used in TTGR. Several examples of knob twiddling that can increase the speed of TTGR
considerably are also given.

An exceedingly brief outline of the organization of TTGR is, in pseudo-English,



- 23 -

t0 = tstart
While ( t0 != tstop ) # Time-step loop.

{
Do m = 1, ..., mmax # Loop to build extrapolation tableau.

{
Do istep = 1, ..., N(m) # Sub-steps loop.

{
Do iter = 1, ..., maxit # Newton loop.

{
Solve the l li in ne ea ar ri iz ze ed d Galerkin Equations; Update solution
Check ERROR for "convergence"; Check Convergence Rate
}

}
Extrapolate and check the ERROR.
}

Get_Optimal_dt for next time-step.
Output the results for this time-step ( HANDLE )
t0 = t0 + dt
}

where the capitalized items in parentheses refer to procedures names, and the linearized Galerkin solution is
obtained by

Get integrals for matrix ( AF ), mesh interval by mesh interval,
Get the bcs ( BC ).
Get pde ( AF ) on the boundary.
Solve the pde system.

This section describes the many variables and procedures that define the above algorithm. These
include the maximum number of levels of extrapolation to allow ( mmax ), the sequence of sub-steps to take
( N(1), N(2), . . . ), how to solve the linearized Galerkin equations, and the maximum number of Newton
iterations to allow ( maxit ).

Twiddling Procedure Knobs.

Control over the procedure ERROR is given by TTGRR. This routine allows the user to override
some of the default routines of TTGR. TTGRR is invoked by

Call TTGRR(U,Nu,kx,x,nx, ky,y,ny,
tstart,tstop,dt,
AF,BC,
ERROR,errpar,
HANDLE)

The extra argument ERROR in this subroutine provides direct user control over the accuracy of the integra-
tion process.

The default routine, used by TTGR, is TTGRE for ERROR.

Error Options

There are several possible options available for error specification. First, the user, via the subpro-
gram ERROR, may specify literally any accuracy requirement desired for the solution. This option has not
yet been implemented because of using IODE raw. Users can roll their own ERROR routines, but TTGR
will use its own internal one. Second, there are several popular methods of error control which are con-
trolled by the switch erputs, and implemented by the subprogram TTGRE.

The error control provided in the subroutine TTGRE is based on the local value of the variables.
That is, the error acceptable in u u i i (t t ,x x ,y y) is
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errpar(1) *     U . ..i i    ∞ +errpar(2)

where U . ..i i denotes the block of B-spline coefficients for u u i i , which depends only upon the current value of
u.

The error control provided in the subroutine TTGRE is an e er rr ro or r p pe er r t ti im me e- -s st te ep p criterion. This can be
rather bad if the time-steps taken during the solution process get very small - many time-steps will be taken
and the errors may pile up in unacceptable amounts. Another error option is to use an e er rr ro or r p pe er r u un ni it t- -t ti im me e- -
s st te ep p criterion. By making the error tolerance in u u i i (t t ,x x ,y y) look like

  dt   * ( errpar(1) *     U . ..i i    ∞ +errpar(2) ) ,

when the time-step gets small, so does the error requirement. However, when using the error per unit-
time-step criterion, the reverse argument holds - when dt is large, so is the error tolerance. The error per
time-step versus unit-time-step option is controlled by the switch erputs as described below.

The output from TTGRR is the same as that for TTGR with the additional possibility that the user may
alter errpar through his subprogram ERROR.

The double precision version of TTGRR is DTTGRR, with all Real arguments typed double precision,
except errpar, which remains Real. Similarly for TTGRE and TTGRP.

Twiddling non-Procedure Knobs.

The main knob-twiddling routine is TTGRV. When the user wants to tinker some internal variable of
TTGR the

Call TTGRV(j,f,r,i,l)

just before calling TTGR will do the trick. The input to TTGRV is an index ( j ) identifying the knob to
be turned, and its value ( one of f, r, i or l ). For any value of j, only one of f, r, i or l is used to set the
knob, the other variables may be set to anything, like 0d0, 0e0, 0 or .true.. Any number of variables
can be set by calling TTGRV any number of times. The input to TTGRV is

j - The index of the variable to be set. If j = 0, then all variables are set to their default values.
You should not have to use j = 0 unless you have already set a few parameters using
TTGRV and you now want to reset the default values.

f - If the variable to be set is a working-precision item, f is to be its new value. Working preci-
sion is Real for TTGR and Double Precision for DTTGR.

r - If the variable to be set is a Real item ( hfract, egive ), r is to be its new value.

i - If the variable to be set is an Integer item, i is to be its new value.

l - If the variable to be set is a Logical item, l is to be its new value.

The output of TTGRV is the internal knowledge of the new value of the variable that has been set.

The following list gives the items that can be set using TTGRV.

theta - The time-discretization parameter, see section 3 and Appendix 2. When theta = 1 the
extremely stable, first order accurate Backwards-Euler formula is used. For theta = 1/2,
the second-order Crank-Nicholson scheme is used. If theta ≠ 1/2, then N = = { 1, 2, 3, 4,

6, . . . } and gamma = = 1. If theta = =
2
1_ _, then N = = { 2, 4, 6, . . . } and gamma = = 2. 0

<= theta <= 1 is required. Default: theta = 1. j = 1. theta = f.

beta - The error in the discretization scheme is proportional to (t1-t0)**beta. Default:
beta = 1. j = 2. beta = f.

gamma - The error in the discretization scheme is proportional to dt**gamma. Default: gamma =
1. j = 3. gamma = f.
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delta - The error request is proportional to dt**delta. Default: delta = 0. j = 4. delta =
f.

hfract - A Real variable indicating how small a time-step the user will take relative to dt.
Default: hfract = 1. j = 1001. hfract = r.

egive - A Real variable controlling how accurately Newton’s method will try to solve the nonlin-
ear equations, relative to the user’s accuracy request for the solution to the pde. Specifi-
cally, it will try to solve the nonlinear equations to a tolerance of ( the user’s error request
to TTGR ) / egive. egive should thus be greater than 1. Default: egive = 1e+2.
j = 1002. egive = r.

kj - A variable that controls the frequency with which the Jacobian is re-computed. Such
evaluations can be very costly and kj (for "KeepJacobian") controls them in the follow-
ing way:

0 - New Jacobian every Newton iteration.
Very safe and stable, expensive.

1 - New Jacobian every time sub-step.
Less safe, stable and expensive.

2 - New Jacobian for each time-step.
Not very safe, stable or cheap, except for nearly linear problems.

3 - New Jacobian whenever there is a re-start.
Mostly used for linear or nearly linear problems.
Cheap but flaky.

4 - New Jacobian whenever Newton iteration fails to converge.
Only updates Jacobian if it appears out-of-date.
Ditto rest of discussion of 3 above.

5 - Only computes the Jacobian ONCE.
Use only for nearly linear problems.
Exceedingly cheap, when it works.

Default: kj = 0. j = 2001. kj = i.

minit - The minimum number of Newton iterations to go before checking that the convergence
rate is reasonable. Default: minit = 10. j = 2002. minit = i.

maxit - The maximum number of Newton iterations to use. Default: maxit = 50. j = 2003.
maxit = i.

kmax - The maximum number of columns allowed in the extrapolation tableau. The maximal
order that TTGR can achieve is then 2*kmax if theta = 0.5e0, or kmax if theta ≠
0.5e0. Default: kmax = 10. j = 2004.

kinit - The initial level of extrapolation to use for the first time-step. This can allow TTGR to use
a higher-order scheme from the start. Default: kinit = 2. j = 2005. kinit = i.

mmax - The maximum number of levels of extrapolation permitted. mmax >= kmax + 2 is
required and mmax >= kmax + 4 is a good idea. Default: mmax = 15. j = 2006.
mmax = i.

mxq - The number of x x Gaussian quadrature points to be used to compute the Galerkin integrals,
see section 3. mxq >= kx-1 is required. Default: mxq = kx. j = 2008. mxq = i.

myq - The number of y y Gaussian quadrature points to be used to compute the Galerkin integrals,
see section 3. myq >= ky-1 is required. Default: myq = ky. j = 2009. myq = i.

LA - An Integer variable indicating how the matrix equations should be solved.

−1 - non-pivoting banded solve.
+1 - pivoting banded solve. Default; see (6.1) below for reasons.
−2 - non-pivoting sparse solve.
+2 - pivoting sparse solve.
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Default: LA = +1. j = 2010. LA = i.

Pieces - An Integer indicating how much of the Jacobian should be used.

+2 - the whole thing. Default.
0 - only the diagonal pde terms.

−1 - only the lower triangular terms.
+1 - the upper triangular terms.

Default: Pieces = +2. j = 2011. Pieces = i.

PC - An Integer variable indicating the pre-conditioner to be used when solving the matrix
equations iteratively.

0 - none. Default - using a direct solve.
1 - incomplete LU.
2 - modified incomplete LU. See [20].

Default: PC = 0. j = 2012. PC = i.

Accel - An Integer variable indicating the accelerator to be used when solving the matrix equa-
tions iteratively.

0 - none. Default - doing a direct solve.
1 - conjugate gradient on the normal equations.
2 - Orthomin. See [11].

Default: Accel = 0. j = 2013. Accel = i.

xpoly - A Logical variable indicating whether polynomial (True) or rational (False) extrapolation
is to be used. Default: xpoly = False. j = 3001. xpoly = l.

erputs - Logical variable controlling the use of error-per-unit-time-step. If True, then use per-
unit-time-step error criterion. Otherwise, use the per-step criterion. Default: erputs =
False. j = 3002. erputs = l.

N - An Integer array of length mmax giving the number of sub-steps to be used in the extrapo-
lation. N must be strictly monotone increasing and positive. N(i) is set by j = = 4000+ +i.
If N(i) is set, then N(i+1) is set to 0 by default; so be sure to set N in increasing order of i.
For any N(i) which is 0, a default value is computed. The rule is that if only N(1) is set,
then the user wants N(i) ≡ ( √  2 )

i i − − 1
N(1). If only N(1) and N(2) are set, then N(i) = = (

N(2)/N(1) ) N(i-1) for any N(i) = = 0. If N(3) is also set, then N(i) = 2 * N(i-2), for any N(i) =
0. See the theta description above for some default N values. j = 4000 + i. N(i) = i.

The following table summarizes the values that can be set by TTGRV
_ __________________________________

Name j Default Set to_ ___________________________________ __________________________________

theta 1 1 f
beta 2 1 f
gamma 3 1 f
delta 4 0 f_ __________________________________
hfract 1001 1 r
egive 1002 100 r_ __________________________________
kj 2001 0 i

minit 2002 10 i
maxit 2003 50 i
kmax 2004 10 i
kinit 2005 2 i
mmax 2006 15 i_ __________________________________ 
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mxq 2008 0 i
myq 2009 0 i
la 2010 1 i

pieces 2011 +2 i
pc 2012 0 i

accel 2013 0 i_ __________________________________
xpoly 3001 False l
erputs 3002 False l_ __________________________________
N(i) 4000+i − − i_ __________________________________ 




























































Note that mxq = = 0 means that kx points will be used in x x, by default. Similarly for myq.

The Double precision version of TTGRV is DTTGRV, with all Real arguments typed Double preci-
sion, except hfract and egive which remain Real.

Space Used

The space used by the various knob settings is summarized in the following table
_________________________________________

Space Required_________________________________________
Method Words__________________________________________________________________________________

No pivot/Band n n u u n n ( 2 H H − − 1 )_________________________________________
Pivot/Band n n u u n n ( 3 H H − − 1 )_________________________________________

Sparse † O O(n nu u
2 k k x x k k y y n n x x n n log n n)_________________________________________

MIC 3 (n nu u
2 n n ( 2 k k x x − − 1 ) ( 2 k k y y − − 1 ) )_________________________________________ 


























where H H ≡ n n u u ( k k x x + + ( n n x x − − k k x x ) (k k y y − − 1 ) ), and n n ≡ n n x x n n y y . When Pieces is 0, a factor of n n u u can be
removed from the figures.

† - This figure is u us su ua al ll ly y accurate, but not always. See discussion of the pde u u x xy y = = 0 below.

Time Used.

The floating-point operation count used by the various knob settings is summarized in the following
table

_ ___________________________________________
Operation Count_ ___________________________________________

Method Multiplies_ ____________________________________________ ___________________________________________
No pivot/Band n n u u n n (H H − − 1 )2_ ___________________________________________

Pivot/Band 2 n n u u n n (H H − − 1 )2_ ___________________________________________
Sparse † O O(n nu u

2 k k x x k k y y n n n n x x )_ ___________________________________________
MIC †† O O(n nu u

2 n n 1. 25 ( 2 k k x x − − 1 ) ( 2 k k y y − − 1 ) )_ ___________________________________________ 

























where H H ≡ n n u u ( k k x x + + ( n n x x − − k k x x ) (k k y y − − 1 ) ), and n n ≡ n n x x n n y y . When Pieces is 0, a factor of n n u u should
be removed from the figures.

† - This figure is usually accurate, but see the discussion of the pde u u x xy y = = 0 below.

†† - Modified incomplete factorization schemes u us su ua al ll ly y converge in O O(n n . .25 ) iterations, but not always. For
example, problems like u u x x + + u u y y = = 0 will cause MIC to fail. See also [12] for examples.

Note that the banded options vectorize and thus on the Cray X-MP may take less time even though they
require more operations than the sparse options.
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A Bad Example

Consider the pde

u u x xy y = = 0 (6.1)

on the domain [ 0 , 1 ] ×[ 0 , 1 ]. Use Dirichlet boundary conditions on the left and bottom sides of the domain.
This problem generates a Jacobian most of whose diagonal elements are 0. This means that any non-
pivoting LU factorization scheme will fail on this problem. If the pivoting sparse matrix option is used, the
minimum degree ordering used there, which implicitly assumes that the diagonal elements are non-zero,
causes the LU factorization to fill-in completely. That is, the pivoting sparse option uses O O(n n 4 ) space and
O O(n n 6 ) work on an n n by n n grid. The pivoting banded solver has no trouble with this problem at all.

In general, the pivoting banded solver is slower on scalar machines and uses more space than the
other options, for sufficiently large numbers of mesh points. However, all of the other options have the
property that their worst-case behavior, on the above problem, is much worse than that of pivoting band
solution, which always uses roughly the same space and run-time.

This explains why we chose pivoting banded as the default solver - it is predictable, dependable and
never blows up on nice problems. It also turns out to be fast on vector machines for most practical grids.

Some Knob Twiddling

We now show how twiddling some of the knobs in TTGRV can affect the run-time for example 2 in
section 4. The knobs considered are maxit, mxq, myq, LA, Pieces, PC, and Accel.

The default call to TTGR uses a full Newton iteration scheme to solve the nonlinear equations (
maxit = = 50 ). This will be referred to as NBE for Nonlinear Backwards Euler. The run-times reported in
Appendix 4 for the examples are for the default NBE scheme.

The second scheme considered is the same as NBE but with maxit set to 1. This may seem strange,
in that it does only o on ne e Newton iteration to solve each nonlinear equation. However, it works quite well on
most problems and it possesses the asymptotic expansion needed for extrapolation to work, see Appendix 2.
This scheme will be denoted by LBE, for Linearized Backwards Euler. The user tells TTGR that maxit is
to be 1 by inserting the

call ttgrv(+2003,0d0,0e0,1,.true.)

just before the call to TTGR.

The third scheme will be the LBE scheme above with mxq = = kx-1 and myq = = ky-1, which is usu-
ally safe for problems with a partial spatial derivative in them. A little care has to be used here however; if
the time step dt gets exceedingly small, the Jacobian will become singular, because it will approach a mul-
tiple of the Jacobian for the problem u u = = 0. That Jacobian is singular unless k k x x and k k y y quadrature points
are used. This scheme will be denoted by LBE.q for LBE with special Quadrature. The user tells TTGR
that mxq is to be kx-1, as well as setting myq, by inserting

call ttgrv(+2008,0e0,0e0,kx-1,.true.)
call ttgrv(+2009,0e0,0e0,ky-1,.true.)

just before the call to TTGR.

The fourth scheme will be the above LBE.q with Pieces = 0. This scheme trades a few more
time-steps for much cheaper Jacobian calculation and solution times. The main assumption here is that the
"big" ( like u t t and u x xx x ) terms are on the block diagonal of the pde. This scheme will be denoted by
LBE.q0. So long as all the u t t terms are on the diagonal, this option is theoretically guaranteed to converge.
The issue is whether it is faster than dealing with the whole Jacobian. The user tells TTGR that Pieces is
to be 0 by inserting

call ttgrv(+2011,0e0,0e0,0,.true.)

just before the call to TTGR.

Finally, we use the above LBE.q0 with LA = = − − 2, PC = = 2 and Accel = = 2. This uses Modified
incomplete factorizations and Orthomin to solve the linear systems. This scheme will be denoted by
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LBE.q0m.

The user tells TTGR that LA is to be − − 2, etc by inserting the calls

call ttgrv(+2010,0d0,0e0,-2,.true.)
call ttgrv(+2012,0d0,0e0,2,.true.)
call ttgrv(+2013,0d0,0e0,2,.true.)

just before the call to TTGR.

We summarize the methods used in the table
_ ____________________________________________________

Description of Runs_ ____________________________________________________
Label Order Mesh Method_ _____________________________________________________ ____________________________________________________

2n 2 21 by 21 NBE_ ____________________________________________________
2l 2 21 by 21 LBE_ ____________________________________________________
2lq 2 21 by 21 LBE.q_ ____________________________________________________
2lq0 2 21 by 21 LBE.q0_ ____________________________________________________

2lq0m 2 21 by 21 above with Orthomin and MIC_ _____________________________________________________ ____________________________________________________
n 4 3 by 3 NBE_ ____________________________________________________
l 4 3 by 3 LBE_ ____________________________________________________
lq 4 3 by 3 LBE.q_ ____________________________________________________
lq0 4 3 by 3 LBE.q0_ ____________________________________________________

lq0m 4 3 by 3 above with Orthomin and MIC_ ____________________________________________________ 






















































































The order 2 grid was taken to be 21 by 21 to get the same accuracy as the order 4 solution on a 3 by 3
grid.

The results for the five methods described above are summarized in the table:
_ ___________________________________________
Effect of Different Solution Methods on Example 2_ ___________________________________________
Method Space Time (secs) Jacobians_ ____________________________________________ ___________________________________________

2n 134008 5219.2 24_ ___________________________________________
2l 134008 1972.9 9_ ___________________________________________
2lq 133812 1603.1 9_ ___________________________________________
2lq0 72954 812.8 12_ ___________________________________________

2lq0m 44743 506.7 12_ ____________________________________________ ___________________________________________
n 9398 443.6 30_ ___________________________________________
l 9398 133.0 9_ ___________________________________________
lq 7990 108.6 9_ ___________________________________________
lq0 6090 111.1 15_ ___________________________________________

lq0m 9251 111.8 15_ ___________________________________________ 






















































































All of the above runs were made in single precision on a Vax 11/750, equipped with a floating-point accel-
erator, under the UNIX operating system, Research Eighth Edition.

The first 5 runs above refer to using k k x x = = 2 = = k k y y on a 21 by 21 grid. The last five refer to using
fourth order splines on a 3 by 3 grid. The table shows that LBE saves the cost of several iterations per time
step. Using fewer quadrature points saves even more time. LBE.q0 results in a big savings for linear
splines, but not much for cubics. The reason is that the Jacobian is 800 by 800 for linear, but less than 100
by 100 for cubics. Note also that Pieces=0 used more time-steps but still ran faster for the order 2 run
because each step was significantly faster. Finally, Orthomin saves a lot for linear splines, and nothing at
all for cubics.

Note that the s sl lo ow we es st t run with k k = = 4 is f fa as st te er r than the fastest k k = = 2 solution setting, and also uses
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less space. Using higher order schemes is even more important than twiddling knobs in TTGR, at least for
this example.

The Right Stuff.

The discussion in [26] shows why NBE was chosen as the default method for TTGR. It is very robust
and reasonably fast. Additional speed can be achieved, but only by sacrificing robustness.

If the user wishes to speed TTGR up, the simplest and safest thing to do is try LBE. It usually works
and is faster than NBE. The user should make sure to compare at least a few LBE runs with NBE, to make
sure it is correct and running efficiently. Once the utility of LBE for the class of problems at hand has been
ensured by a few comparisons, the production runs can be done with LBE.

Clearly, the others knobs of TTGR can also make things run a lot faster. But their tuning is highly
problem dependent. The authors would appreciate hearing from users what settings of knobs they find give
useful, or awful, results.

Run-time Statistics.

A subroutine is provided to print run-time statistics for TTGR. The statement

Call TTGRX

will print a line of the form:

ttgr(j,f,ts,ss,nit,nd,nf,r) = 130 130 15 76 130 0 0 0

The fields of this line refer to

j - The number of Jacobian evaluations.

f - The number of factorizations of the Jacobian.

ts - The number of time-steps.

ss - The number of sub-steps.

nit - The number of Newton iterations.

nd - The number of predicted Newton failures ( error increasing ).

nf - The number of Newton failures ( more than maxit iterations ).

r - The number of restarts.

If TTGRX is invoked by the user while inside TTGR, the statistics reported will be the current values.
If invoked outside TTGR, the statistics will be those of the last call to TTGR.

Another way Into TTGR.

The following subprograms are described for historical reasons. Their use is strongly discouraged,
but possible.

For those who do not wish ( or like ) to use TTGR/TTGRV/TTGRR, there is another way of entering
TTGR

Call TTGRS(U,Nu,kx,x,nx, ky,y,ny,
tstart,tstop,dt,
AF,BC,
errpar,
HANDLE)

with further control over the error of the solution given by
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Call TTGR1(U,Nu,kx,x,nx, ky,y,ny,
tstart,tstop,dt,
mxq,myq,
AF,BC,
ERROR,errpar,
HANDLE)

where the default method for both of the above is LBE. This is to keep them upwards compatible with their
previous versions. Note that NBE is the default for TTGR, n no ot t LBE. Thus, the default method for TTGRS
and TTGR1 is different from that for TTGR

Even more control over the integration process is given by

Call TTGR2(U,Nu,kx,x,nx, ky,y,ny,
tstart,tstop,dt,
mxq,myq,
LA,Pieces,PC,Accel,
AF,BC,
ERROR,errpar,
HANDLE)
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Appendix 1

B-splines

The entire solution process is affected by the representation of the approximate numerical solution.
Specifically, we would like to choose a space of functions, from which to obtain the element closest to the
solution. This space should have several nice properties, including being (1) easy to work with and (2)
capable of approximating the solution accurately.

Such a representation exists - expansion in B-splines of order k k [1,2,3,8,27]. The rest of this brief
tutorial on splines will discuss the one-dimensional case. See [27] for a complete discussion of the multi-
dimensional case. This is a method for representing functions by piecewise polynomials, that is, polynomi-
als of degree k k − − 1 or less over each sub-interval of a mesh or grid. Here the integer k k is any number k k ≥ 2
the user desires. The piecewise polynomial representation is required to satisfy certain continuity restric-
tions at the end points of each mesh sub-interval. Specifically, let π = = { { x x 1 , . . . , x x N N } }, where
L L = = x x 1 ≤ x x 2 ≤ . . . ≤ x x N N = = R R, be a grid on the interval (L,R). Let m m i i be the multiplicity of x x i i , or the
number of times x x i i appears in the list π. The space of B-splines of order k k on the mesh π is defined to be
the collection of all functions f f

(A1.1) that are polynomials of degree < < k k on each interval ( x x i i , x x i i + + 1 ) for i i = = 1 , . . . , N N − − 1,

(A1.2) for which d d k k − − 1 − − m mi i f f (x x i i ) / / d dx x k k − − 1 − − m mi i exists and is continuous at each x x i i , for i i = = 1 , . . . , N N, when
viewed as a function defined only on [L L ,R R], and

(A1.3) that have f f ≡ 0 outside [L L ,R R].

The multiplicity m m i i of a point x x i i is restricted to be in the range 1 ≤ m m i i ≤ k k. For m m i i = = 1 we have
d d k k − − 2 f f / / d dx x k k − − 2 continuous at x x i i . This is the most continuity that can be imposed at x x i i without making f f a
polynomial of degree k k − − 1 on (x x i i − − 1 , x x i i + + 1 ). For m m i i = = k k the condition that d d − − 1 f f / / d dx x − − 1 be continuous is
interpreted to mean that f f is continuous from the right (but not necessarily from the left) at x x = = x x i i , for
x x i i < < R R, and continuous from the left if x x i i = = R R. This means that B-splines are continuous at the end points
of the mesh when viewed as functions defined only on [L L ,R R]. This collection of functions is denoted by
B B π ,k k . These B B π ,k k spaces have nice approximation properties, as summed up by deBoor [1,2], in the case
when m m 1 = = k k = = m m N N:

Theorem 1

Let f f be any function with f f ( 0 ) through f f (k k) continuous on [L L ,R R], where f f ( j j) denotes the j j t th h derivative
of f f. Let h h = =

i i = = 1 , . . . , N N − − 1
M Ma ax x   x x i i + + 1 − − x x i i  be the largest mesh interval length. Then there is an element g g of

B B π ,k k so that

    f f ( j j) (x x) − − g g ( j j) (x x)     ≤ C C(k k , f f ) h h k k − − j j

for 0 ≤ j j ≤ k k, where C C(k k , f f ) represents a constant that depends only upon k k and f f, but not h h.

That is, as h h → 0, the error in the best B-spline approximation to f f goes to zero like h h k k; the error in
its derivative behaves like h h k k − − 1; etc.

Note that this theorem makes no assumption about the relative spacing of the mesh points of π to get
h h k k error. In many problems, the ability to grade the mesh with B-splines and still get h h k k error is a decided
advantage.

In practice, k k is usually taken to be 4 , 6 , 8 or even 10, depending on what the function f f looks like
and how much accuracy is desired. k k is usually, but not always, taken to be even due to the natural way in
which such splines arise and their smoothing properties when used to approximate functions described by
discrete data [2]. Typically, the more accuracy desired, the larger the value of k k should be. For example, if
k k = = 8 and the mesh length h h is halved, then Theorem 1 indicates that the error should decrease by a factor of
28 = = 256. However, the work needed to solve a problem using TTGR is O O(N Nk k 4 ). Thus, a k k = = 8 solution
will cost 16 times as much as a k k = = 4 solution for the s sa am me e mesh. But if the error is held constant, the
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number of mesh points needed is less for higher than lower order. Hence, the optimal k k results from
minimizing O O(N N k k k k 4 ), where N N k k is the number of mesh points needed to solve the problem to the desired
accuracy using a k k order B-spline. This optimization is highly problem dependent.

A computationally convenient basis exists for the spaces B B π ,k k . The dimension of B B π ,k k is N N − − k k and
the basis consists of elements B B i i (x x) , i i = = 1 , . . . , N N − − k k. A complete description of the B B i i is given in [8]
and [3]. Briefly, when the multiplicities of the first and last mesh points are both k k, so that

x x 1 = = . . . = = x x k k

and

x x N N − − k k + + 1 = = . . . = = x x N N ,

the main properties of the B B i i (x x) follow

(A1.4) Each B B i i is non-zero only on [x x i i , x x i i + + k k ] and is identically zero elsewhere, as well as at
x x 1 , . . . , x x i i − − 1 and x x i i + + k k + + 1 , . . . , x x N N , even if they are in [x x i i , x x i i + + 1 ].

(A1.5) The sum B B 1 (x x) + + . . . + + B B N N − − k k (x x) is identically one.

(A1.6) Each B B i i obeys 0 ≤ B B i i (x x) ≤ 1 everywhere and possesses only one maximum.

The convergence result of Theorem 1 is independent of the multiplicities m m i i of the interior points x x i i (
k k < < i i ≤ N N − − k k ) of the mesh. Usually, for smooth functions f f, m m i i = = 1 is taken for all these interior ( that is,
strictly between L and R ) mesh points.

The end points of the mesh typically have multiplicity k k since the function f f usually has f f (L L) ≠ 0 and
f f (R R) ≠ 0, and the elements of B B π ,k k cannot be non-zero at L L and R R, unless m m 1 = = k k = = m m N N because of (A1.2)
and (A1.3). Indeed, relations (A1.2)-(A1.5) show that the only B B i i that are not zero at L L and R R are B B 1 and
B B N N − − k k , and these values are simply B B 1 (L L) = = 1 and B B N N − − k k (R R) = = 1.

If the function f f has a discontinuity in its j j t th h derivative, but not its ( j j − − 1 ) t th h , at x x i i , then m m i i = = k k − − j j is
chosen because this allows the elements of B B π ,k k to have the same behavior. If a smaller multiplicity were
chosen, the j j t th h derivative of all the elements of B B π ,k k would be continuous at x x i i , and the best fit to f f from
B B π , k k would not be very good at x x i i .

Another important property of B-splines is their numerical stability or c co on nd di it ti io on n. . Since any B-spline

f f is of the form f f = =
i i = = 1
Σ

N N − − k k

a a i i B B i i and each B B i i obeys 0 ≤ B B i i ≤ ≤ 1, we see that if    f f   is small compared with

   a   , then many significant digits are lost when computing f f from a a 1 , . . . , a a N N − − k k in floating-point
arithmetic. Specifically,

d d ≤ L Lo og g 10 (   a    / /    
i i = = 1
Σ

N N − − k k

a a i i B B i i   ) (A1.7)

decimal digits are lost, due to cancellation, in evaluating f f. In [2] de Boor shows that

   
i i = = 1
Σ

N N − − k k

a a i i B B i i    ≥ C C k k   a    (A1.8)

where C C k k is a constant depending o on nl ly y upon k k, and therefore

d d ≤ L Lo og g 10 (C Ck k
− − 1 ).

In particular, he shows for a uniform mesh, one where all the mesh intervals have the same length, that

C C k k
∼∼ 10 − − k k / /5 . . (A1.9)

Thus, when evaluating a B-spline defined on a uniform, or nearly uniform, mesh, we would expect to lose
no more than about k k / /5 decimal digits. This is a very satisfactory result since it shows that, at least for
uniform meshes, the conditioning of the B-spline basis is independent of the size of the mesh.

The interesting spline facts are, in summary,
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B B i i ≥ 0

B B 1 + + . . . + + B B N N − − k k ≡ 1

B B 1 ( x x 1 ) = = 1 = = B B N N − − k k ( x x N N )

x x1

∫
x xN N

B B i i d dx x = =
k k

x x i i + + k k − − x x i i_ ________ . .

Also, if we let i i be such that x x is in [x x i i , x x i i + + 1 ), or i i = = N N − − k k if x x = = x x N N , then

j j = = 1
Σ

N N − − k k

a a j j B B j j (x x) ≡
j j = = i i + + 1 − − k k

Σ
i i

a a j j B B j j (x x)

If we let

f f ≡
j j = = 1
Σ

N N − − k k

a a j j B B j j (x x)

then we have

f f ′ ′(L L) = =
x x k k + + 1 − − x x 1

k k − − 1_ _________ ( a a 2 − − a a 1 )

and

f f ′ ′(R R) = =
x x n nx x − − x x n nx x − − k k

k k − − 1_ __________ ( a a n nx x − − k k − − a a n nx x − − k k − − 1 )
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Extrapolation.

The problem treated in [5] and [16,17] is the numerical solution of the canonical form ode initial
value problem

d dt t
d dx_ __ = = f(t t , x) a a ≤ t t

(A2.1)

x(a a) = = x a a

where f(t t , x) is some smooth vector-valued function of t t and x. A brief outline of the ideas developed in
those papers follows.

There are many basic differencing schemes for solving (A2.1), such as Gragg’s modified mid-point
rule [16,17], backwards-Euler methods and Crank-Nicholson [13,22]. Most of these methods have the
property [30] that if they take N time-steps h h = = (t t 1 − − t t 0 )/ / N N to go from t t 0 to t t 1 and result in an approxima-
tion to x(t t 1 ) which we shall denote by T(h h), then

T(h h) = = x(t t 1 ) + +
j j = = 1
Σ
∞

T j j h h j jγ (A2.2)

where γ is a positive constant depending on the basic difference scheme used, and the T j j are unknown con-
stant vectors independent of h h. For Gragg’s modified mid-point rule or Crank-Nicholson γ = = 2 and for
backwards-Euler methods γ = = 1.

Let a sequence of h h’s be defined by

h h i i = = h h 0 / / N N i i , i i = = 1 , 2 , 3 , . . . . . (A2.3)

where h h 0 = = t t 1 − − t t 0 and the N N i i form a monotone increasing sequence of positive integers. Bulirsch and
Stoer showed in [4] that given an operator T(h h) satisfying (A2.2), and such a sequence h h i i , then the value at
h h = = 0 of the polynomial of degree m m that interpolates T(h h i i ) for i i = = 0 , . . . ,m m, is given by Tm m

0 determined
from the recursion

T0
i i = = T(h h i i ) for 0 ≤ i i ≤ m m

(A2.4)

Tk k
i i = = Tk k − − 1

i i + + 1 + + (Tk k − − 1
i i + + 1 − − Tk k − − 1

i i )/ /



(h h i i / / h h i i + + k k ) γ − − 1





for 0≤i i≤m m − − k k and 1≤k k ≤ ≤ m m. If the T Tk k
i i are organized into a tableau of the form

T(h h 5 ) = =
T(h h 4 ) = =
T(h h 3 ) = =
T(h h 2 ) = =
T(h h 1 ) = =
T(h h 0 ) = =

T0
5

T0
4

T0
3

T0
2

T0
1

T0
0

T1
4

T1
3

T1
2

T1
1

T1
0

T2
3

T2
2

T2
1

T2
0

T3
2

T3
1

T3
0

T4
1

T4
0

T5
0

then (A2.4) expresses each element of the k k t th h column (k k > > 0) in terms of its two neighbors in column k k − − 1.
A similar result is established for interpolation by rational functions [4].

It is also possible to estimate the error in each element of the tableau [6]. For sufficiently small h h 0,
[6] shows that
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 Tk k
i i − − T  ∼∼




1 + +

(h h i i / / h h i i + + k k + + 1 ) γ − − 1

1_ _______________


 Tk k

i i + + 1 − − Tk k
i i   (A2.5)

and we can estimate the error εk k
i i = =  Tk k

i i − − T in Tk k
i i . We also know from [6] that for sufficiently small h h 0,

εk k
i i = = h h0

β d k k (h h i i
. . . h h i i + + k k ) γ (A2.6)

where the d k k are constant vectors, γ is the order of the basic process being extrapolated and β is a positive
constant. When extrapolating Gragg’s modified mid-point rule or Crank-Nicholson, γ = = 2 and β = = 1.
When extrapolating a Backwards-Euler time differencing process, γ = = 1 = = β. Thus, we can both estimate
the accuracy of each element in the tableau and tell how rapidly each column in the tableau is converging.

In (A2.4) m m is called the level of extrapolation, while from (A2.6) we see that the order in column k k
is (k k + + 1 ) γ. Thus, by extrapolating the results of a basic ordinary differential equation solver, a process of
arbitrarily high order can be obtained. The value h h 0 = = t t 1 − − t t 0 is referred to as the time-step while the h h i i

are called sub-steps. Extrapolation approximates the x(t t 1 ) values accurately, but does not accurately
approximate x(t t + + n nh h i i ) for 0 < < n n < < N N.
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Wish-List

This section describes several improvements that could be made in TTGR. The improvements range
from better human engineering (easier use) to making the algorithm more efficient and extending it to solve
more general problems.

Periodic Boundary Conditions

Since the pdes are defined on a rectangle, and mapping is sometimes used to work on more general
domains, it would be good to allow periodic boundary conditions. This will be done in the next version of
the package.

Speed

The current assembly phase (making the Jacobian) and solution processes have been sped up by fac-
tors of 3 and more. This unpolished code will be ready for the next version.

One Dimensional Pde and Ode Coupling

In the spirit of the one-dimensional pde solver POST [26], it would be good if TTGR allowed solu-
tion of problems involving one and two dimensional pdes coupled to odes. This is important for several
reasons. The first is that it allows solution of some real world problems, like those of [33] and [34]. The
second reason is just plain mathematical completeness: without such coupling, there are problems that can-
not even be posed, let alone solved.

Faster Solution Times

The block sparse-matrix package of Kent Smith offers a factor of n n u u improvement in run-time on
vector machines like the Cray. This will probably be an option in the next version.

Multi-grid schemes offer optimal run-time and space solution methods. The robustness and applica-
bility of these schemes is well worth exploring, but will take some time: such codes are complex, but prob-
ably worth the work.



Appendix 4

Examples - Programs

The program examples given below are intended to both illustrate the use of TTGR and provide pro-
totypes for a prospective user. Anyone contemplating using TTGR would be well advised to pick an exam-
ple program that invokes those capabilities of TTGR the intended problem will require, and type it in (or
obtain a copy of the example code from the authors). After running the example and confirming the cor-
rectness of the program, the AF and BC subroutines specifying the pde-bc may simply be altered to solve
the user’s problem. This progression makes it much more likely that the user will easily produce a correct
program unit for the problem at hand.

The examples are chosen to require small memory and run-time resources. This is to make their run-
ning on small machines, like Vaxen, not too onerous a chore for folks installing and testing the package.

The examples are taken in sequence from section 4 where they were formulated and analyzed. This
section is only intended to show how to program the solution of the formulations given in section 4. The
user must have read section 5 describing the TTGR software before proceeding in this appendix, otherwise
the reading will be dark and obscure.

Before invoking TTGR the user must

• Make a B-spline mesh.

• Make initial conditions for the B-spline coefficients U in (3.1).

• Write subroutines

• AF - to evaluate a and f in (2.1).

• BC - to evaluate b in (2.2).

• HANDLE - to output (print) the solution results.

The subroutine writing will be amply illustrated later in this section. The creation of a mesh and initial con-
ditions ( ics ) for u are now briefly described.

Mesh Making

The PORT Library [14] has several B-spline mesh generation subroutines available. There is UMB
for generating uniform B-spline meshes on a given interval. For creating B-spline meshes that are the
union of uniform meshes over basic contiguous intervals there are LUMB and PUMB. LUMB uses the same
number of mesh points in each basic interval and PUMB allows that number to vary by interval.

If you find yourself using more than 50 to 100 mesh points, in any direction, think carefully about
using LUMB to make the mesh more carefully tailored to the solution, or use mesh mapping. For example,
example 5 below could be solved on a uniform mesh, but it would require roughly 90,000 grid points to do
it for k k = = 2. Using the non-uniform mesh scheme given for that problem, 625 do the job nicely. Remem-
ber that the run-time and memory requirements of TTGR are proportional to the number of mesh points
used. A little thought given to mesh construction can save a lot of computer run-time and memory.

Initial Conditions for u.

There are ics for u and these must be converted into ics for U, the B-spline coefficients for u, see
(3.1). The simplest case is when the ics for u are a constant. By simply setting all the spline coefficients to
that constant, the spline is the constant and we are done.

If the ics for u u are not constant, then there is TSL2W available, see section 4.
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The Examples

All examples reported here were run on a VAX 11/750, equipped with a floating-point accelerator,
using single-precision arithmetic, under the UNIX operating system, Research Eighth Edition.

Example 1 - A Simple Heat Equation.

As a simple example of the use of TTGR, consider solving the scalar heat equation

a a ( 1 ) = = u u + + u u x x + + . .1 u u y y ,

a a ( 2 ) = = u u + + u u y y + + . .1 u u x x , (A4.1)

f f = = u u t t + + u u x x + + u u y y − − g g(t t ,x x ,y y)

on the unit square, with bcs (4.2)

b = = u u(t t ,x x ,y y) − − t t x x y y . . (A4.2)

The solution is u u ≡ t t x x y y, which can be gotten exactly. The initial conditions are taken to be 0.

The following program unit, written in Ratfor [21], solves (A4.1)-(A4.2) using TTGR, with a linear
B-spline (k k = = 2) over a spatial mesh consisting of 3 equally spaced, distinct points on ( 0 , 1 ), with the time
evolution carried out to 10 − − 2 absolute accuracy.

Ratfor is much easier to read and type than standard old Fortran. Although we use Ratfor to pre-
sent the code in the examples, we ship standard Fortran.

Ratfor stands for "Rational Fortran" and provides modern control structures over Fortran. Specifi-
cally, it allows multiple statements on a line to be separated by semicolons ( ; ), a # begins a comment (
hence a comment and an executable statement can be together on the same line ), and curly braces ( { and }
) are used to delimit blocks of code. This last feature removes the need for statement labels on Do loops,
for example. There is "syntactic sugar" in the form of "<" for ".lt.", "&" for ".and." and "  " for ".or.".
Finally, if a line ends in one of ", + - * / ( = < > & ", the next line is considered a continuation of it.

The main program uses several PORT [14] library subprograms.

• ISTKIN initializes the PORT Library stack. In this case, it initializes the stack to 350,000 double
precision items, consistent with the declaration for Ds in the double precision alias of the stack in the
common region CSTAK.

• ENTER and LEAVE bracket blocks of code in which stack allocations are done. The effect is that
all allocations made after the ENTER but before the LEAVE are released by the LEAVE.

• IUMB makes uniformly spaced B-spline meshes on the stack. It returns a pointer to the mesh.

• ISTKGT allocates storage on the Port Library stack. In the example below, iU =
ISTKGT(L,3) sets the pointer iU so that locations Ws(iU), ..., Ws(iU+L-1) are avail-
able for the B-spline coefficients of the solution.

• SETR sets an array to a given Real constant. SETR provides the constant ic’s (A4.3) via the B-
spline coefficients (3.1), since if all the B-spline coefficients are equal to a constant, then the B-spline
itself is identically equal to that constant (see Appendix 1).

• WRAPUP checks that a run has terminated without errors and prints out the stack space used.

At the end of each time-step the solution is printed out at x x ,y y = = 0 ,
2
1_ _ and 1. The main program is
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# Main

# To solve the heat equation with solution u == t*x*y,

# grad . ( U + Ux + .1 * Uy, U + Uy + .1 * Ux ) = Ut + Ux + Uy +g(x,t)

Real tstart,tstop,dt,Lx,Rx,Ly,Ry
Real errpar(2)
Integer Nu,kx,ix,nx, ky,iy,ny,ISTKGT, IUMB,iU,ndx,ndy
External AF,BC,HANDLE

Common / CSTAK / Ds(350000); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Call ISTKIN(350000,4) # Initialize the PORT Library stack length.

Call ENTER(1)

Nu = 1

Lx = 0; Rx = 1
Ly = 0; Ry = 1

kx = 2; ky = 2

ndx = 3; ndy = 3

tstart = 0; tstop = 1; dt = 1

errpar(1) = 1e-2; errpar(2) = 1e-4

ix = IUMB(Lx,Rx,ndx,kx,nx) # Uniform grid.
iy = IUMB(Ly,Ry,ndy,ky,ny) # Uniform grid.

iU = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),0e0,Ws(iU)) # Initial conditions for U.

Call TTGR (Ws(iU),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

Call LEAVE

Call WRAPUP

Stop

End

The dimension statements for the various arguments of the AF, BC and HANDLE subroutines given below
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are general and thus will not be repeated in subsequent pde-bc examples.

Note that since the arrays A, ... , FUyt are set to zero by TTGR before it calls AF, only the active a
and f terms and their derivatives need be computed in AF. The subroutine AF for specifying the pde (A4.1)
is

Subroutine AF(t,x,nx,y,ny,Nu,
U,Ut,Ux,Uy,Uxt,Uyt,
a,AU,AUt,AUx,AUy,AUxt,AUyt,
f,FU,FUt,FUx,FUy,FUxt,FUyt)

Real t,x(nx),y(ny),
U(nx,ny,Nu),Ut(nx,ny,Nu),Ux(nx,ny,Nu),Uy(nx,ny,Nu),
Uxt(nx,ny,Nu),Uyt(nx,ny,Nu),
a (nx,ny,Nu ,2), f (nx,ny,Nu ),
AU (nx,ny,Nu,Nu,2), FU (nx,ny,Nu,Nu),
AUt (nx,ny,Nu,Nu,2), FUt (nx,ny,Nu,Nu),
AUx (nx,ny,Nu,Nu,2), FUx (nx,ny,Nu,Nu),
AUy (nx,ny,Nu,Nu,2), FUy (nx,ny,Nu,Nu),
AUxt(nx,ny,Nu,Nu,2), FUxt(nx,ny,Nu,Nu),
AUyt(nx,ny,Nu,Nu,2), FUyt(nx,ny,Nu,Nu)

Integer nx,ny,Nu

Integer p,q,i

Do i = 1, Nu
{
Do q = 1, ny
{
Do p = 1, nx
{
a(p,q,i,1) = Ux(p,q,i) + .1*Uy(p,q,i) + U(p,q,i)
a(p,q,i,2) = Uy(p,q,i) + .1*Ux(p,q,i) + U(p,q,i)
AUx(p,q,i,i,1) = 1; AUy(p,q,i,i,2) = 1
AUy(p,q,i,i,1) = .1; AUx(p,q,i,i,2) = .1
AU (p,q,i,i,1) = 1; AU (p,q,i,i,2) = 1

f(p,q,i) = Ut(p,q,i)+Ux(p,q,i)+Uy(p,q,i)
FUt(p,q,i,i) = 1; fUx(p,q,i,i) = 1; fUy(p,q,i,i) = 1
f(p,q,i) = f(p,q,i) + .2*t-x(p)*y(q)
}

}
}

Return

End

Note that since the arrays B, ... , BUyt are set to zero by TTGR before it calls BC, only the active b terms
and their derivatives need be computed in BC. The subroutine BC for specifying the bc’s (A4.2) is
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Subroutine BC(t,x,nx,y,ny,Lx,Rx,Ly,Ry,
U,Ut,Ux,Uy,Uxt,Uyt,Nu,
b,bu,but,bux,buy,buxt,buyt)

Real t,x(nx),y(ny),Lx,Rx,Ly,Ry,
U(nx,ny,Nu),Ut(nx,ny,Nu),Ux(nx,ny,Nu),Uy(nx,ny,Nu),
Uxt(nx,ny,Nu),Uyt(nx,ny,Nu),
b(nx,ny,Nu),bu(nx,ny,Nu,Nu),bux(nx,ny,Nu,Nu),buy(nx,ny,Nu,Nu),
but(nx,ny,Nu,Nu),buxt(nx,ny,Nu,Nu),buyt(nx,ny,Nu,Nu)

Integer nx,ny,Nu

Integer i,j

Do j = 1, ny
{
Do i = 1, nx
{
bu(i,j,1,1) = 1; b(i,j,1) = U(i,j,1)-t*x(i)*y(j)
}

}

Return

End

The following output subroutine simply evaluates and prints u u(t t ,x x ,y y), for x x ,y y = = 0 ,
2
1_ _ , and 1, at the end of

each successful time-step. The dimension statement for the various arguments is for arbitrary input and
thus will not be repeated in subsequent examples.

Three PORT Library routines are used

• I1MACH determines the standard output unit number, I1MACH(2).

• TSD1 evaluates a spline, given the mesh and the coefficients. See section 4.

• ILUMD generates a list of distinct points from a basic mesh by inserting a given number of points
between the basic points.

Also, two Common regions from TTGR are used to provide, magically, the meshes for x x and y y and Nu. This
is because the fixed calling sequence for the output routine from IODE doesn’t currently allow the passing
of such extra information. So we pass it under the table.
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Subroutine HANDLE(t0,U0,t,U,Nv,dt,tstop)

Real t0,U0(Nv),t,U(Nv),dt,tstop
Integer Nv

Common / A7TGRM / kx,ix,nx, ky,iy,ny; Integer kx,ix,nx, ky,iy,ny

Common / A7TGRP / errpar(2), Nu,mxq,myq; Real errpar; Integer Nu,mxq,myq

If ( t0 == t )
{
iwunit = 6
Write(iwunit,9000) t

9000 Format(" Restart for t =",1p4e10.2)
Return
}

Call GERR(kx,ix,nx, ky,iy,ny, U,Nu, t) # Print results.

Return

End

where the procedure GERR is used to print out the results
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Subroutine GERR(kx,ix,nx, ky,iy,ny, U,Nu, t)

# To print the solution at each time-step.

Real U(1),t # U(nx-kx,ny,ky,Nu).
Integer kx,ix,nx, ky,iy,ny,Nu

Common / CSTAK / Ds(500); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Integer i,I1MACH,ISTKGT,
KA(2),ITA(2),NTA(2),IXA(2),NXA(2),MA(2),iFA,
ILUMD,ixs,iys,nxs,nys

Call ENTER(1)

# Find the solution at 2 * 2 points / mesh rectangle.

ixs = ILUMD(Ws(ix),nx,2,nxs) # x search grid.
iys = ILUMD(Ws(iy),ny,2,nys) # y search grid.

KA(1) = kx; KA(2) = ky; ITA(1) = ix; ITA(2) = iy; NTA(1) = nx; NTA(2) = ny
IXA(1) = ixs; IXA(2) = iys; NXA(1) = nxs; NXA(2) = nys
MA(1) = 0; MA(2) = 0 # Get solution.

iFA = ISTKGT(nxs*nys,3) # Approximate solution values.

Call TSD1(2,KA,Ws,ITA,NTA,U, Ws,IXA,NXA,MA, Ws(iFA)) # Evaluate them.

iwunit = I1MACH(2)
Write(iwunit,9001) t,(Ws(i),i = iFA, iFA+nxs*nys-1 )
9001 Format(" U(",1p1e10.2,",.,.) =",((1p5e10.2/20x,1p4e10.2)))

Call LEAVE

Return

End

The output of the above program unit is

U( 1.00e+00,.,.) = 0.00e+00 5.14e-17 5.87e-09 0.00e+00 2.50e-01
5.00e-01 0.00e+00 5.00e-01 1.00e+00

used 825 / 700000 of the stack allowed.

The run-time for the above was 5.2 seconds.

A skeptic might observe that it is difficult to determine that the above output is in fact exact. Well, since
the exact solution of the problem is known, the program may also check the accuracy of the numerical solu-
tion. The procedure GERR below checks the error rather than just evaluate the solution
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Subroutine GERR(kx,ix,nx, ky,iy,ny, U,Nu, t)

# To get and print the error at each time-step.

Real U(1),t # U(nx-kx,ny0ky,Nu).
Integer kx,ix,nx, ky,iy,ny,Nu

Common / CSTAK / Ds(500); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Real errU
Integer i,I1MACH,ISTKGT,

KA(2),ITA(2),NTA(2),IXA(2),NXA(2),MA(2),iFA, ILUMD,ixs,iys,nxs,nys,iEwe

Call ENTER(1)

# Find the error in the solution at 2*kx * 2*ky points / mesh rectangle.

ixs = ILUMD(Ws(ix),nx,2*kx,nxs) # x search grid.
iys = ILUMD(Ws(iy),ny,2*ky,nys) # y search grid.
iEwe = ISTKGT(nxs*nys,3) # U search grid values.

Call EWE(t,Ws(ixs),nxs,Ws(iys),nys,Ws(iEwe),Nu) # The exact solution.

KA(1) = kx; KA(2) = ky; ITA(1) = ix; ITA(2) = iy; NTA(1) = nx; NTA(2) = ny
IXA(1) = ixs; IXA(2) = iys; NXA(1) = nxs; NXA(2) = nys
MA(1) = 0; MA(2) = 0 # Get solution.

iFA = ISTKGT(nxs*nys,3) # Approximate solution values.

Call TSD1(2,KA,Ws,ITA,NTA,U, Ws,IXA,NXA,MA, Ws(iFA)) # Evaluate them.
errU = 0 # Error in solution values.
Do i = 1, nxs*nys
{
errU = Max(errU,Abs(Ws(iEwe+i-1)-Ws(iFA+i-1)))
}

iwunit = I1MACH(2)
Write(iwunit,9001) t, errU
9001 Format(" error in U(.,",1p1e10.2,") =", 1p4e10.2)

Call LEAVE

Return

End

and the procedure EWE below evaluates the exact solution at any position in time and space.
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Subroutine EWE(t,x,nx,y,ny,U,Nu)

# The exact solution.

Real t,x(nx),y(ny),U(nx,ny,Nu)
Integer nx,ny,Nu

Integer p,i,j

Do p = 1, Nu
{
Do i = 1, nx
{
Do j = 1, ny
{
U(i,j,p) = t*x(i)*y(j)
}

}
}

Return

End

The above program unit gives

error in U(., 1.00e+00) = 5.87e-09
used 825 / 700000 of the stack allowed.

and we can see that (A4.1)-(A4.2) has indeed been solved to within rounding error. The run-time for the
above example was 5.3 seconds.

Example 2 - A Coupled System of pdes.

The solution of a coupled system of pde’s is now illustrated. The pde is

a a1
( 1 ) = = u u 1x x , a a2

( 1 ) = = u u 2x x ,

a a1
( 2 ) = = u u 1y y , a a2

( 2 ) = = u u 2y y , (A4.3)

f f 1 = = u u 1t t + + u u 1 u u 2 − − g g 1 , f f 2 = = u u 2t t + + u u 1 u u 2 − − g g 2

with bcs

b b 1 = = u u 1 (t t ,x x ,y y) − − e e t t(x x − − y y) and b b 2 = = u u 2 (t t ,x x ,y y) − − e e − − t t(x x − − y y) (A4.4)

The solution is u u 1 ≡ e e t t(x x − − y y) and u u 2 ≡ e e − − t t(x x − − y y) .

The following program solves (A4.3)-(A4.4) using TTGR, with a cubic B-spline, over a spatial mesh
consisting of 3 equally spaced, distinct points on ( 0 , 1 ), with the time-evolution carried out to 10 − − 2 abso-
lute accuracy. The error at each time-step is printed out to confirm the accuracy of the computed solution.
The main program is
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# Main

# To solve two coupled, nonlinear heat equations.

# U1 sub t = div . ( U1x, U1y ) - U1*U2 + g1
# U2 sub t = div . ( U2x, U2y ) - U1*U2 + g2

Real tstart,tstop,dt,Lx,Rx,Ly,Ry
Real errpar(2)
Integer Nu,kx,ix,nx, ky,iy,ny,ISTKGT, IUMB,iU,ndx,ndy
External AF,BC,HANDLE

Common / CSTAK / Ds(350000); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Call ISTKIN(350000,4) # Initialize the PORT Library stack length.

Call ENTER(1)

Nu = 2

Lx = 0; Rx = +1
Ly = 0; Ry = +1

kx = 4; ky = 4

ndx = 3; ndy = 3

tstart = 0; tstop = 1; dt = 1e-2

errpar(1) = 1e-2; errpar(2) = 1e-4

ix = IUMB(Lx,Rx,ndx,kx,nx) # Uniform grid.
iy = IUMB(Ly,Ry,ndy,ky,ny) # Uniform grid.

iU = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),1e0,Ws(iU))

Call TTGR (Ws(iU),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

Call LEAVE

Call WRAPUP

Stop

End
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The only change in the subroutine AF of the last example is the code for specifying the pde

Integer p,q

Do q = 1, ny
{
Do p = 1, nx
{
a(p,q,1,1) = Ux(p,q,1); AUx(p,q,1,1,1) = 1
a(p,q,1,2) = Uy(p,q,1); AUy(p,q,1,1,2) = 1

f(p,q,1) = Ut(p,q,1) + U(p,q,1)*U(p,q,2)
FU(p,q,1,1) = U(p,q,2); FU(p,q,1,2) = U(p,q,1); FUt(p,q,1,1) = 1

a(p,q,2,1) = Ux(p,q,2); AUx(p,q,2,2,1) = 1
a(p,q,2,2) = Uy(p,q,2); AUy(p,q,2,2,2) = 1

f(p,q,2) = Ut(p,q,2) + U(p,q,1)*U(p,q,2)
FU(p,q,2,1) = U(p,q,2); FU(p,q,2,2) = U(p,q,1); FUt(p,q,2,2) = 1

f(p,q,1) = f(p,q,1) - ( Exp(t*(x(p)-y(q)))*( x(p)-y(q) - 2*t*t ) + 1 )
f(p,q,2) = f(p,q,2) - ( Exp(t*(y(q)-x(p)))*( y(q)-x(p) - 2*t*t ) + 1 )
}

}

The only change in the subroutine BC of the previous example is the code for specifying the bcs

Do j = 1, ny
{
Do i = 1, nx
{
bu(i,j,1,1) = 1; b(i,j,1) = U(i,j,1)-Exp(t*(x(i)-y(j)))

bu(i,j,2,2) = 1; b(i,j,2) = U(i,j,2)-Exp(t*(y(j)-x(i)))
}

}

The HANDLE subroutine simply checks the accuracy of the computed solution,
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Subroutine HANDLE(t0,U0,t,U,Nv,dt,tstop)

Real t0,U0(Nv),t,U(Nv),dt,tstop
Integer Nv

Common / A7TGRM / kx,ix,nx, ky,iy,ny; Integer kx,ix,nx, ky,iy,ny

Common / A7TGRP / errpar(2), Nu,mxq,myq; Real errpar; Integer Nu,mxq,myq

Common / CSTAK / Ds(500); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Real errU
Integer i,I1MACH,ISTKGT,j,

KA(2),ITA(2),NTA(2),IXA(2),NXA(2),MA(2),iFA,
ILUMD,ixs,iys,nxs,nys,iEwe

If ( t0 == t )
{
iwunit = 6
Write(iwunit,9000) t

9000 Format(" Restart for t =",1p4e10.2)
Return
}

Call ENTER(1)

# Find the error in the solution at 2*kx * 2*ky points / mesh rectangle.

ixs = ILUMD(Ws(ix),nx,2*kx,nxs) # x search grid.
iys = ILUMD(Ws(iy),ny,2*ky,nys) # y search grid.
iEwe = ISTKGT(Nu*nxs*nys,3) # U search grid values.

Call EWE(t,Ws(ixs),nxs,Ws(iys),nys,Ws(iEwe),Nu) # The exact solution.

KA(1) = kx; KA(2) = ky; ITA(1) = ix; ITA(2) = iy; NTA(1) = nx; NTA(2) = ny
IXA(1) = ixs; IXA(2) = iys; NXA(1) = nxs; NXA(2) = nys
MA(1) = 0; MA(2) = 0 # Get solution.

iFA = ISTKGT(nxs*nys,3) # Approximate solution values.

Do j = 1, Nu
{
Call TSD1(2,KA,Ws,ITA,NTA,U(1+(j-1)*(nx-kx)*(ny-ky)),

Ws,IXA,NXA,MA, Ws(iFA)) # Evaluate them.
errU = 0 # Error in solution values.
Do i = 1, nxs*nys
{
errU = Max(errU,Abs(Ws(iEwe+i-1+(j-1)*nxs*nys)-Ws(iFA+i-1)))
}

iwunit = I1MACH(2)
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Write(iwunit,9001) t,j, errU
9001 Format(" error in U(.,",1p1e10.2,",",I2,") =", 1p4e10.2)

}

Call LEAVE

Return

End

where the following body for the subroutine EWE computes the exact solution.

Integer p,i,j

Do p = 1, Nu
{
Do i = 1, nx
{
Do j = 1, ny
{
U(i,j,p) = Exp( (-1)**(p+1) * t * ( x(i) - y(j) ) )
}

}
}

The output of the above program unit is

error in U(., 1.00e-02, 1) = 7.63e-06
error in U(., 1.00e-02, 2) = 7.57e-06
error in U(., 2.11e-01, 1) = 3.85e-04
error in U(., 2.11e-01, 2) = 3.85e-04
error in U(., 8.76e-01, 1) = 1.80e-03
error in U(., 8.76e-01, 2) = 1.80e-03
error in U(., 1.00e+00, 1) = 4.55e-04
error in U(., 1.00e+00, 2) = 4.55e-04
used 9398 / 700000 of the stack allowed.

The run-time for the above example was 431.5 seconds.

Note that the solution of this problem is not exactly representable as a spline. Thus, it is the first non-trivial
example use of TTGR.

Example 3 - Interfaces.

Consider the pde

f f = = u t t − − g g

a a ( 2 ) = = κ (x x ,y y) u y y

a a ( 1 ) = = κ (x x ,y y) u x x

(A4.5)

where

κ ≡





 1/ /32 < < y y≤3

1/ /21 < < y y≤2

10≤y y≤1
,

with bcs on the bottom and top
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b = = u u y y (A4.6a)

and those on the sides

b = = u − − s s(t t ,x x ,y y) (A4.6b)

The following program solves (A4.5)-(A4.6) using TTGR, with a linear B-spline (k k = = 2) over a spatial
mesh on ( 0 , 1 ) consisting of 3 equally spaced, distinct points, with the time evolution carried out to roughly
10 − − 2 relative accuracy. The error at each time-step is printed out to confirm the accuracy of the numerical
solution.

The main program uses two Port Library subroutines

• ILUMB makes a B-spline mesh by putting a uniform mesh on each of a set of contiguous intervals,
in this case 3 points each on [ 0 , 1 ], [ 1 , 2 ] and [ 2 , 3 ].

• IMMM makes η = = 1 a mesh point of multiplicity k-1, so that u ( x x , y y , t t ) can have its partials
with respect to y y discontinuous, see appendix 1. k k − − 2 points must be added to the mesh to accom-
plish this. Since it is dangerous to assume that a fixed dimension array can be added to, the mesh is
put on the stack by ILUMB where it may be safely lengthened. The mesh is put on the Port stack and
a pointer to it is returned.

The main program is
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# Main

# To solve the layered heat equation, with kappa = 1, 1/2, 1/3,

# div . ( kappa(x,y) * grad U ) = Ut + g

Real tstart,tstop,dt,Lx,Rx,yb(4)
Real errpar(2)
Integer Nu,kx,ix,nx, ky,iy,ny,ISTKGT, IUMB, ILUMB,iU,ndx,ndy,IMMM ,i
External AF,BC,HANDLE

Common / CSTAK / Ds(350000); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Call ISTKIN(350000,4) # Initialize the PORT Library stack length.

Call ENTER(1)

Nu = 1

Lx = 0; Rx = 1
Do i = 1, 4 { yb(i) = i-1 }

kx = 2; ky = 2

ndx = 3; ndy = 3

tstart = 0; tstop = 1; dt = 1

errpar(1) = 1e-2; errpar(2) = 1e-4

ix = IUMB(Lx,Rx,ndx,kx,nx) # Uniform grid.
iy = ILUMB(yb,4,ndy,ky,ny) # Uniform grid.
iy = IMMM (iy,ny,yb(2),ky-1) # Make mult = ky-1.
iy = IMMM (iy,ny,yb(3),ky-1) # Make mult = ky-1.

iU = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),0e0,Ws(iU))

Call TTGR (Ws(iU),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

Call LEAVE

Call WRAPUP

Stop

End
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The body of the AF subroutine for specifying the pde (A4.5) is

Real kappa
Integer p,q,i

Do i = 1, Nu
{
Do q = 1, ny
{
Do p = 1, nx
{
If ( y(q) < 1 ) { kappa = 1 }
Else If ( y(q) < 2 ) { kappa = 0.5 }
Else { kappa = 1/3e0 }

a(p,q,i,1) = kappa*Ux(p,q,i); AUx(p,q,i,i,1) = kappa
a(p,q,i,2) = kappa*Uy(p,q,i); AUy(p,q,i,i,2) = kappa

f(p,q,i) = Ut(p,q,i); FUt(p,q,i,i) = 1

f(p,q,i) = f(p,q,i) - y(q)/kappa

If ( 1 < y(q) & y(q) < 2 ) { f(p,q,i) = f(p,q,i) + 1 }
If ( 2 < y(q) & y(q) < 3 ) { f(p,q,i) = f(p,q,i) + 3 }
}

}
}

The body of the BC subroutine for specifying the bcs (A4.6) is

Do j = 1, ny
{
Do i = 1, nx
{
If ( x(i) == Lx | x(i) == Rx ) # Left or right.
{
BUx(i,j,1,1) = 1; B(i,j,1) = Ux(i,j,1) # Neumann BCs.
}

Else If ( y(j) == Ly ) # Bottom.
{
B(i,j,1) = U(i,j,1); BU(i,j,1,1) = 1
}

Else # Top.
{
B(i,j,1) = U(i,j,1)-6*t; BU(i,j,1,1) = 1
}

}
}

There is no change in the HANDLE or GERR subroutines of example 1. The only change in the subroutine
EWE, for computing u u, of example 1 is the code for computing u u

If ( y(j) < 1 ) { U(i,j,p) = t*y(j) }
Else If ( y(j) < 2 ) { U(i,j,p) = 2*t*y(j)-t }
Else { U(i,j,p) = 3*t*y(j)-3*t }

The output from this program is
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error in U(., 1.00e+00) = 4.77e-07
used 1260 / 700000 of the stack allowed.

and we see that (A4.5)-(A4.6) has indeed been solved to rounding error. The run-time for the above exam-
ple was 10.9 seconds.

Example 4 - Non-Rectangular Domains.

Consider the pde

f f = = u t t − − g g

a a ( 2 ) = = u y y − −
10

u x x_ __

a a ( 1 ) = = u x x − −
10

u y y_ __

(A4.7)

on the domain

y

x

(0,-1)

(0,0)

(1,1)

(1,0)

with bcs on the bottom and top

b = = u u N N − − n n(x x ,y y) (A4.8a)

and those on the sides

b = = u − − s s(t t ,x x ,y y) (A4.8b)

where g g, n n and s s are chosen so that the solution is u u = = t t x x y y.

The following program solves the pde-bc combination (A4.7)-(A4.8), using cubic B-splines over a
mesh consisting of 3 equally spaced, distinct points on ( 0 , 1 ), with the time-evolution carried out to 10 − − 2

absolute accuracy. The error at each time-step is printed out to confirm the accuracy of the computed solu-
tion. The main program is
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# Main

# To solve the linear heat equation

# grad . ( Ux - 0.1 * Uy , 0.1*Ux + Uy ) = Ut - x*y

# with solution u == t*x*y on [0,+1]**2, exact for k = 4,
# with tilted top and bottom, normal BCs there.

Real tstart,tstop,dt,Lx,Rx,Ly,Ry
Real errpar(2)
Integer Nu,kx,ix,nx, ky,iy,ny,ISTKGT, IUMB,iU,ndx,ndy
External AF,BC,HANDLE

Common / CSTAK / Ds(350000); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Call ISTKIN(350000,4) # Initialize the PORT Library stack length.

Call ENTER(1)

Nu = 1

Lx = 0; Rx = +1
Ly = 0; Ry = +1

kx = 4; ky = 4

ndx = 3; ndy = 3

tstart = 0; tstop = 1; dt = 1

errpar(1) = 1e-2; errpar(2) = 1e-4

ix = IUMB(Lx,Rx,ndx,kx,nx) # Uniform grid.
iy = IUMB(Ly,Ry,ndy,ky,ny) # Uniform grid.

iU = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),0e0,Ws(iU))

Call TTGR (Ws(iU),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

Call LEAVE

Call WRAPUP

Stop
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End

The AF subroutine uses one Port subroutine

• SETERR is used to set an error state if n n x x n n y y requires more space than reserved, in this case 100.

The body of the subroutine AF for (A4.7) is

Real xx(100),yy(100),D(600),x,y
Integer p,q,i
External LR,BT

If ( nx*ny > 100 ) { Call SETERR("AF - nx*ny .gt. 100",19,1,2) }

Call BTMAP(t,xi,yi,nx,ny, LR,BT, xx,yy,D)

Call TTGRU(nx,ny,D,Ux,Uy,Ut,Nu) # Map into (x,y).

Do i = 1, Nu
{
Do q = 1, ny
{
Do p = 1, nx
{
x = xx(p+(q-1)*nx); y = yy(p+(q-1)*nx)

a(p,q,i,1) = Ux(p,q,i) - .1*Uy(p,q,i)
a(p,q,i,2) = Uy(p,q,i) + .1*Ux(p,q,i)
AUx(p,q,i,i,1) = 1; AUy(p,q,i,i,2) = 1
AUy(p,q,i,i,1) = -.1; AUx(p,q,i,i,2) = +.1

F(p,q,1) = Ut(p,q,1) - x*y; FUt(p,q,1,1) = 1
}

}
}

Call TTGRG(nx,ny,D,Nu, A,AU,AUx,AUy, F,FU,FUx,FUy) # Map into (xi,eta).

where the subroutines LR and BT will be described shortly. The body of the subroutine BC for (A4.8) is
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Real xx(100),yy(100),D(600),x,y
Integer i,j
External LR,BT

If ( nx*ny > 100 ) { Call SETERR("BC - nx*ny .gt. 100",19,1,2) }

Call BTMAP(t,xi,yi,nx,ny, LR,BT, xx,yy,D)

Call TTGRU(nx,ny,D,Ux,Uy,Ut,Nu) # Map into (x,y).

Do j = 1, ny
{
Do i = 1, nx
{
x = xx(i+(j-1)*nx); y = yy(i+(j-1)*nx)

If ( xi(i) == Lx | xi(i) == Rx ) # Left or right.
{
BU(i,j,1,1) = 1; B(i,j,1) = U(i,j,1)-t*x*y
}

Else If ( yi(j) == Ly ) # Bottom.
{
B(i,j,1) = (Ux(i,j,1)-t*y) - (Uy(i,j,1)-t*x)
BUx(i,j,1,1) = 1; BUy(i,j,1,1) = -1 # Normal is (1,-1).
}

Else # Top.
{
B(i,j,1) = -(Ux(i,j,1)-t*y) + (Uy(i,j,1)-t*x)
BUx(i,j,1,1) = -1; BUy(i,j,1,1) = 1 # Normal is (-1,1).
}

}
}

Call TTGRB(nx,ny,D, Nu, BUx,BUy,BUt) # Map into (xi,eta).

The body of the subroutines HANDLE and GERR for computing and printing the error is same as before.
The only change in the subroutine EWE for computing u u in the previous example is the code for computing
u u.
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Real t,xi(nx),yi(ny),U(nx,ny,Nu)
Integer nx,ny,Nu

Real xx(1000),yy(1000),D(6000),x,y
Integer p,i,j
External LR,BT

If ( ny > 1000 ) { Call SETERR("EWE - ny .gt. 1000",18,1,2) }

Do p = 1, Nu
{
Do i = 1, nx
{
Call BTMAP(t,xi(i),yi,1,ny, LR,BT, xx,yy,D)

Do j = 1, ny
{
x = xx(j); y = yy(j)

U(i,j,p) = t*x*y
}

}
}

The subroutine LR is

Subroutine LR(t,Lx,Rx,Lxt,Rxt)

# To get the L and R end-points of the mapping in x.

Real t,Lx,Rx,Lxt,Rxt

Lx = 0; Rx = 1
Lxt = 0; Rxt = 0

Return

End

and the subroutine BT is
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Subroutine BT(t,x,f,g,fx,gx,ft,gt)

# To get the bottom and top of mapping in y.

Real t,x,f,g,fx,gx,ft,gt

f = -1 + x; g = x
ft = 0; gt = 0
fx = 1; gx = 1

Return

End

The output of this program is

error in U(., 1.00e+00) = 8.94e-08
used 3388 / 700000 of the stack allowed.

The run-time for the above example was 28.1 seconds.

Example 5 - A Static Problem.

Consider the pde

f f = = 0

a a ( 2 ) = = u y y

a a ( 1 ) = = u x x

(A4.9)

on the domain [ 0 , 1 ] ×[ 0 , 1 ], with bcs on the bottom

b = = u u y y (A4.10a)

and on the other sides

b = = u − − s s(t t ,x x ,y y) (A4.10b)

where s s is chosen so that the solution is u u = = R Re ea al l(z z l lo og g(z z) ).

The following program solves the pde-bc combination (A4.9)-(A4.10), using cubic B-splines over a
mesh consisting of 3 non-uniformly spaced, distinct points on ( 0 , 1 ), with the time-evolution carried out to

10 − − 2 absolute accuracy. The non-uniform mesh used is x x i i ≡ (
n n − − 1
i i − − 1_ ____ ) k k , for i i = = 1 , . . . ,n n. Since the solu-

tion has a log (z z) singularity at z z = = 0, this grading of the mesh is sufficient to give O O(n n − − k k ) convergence
where k k is the order of the spline used. Without the grading, the convergence would only be O O(n n − − 1 ) and it
would require many more points to get comparable accuracy. The error at each time-step is printed out to
confirm the accuracy of the computed solution. The main program is
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# Main

# To solve Laplaces equation with Real ( z*log(z) ) as solution.

Real tstart,tstop,dt,Lx,Rx,Ly,Ry
Real errpar(2)
Integer Nu,kx,ix,nx, ky,iy,ny,ISTKGT,iU,ndx,ndy,i
External AF,BC,HANDLE

Common / CSTAK / Ds(350000); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Call ISTKIN(350000,4) # Initialize the PORT Library stack length.

Call ENTER(1)

Nu = 1

Lx = 0; Rx = +1
Ly = 0; Ry = +1

kx = 4; ky = 4

ndx = 2; ndy = 2

tstart = 0; tstop = 1; dt = 1

errpar(1) = 1e-2; errpar(2) = 1e-4

nx = ndx+2*(kx-1); ix = ISTKGT(nx,3) # Space for x mesh.
Do i = 1, kx
{ Ws(ix+i-1) = 0; Ws(ix+nx-i) = Rx } # 0 and Rx mult = kx.

Do i = 1, ndx-1 { Ws(ix+kx-2+i) = Rx*((i-1)/(ndx-1e0))**kx }

ny = ndy+2*(ky-1); iy = ISTKGT(ny,3) # Space for y mesh.
Do i = 1, ky
{ Ws(iy+i-1) = 0; Ws(iy+ny-i) = Ry } # 0 and Ry mult = ky.

Do i = 1, ndy-1 { Ws(iy+ky-2+i) = Ry*((i-1)/(ndy-1e0))**ky }

iU = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),0e0,Ws(iU))

Call TTGR (Ws(iU),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

Call LEAVE

Call WRAPUP
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Stop

End

The body of the subroutine AF for (A4.9) is

Do i = 1, Nu
{
Do q = 1, ny
{
Do p = 1, nx
{
a(p,q,i,1) = Ux(p,q,i); a(p,q,i,2) = Uy(p,q,i)
AUx(p,q,i,i,1) = 1; AUy(p,q,i,i,2) = 1
}

}
}

The body of the subroutine BC for (A4.10) is

Do j = 1, ny
{
Do i = 1, nx
{
If ( y(j) == Ly ) # Neumann data on bottom.
{
b(i,j,1) = Uy(i,j,1)
BUy(i,j,1,1) = 1
}

Else # Dirichlet data.
{
r = Sqrt(x(i)**2+y(j)**2)
If ( x(i) > 0 ) { theta = Atan(y(j)/x(i)) }
Else { theta = 2*Atan(1e0) }

b(i,j,1) = U(i,j,1) - r*(Cos(theta)*Log(r) - theta*Sin(theta))
BU(i,j,1,1) = 1
}

}
}

The body of the subroutines HANDLE and GERR for computing and printing the error is same as before.
The only change in the subroutine EWE for computing u u in the previous example is the code for computing
u u.
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Do p = 1, Nu
{
Do i = 1, nx
{
Do j = 1, ny
{
r = Sqrt(x(i)**2+y(j)**2)
If ( x(i) > 0 ) { theta = Atan(y(j)/x(i)) }
Else { theta = 2*Atan(1e0) }

If ( r > 0 ) { U(i,j,p) = r*(Cos(theta)*Log(r) - theta*Sin(theta)) }
Else { U(i,j,p) = 0 }
}

}
}

The output of this program is

error in U(., 1.00e+00) = 3.44e-02
used 2654 / 700000 of the stack allowed.

The run-time for the above example was 8.7 seconds.

Example 6 - Error Estimation.

We consider estimating the error in the solution to example 5 above, without using any information
about the exact solution to do it.

The error estimation is done according to the scheme outlined in Example 6 of section 4. The solu-
tion is obtained as in example 5 above, then the solution is obtained on a finer grid (in this case, with twice
the number of mesh points), and finally the solution is obtained on the crude mesh with the time evolution
carried out to one-tenth the accuracy.

Since the problem is static, we expect that the error estimate in time should be very small and that for
the spatial error will dominate.

The main program is
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# Main

# To get error estimates for Laplaces equation with Real ( z*log(z) ) as solution.

Real tstart,tstop,dt,Lx,Rx,Ly,Ry, EERR,errE,errR
Real errpar(2)
Integer Nu,kx,ix,nx, ky,iy,ny,ISTKGT,iU,ndx,ndy,i,I1MACH,

ixr,iyr,nxr,nyr,iUr,iUe
External AF,BC,HANDLE

Common / CSTAK / Ds(350000); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Call ISTKIN(350000,4) # Initialize the PORT Library stack length.

Call ENTER(1)

Nu = 1

Lx = 0; Rx = +1
Ly = 0; Ry = +1

kx = 4; ky = 4

ndx = 2; ndy = 2

tstart = 0; tstop = 1; dt = 1

errpar(1) = 1e-2; errpar(2) = 1e-4

nx = ndx+2*(kx-1); ix = ISTKGT(nx,3) # Space for x mesh.
Do i = 1, kx
{ Ws(ix+i-1) = 0; Ws(ix+nx-i) = Rx } # 0 and Rx mult = kx.

Do i = 1, ndx-1 { Ws(ix+kx-2+i) = Rx*((i-1)/(ndx-1e0))**kx }

ny = ndy+2*(ky-1); iy = ISTKGT(ny,3) # Space for y mesh.
Do i = 1, ky
{ Ws(iy+i-1) = 0; Ws(iy+ny-i) = Ry } # 0 and Ry mult = ky.

Do i = 1, ndy-1 { Ws(iy+ky-2+i) = Ry*((i-1)/(ndy-1e0))**ky }

iU = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),0e0,Ws(iU))

iwunit = I1MACH(2)
Write(iwunit,9000)
9000 Format(" Solving on crude mesh.")

Call TTGR (Ws(iU),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)



– 4-27 –

dt = 1

ndx = 2*ndx-1; ndy = 2*ndy-1 # Refine mesh.

nxr = ndx+2*(kx-1); ixr = ISTKGT(nxr,3) # Space for x mesh.
Do i = 1, kx
{ Ws(ixr+i-1) = 0; Ws(ixr+nxr-i) = Rx } # 0 and Rx mult = kx.

Do i = 1, ndx-1 { Ws(ixr+kx-2+i) = Rx*((i-1)/(ndx-1e0))**kx }

nyr = ndy+2*(ky-1); iyr = ISTKGT(nyr,3) # Space for y mesh.
Do i = 1, ky
{ Ws(iyr+i-1) = 0; Ws(iyr+nyr-i) = Ry } # 0 and Ry mult = ky.

Do i = 1, ndy-1 { Ws(iyr+ky-2+i) = Ry*((i-1)/(ndy-1e0))**ky }

iUr = ISTKGT(Nu*(nxr-kx)*(nyr-ky),3) # Space for the solution.
Call SETR(Nu*(nxr-kx)*(nyr-ky),0e0,Ws(iUr))

iwunit = I1MACH(2)
Write(iwunit,9001)
9001 Format(" Solving on Refined mesh.")

Call TTGR (Ws(iUr),Nu,kx,Ws(ixr),nxr, ky,Ws(iyr),nyr, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

dt = 1; errpar(1) = errpar(1)/10; errpar(2) = errpar(2)/10

iUe = ISTKGT(Nu*(nx-kx)*(ny-ky),3) # Space for the solution.
Call SETR(Nu*(nx-kx)*(ny-ky),0e0,Ws(iUe))

iwunit = I1MACH(2)
Write(iwunit,9002)
9002 Format(" Solving with errpar/10.")

Call TTGR (Ws(iUe),Nu,kx,Ws(ix),nx, ky,Ws(iy),ny, tstart,tstop, dt,
AF,BC,
errpar,
HANDLE)

errR = EERR(kx,ix,nx, ky,iy,ny, Ws(iU),Nu, ixr,nxr,iyr,nyr,Ws(iUr), tstop)

errE = 0
Do i = 1, Nu*(nx-kx)*(ny-ky)
{
errE = Max( errE, Abs( Ws(iU+i-1)-Ws(iUe+i-1) ) )
}

iwunit = I1MACH(2)
Write(iwunit,9003) errE
9003 Format(" U error from U and Ue =",1p4e10.2)

iwunit = I1MACH(2)
Write(iwunit,9004) errR
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9004 Format(" U error from U and Ur =",1p4e10.2)

Call LEAVE

Call WRAPUP

Stop

End

and the subroutine for obtaining the error estimate is
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Real Function EERR(kx,ix,nx, ky,iy,ny, U,Nu, ixr,nxr, iyr,nyr,Ur, t)

# To get and print the error estimate at each time-step.

Real U(1),Ur(1),t # U(nx-kx,ny-ky,Nu), Ur(nxr-kx,nyr-ky,Nu).
Integer kx,ix,nx, ky,iy,ny,Nu, ixr,nxr,iyr,nyr

Common / CSTAK / Ds(500); Double Precision Ds
Real Ws(1000) # The PORT Library stack and its aliases.
Real Rs(1000) ; Integer Is(1000) ; Complex Cs(500) ; Logical Ls(1000)
Equivalence ( Ds(1),Cs(1),Ws(1),Rs(1),Is(1),Ls(1) )

Real errU
Integer i,I1MACH,ISTKGT, iFA,iFAr,

KA(2),ITA(2),NTA(2),IXA(2),NXA(2),MA(2), ILUMD,ixs,iys,nxs,nys

Call ENTER(1)

# Find the error in the solution at 2*kx * 2*ky points / fine mesh rectangle.

ixs = ILUMD(Ws(ixr),nxr,2*kx,nxs) # x search grid.
iys = ILUMD(Ws(iyr),nyr,2*ky,nys) # y search grid.

KA(1) = kx; KA(2) = ky; ITA(1) = ix; ITA(2) = iy; NTA(1) = nx; NTA(2) = ny
IXA(1) = ixs; IXA(2) = iys; NXA(1) = nxs; NXA(2) = nys
MA(1) = 0; MA(2) = 0 # Get solution.

iFA = ISTKGT(nxs*nys,3) # Approximate solution values.

Call TSD1(2,KA,Ws,ITA,NTA,U, Ws,IXA,NXA,MA, Ws(iFA)) # Evaluate them.

KA(1) = kx; KA(2) = ky; ITA(1) = ixr; ITA(2) = iyr; NTA(1) = nxr; NTA(2) = nyr
IXA(1) = ixs; IXA(2) = iys; NXA(1) = nxs; NXA(2) = nys
MA(1) = 0; MA(2) = 0 # Get solution.

iFAr = ISTKGT(nxs*nys,3) # Approximate solution values.

Call TSD1(2,KA,Ws,ITA,NTA,Ur, Ws,IXA,NXA,MA, Ws(iFAr)) # Evaluate them.

errU = 0 # Error in solution values.
Do i = 1, nxs*nys
{
errU = Max(errU,Abs(Ws(iFAr+i-1)-Ws(iFA+i-1)))
}

Call LEAVE

EERR = errU; Return

End

The rest of the subroutines are the same as in example 5.

The output of this program is
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Solving on crude mesh.
error in U(., 1.00e+00) = 3.44e-02
Solving on Refined mesh.
error in U(., 1.00e+00) = 1.50e-02
Solving with errpar/10.
error in U(., 1.00e+00) = 3.44e-02
U error from U and Ue = 0.00e+00
U error from U and Ur = 4.27e-02
used 3426 / 700000 of the stack allowed.

The run-time for the above example was 37.7 seconds.

The output shows that, just as we expected, the time error estimate is small, and the spatial error
dominates. Also, the error estimates are quite good, and over-estimates.

If a uniform grid had been used in the above run, the errors would have been 3.44e-02 and
2.68e-02, or substantially worse than achieved above. A convergence rate of O O(n n − − k k ) is a l lo ot t better than
O O(n n − − 1 ), even when n n is only 2 or 3.

Notice that the run-time for example 5 is 4 or 5 times less than example 6. This is typical and indi-
cates that obtaining error estimates is expensive. It is a r re ea al ll ly y good idea to apply the above scheme when-
ever working on a new problem and concern about the accuracy of the computed solution is reasonable.
Once the mesh and errpar have been chosen appropriately and confirmed, production runs can dispense
with the error estimates and their expense. But some error estimation is a good idea. The alternative is a
pile of cheap numbers that may be garbage. Good piles of number cost more to obtain.

We have from the above estimates that

    u t tr ru ue e − − u    ∞ ≤ 4. 27×10 − − 2 (A4.11)

and from that, and the assumption that the spatial error is O O(n n − − k k ), it’s tempting to say that

    u t tr ru ue e − − u r r    ∞ ≤     u t tr ru ue e − − u    ∞ × 2 − − k k ∼∼ 1. 6×10 − − 3 (A4.12)

which underestimates the actual error by an order of magnitude! This is typical of the estimates (A4.11)
and (A4.12). (A4.11) estimates the error in the crude mesh solution and is quite reliable because it o on nl ly y
assumes that u r r is more accurate than u. (A4.12) estimates the error in the refined solution and is not so
reliable, because it also assumes that the spatial error is O O(n n − − k k ). That assumption is valid for large n n, but
not necessarily for small n n. So we can reliably estimate the error in the crude solution, but not the refined
one.

The above error estimation scheme can be applied to the solution at any point in time, not just
tstop as was done above.

Example Summary

We summarize the memory and time usage of each of the examples on two widely disparate
machines, the Cray-1 in single precision under COS and a Vax 11/750 in double precision, under Unix and
using a floating-point accelerator. These two tables provide a rough guide to the resource utilization
expected when running TTGR on various machines.

_ ______________________________________
Single Precision on a Cray-1_ ______________________________________

Example Memory (words) Time (secs)_ ______________________________________
1 825 0.1025_ ______________________________________
2 9398 4.1503_ ______________________________________
3 1260 0.2031_ ______________________________________
4 3388 0.3645

_ ______________________________________ 
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_ ______________________________________
5 2654 0.1207_ ______________________________________
6 3426 0.5042_ ______________________________________ 
















_ ______________________________________
Double Precision on a Vax 11/750_ ______________________________________

Example Memory (words) Time (secs)_ ______________________________________
1 1356 5.5_ ______________________________________
2 18324 465.8_ ______________________________________
3 2139 11.4_ ______________________________________
4 6460 30.4_ ______________________________________
5 5020 9.5_ ______________________________________
6 6530 41.7_ ______________________________________ 
















































Appendix 5

Routine, Common and Error State Summary

This appendix summarizes the calling sequences for the routines of TTGR, the contents of the rela-
tively public Common regions and the error states. It is terse and meant to serve as a reference guide, not
as a tutorial. The top level of TTGR is

Call TTGR(U,Nu,kx,x,nx, ky,y,ny,
tstart,tstop,dt,
AF,BC,
errpar,
HANDLE)

The AF procedure is of the form

Subroutine AF(t,x,nx,y,ny,U,Ux,Uy,Ut,Utx,Uty,Nu,
A,AU,AUx,AUy,AUt,AUtx,AUty,
f,fU,fUx,fUy,fUt,fUtx,fUty)

the BC procedure is of the form

Subroutine BC(t,Lx,Rx,Ly,Ry,U,Ux,Uy,Ut,Utx,Uty,Nu,
B,BU,BUx,BUy,BUt,BUtx,BUty)

and the HANDLE procedure has the form

Subroutine HANDLE(t0,U0,V0,t,U,V,Nu,nxmk,nymk,kx,x,nx,ky,y,ny,dt,tstop)

The "Return-End" HANDLE procedure is TTGRH.

The "Return-End" BC procedure is TTGRP, for when n n u u = = 0.

The statistics printing procedure is TTGRX.

The basic knob twiddling routine for TTGR is

Call TTGRV(j,f,r,i,l)

The following table summarizes the values that can be set by TTGRV
_ __________________________________

Name j Default Set to_ ___________________________________ __________________________________

theta 1 1 f
beta 2 1 f
gamma 3 1 f
delta 4 0 f_ __________________________________
hfract 1001 1 r
egive 1002 100 r_ __________________________________
kj 2001 0 i

minit 2002 10 i
maxit 2003 50 i
kmax 2004 10 i
kinit 2005 2 i
mmax 2006 15 i
mxq 2008 0 i_ __________________________________ 
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myq 2009 0 i
la 2010 1 i

pieces 2011 +2 i
pc 2012 0 i

accel 2013 0 i_ __________________________________
xpoly 3001 False l
erputs 3002 False l_ __________________________________
N(i) 4000+i − − i_ __________________________________ 























































where mxq = = 0 means that kx quadrature points will be used in x x, similarly for myq.

The procedural knob twiddler is

Call TTGRR(U,Nu,kx,x,nx, ky,y,ny,
tstart,tstop,dt,
AF,BC,
ERROR,errpar,
HANDLE)

where the ERROR procedure has the form

Logical Function ERROR(U,Nu,nxmk,kx,x,nx, ky,y,ny,t,dt,
errpar,
erputs,
eU,eV)

The TTGR coordinate mapping routines for AF are

Call TTGRU(nx,ny,D, Ux,Uy,Ut, Nu)

to map from internal to user coordinates, and

Call TTGRG( nx,ny,D, Nu,
A,AU,AUx,AUy,
F,FU,FUx,FUy)

to map from user to internal coordinates.

For mapping BC from internal to user coordinates there is TTGRU as used above in AF, and to map BC
from user back into internal coordinates

Call TTGRB( nx,ny,D, Nu, BUx,BUy,BUt )

Common Regions

When the user cannot evaluate any of AF or BC that fact can be signaled to TTGR via

Common / TTGRF / Failed; Logical Failed

Naming Conventions

The naming convention for TTGR is the same as that for the Port Library: all hidden ( not user call-
able ) subroutines have names beginning with a letter followed by a digit. If users avoid such names, there
will be no name conflicts.
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Error States.

This section provides a list of the error states [14] that may be encountered when using TTGR. Some
interpretation of these error messages is made to aid the user in finding bugs (if they exist) in the user-
supplied code AF, BC or HANDLE. For each level of (entry to) TTGR, the error message and number for a
given error state is the same, always reflecting the error from the bottom layer of TTGR. The list of error
states below, along with interpretation, is the complete set of error states for the TTGR package as obtained
from the lowest level of TTGR.

There are many internal variables of TTGR that may be controlled by the subroutine TTGRV. Thus,
there are many more ways to call TTGR with bad data than just the obvious ones involving data in the call-
ing sequence for TTGR. The list of error states given below is complete for TTGR/TTGRV, and therefore
involves variables not mentioned in the calling sequence for TTGR. If you are only using TTGR, and not
TTGRV as well, then the error states mentioning variables not in the TTGR call can not occur. So if you
bump into an error state below that mentions an undescribed or unknown variable, simply ignore it, it can-
not happen to you.

1 - Nu .lt. 1.

2 - kx .lt. 2.

3 - nx .lt. 2*kx.

4 - ky .lt. 2.

5 - ny .lt. 2*ky.

6 - dt=0 on input. The user-chosen value for the time-step dt is too small, that is, tstart+dt ≡ tstart.

7 - dt has wrong sign on input. dt and tstop-tstart must have the same sign.

8 - mxq .lt. kx-1.

9 - myq .lt. ky-1.

10 - Abs(LA) must be 1 or 2.

11 - Pieces must be 0 or 2.

12 - PC must be 0, 1 or 2.

13 - Accel must be 0, 1 or 2.

14 - For PC .gt. 0 need Abs(LA) = 2.

15 - For PC .gt. 0 need Accel = 1 or 2.

1000 - dt from HANDLE has wrong sign. Recoverable.

1001 - Cannot raise dt in HANDLE when Failure is set. Recoverable.

1002 - E(i) .le. 0 returned by ERROR. Recoverable. The error request is too small. Having a relative
error request on a variable going to 0 can cause this.

1003 - mxq=kx-1 and Order=0. Recoverable. Must have mgq=k when one of the pdes is of zero order.

1004 - pde(i) is vacuous. Recoverable. There is no i i t th h pde.

1005 - Improper BCs. Recoverable. The bcs and pdes do not match properly.

1006 - pde system not in minimal order form. Recoverable. The pde can have derivatives removed
from it.

1007 - Too few boundary conditions. Recoverable.

1008 - Too many boundary conditions. Recoverable.

1009 - Mixed boundary conditions are overdetermined. Recoverable. There are too many mixed bcs.

1010 - Singular Mixed BCs. Recoverable. The mixed bcs were singular so frequently that dt went to 0.

1011 - Dirichlet boundary conditions are overdetermined. Recoverable. There are too many Dirichlet
bcs.
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1012 - Singular Dirichlet BCs. Recoverable. The Dirichlet bcs were singular so frequently that dt went
to 0.

1013 - Singular Jacobian. Recoverable. The Jacobian for the pde was singular so frequently that dt
went to 0.

1014 - Out of stack space for LU decomposition. Recoverable.

1015 - Too many iterations needed in splitting. Recoverable.

1016 - dt=0. Recoverable. The time-step has become too small. The problem may be very badly
scaled, that is units like light-years and micro-grams are being used simultaneously. Another
cause is too small an accuracy requirement, like errpar(2)=0 when the solution is exceedingly
small.

1017 - dt=0 returned from HANDLE. Recoverable. Handle lowered dt and it became too small.

1018 - AF, BC failure. Recoverable. Failed = True occurred in AF or BC so often that dt went to 0.

1019 - Too many Newton iterations predicted. Recoverable. The number of Newton iterations was pre-
dicted to be too large so often that dt went to 0. Probable cause is a bad Jacobian, see next error
state.

1020 - Too many Newton iterations needed. Recoverable. Too many Newton iterations were needed so
often that dt went to 0. Probable cause is an incorrectly computed Jacobian. Another possible
cause is that Minit and/or Maxit are too small. Yet another possible cause is a very badly condi-
tioned Jacobian. Further possible causes: too stringent an error request or a mesh that is too
non-uniform.


