
Terminal Call Processing in Esterel

Gary J. Murakami
Ravi Sethi

AT&T Bell Laboratories
Murray Hill, New Jersey 079741

ABSTRACT

Each physical device attached to a node in a data network has corresponding call pro-
cesses that run within the node; specifically, within a control computer in the node. A
call process is responsible for the set-up and take-down of calls to and from a device.
Call processes are typically complex state machines that react to hardware signals and
user input. This paper describes an implementation of a terminal call process in Esterel, a
special language designed for programming reactive systems. We conclude that Esterel
allows clear and concise code specifications for terminal call processes; furthermore, the
specifications compile into implementations.

1 INTRODUCTION

In the TDK system [5], a typical call from a terminal to a host computer proceeds as follows:

The terminal supplies the name of the host to be called.
TDK establishes a connection.
The terminal and the host use the connection to exchange data.
The host terminates the call by hanging up.

TDK, from Terminal Datakit, is an experimental software controller for a Datakit [3] switch.2 The con-
troller has a process per ‘‘line’’ or ‘‘device’’ attached to the switch. Such processes are referred to as call
processes. This paper deals with call processes for terminals; hence, call process will refer to terminal call
process unless otherwise specified. A terminal call process implements a protocol for set-up and take-
down of calls from a terminal. Such protocols will be referred to as terminal protocols .

Although automata are natural and convenient for conveying the basic idea behind terminal protocols,
their readability suffers when we use them to specify realistic protocols. A limitation of automata is that
succinctly stated requirements can lead to widespread changes in an automaton. The changes examined in
this paper include those resulting from a terminal being turned off prematurely, from the baud rate changing
before the complete host name is supplied, and from a terminal temporarily ‘‘breaking away’’ to query the
control software in the underlying network node.

Esterel is a language designed specifically for programming reactive systems — ‘‘systems which main-
tain a permanent interaction with their environment: real-time process controllers, communication proto-
cols, man-machine interface drivers, etc. [1].’’ The output of an Esterel compiler is an automaton, which
can be readily transcribed into a traditional sequential language, such as C [4]. Nevertheless, at the source
level, Esterel supports synchronous threads and modules, which facilitate the development of programs that
can be viewed as automata.

Section 2 outlines an experiment in which an existing terminal call process, written in C, was reimple-
mented using Esterel. The compiled object code for the Esterel version is comparable in time and space to
the original. Section 3 examines a module from the Esterel version to illustrate the programming style and
to introduce some key programming constructs. The rest of the paper contains detailed observations about
Esterel and TDK.
1 Murakami’s present address: Department of Computer Science, University of Illinois, Champaign-Urbana, Illinois 61801.
2 This paper deals not with the AT&T product called Datakit VCS — a registered tradmark of AT&T — but with the experimental re-
search version described in [3] and [5].

January 15, 1990

- 2 -

2 WHAT WE DID

Since several versions of a terminal protocol will be mentioned in this paper, it will be convenient to name
them:

NAME DATE REMARK_ ___
Otermp The original terminal protocol, in C.
Stermp Oct. 1987 A simplified version, in Esterel.
Etermp Sep. 1988 A complete version, in Esterel.
Ftermp Nov. 1989 The final structured version, in Esterel.

This section briefly describes these versions.

Some Common Signals

State changes in a terminal protocol will be said to occur in response to input signals . Thus, the set of input
signals corresponds to the input alphabet of the automaton for a protocol.3

The role of some common signals can be illustrated with respect the automaton in Fig. 1. A terminal
sends an OFFHK signal to indicate readiness to communicate. TDK then prompts with

Number please

Prompts are in italics. The names of host computers are referred to as numbers.
The protocol in Fig. 1 expects the name of the host computer to be carried along with a signal DATAIN.

The host name in the figure is coma. The connection to the host is either rejected with a NAK signal (due
to, say, a busy or incorrect number) or accepted with an ANSWER signal. Acceptance means that the con-
nection is established.

_ __

OFFHK

DATAIN

NAK

ANSWER

HANGUP

ONHK

coma

Number please
coma not answering.

Thank you for using AT&T.

Fig. 1. A trivial terminal protocol.

_ __

3 This notion of input signals includes some ‘‘supervision messages’’ in addition to ‘‘signals’’ in telephony. Call-processing terminol-
ogy dates back to the earliest telephone networks. The signal names ONHK (read ‘‘on-hook’’) and OFFHK (read ‘‘off-hook’’) recall
hooks for holding telephone receivers. When not in use, a receiver rested on a hook; it had to be taken off the hook before communica-
tion could occur. Hooks were invented in 1877. ‘‘Before 1878, there was no central-office switching and telephony was confined to
private lines with a telephone at each end. The signaling problem was simple . . . the caller simply shouted into the mouthpiece using
words with long vowel sounds such as ‘ahoy’ and ‘hello’ [2].’’

January 15, 1990

- 3 -

The call ends either with the signal ONHK due to the terminal being turned off, or with the HANGUP sig-
nal from the host computer.

Otermp: The Original Protocol

The original protocol Otermp, written in C, is much more complex, with escape states and special cases that
obscure the essentially linear flow of control through Fig. 1. Additional features result in many more signal
types and states. The states in Fig. 2 correspond to labels in the C code; the transitions correspond to goto
statements. The signals under each state name correspond to transitions from a state to itself. The code is
difficult to understand even after weeks of study.

Stermp: A Simplified Protocol

In October 1987, we used Esterel to specify a simplified terminal protocol, Stermp, which was simulated,
but never fully implemented; that is, it was not run inside a switch. The code for Stermp consists of several
modules, each less than half a page long:

termp The main module.

session Call processing from OFFHK to ONHK. Several calls can be placed during a session.

getString Collect incoming characters into a string; a similar module appears in Section 3.

getDline Translate a string into a destination.

talk Set-up and take-down a connection.

Stermp implements a number of features from Fig. 2, yet its control flow structure is close to that of the
trivial protocol in Fig. 1. In particular, Stermp spports the following: the baud rate can be changed during
the collection of an incoming string; the terminal can send an ONHK signal at any time to terminate a ses-
sion; a call process can ask to be suspended when a clock timeout occurs. These features benefit directly
from built-in Esterel constructs.

_ __

idle
ADIAL, ATTN, DEBUG

INITREQ, ONHK, TIMOUT

gotbaud, authorizing
ADIAL, ATALK, ATTN

BREAK, CALL, DEBUG

OFFHK, TIMOUT

selecting
ADIAL

ATALK

ATTN

CALL

DEBUG

OFFHK

TIMOUT

checking
ADIAL

ATALK

ATTN

CALL

DEBUG

OFFHK

TIMOUT

dialing
ADIAL

ATALK

CALL

DEBUG

OFFHK

TIMOUT

waiting
ATALK, CALL

DATAIN, DEBUG

OFFHK

talking
ABORT, ADIAL, ASENDIREQ

ATALK, CALL, DEBUG, OFFHK, TIMOUT

ending

f ixing
DEBUG

OFFHK

autowait
ATALK

CALL

DATAIN

DEBUG

breaking
ATALK

CALL

DEBUG

OFFHK

TIMOUT

(disp)

(help)

(newln)

(set)

ringing
DEBUG

ONHK

CALL OFFHK

WARM_DIAL

CALL

WARM_TALK

WARM_END

(passwd)(3*fail)ONHK
BREAK

(group)

(3*fail)
ONHK

(passwd)
(3*fail)

ONHK

BREAK

(dialstring)

(datakitcm)

ATTN

(10*fail)

(autoconnect)

ONHK

ANSWER

NAK
ATTN

(10*fail)

(autoconnect)

ONHK

ONHK

ATTN

HANGUP

(autoconnect)

ATTN
ONHK

(autoconnect)

TIMOUT

OFFHK

ATTN

ONHK

(clr)
(sel)

(cont)+DLINE

ONHK

HANGUP

OFFHK

Fig. 2. The original terminal protocol.

_ __

January 15, 1990

- 4 -

_ __

PROGRAM OTERMP ETERMP FTERMP_ __ ___

SOURCE, C 1267 469 469
lines Esterel 0 576 547

_ ___

Text 15498 13760 13056
BINARY, Data 5234 31066 6166
bytes BSS 0 0 0

Total 20732 44826 19222
_ ___

Fig. 3. The size of the source and object code for the executable versions.

VERSION DATE STATES ACTIONS SIZE_ ___ __

STERMP Oct. 1987 8 51 305

ETERMP Sep. 1988 23 269 13112

FTERMP Nov. 1989 26 139 2176
_ __

Fig. 4. A comparison of the Esterel versions.

_ __

The readability of Stermp encouraged us implement the complete terminal protocol.

Etermp: A Complete Version in Esterel

The Esterel version, Etermp is a full implementation, consistent with Otermp. The C code compiled from
Etermp was dropped into a switch and used to switch calls. Etermp has fewer source lines than Otermp; see
Fig. 3. Of the 576 lines of Esterel, 450 lines specify the behavior of the reactive system. The rest of the
code consists of definitions and C interface code.

Control flow in Esterel is structured. Control flow in Fig. 2 is not. Etermp therefore benefited from
Esterel primarily at the level of the individual ‘‘states’’ in Fig. 2, which correspond to specific labels in the
C code for Otermp. Each ‘‘state’’ begins with a C switch statement, which has a case for each signal. Con-
trol flow within the cases produces substates within each ‘‘state’’. The number of substates in Otermp is
comparable to the 23 states in the code compiled from Etermp; see Fig. 4.

Etermp, has a module per ‘‘state’’ in Fig. 2. The individual modules mention only the signals that affect
them. Other default actions are factored out and mentioned once in a separate module. The modules are all
in parallel, awaiting a signal to begin execution. Control flow between modules is implemented by emitting
a signal that ‘‘fires’’ the next module.

Although the number of states in Etermp is only three times the number of states in the simplified version
Stermp, its intermediate code has over forty times the size of that for Stermp. This blowup led us to reim-
plement the terminal protocol.

Ftermp: The Final Esterel Version

Figure 5 represents our present understanding of the original terminal protocol; it is based on the same code
as Fig. 2, but was drawn several months later.

We draw the readers attention, not to the details of the two diagrams, but to the more uniform appearance
of Fig. 5 compared to Fig. 2. Esterel provides constructs (reviewed in Section 3) that allow the merged
arrows in Fig. 5 to be implemented by single statements — for example, see the arrows into ending on
ONHK or the arrows into gotbaud on BREAK. We therefore believe that the cleaner appearance of Fig. 5 is

January 15, 1990

- 5 -

_ __

idle

gotbaud

authorizing

selecting

checking

dialing

waiting

talking

autowait

fixing

breaking

ending

OFFHK

(passwd)*

(group)*

(passwd)*

(dialstring)

NAK

ANSWER

HANGUP

BREAK

ONHK

(3∗fail)

(3∗fail)

(3∗fail)

(10∗fail)

ATTN

(datakitcm)

(clear)

(sel)

(cont,disc)

(cont)

(cont)

ONHK

(auto)

(auto)

TIMOUT

OFFHK

Fig. 5. The original terminal protocol, revisited.

_ __

suggestive of an Esterel implementation, just as the individual transitions in Fig. 2 are suggestive of gotos
in a C program.

The transitions to and from the breaking state in Fig. 5 merit a comment, because they do not fit well
with single-entry/single-exit control flow constructs. As an aside, from the breaking state, the terminal can
query administrative date stored within the switch controller. From this state, the terminal can ask for an
ongoing call to be continued or disconnected. In Ftermp, the breaking state is implemented by a module in
parallel with the rest of the code.

3 A MODULE IN ESTEREL

This section examines a building block written in Esterel to collect an incoming string from the terminal.
Incoming strings include passwords, destination names, and commands (in the breaking state). The discus-
sion of the getString module introduces several of the Esterel constructs that we found useful for imple-
menting terminal protocols.

Esterel: Introductory Remarks

Esterel is designed for implementing embedded systems, which interact with their environment through
input and output signals. Conceptually, some input signals arrive, the system responds, and then settles
down to wait for the next set of input signals. The system response is theoretically instantaneous — in
practice, the underlying machine is assumed to be fast enough that the system settles down before the next
set of input signals arrive. The instantaneous response is a consequence of the ‘‘synchrony hypothesis,’’
which makes Esterel programs deterministic. A key component of the Esterel system is a compiler, which
translates Esterel programs into deterministic automata. As a final introductory remark, Esterel has no

January 15, 1990

- 6 -

built-in notion of clock time. Applications that need to keep track of time must do so by interacting with an
external timer, as we shall see.

Signals and Control Flow

The complete Esterel program in Fig. 6 consists of a single module getString. An input signal
DATAIN is declared on line 2. The type string, within parentheses, refers to the type of the values car-
ried by DATAIN. The executable statements of the program are in a bold font. The program waits for sig-
nal DATAIN to arrive. It then assigns the value carried by the signal, denoted by ?DATAIN, to the variable
aString. The program then terminates.

Now suppose that the string arrives in pieces. The bold statements in Fig. 7 use a variable aString to
accumulate an incoming string. Esterel concentrates on the sequencing aspects of reactive systems. A host
programming language, say C, is needed to handle all other aspects of a computation. The following syn-
tax is used to call host language procedures from an Esterel program:

call 〈procedure - name〉 (〈re f erence - parameters〉) (〈value - parameters〉)

In Fig. 7, procedure build is called with a single value parameter ?DATAIN and two reference parameters
aString and done. The declaration of the boolean done is not shown. In addition to accumulating the
incoming string in aString, procedure build uses the variable done to indicate whether a complete
string has been collected. In our application, a newline marks the end of an incoming string.

An exit statement must be enclosed within a trap statement. Execution of

exit 〈trap - name〉

send control to the end of the enclosing trap named 〈trap - name〉. The exit statement in Fig. 7 sends control
to the end of the trap statement named GET_STRING; in this case, to the end of the program.

_ __

module getString:

input DATAIN(string);

var aString : string in

await DATAIN;

aString := ?DATAIN

end

.

Fig. 6. A complete Esterel program.

trap GET_STRING in
aString := "";
loop
await DATAIN;
call build(aString,done)(?DATAIN);
if done then
exit GET_STRING

end
end

end

State 0_ ______
aString := "";
nextstate 1

State 1_ ______
if DATAIN then

build(aString,done)(?DATAIN);
if done then nextstate 2 end;
nextstate 1

end;
nextstate 1

State 2_ ______

Esterel
compiler

Fig. 7. The Esterel compiler translates source programs into automata. Here, the source program fragment accumu-
lates an incoming string, using a procedure build. A pretty-printed version of the compiled automaton appears on the
right.

_ __

January 15, 1990

- 7 -

_ __

trap GET_STRING in
loop

aString := "";

do

loop

emit TIMER(N);

await DATAIN;

call build(aString, done)(?DATAIN);

if done then exit GET_STRING end
end

watching ALARM timeout

if aString <> "" then

call wString()(WARNING)

end

end % do

end % loop

end % trap

Fig. 8. Use of the do-watching construct.

_ __

Watchdogs: The do-watching Construct

The watchdog or do-watching construct sets Esterel apart from a language like C. The normal action of

do 〈instructions〉 1 watching 〈signal〉 timeout 〈instructions〉 1 end

is to execute 〈instructions〉 1 and terminate. If, however, 〈signal〉 arrives in the interim, then control is
taken away from 〈instructions〉 1, and given to 〈instructions〉 2.

The semantics of Esterel are carefully defined to ensure determinacy. Only at certain program points can
control be taken away from an instruction.

Keyword timeout simply refers to the occurrence of 〈signal〉 before 〈instructions〉 1 terminates.
‘‘Time’’ in Esterel refers to the relative occurrence of signals and has no connection with clock time.

The watchdog in Fig. 8 watches for ALARM while the enclosed loop collects an incoming string. The
loop body emits a signal TIMER, which asks the environment (TDK) to start a clock timer. The environ-
ment emits an ALARM if the clock timer goes off. TDK resets the timer whenever a signal arrives. Thus,
arrival of DATAIN automatically resets the timer. If ALARM arrives before a complete string is collected in
the variable aString, procedure wstring is called to warn that aString is being emptied.

Communication between Parallel Statements

Esterel has a parallel construct, which is compiled away. The source code in Fig. 9 has the statement

every BREAK do call cycleBaud()(); emit RESTART end

in parallel with a statement to collect an incoming string. The procedure cycleBaud changes the incom-
ing baud rate from the terminal. The code for the automaton, however, is sequential. Paralellism in the
source has been eliminated by interleaving the code from the two parallel branches.

A statement of the form

signal RESTART in 〈instructions〉 end

declares RESTART to be a signal local to 〈instructions〉. Local signals are compiled away.
In words, one parallel branch in Fig. 9 waits for signal BREAK. If this signal arrives, it changes the baud

rate and emits the local signal RESTART. The other parallel branch has the form

January 15, 1990

- 8 -

loop 〈instructions〉 each RESTART

This statement corresponds to a looping watchdog; each arrival of RESTART terminates the enclosed
〈instructions〉 and sends control back to the beginning of the loop. Thus, upon RESTART, collection of the
incoming string is interrupted.

Parallelism that can be compiled away is very useful for partitioning code. A separate parallel branch
was used in Fig. 9 to wait for BREAK because the subprotocol for changing the baud rate is hardware device
dependent, whereas the collection of an incoming string is independent of the hardware.

4 EXPERIENCE WITH ESTEREL

Modules, watchdogs, and source-level parallelism help to make the Esterel versions of the terminal proto-
col readable and manageable, in our opinion. Examples illustrating the benefits of watchdogs and paral-
lelism have already appeared in Section 3, so this section contains some minor criticism of the language.
Overall, Esterel is a very promising language.

Emits are Unordered

Esterel programs are assumed to respond instantaneously to a set of input signals. Signals emitted during
an instant are assumed to occur together, so their order is not significant. The following sequence of emit
statements is a reaction to an OFFHK input signal:

emit AOFFHK;
emit TALK;

The desired behavior is that the AOFFHK acknowledgement and the TALK signal will be emitted in sequen-
tial order as they appear in the source code. The language does not define the output signal order, however,

_ __

trap GET_STRING in
signal RESTART in

every BREAK do
call cycleBaud()();
emit RESTART

end
||

loop
aString := "";
do

loop
emit TIMER(N);
await DATAIN;
call build(. . .)(. . .);
if done then
exit GET_STRING

end
end

watching ALARM
each RESTART

end % signal
end % trap

State 0_ ______
aString := ""; TIMER(N);
nextstate 1

State 1_ ______
if BREAK then

cycleBaud()();
aString := ""; TIMER(N);
nextstate 1

end;
if ALARM then nextstate 2 end;
if DATAIN then

build(. . .)(. . .);
if done then nextstate 3 end;
TIMER(N);
nextstate 1

end;
nextstate 1

State 2_ ______
if BREAK then

cycleBaud()();
aString := ""; TIMER(N);
nextstate 1

end;
nextstate 2

(b) Compiled automaton, pretty-printed. (a) Parallel modules.

Fig. 9. Parallel source code, sequential automaton.

_ __

January 15, 1990

- 9 -

and the compiled code reversed their order. When TALK was emitted first, the hardware module responded
by repeating OFFHK continuously (while it looked for an immediate AOFFHK).

The solution is to define a new signal which encapsulates a sequence of output signals. The order is
specified in the host language interface function for the new signal. However, there may be sequencing
requirements involving emissions and procedure calls. In this case, the emit statement should be changed
to a procedure call. Etermp replaces the two emit statements by a sequence of two procedure calls.

The Host Language Interface

Only local variables are permitted in Esterel. There are no global variables even for submodules. This pre-
serves the rigorous semantics for control flow in Esterel, but it complicates the interface with global data
such as system data and hardware registers. One solution is to use signals as global variables. However,
this results in duplicate data and is more likely to generate signal collisions. Signals used for control flow
can cause causality cycles, but signals used for global variables should not be involved in control flow.
Another solution is to use constants to read global variables and to write them using procedure calls.

Esterel provides only primitive types and type name definitions. All other type manipulation, such as
access to structure elements and bit manipulation, must be done in the host language by encapsulating them
in function or procedure calls. An alternative is to define Esterel constants that are actually expanded into
C code expressions via #define macros in the C interface.

Language Layers

Some secondary language related effects are as follows. The separation of code into Esterel and host-
language layers exacts a penalty. Definitions must be repeated — both a C definition and an Esterel
definition are required for each constant, function, procedure, and signal in the program interface. Signals
often have values, only easily accessible in the Esterel code, which are duplicated in the C code. The lan-
guage layering forces the program to encapsulate even simple C statements into functions or procedures.
The Esterel compiler produces C code with actions encapsulated in C functions. The combination results in
highly nested function calls just to execute a simple C statement like an assignment. A partial solution is to
define preprocessor macros for C functions. If C+ + is used as a host language, then inline functions could
reduce the levels of indirection at run time.

The procedure call syntax

call 〈procedure - name〉(〈re f erence - parameters〉)(〈value - parameters〉)

often forces an extra C function call just to re-arrange the parameters into the correct order for library or
system calls. Perhaps an attribute keyword could be used to specify reference parameters, as in Pascal.
This would also enable reference parameters for Esterel functions. Note that using C as a host language
results in hidden reference parameters for arrays (the anomalous type in C, e.g. strings).

Other Concerns

The compiled code presently contains a lot of duplicated code. We could have used better error messages.

5 EXPERIENCE WITH TDK

Several challenges were encountered in the actual implementation of the Esterel versions, Etermp and
Ftermp.

One good reason for using one large main function for Otermp is that the operating system in TDK does
not provide read/write global data for each process. The C code generated by the Esterel compiler forces
the use of many function calls. One solution is to pass modifiable objects as parameters to each C function.
This is cumbersome and difficult to implement.

The Esterel compile code required global data. A little-known facility for allocating uninitialized global
data (BSS) came in handy. The Esterel output and C interface code was processed to force all read/write
data to BSS (by moving initialization to main()). The end result is that Esterel and C interface code can

January 15, 1990

- 10 -

be programmed normally except that read/write data must be uninitialized at load time and explicitly initial-
ized at run time.

The operating system in the controller provides a process suspension facility to allow processes to free
up memory resources. When a process suspends, the process stack and the global memory are released.
All state information saved in the stack and the global memory is lost. Only 4 very precious words are
available to the programmer to save state information for all of the processing that has been completed.
Fortunately, the current position in the Esterel automaton is available in a variable that can be saved in one
of the 4 precious words. Other variables are explicitly re-initialized to a known value when the process is
awakened after suspension.

Restructuring or respecifying the terminal protocol helps to reduce complexity. Most notably, some
states can be merged to provide a cleaner design, simpler specification, and easier implementation. The
selecting and checking states were combined. If the user selects a new security group, the password is
always prompted for even if there is no password. The autowait state for predefined destinations waits for a
timeout analogous to waiting for dial-string input from the user. The timeout is minimal for the first call
attempt and jumps up to a long timeout after call failures. The f ixing and ending states are co-located as
exception handling for the inner part of the Etermp state machine.

6 DISCUSSION

The Esterel language enables the natural coding of reactive systems. Parallelism naturally expresses
many reactions, and parallelism in Esterel is inexpensive at run-time. The do-watching statement clearly
expresses watchdog constructs. The trap-handle statement provides powerful exception handling facilities
while maintaining logical control flow.

In the original Otermp, each action must be explicitly coded in each state. This results in considerable
duplication of code. In the Esterel versions, several signals have common actions that are expressed in one
line of Esterel code. These default actions are mentioned once in the main Esterel module. The individual
states encode only their primary actions.

7 ACKNOWLEDGMENTS

Initial exploration of terminal protocols began with the Steve Mahaney, with lots of discussions with Lee
McMahon. The simplified version Stermp was done in October 1987 with the help of Gerard Berry.
George Gonthier provided invaluable expertise on Esterel. Bill Marshall helped with the interface to the
research controller. Ce-Kuen Shieh made the November 89 version Ftermp run in the switch.

8 REFERENCES

1. Berry, G., Couronn ́ e, P., and Gonthier, G. Synchronous programming in Esterel. Rapport Recherche
647, INRIA, 1987.

2. Fagen, M.D., Ed. A History of Engineering and Science in the Bell System: The Early Years (1875-
1925). AT&T Bell Laboratories, Available from AT&T Technologies, Indianapolis (1-800-432-
6600), 1975.

3. Fraser, A.G. Towards a universal data transport system. IEEE J. Selected Areas in Communications
SAC-1, 5 (1983), 803-816.

4. Kernighan, B.W. and Ritchie, D.M. The C Programming Language, 2nd Ed. Prentice-Hall, Engle-
wood Cliffs, N. J, 1988.

5. McMahon, L.E. An experimental software organization for a laboratory data switch. In ICC ’81,
IEEE Intl. Conference on Communications, Vol. 2, 1981, pp. 25.4.1-25.4.4.

January 15, 1990

