
GETLAB (1) GETLAB (1)

N NA AM ME E
getlab – print security labels of files and processes

S SY YN NO OP PS SI IS S
getlab [-d] [file ...]

D DE ES SC CR RI IP PT TI IO ON N
If there is a file argument, getlab prints, in the style of labtoa(3), the security labels of the named files.
Otherwise, getlab prints the security label of the process and the process ceiling, The option is

-d Also print labels of all open file descriptors.

If a (character special) file can be opened, and the labels of the file and the file descriptor differ, both are
printed.

E EX XA AM MP PL LE ES S
getlab /dev/stdin

Print the labels (file system entry and file descriptor) of the standard input.

drop getlab -d
Print the process label, preventing the open-file check and the ceiling-label check (see getplab(2))
from raising the process label.

S SE EE E A AL LS SO O
stat(1), getflab(2), getplab(2)

Page 1 Tenth Edition January 17, 1992

NOTARY (1) NOTARY (1)

N NA AM ME E
sign, enroll, verify, key, notaryd − sign and verify certificates

S SY YN NO OP PS SI IS S
notary sign

notary enroll [-n] name

notary verify name xsum text

lmask xn /usr/notary/notaryd [-m mtpt] [-d dir]

notary key

D DE ES SC CR RI IP PT TI IO ON N
Notary provides a document-authentication service. Any user may ‘sign’ a document by presenting it and a
secret key to the notary. The notary returns a certificate (a cryptographic checksum made with the secret
key). For the certificate to be useful, the key must be enrolled with the notary under some public name.
Given the certificate and the public name, any user may ask the notary to authenticate the document by ver-
ifying that it is indeed as certified.

Sign writes on the standard output a certificate for its standard input. The secret key is demanded from the
terminal.

Enroll prompts the terminal for a secret key to associate with the public name. Unless this is a new enroll-
ment for name, indicated by option -n, the previous value of the key is demanded from the terminal. If a
trivial new key is presented, the name is erased from the database.

Verify tells whether xsum is the checksum of text, figured with the enrolled key for the public name.

Notaryd is the notary daemon, which mounts itself on mtpt (default /cs/notary) and keeps its log files
and database in directory dir (default /usr/notary). The database is encrypted, so that although notaryd
is normally started by rc(8), it cannot serve other requests until it has been primed by a notary key
request, which obtains the notary’s master key from the terminal.

F FI IL LE ES S
/cs/notary
/usr/notary/*

S SE EE E A AL LS SO O
notary(3)

January 17, 1992 Tenth Edition Page 2

PASSWD (1) PASSWD (1)

N NA AM ME E
passwd, pwx − change login password

S SY YN NO OP PS SI IS S
passwd [-an] [name]

priv pwx [[-qcd] name]]

D DE ES SC CR RI IP PT TI IO ON N
Passwd changes a password associated with the user name (your own name by default).

The program prompts for the old password and then for the new one. The caller must supply both. The
new password must be typed twice, to forestall mistakes.

New passwords must be at least four characters long if they use a sufficiently rich alphabet and at least six
characters long if monocase. These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; the owner must prove he knows the
old password.

If the -a option is given, passwd prompts for new values of certain fields of the password file entry.

The super-user may use the -n option to install new users. The prompts are self-explanatory, and most of
the defaults obvious. A null response to the UID: prompt assigns a numeric userid one greater than the
largest one previously in /etc/passwd. A null response to Directory: assigns a home directory in
/usr. If the first character of the response to this prompt is an asterisk, the remaining characters are taken
as the name of the new user’s home directory, and a symbolic link to this directory is placed in /usr.

A new user’s home directory starts with a file named .profile, which is a copy of
/etc/stdprofile with \N replaced by the user’s name, and \D replaced by the name of the user’s
home directory.

Pwx modifies the password entry for the named user in the secret password file, pwfile(5). With no option
pwx changes the classical password for the named user, or the invoker by default. The options are

-c Change other information. A special editing password for a fictitious user, ‘pwedit’, is demanded.
Then pwx prompts for treatment of the user password, SNK key, maximum privilege, and clear-
ance (maximum ceiling).

-d Delete an entry. The editing password is demanded.

-q Demand the user password. If a correct password is entered, return status 0; otherwise nonzero.

Options -c and -d require T_SETPRIV privilege.

F FI IL LE ES S
/etc/passwd
/etc/stdprofile
/etc/pwfile

S SE EE E A AL LS SO O
crypt(3), passwd(5), pwfile(5)
Robert Morris and Ken Thompson, ‘UNIX password security,’ AT&T Bell Laboratories Technical Journal
63 (1984) 1649-1672

B BU UG GS S
The password file information should be kept in a different data structure allowing indexed access.

Page 3 Tenth Edition January 17, 1992

PCOPY (1) PCOPY (1)

N NA AM ME E
pcopy – paranoid file copy

S SY YN NO OP PS SI IS S
[priv] pcopy [input output]

D DE ES SC CR RI IP PT TI IO ON N
Pcopy copies an input file to an output file preserving, if possible, file ownership, dates, and label. The
copying is performed in such a way as to assure faithfulness even in the presence of interfering processes.

Privilege, obtained via priv(1), is required to reproduce privileged files. The user must be able to write the
output file, and be able to read and write files with the label of the input file.

S SE EE E A AL LS SO O
cp(1), pex(4)

January 17, 1992 Tenth Edition Page 4

PRIV (1) PRIV (1)

N NA AM ME E
priv, privedit – run a command with privileges

S SY YN NO OP PS SI IS S
priv [option ...] [command arg ...]

priv privedit node changes

D DE ES SC CR RI IP PT TI IO ON N
If a command is given, priv determines from the privs(5) file the most specifically matching REQUEST for
which the process has all the NEEDS and to which it has ACCESS (terminology explained in privs(5)). If a
unique most specific match is found, priv asks for confirmation. Then, if the confirmation is y, the request
is executed. Privileges and process ceiling are set according to the pertinent entry in /etc/privs and the
current directory is set to a place with security label L_NO; see getflab(2). Thus relative pathnames won’t
work in the command until it executes chdir(2).

If no command is given, the contents of the privs file are printed on the standard output.

The options are

-n Determine and report authorization and actions. Do not execute them except, if PRIVEDIT is
requested, place the edited privilege file on the standard output.

-f servfile
Use servfile instead of /cs/priv, to use a non-standard privilege server.

One request is more specific than another if the regular language for each argument of the first request is
contained in the corresponding language for the second request, and at least one containment is proper.

The standard error and standard input are used for confirmations. Both must come from the same trusted
source, either a pexable stream with a stream identifier, or a pipe from a trusted process; see pex(4) and
stream(4).

Privedit applies to the privs file the modifications given in the changes file. Only the part of the authoriza-
tion tree rooted at the given node may be changed. The form of changes is described in privs(5). The
changes are echoed and confirmation is requested. (Privedit, like any other command, is a conventional
token defined by the privs file; it is not built in.)

Priv clears the environment to prevent hidden corruption by untrusted processes. For the same reason it
asks confirmation of the argument list. What you see is what it will do.

The real work of priv is done by privserv(8). Priv communicates with privserv via a pipe that the latter
mounts on /cs/priv.

F FI IL LE ES S
/etc/privs
/cs/priv

S SE EE E A AL LS SO O
privs(5), privserv(8), session(1)

D DI IA AG GN NO OS ST TI IC CS S
If a command is performed, priv returns the result of the last constituent action; see privs(5).

B BU UG GS S
Trailing null args are deleted.
The standard input and standard error cannot freely be redirected.
It is possible for a password to be demanded twice. This would be mitigated if requests were assessed in
decreasing order of specificity instead of table order.

Page 5 Tenth Edition January 17, 1992

REDMAIL (1) REDMAIL (1)

N NA AM ME E
redmail, blackmail – multilevel mail

S SY YN NO OP PS SI IS S
redmail

blackmail maildir

D DE ES SC CR RI IP PT TI IO ON N
These commands arrange for the delivery and receipt of mail with varying security labels.

Redmail simulates mail(1) for reading multilevel mail.

To receive timely notification of multilevel mail, set the shell variable MAIL to maildir/FLAG .

Blackmail delivers multilevel mail to the private mail directory maildir. To arrange for incoming mail to be
handled by blackmail, provide a directory maildir (conventionally .mail in your home directory) and edit
a single line like

Pipe to blackmail $HOME/.mail

into your regular mailbox, /usr/spool/mail/logname. Thereafter a separate blackmail process runs
for each letter. Letters receive the security label of their source.

F FI IL LE ES S
$HOME/.mail/*

S SE EE E A AL LS SO O
mail(1)

January 17, 1992 Tenth Edition Page 6

SESSION (1) SESSION (1)

N NA AM ME E
session, drop, runlow – substitute labels temporarily

S SY YN NO OP PS SI IS S
session [option ...]

priv session [option ...]

runlow command

drop [-l label] [command-arg ...]

D DE ES SC CR RI IP PT TI IO ON N
Session sets a temporary security label for the duration of one command. The ceiling is raised sufficiently
to cover the requested label, up to the authorization recorded for the current login name. If no command-
args are given, the command is taken to be a shell: sh(1) above the system floor, or nosh(8) below. With
command-args, the specified command is run; there is no shell-like path search.

If the current ceiling does not dominate the new ceiling, or the the new process label is below the system
floor and does not dominate the current label session must be invoked through priv(1).

The options are

-l label
Set the process label and the label of the standard input to the given value, specified as in atolab ;
see labtoa(3). If the value does not dominate the current process label, clear the environment and
pass no arguments to the invoked command. If label is missing, it is taken to be the system floor.

-C label
Set the process ceiling at or above the given value. If label is missing, it is taken to be the process
label.

-u user The password for user will be demanded. The fact that the password has been presented will be
recorded in the stream identifier (see stream(4)) of the standard input. For the duration of the ses-
sion, further queries for that password will succeed automatically. If user is missing, it is taken to
be the current login name.

-x Replace current session instead of suspending it for the duration of the new session (like exec in
sh(1)).

-c command-arg ...
Instead of a shell, run the given command with the given arguments. This option must come last.

To change labels, the input source must come over a trustable channel, in particular neither from an
untrusted computer nor from a terminal into which untrusted code has been downloaded. The request may
require confirmation to assure that no software has tampered with it; answer y for yes. Confirmation and
password inquiries happen under cover of pex(4). In a mux(9.1) window, this gives a visible indication; a
missing indication is a sign of spoofing.

Runlow runs a command, starting the label at bottom, somewhat like session -l 0, but without chang-
ing the label of the standard input. The executable file is located according to environment variable $PATH
as in sh(1). The command receives empty argument and environment lists, but inherits open file descrip-
tors; only descriptors 0-3 are allowed. The process label will immediately rise to dominate that of the exe-
cutable file.

Drop sets the process ceiling to label (by default to the process label) for the running of one command with
the given arguments. If no command is given, /bin/sh is run.

The current process label, process licenses, terminal label, and environment are preserved.

E EX XA AM MP PL LE ES S
priv session -C ffff...

Change ceiling to the maximum authorized for the current user.

Page 7 Tenth Edition January 17, 1992

SESSION (1) SESSION (1)

priv session -l 0
cd /usr/src

Enter a bottom-label interactive terminal subsession. Get out of the black-hole directory that
priv(1) leaves you in.

runlow /bin/sh # not useful
An attempt to fool the system into giving a bottom-label interactive shell. When the shell reads
from standard input, its label will revert to that of the current session.

drop ls -l *
drop pwd

Prevent the process label from rising to cover the labels of files in the directories examined by ls or
pwd. (If the label did rise, the output could not get to the terminal.)

F FI IL LE ES S
/dev/log/sessionlog
/etc/pwfile
/etc/floor
/bin/sh
/etc/nosh

S SE EE E A AL LS SO O
sh(1), getflab(2), getplab(2), exec(2), pwfile(5), login(8), nosh(8), pwserv(8)

D DI IA AG GN NO OS ST TI IC CS S
‘Sorry’, instead of asking for a password: untrusted channel.

January 17, 1992 Tenth Edition Page 8

SETLAB (1) SETLAB (1)

N NA AM ME E
setlab, downgrade, setpriv – set security label on files

S SY YN NO OP PS SI IS S
setlab [option ...] label file ...]

priv downgrade [-v] delta file ...

priv setpriv cap lic file ...

D DE ES SC CR RI IP PT TI IO ON N
Setlab sets the security label on the named files, or on the standard input if no files are named. The label is
a single argument in the style accepted by atolab ; see labtoa(3). The options are

-a Add label to the current file label (new=oldlabel).

-s Subtract label from the current file label (new=old&˜label).

-p Set privileges (capabilities and licenses) only.

-v Print a blow-by-blow account on standard error file.

The process must be able to open the file, either for reading or writing. One or more licenses (see
getplab(2)) are needed in some instances:

T_EXTERN to downgrade (new label does not dominate old)

T_SETPRIV if either the old or the new label has nonzero privilege bits

T_NOCHK if the old label has flag L_NO (also need T_EXTERN to change away from L_NO).

Downgrade uses setlab to clear the label bits designated by delta . It is a conventional request defined in the
privilege file, privs(5), which checks that the user has authority over the specified label bits and supplies the
necessary privilege to setlab.

Setpriv is a conventional interface to setlab for changing file capabilities and licenses.

E EX XA AM MP PL LE ES S
setlab ffff... file

Give the file a top label.

setlab -a F file
Freeze a file label to keep writes from raising the lattice value.

lmask x setlab -s 03 file
Downgrade a security label using a privileged nosh(8) session. The downgrade priv request is
preferred.

priv downgrade 03 file
Same, using obtaining the necessary authorization and privilege from priv(1).

priv setpriv - n file
Give the file a license, but no capabilities. This is a conventional trick to make the file immutable
until its privileges are turned off again. The lattice value of the label is bottom (all zero).

D DI IA AG GN NO OS ST TI IC CS S
‘Locking file for vetting’. As a matter of policy, setlab refuses to assign arbitrary privileges to a previously
unprivileged (‘untrusted’) file. Instead it marks the file immutable as in the last example. The file may then
be examined at leisure to assess whether its contents are indeed trustable before privileges are finally
assigned.

S SE EE E A AL LS SO O
getflab(2), getlab(1), priv(1)

B BU UG GS S
The strings -a and -p happen to be legitimate, if unusual, labels. They will always be understood as
option flags.

Page 9 Tenth Edition January 17, 1992

STAT (1) STAT (1)

N NA AM ME E
stat – file statistics and labels

S SY YN NO OP PS SI IS S
stat file ...

D DE ES SC CR RI IP PT TI IO ON N
Stat places facts about the named files on the standard output. Successive output lines show

The file name.

Inode number, mode, link count, owner, group, and size displayed like output from ls(1) with
options lidL. For device files, the size is replaced by major and minor device numbers separated
by a comma.

The major and minor device numbers of this inode’s file system and the file mode in octal.

Modification, access, and change times, each on a separate line.

The security label (of the destination, if a symbolic link) is given in the style of labtoa(3).

If the file can be opened and corresponding data differ for the opened file, similar information for
the opened file follows.

If the file is a symbolic link, the link destination is given, marked by ->.

Stat has nocheck capability; a superuser with nocheck license can use it to examine any file.

E EX XA AM MP PL LE ES S
/dev/tty:

0 crwxrwxrwx 0 root 0 0,0
255,255 020777
Jun 22 22:52:30 1988
Jun 22 22:52:30 1988
Jun 22 22:52:30 1988
------ ------CY 0000 0000 ...
974 rw-rw-r-- 0 reeds other 0
255,255 0100664
------ ------R 0000 0000 ...

/usr/spool/man:
9926 lrwxrwxrwx 1 doug bin 23
7,66 0120777
Oct 17 21:21:21 1987
Jun 22 22:52:14 1988
Oct 17 21:21:21 1987
------ ------C 0000 0000 ...
-> /n/bowell/usr/spool/man

D DI IA AG GN NO OS ST TI IC CS S
Diagnostics appear on the standard output.

S SE EE E A AL LS SO O
stat(2), ls(1), getlab(1)

January 17, 1992 Tenth Edition Page 10

CHANGES (2) CHANGES (2)

N NA AM ME E
intro, fmount, getuid, signal, stat, wait – changes to manual

S SY YN NO OP PS SI IS S
#include <sys/label.h>

int fmount5(type, fildes, name, flag, ceiling)
char *name;
struct label *ceiling;

D DE ES SC CR RI IP PT TI IO ON N
This section covers small changes in the named manual pages for IX relative to v10.

i in nt tr ro o
New error returns:

38 ELAB Security label violation
An action which would, if completed, break security rules; see getplab(2).

39 ENOSYS No such system call
An attempt to execute a nonexistent or unsupported system call.

40 ENLAB Out of security labels
A system table for security labels is full: a trouble similar to ENFILE.

41 EPRIV Insufficient privilege
An attempt was made to execute a priviledged system call, or exercise a privileged feature of a
regular system call.

f fm mo ou un nt t
Fmount5 mounts a file system as does fmount(2) and, on regular (type 0) or network (type 4) file systems,
imposes a specified ceiling label. No file in the file system can be accessed unless the label of the file is
dominated by the file system ceiling. Moreover, in determining capabilities during exec(2), capability and
license bits in the file label are masked by corresponding bits in the file system ceiling. The default ceiling
is L_YES on regular and L_NO on network file systems. Default capabilities and licenses are all zero.

g ge et tu ui id d
Whenever one of the system calls setuid , setgid , setruid , or setlogname requires superuser status, it also
requires capability T_UAREA.

Setpgrp can set the process group only to the current process id unless the process has capability T_UAREA.

s si ig gn na al l
Security label violations by write(2) result in SIGPIPE. Other security label violations result in SIGLAB,
which is ignored if not caught.

s st ta at t
New modes. These are indicated in ls(1) by a and b appended to the usual mode field.

S_IAPPEND
Append-only file.

S_IBLIND
Blind directory. A blind directory cannot be read and is immune to security label checks on
search; files can be removed from it only by their owners.

w wa ai it t
If the security label of the waiting process does not dominate that of the exiting process, then nonzero ter-
mination status or exit code is reported simply as SIGTERM.

Page 11 Tenth Edition January 17, 1992

EXEC (2) EXEC (2)

N NA AM ME E
execl, execv, execle, execve, execlp, execvp, exect, environ − execute a file

S SY YN NO OP PS SI IS S
int execl(name, arg0, arg1, ..., argn, (char *)0)
char *name, *arg0, *arg1, ..., *argn;

int execv(name, argv)
char *name, *argv[];

int execle(name, arg0, arg1, ..., argn, (char *)0, envp)
char *name, *arg0, *arg1, ..., *argn, *envp[];

int execve(name, argv, envp)
char *name, *argv[], *envp[];

int execlp(name, arg0, arg1, ..., argn, (char *)0)
char *name, *arg0, *arg1, ..., *argn;

int execvp(name, argv)
char *name, *argv[];

int exect(name, argv, envp)
char *name, *argv[], *envp[];

extern char **environ;

D DE ES SC CR RI IP PT TI IO ON N
Exec in all its forms overlays the calling process with the named file, then transfers to the entry point of the
image of the file. There can be no return from a successful exec; the calling image is lost.

Files remain open across exec unless explicit arrangement has been made; see ioctl(2). Signals that are
caught (see signal(2)) are reset to their default values. Other signals’ behavior is unchanged.

Each user has a real userid and groupid and an effective userid and groupid. The real userid (groupid)
identifies the person using the system; the effective userid (groupid) determines access privileges. Exec
changes the effective userid and groupid to the owner of the executed file if the file has the set-userid or
set-groupid modes. The real userid is not affected.

The security label (see getflab(2)) of the process is set as follows. If any arguments or environment param-
eters are present, or if and file descriptor numbers greater than 3 are in use, the lattice value of the process
label is ascribed to them, otherwise lattice bottom. This value is ORed with the lattice value of the exe-
cuted file to obtain the new lattice value for the process. If the new lattice value does not dominate the
old, the permission mask (see umask(2)) is set to 022.

Process licenses persist. In the simplest case, the process obtains from the file the capabilities for which the
process has licenses; see getplab(2). The detailed computation for process capabilities is: Nominal capabil-
ities are determined by ANDing the file capabilities with the capabilities in the file system ceiling (see
mount(2)) and then ORing with built-in minima. Nominal licenses are determined by ANDing the file
licenses with the licenses in the file system ceiling and with built-in maxima. Process capabilities are set by
ORing the process licenses with the nominal licenses, then ANDing with the nominal capabilities.

The builtin minimum file capabilities are all 0. The builtin maximum file licenses for T_SETPRIV and
T_LOG are 0; the rest are 1.

The name argument is a pointer to the name of the file to be executed. If the first two bytes of that file are
the ASCII characters #!, then the first line of the file is taken to be ASCII and determines the name of the
program to execute. The first nonblank string following #! in that line is substituted for name. Any second
string, separated from the first by blanks or tabs, is inserted between the first two arguments (arguments 0
and 1) passed to the invoked file.

The argument pointers arg0, arg1, ... or the pointers in argv address null-terminated strings. Convention-
ally argument 0 is the name of the file.

January 17, 1992 Tenth Edition Page 12

EXEC (2) EXEC (2)

Execl is useful when a known file with known arguments is being called; the arguments to execl are the
character strings constituting the file and the arguments.

Execv is useful when the number of arguments is unknown in advance; the arguments to execv are the name
of the file to be executed and a vector of strings containing the arguments. The last argument string must be
followed by a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pointers to the arguments themselves.
Conventionally argc is at least 1 and argv[0] points to the name of the file.

Argv is directly usable in another execv because argv[argc]==0.

Envp is a pointer to an array of strings that constitute the environment of the process. Each string conven-
tionally consists of a name, an =, and a null-terminated value; or a name, a pair of parentheses (), a value
bracketed by { and }, and a null character. The array of pointers is terminated by a null pointer. The shell
sh(1) passes an environment entry for each global shell variable defined when the program is called. See
environ(5) for some conventionally used names.

The C run-time start-off routine places a copy of envp in the global cell environ, which is used by execv and
execl to pass the environment to any subprograms executed by the current program. The exec routines use
lower-level routines as follows to pass an environment explicitly:

execve(file, argv, environ);
execle(file, arg0, arg1, . . . , argn, (char *)0, environ);

Execlp and execvp are called with the same arguments as execl and execv, but duplicate the shell’s actions
in searching for an executable file in a list of directories given in the PATH environment variable.

Exect is the same as execve, except it arranges for a stop to occur on the first instruction of the new core
image for the benefit of tracers, see proc(4).

F FI IL LE ES S
/bin/sh shell, invoked if command file found by execlp or execvp

S SE EE E A AL LS SO O
fork(2), environ(5)

D DI IA AG GN NO OS ST TI IC CS S
E2BIG, EACCES, EFAULT, EIO, ELAB, ELOOP, ENOENT, ENOEXEC, ENOMEM, ENOTDIR, ENXIO,
EROFS, ETXTBSY

B BU UG GS S
If execvp is called to execute a file that turns out to be a shell command file, and if it is impossible to exe-
cute the shell, some of the values in argv may be modified before return.
The path search of execlp and execvp does not extend to names substituted by #!.

Page 13 Tenth Edition January 17, 1992

GETFLAB (2) GETFLAB (2)

N NA AM ME E
getflab, fgetflab, setflab, fsetflab – get or set file security label and privilege

S SY YN NO OP PS SI IS S
#include <sys/label.h>

getflab(name, labp)
char *name;
struct label *labp;

fgetflab(fildes, labp)
struct label *labp;

setflab(name, labp)
char *name;
struct label *labp;

fsetflab(fildes, labp)
struct label *labp;

D DE ES SC CR RI IP PT TI IO ON N
Getflab copies the security label from the the named file into the structure pointed to by labp . Fgetlab
copies the security label from an open file specified by file descriptor. The field lb_junk is always zero.

The structure of a security label as defined in <sys/label.h> is

#define LABSIZ 60
struct labpriv {

unsigned int lp_junk : 16,/* poison level, see syslog(2) */
lp_flag : 2,
lp_fix : 2,/* fixity */
lp_t : 6,/* capabilities */
lp_u : 6;/* licenses */

};
struct label {

struct labpriv lb_priv;
unsigned char lb_bits[LABSIZ];

define lb_junk lb_priv.lp_junk
define lb_flag lb_priv.lp_flag
define lb_t lb_priv.lp_t
define lb_u lb_priv.lp_u
define lb_fix lb_priv.lp_fix
};

/* codes in lb_flag */
#define L_YES 1
#define L_NO 2
#define L_BITS 3

/* codes in lb_fix */
#define F_LOOSE 0
#define F_FROZEN 1
#define F_RIGID 2
#define F_CONST 3

/* bits of lb_t and lb_u */
#define T_SETPRIV 001 /* may set file privilege */
#define T_SETLIC 002 /* may change process license */
#define T_NOCHK 004 /* exempt from label checking */
#define T_EXTERN 010 /* may introduce foreign data */
#define T_UAREA 020 /* may write in u area */

January 17, 1992 Tenth Edition Page 14

GETFLAB (2) GETFLAB (2)

#define T_LOG 040 /* may execure syslog() call */

Three types of labels are distinguished by the lb_flag field:

L_YES The file can be read or modified without regard to label. Its inode data (see stat(2)) have per-
manent conventional values. Null(4), log(4), and fd(4) are labeled L_YES.

L_NO The the file and its inode cannot be read or written except by processes with capability
T_NOCHK. A L_NO label may be changed by processes with capability T_EXTERN, unless
prevented by F_CONST described below.

L_BITS The label has a ‘lattice value’, given by lb_bits and so called because the values form a
mathematical lattice with bitwise AND as the meet operation and OR as the join.

Each process and each file has a label. Normally data may only flow ‘up’ the lattice. The destination of a
read, write, inode query, or inode change must have a lattice value that dominates (bitwise) the lattice value
of the source, unless the process concerned has capability T_NOCHK.

To assure upward flow, a read(2) or an inode query (e.g. stat(2)) normally causes the file label to be OR-ed
into the process label. Similarly a write(2) or an inode change (as by chmod(2) or link(2)) causes the pro-
cess label to be OR-ed into the file label. However such side-effect changes in a file or process label may
happen only if the label is loose (see below) and the new label is dominated by the process ceiling; see
getplab(2). Otherwise the system call terminates with error ELAB.

Security checks are independent of, and made prior to, the permission checks described in access(2).
Super-user processes are subject to security checks.

Setflab replaces the security label of the named file with the contents of the structure pointed to by labp.
Fsetflab replaces the security label of an open file specified by file descriptor. If the new label has flag
L_BITS, the new lattice value must dominate the old one, dominate the process label, and be dominated by
the process ceiling. If the new label has flag L_NO, the old label must be dominated by the process ceiling.
Flag L_YES is an error. The field lb_junk is ignored.

The field lb_t contains ‘capability’ bits; lb_u contains corresponding ‘license’ bits; their meanings are
described in getplab(2) and exec(2). The two fields together are known as ‘privileges’. Any file that has
nonzero privileges is called ‘trusted’ and cannot be changed, in contents or in inode, except by processes
with capability T_SETPRIV.

Aside from considerations of trustedness, a label can be changed with more or less freedom according to its
‘fixity’, lb_fix:

F_LOOSE Any process can change the lattice value of a loose file label implicitly as a side effect as
described above or (up to the process ceiling) explicitly with setflab or fsetflab. The file
owner or the super-user can change the fixity.

F_FROZEN The lattice value of a frozen label cannot change. The fixity can be changed by the file
owner or the super-user.

F_RIGID Only processes with capability T_EXTERN can change a rigid label; see getplab(2). The
labels of external media, such as terminals, tapes or disks, are automatically rigid. A loose
or frozen label on a stream (see stream(4)) can be changed to rigid. This facility allows
filters, such as mux(9.1), to make pipes behave like external devices. The fixity of a rigid
label cannot change.

F_CONST A constant label may not be changed. The labels of certain special files, such as
/dev/null and /dev/mem, are automatically constant; no other labels may become con-
stant.

S SE EE E A AL LS SO O
getplab(2), getlab(1), labLE(3), setlab(8), unsafe(2), signal(2)

Page 15 Tenth Edition January 17, 1992

GETFLAB (2) GETFLAB (2)

D DI IA AG GN NO OS ST TI IC CS S
EFAULT, EIO, ELAB, ELOOP, ENOENT, ENOTDIR

January 17, 1992 Tenth Edition Page 16

GETPLAB (2) GETPLAB (2)

N NA AM ME E
getplab, setplab – get or set process security label and privilege

S SY YN NO OP PS SI IS S
#include <sys/label.h>

getplab(labp, ceilp)
struct label *labp, *ceilp;

setplab(labp, ceilp)
struct label *labp, *ceilp;

D DE ES SC CR RI IP PT TI IO ON N
Getplab copies the security label and the ceiling label, usually simply called ‘the ceiling’, of the current
process into the structures pointed to by labp and ceilp. No copy happens for a zero pointer. The structure
and meaning of labels are described in getflab(2). The ceiling is a security lid; the process can only access
files with labels dominated by the ceiling.

A process may have special security ‘capabilities’, in which case it is called ‘trusted’. The capabilities are
obtained from the file it is executing, usually as ‘licensed’ from its parent process; see exec(2). The capa-
bilities and corresponding licenses are given by bits in the fields labp->lb_t and labp->lb_u respec-
tively. The bits are defined by the masks

T_SETPRIV The process can change the privileges of files; see getflab(2).

T_SETLIC The process can increase its own licenses; see below.

T_EXTERN The process can bring new data sources into view by mounting file systems or setting
labels of (open) special files; see getflab(2).

T_NOCHK Ordinary checks and changes of lattice values are not made when reading or writing files or
inodes or when setting the process label.

T_UAREA The process can change certain information that may be accessed by descendent processes
without label checks; see setuid(2) and stream(4).

T_LOG The process can change logging status; see syslog(2).

Setplab copies the structures pointed to by labp and ceilp into the process label and the ceiling label.
Unless the process has capability T_NOCHK, the new lattice value of the process label must dominate the
old and the old lattice value of the ceiling must dominate the new.

The new label flag must be L_BITS, and the lattice value of the new ceiling label must dominate the lattice
value of the new process label.

Capabilites may not increase. Licenses may increase only if the process has capability T_SETLIC.

The fixity, lb_fix, of a process may be set only to F_LOOSE or F_FROZEN. In the latter case the pro-
cess label can not change as a side effect of label checking.

The bits of the ceiling pointer are themselves labeled as if they were a minifile. When the ceiling is set by
setplab, the minifile label is set to the old value of the process label, unless the process has capability
T_SETLIC, in which the minifile label is set to bottom. When the ceiling is read by getplab, the minifile
label is checked as if read by read(2).

D DI IA AG GN NO OS ST TI IC CS S
EFAULT, ELAB, EPRIV
If getplab cannot raise the process label to dominate the minifile label, the requested labels are filled in,
with the ceiling being censored to flag L_NO , and ELAB is returned.

S SE EE E A AL LS SO O
getflab(2), unsafe(2), exec(2), session(1), setlab(8)

Page 17 Tenth Edition January 17, 1992

LABMOUNT (2) LABMOUNT (2)

N NA AM ME E
labmount – return file system ceiling label

S SY YN NO OP PS SI IS S
int labmount(fd, lp)
struct label *lp;

D DE ES SC CR RI IP PT TI IO ON N
If the file with descriptor fd resides in a file system, labmount copies the ceiling label of that file system into
the place pointed to by lp. If the file does not reside in a file system, the ceiling is reported to be L_YES;
see getflab(2).

S SE EE E A AL LS SO O
fmount(2)

D DI IA AG GN NO OS ST TI IC CS S
EBADF, EFAULT, EIO, ELOOP, ENOENT, ENOTDIR

January 17, 1992 Tenth Edition Page 18

NOCHK (2) NOCHK (2)

N NA AM ME E
nochk – control security checking by file

S SY YN NO OP PS SI IS S
nochk(fd, onoff);

D DE ES SC CR RI IP PT TI IO ON N
Nochk modifies file security checks in processes that have capability T_NOCHK. If onoff is 1, file descriptor
fd becomes exempt from security checks; this is the default state. If onoff is 0, the file descriptor will be
checked as if the process did not have capability T_NOCHK.

The return value is the previous checking state.

S SE EE E A AL LS SO O
getplab(2)

D DI IA AG GN NO OS ST TI IC CS S
EBADF

B BU UG GS S
It would have been wise to let 0 be the default state, but this would have required modifying standard utili-
ties, such as fsck(8), which must be run with privilege T_NOCHK.

Page 19 Tenth Edition January 17, 1992

SEEK (2) SEEK (2)

N NA AM ME E
seek, tell, lseek, llseek − manipulate read/write pointer

S SY YN NO OP PS SI IS S
int seek(fildes, offset, whence)
long offset

long tell(fildes)

long lseek(fildes, offset, whence) long offset;

Long llseek(fildes, offset, whence)
Long offset;

D DE ES SC CR RI IP PT TI IO ON N
Seek sets the file pointer for the file associated with fildes as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset .

If whence is 2, the pointer is set to the size of the file plus offset .

Tell returns the value of the file pointer associated with fildes.

Lseek is equivalent to seek followed by tell.

Llseek is like lseek, but handles i.e. 64-bit, file pointers.

Seeking far beyond the end of a file, then writing, creates a gap or ‘hole,’ which occupies no physical space
and reads as zeros.

File pointers have security labels separate from files. For security-label calculations, seek is understood to
‘write’ the pointer, tell to ‘read’ it. If whence is 0 on seek, the new value of the file pointer does not depend
on the old value.

S SE EE E A AL LS SO O
open(2), fseek(3)

D DI IA AG GN NO OS ST TI IC CS S
EBADF, ESPIPE

B BU UG GS S
Lseek doesn’t affect some special files.

January 17, 1992 Tenth Edition Page 20

SYSLOG (2) SYSLOG (2)

N NA AM ME E
syslog – security logging

S SY YN NO OP PS SI IS S
#include <sys/log.h>

int syslog(command, arg2, arg3)

D DE ES SC CR RI IP PT TI IO ON N
Syslog controls security logging. The command argument determines the meaning of the other arguments.

Logging is done by writing on special files, described in log(4). One of these files is the ‘system log file’
where the kernel records certain events automatically. Each process has an ‘audit mask’ that determines
which events cause logging records; mask items are defined in <sys/log.h>; see log(5). Each file has a
‘poison class’ with value 0, 1, 2, or 3. The kernel has a table of four corresponding ‘poison masks’ and a
global audit mask. When a system call mentions a file in a pathname, the poison mask corresponding to the
file’s poison level is ORed into the process audit mask; when a process executes a file, the global log mask
is ORed into the process audit mask.

The forms of the several syslog commands follow. Arguments shown as 0 are ignored.

syslog(LOGON, fd , x)
Turn logging on; nominate file descriptor fd as repository for log file with minor device number x.
Fd must be open for writing. Logging will persist after fd is closed.

syslog(LOGOFF, 0, x)
Turn logging off on minor device number x.

syslog(LOGGET, n, 0)
Return the value of the nth poison mask; n=4 designates the global audit mask.

syslog(LOGSET, n, x)
Set the nth poison mask to x.

syslog(LOGFGET, fd, 0)
Return the poison level of the file associated with file descriptor fd , which may be open for reading
or writing.

syslog(LOGFSET, fd, x)
Set the poison level of the file associated with file descriptor fd , (which may be open for reading or
writing) to x. The poison level is stored in field di_label.lb_junk of the file’s inode; see
inode(5).

syslog(LOGPGET, pid, 0)
Return the audit mask of process pid.

syslog(LOGPSET, pid, x)
Set the audit mask of process pid to x.

Syslog works only in processes with capability T_LOG; see getplab(2).

S SE EE E A AL LS SO O
log(4), log(5), syslog(8)

D DI IA AG GN NO OS ST TI IC CS S
EBADF, EFAULT, EINVAL, EIO

Page 21 Tenth Edition January 17, 1992

UNSAFE (2) UNSAFE (2)

N NA AM ME E
unsafe – detect potential file security violations

S SY YN NO OP PS SI IS S
#include <sys/types.h>

unsafe(nfd, readfds, writefds)
fd_set *readfds, *writefds;

D DE ES SC CR RI IP PT TI IO ON N
Unsafe examines file descriptors 0 through nfd–1 and sets the corresponding bits of the masks in readfds
and writefds to indicate files that are not known to be safe (i.e. to satisfy security label rules) for reading or
writing respectively. The bit masks are indexed and manipulated as described in select(2).

At the same time, if the process has capability T_NOCHK (see getplab(2)), all file descriptors indicated by
ones among the first nfd bits of the previous values of readfds and writefds are marked safe to read or write
respectively.

Potentially unsafe situations arise from changes in file label caused by this or other processes, changes in
process label, and file opening.

To prevent unintended violations of security policy, programs with capability NOCHK must monitor label
changes. For this purpose the process label may be frozen (see getplab(2)) to prevent unintended automatic
label changes. SIGLAB may be used to detect changes in file labels (see signal(2)), and unsafe to pinpoint
them.

D DI IA AG GN NO OS ST TI IC CS S
EFAULT

S SE EE E A AL LS SO O
getflab(2), getplab(2), signal(2), select(2)

January 17, 1992 Tenth Edition Page 22

BUILDMAP (3X) BUILDMAP (3X)

N NA AM ME E
buildmap, transin, transout − translate labels between computers

S SY YN NO OP PS SI IS S
#include <cbit.h>

struct mapping *buildmap(int fd, char *file, char *me, char *pw, server);

transin(struct mapping *map, struct label *foreign,struct label *domestic);

transout(struct mapping *map, struct label *domestic, struct label *foreign);

D DE ES SC CR RI IP PT TI IO ON N
Buildmap and its partner (which may be another instance of buildmap) at the far end of the stream fd work
out a mapping for translating labels. The label space at the near end is defined by file , which contains
ASCII representations of cbit(3) structures. The identity (for authorization purposes) of the near end is me,
using a secret password pw . Each end challenges the other, using its own password to compose a response,
whose validity is checked by verify ; see notary(3); The ends need not know each other’s passwords.
Server is to simplify the protocol: one end should have server set to zero, the other end to one.

Transout and transin translate labels according to the formula determined by buildmap . Labels in transit
are represented in the binary form of the source machine and are translated on receipt, so transout’s job is
simpler. Both routines return 0 if translation is impossible or illegal, otherwise they perform the translation
and return 1.

S SE EE E A AL LS SO O
cbit(3), notary(3)

D DI IA AG GN NO OS ST TI IC CS S
These routines all return 0 on error.

Page 23 Tenth Edition January 17, 1992

CBIT (3X) CBIT (3X)

N NA AM ME E
cbit, cbitread, cbitlookup, cbitparse, cbitcert − security category manipulation

S SY YN NO OP PS SI IS S
#include <cbit.h>

struct cbit *cbitparse(char **fields, struct cbit *cb);

struct cbit *cbitread(char *file);

struct cbit *cbitlookup(char *name, struct cbit *cb);

char *cbitcert(struct cbit *p);

D DE ES SC CR RI IP PT TI IO ON N
These functions manipulate certificates entitling computers to handle compartmented security categories.
Each security compartment is represented by a structure of form:
struct cbit {

char *name; official name of category
int floor; default value (only bottom bit used)
char *owner; public name of issuing authority
char *nickname; our version of category name
int bitslot; where we store it
char *exerciser; who we are
char *certificate; owner’s signature

}
which describes the meaning of the bitslot-th bit in a computer’s label space. By convention, the lines of
the file /etc/cbits contain (in ASCII colon-separated form) the compartments currently held on the
local computer.

Cbitparse fills in and returns a cbit in the obvious way from a vector of seven strings. If the second argu-
ment is zero cbitparse allots a new structure using malloc(3).

Cbitread reads and parses an ASCII file of cbits, returning an array of filled in structures. The last entry in
the array is a dummy; it is signalled by having a zero value of name.

Cbitlookup , when fed a category name and an array of cbits (such as returned by cbitread), returns a
pointer to the unique entry whose category name is name, or returns zero.

Cbitcert composes a certificate granting exerciser the right to hold files with the given security category.
The output of cbitcert depends only on name, floor , owner , and exerciser. The output must be signed by
owner with xs (see notary(3)) to produce the checksum value in certificate. Third parties may check valid-
ity of a cbit by calling
verify(p->exerciser, p->certificate, cbitcert(p), strlen(cbitcert(p)))

F FI IL LE ES S
/etc/cbits

S SE EE E A AL LS SO O
notary(3).

D DI IA AG GN NO OS ST TI IC CS S
These routines all return 0 on error.

January 17, 1992 Tenth Edition Page 24

GETSTSRC (3) GETSTSRC (3)

N NA AM ME E
getstsrc, setstsrc − read and write a stream identifier

S SY YN NO OP PS SI IS S
char *getstsrc(fd)
setstsrc(fd, name)
char *name;

D DE ES SC CR RI IP PT TI IO ON N
Setstsrc attaches a descriptive string to the indicated stream, and getstsrc returns a pointer to a static buffer
containing the string. The string persists until final close of the stream. When a stream is first opened the
string is trivial.

Setstsrc requires capability T_EXTERN; see getplab(2). The string conventionally names the off-machine
source of the stream. Since only trusted processes may modify it, it may be relied on for security calcula-
tions.

Getstsrc returns 0 on error, setstsrc returns –1 on error.

S SE EE E A AL LS SO O
stream(4)

D DI IA AG GN NO OS ST TI IC CS S
EPERM, ENOTTY

B BU UG GS S
The return value of getstsrc points to static data whose content is overwritten by each call.

Page 25 Tenth Edition January 17, 1992

LABCONST (3) LABCONST (3)

N NA AM ME E
labelyes, labelno, labeltop, labelbot – label constants

S SY YN NO OP PS SI IS S
extern struct label labelyes;

extern struct label labelno;

extern struct label labeltop;

extern struct label labelbot;

D DE ES SC CR RI IP PT TI IO ON N
These objects are initialized as follows, where the coded values are as in labtoa(3).

labelyes The universally permissive label, Y.
labelno The universally denying label, N.
labeltop The top lattice value, ffff....
labelbot The bottom lattice value, 0000....

January 17, 1992 Tenth Edition Page 26

LABEQ (3) LABEQ (3)

N NA AM ME E
labeq, lable, labmax, labmin – compare security labels

S SY YN NO OP PS SI IS S
#include <sys/label.h>

labEQ(x, y)
struct label *x, *y;

labLE(x, y)
struct label *x, *y;

struct label labMAX(x, y)
struct label *x, *y;

struct label labMIN(x, y)
struct label *x, *y;

D DE ES SC CR RI IP PT TI IO ON N
LabEQ returns 1 if x and y point to equal labels, otherwise 0. The result is 1 if and only if neither argument
is 0, the flag fields are the same, and, when the flag fields are L_BITS, the lattice values are the same.

LabLE returns 1 if the security label pointed to by x compares less than or equal to the security label
pointed to by y. An improper argument is treated as if it had flag L_NO. If one of the labels has flag
L_YES, the result is 1; otherwise if one of the labels has flag L_NO, the result is 0; otherwise the the result
is 1 if and only if the lattice value of x is bitwise less than or equal to the lattice value of y. (Inequalities
involving L_YES and L_NO are not transitive.)

LabMAX and labMIN respectively return the maximum (bitwise OR) and minimum (bitwise AND) of lat-
tice values of labels pointed to by x and y. An improper argument is treated as if it had flag L_NO. If one of
the labels has flag L_YES, the result is the other label; otherwise if one of the labels has flag L_NO, the
result has flag L_NO.

The privilege and frozen-label fields of the labels are disregarded by all of these functions.

S SE EE E A AL LS SO O
getflab(2)

Page 27 Tenth Edition January 17, 1992

LABTOA (3) LABTOA (3)

N NA AM ME E
labtoa, atolab, atopriv, privtoa – security label conversion

S SY YN NO OP PS SI IS S
#include <sys/label.h>

char *labtoa(labp) struct label *labp;
struct label *atolab(string) char *string;

atopriv(string) char *string;

char *privtoa(n)

D DE ES SC CR RI IP PT TI IO ON N
Labtoa returns a pointer to a null-terminated ASCII string that represents the value of the security label
pointed to by labp. The string has a form exemplified by

guxnlp guxnlpFY 0000 0000 ...

The characters of the first group guxnlp denote capabilities T_LOG, T_UAREA, T_EXTERN, T_NOCHK,
T_SETLIC, and T_SETPRIV respectively. Characters of the second group denote corresponding licenses;
see getplab(2). Missing capabilities or licenses are denoted by -.

The character shown as F denotes the fixity of the label. It may be a space (loose), F (frozen), R (rigid), or
C (constant) The character shown as Y denotes the label’s flag. It may be a space for a lattice label, N for
L_NO, Y for L_YES, or U for the erroneous flag value 0.

Each group of four zeros may be any four lower case hex digits representing the value of two bytes of the
lattice value. Repeating groups at the end of the string are denoted

Atolab inverts the process. The order of characters in, and length of, privilege strings are arbitrary, except
that a nonempty license string must be preceded by a nonempty capability string. The order of characters
from the set YNUFRC is arbitrary. Spaces must separate nonempty capability and license strings, and may
be interspersed arbitrarily after the license string. A final ... causes the last four hex digits to be repeated,
provided the preceding label contains a multiple of four digits. A short or missing lattice value is padded
with zeros.

Atopriv converts a string of characters from the set guxnlp- into privilege bits that may be stored in the
lb_t or lb_u fields of a label structure. The order and number of characters are arbitrary.

Privtoa is inverse to atopriv.

S SE EE E A AL LS SO O
getflab(2), getplab(2), getlab(1)

D DI IA AG GN NO OS ST TI IC CS S
Atolab returns 0 for unrecognizable input.

Atopriv returns the negative value
˜(T_LOG|T_UAREA|T_EXTERN|T_NOCHK|T_SETLIC|T_SETPRIV) for unrecognizable input.

B BU UG GS S
The value returned by labtoa, atolab, or privtoa points to a static buffer that is overwritten at each call.

January 17, 1992 Tenth Edition Page 28

NOTARY (3) NOTARY (3)

N NA AM ME E
xs, enroll, verify, reverify, keynotary − certification functions

S SY YN NO OP PS SI IS S
char *xs(char *key, char *buf, int n)
enroll(char *name, char *oldkey, char *newkey)
verify(char *name, char *xsum, char *buf, int n)
rverify(char *name, char *xsum, char *buf, int n)
keynotary(char *key1, char *key2)

D DE ES SC CR RI IP PT TI IO ON N
All these funcitons except xs must be linked with option -lipc of ld(1).

Xs composes a cryptographic checksum of the n characters starting at buf. The key argument points to an
8-character checksumming key. A pointer is returned to a null-terminated ASCII checksum.

Enroll registers a checksumming key for user name with notary(1), only one checksumming key per user
name at a time. On first registry the oldkey argument is ignored. On subsequent registries, the oldkey argu-
ment must match the currently stored checksumming key. The new checksumming key is newkey; if
newkey is trivial, name is deregistered.

Verify consults the notary oracle to check the validity of a checksum composed by xs. A non zero return
value signifies that the checksum was calculated using the checksumming key registered with the notary
oracle as belonging to user name. Rverify does what verify does, but leaves the connection to the oracle
open until presented with a NULL value for name. Hence, subsequent calls to rverify should be quicker.

Keynotary is used to tell the notary daemon the key for its private encrypted data. Key1 is the key the data
is currently encrypted with; key2 (if nonzero) is the key to use in the future. A file descriptor is returned,
from which diagnosic information may be read.

S SE EE E A AL LS SO O
notary(1), ipc(3)

D DI IA AG GN NO OS ST TI IC CS S
Verify and enroll return zero on failure, otherwise nonzero.

Page 29 Tenth Edition January 17, 1992

PEX (3) PEX (3)

N NA AM ME E
pex, unpex – obtain process-exclusive file access

S SY YN NO OP PS SI IS S
#include <sys/pex.h>

int pex(fd, seconds, pexbuf)
struct pexclude *pexbuf;

int unpex(fd, seconds)

D DE ES SC CR RI IP PT TI IO ON N
Pex tries, using the ioctl call, to obtain exclusive access to the file designated by file descriptor fd; see
pex(4). If pexbuf is nonzero, facts about the other end of the pipe are placed in the object pexbuf points to,
as described in pex(4).

If fd refers to a stream, pex first empties the input and output queues, flushing if seconds is negative, and
otherwise waiting up to the specified time interval for the queues to drain. If the queues do not drain, an
error results.

Unpex uses to try to reverse the effect of pex, again flushing or draining queues as specified by seconds.

On a pipe, pex or unpex succeeds only if the process at the other end answers with an FIOPX or FIONPX
ioctl respectively. Pex and unpex should not be used to answer.

S SE EE E A AL LS SO O
pex(4)

D DI IA AG GN NO OS ST TI IC CS S
Pex returns –1 on failure, 0 on success, and 1 for a half-pexed pipe.

January 17, 1992 Tenth Edition Page 30

PWQUERY (3X) PWQUERY (3X)

N NA AM ME E
pwquery, pexpw − password services

S SY YN NO OP PS SI IS S
pwquery(fd, name, param)
char *name;
char *param;

char *pexpw(fd, prompt)
char *prompt;

D DE ES SC CR RI IP PT TI IO ON N
Pwquery calls upon the password server, pwserv(8) to cause a password to be demanded from file descrip-
tor fd and checked against the password for the named user. It is loaded by option -lipc of ld(1).

Echoing is disabled during the transaction, and the server is persnickety about when to use an Atalla
challenge/response dialogue and when to use crypt(3)-style passwords. A negative return value indicates a
protocol error in reaching the server or that the server is not trusted. A zero return value indicates rejection
of the password. A positive return value indicates approval of the password.

The argument param may be zero (for vanilla password service) or may point to a blank-separated list of
one or more keywords. Currently only one keyword is understood:

pex Reject the password if the stream is unpexable.

Pexpw reads a password from the indicated file descriptor, after prompting with the null-terminated string
prompt and disabling echoing. A pointer is returned to a null-terminated string of at most 8 characters. The
dialogue is not attempted if it cannot be protected from eavesdropping by the process-exclusive mechanism
of pex(4).

F FI IL LE ES S
/cs/pw
/etc/pwserv

S SE EE E A AL LS SO O
ipc(3), getpass(3), pex(4) pwserv(8)

B BU UG GS S
Pexpw returns a pointer to static memory that is overwritten at every call.

Page 31 Tenth Edition January 17, 1992

CHANGES (4) CHANGES (4)

N NA AM ME E
proc, stream – changes to manual

D DE ES SC CR RI IP PT TI IO ON N
This section covers small changes in the named manual pages for IX relative to v10.

p pr ro oc c
The groupid of all files in /proc is –1. No process can have this groupid.

s st tr re ea am m
Changed ioctl(2) calls for streams:

TIOCSPGRP
The process group can be set only to the current process id unless the process has capability
T_UAREA.

FIORCVFD
Deliver a structure pointed to by param:
struct passfd {

int fd;
short uid;
short gid;
short nice;
char logname[8];
char cap;

};

The call blocks until there is something in the stream. If data is present, it returns EIO. If a file
descriptor has been sent from the other end of the pipe by FIOSNDFD, FIORCVFD fills in the user
and group ID of the sending process, its niceness (see nice(2)), its login name, its capabilities in
the form of the field lb_t (see getflab(2)), and a file descriptor for the file being sent; the file is
now open in the receiving process.

New ioctl calls:

FIOGSRC
Copy the stream identifier to the SSRCSIZ-byte string pointed to by param.

FIOSSRC
Copy the SSRCSIZ-byte string pointed to by param into the stream identifier. Capability
T_EXTERN is required; see getplab(2). A newly created stream has an empty stream identifier. It
is customary to set the stream identifier on network connections to identify the source. Successful
password demands may also be recorded in the stream identifier for the benefit of pwserv(8).

S SE EE E A AL LS SO O
session(1), src(5)

January 17, 1992 Tenth Edition Page 32

LOG (4) LOG (4)

N NA AM ME E
log – security log file

S SY YN NO OP PS SI IS S
#include <sys/log.h>

D DE ES SC CR RI IP PT TI IO ON N
The special files /dev/log/log00 through /dev/log/log15 refer to ‘repository’ files nominated by
syslog(2).

The kernel automatically records selected events on the ‘system log file’ /dev/log/log00 in the form
described in log(5).

Any process with write access may write on a log file; no process has read access. Each write places in the
repository file a log(5) record with code = LOG_USER. The data written are truncated to LOGLEN bytes
and placed in the body field. When logging is not turned on, a log file acts like a write-only /dev/null.

F FI IL LE ES S
/dev/log/*

S SE EE E A AL LS SO O
syslog(2), log(5), syslog(8)

Page 33 Tenth Edition January 17, 1992

PEX (4) PEX (4)

N NA AM ME E
pex – ioctl requests for process-exclusive access

S SY YN NO OP PS SI IS S
#include <sys/pex.h>

ioctl(fildes, FIOPX, p)
struct pexclude *p;

ioctl(fildes, FIONPX, p)
struct pexclude *p;

ioctl(fildes, FIOQX, p)
struct pexclude *p;

ioctl(fildes, FIOAPX, p)
struct pexclude *p;

ioctl(fildes, FIOANPX, p)
struct pexclude *p;

D DE ES SC CR RI IP PT TI IO ON N
These ioctl(2) requests provide and check temporary exclusive access to an input/output source. FIOPX
marks as ‘pexed’ the file or pipe end referred to by fildes. On a pexed file read, write(2), and most forms of
ioctl work only in the pexing process. Moreover, these operations do not work in any process on a half-
pexed pipe (a pipe with exactly one pexed end). The mark remains until the pexing process requests
FIONPX or closes all file descriptors that refer to the file.

When fildes refers to a stream, FIOPX and FIONPX require the stream’s input and output queues to be
empty; pex(3) gives a method for emptying them. When fildes refers to a pipe, the far end of which is
unpexed, FIOPX waits, with timeout, for an answering FIOPX or FIONPX at the far end. FIONPX waits
similarly when the far end is pexed. Either request returns 1 when it leaves a pipe with exactly one end
pexed. A pipe must cycle through the fully unpexed state between fully pexed states; from the time one
end becomes unpexed until the far end does too, FIOPX on the unpexed end will return error ECONC.

If argument p is nonzero, the structure it points to is filled in with information about the pexedness of the
file and about the process at the far end of a pexed pipe. The format, defined in <sys/filio.h> is:
struct pexclude {

int oldnear; /* FIOPX or FIONPX: state at begining of call */
int newnear; /* FIOPX or FIONPX: state at end of call */
int farpid; /* -1 if not pipe, 0 if not pexed, else process id */
int farcap; /* if farpid>0, capabilities */
int faruid; /* if farpid>0, user id */

};
Capabilities are represented as in the lb_t field of a label; see getflab(2).

FIOQX obtains the information without affecting state.

Read, write, or ioctl calls that fail due to pexedness return error ECONC. The only ioctl requests that may
succeed on a half-pexed pipe are FIOCLEX, FIONCLEX, FIOPX, FIONPX, and FIOQX. A half-pexed
pipe is deemed ready by select(2).

FIOANPX and FIOAPX modify the response of open stream device files to FIOPX requests. They require
T_EXTERN capability; see getplab(2). After FIOANPX all FIOPX requests on the special file return 1 and
leave the device in an unusable state (as if the device driver were a process at the far end of a pipe, always
responding FIONPX). The treatment is reversed with FIOAPX. This mechanism allows a terminal to be
denounced to the kernel as being attached to an untrusted remote computer that cannot guarantee the exclu-
sivity asked by FIOPX.

E EX XA AM MP PL LE ES S
A program collecting a password wishes to exclude other programs from the dialogue. The following code

January 17, 1992 Tenth Edition Page 34

PEX (4) PEX (4)

does the trick. (When the dialogue passes through mux(9.1) or con(1), downstream stages of the path to the
terminal can be assumed to be similarly pexed, provided FIOPX succeeds.)

#define ok(p) (p->farpid==-1 || p->farpid>0 && p->farcap!=0)
struct pexclude x;
if(ioctl(fd, FIOPX, &x) == 0 && ok(&x)) {

static char buf[9];
write(fd, promptstr, strlen(promptstr));
read(fd, buf, 8);
s = buf;

} else
s = 0;

ioctl(fd, x.oldnear, 0); /* restore state */

An intervening trusted program, with a policy of recognizing exclusive access only for trusted processes,
may cooperate with

n = read(fd, buf, BUFSIZE);
if(n == -1 && errno == ECONC) {

if(ioctl(fd, FIOPX, &pexcode)!=0 || pexcode.farcap==0)
ioctl(fd, FIONPX, 0);

} else /* improper pexing */

S SE EE E A AL LS SO O
ioctl(2), pipe(2), stream(4), pex(3)

D DI IA AG GN NO OS ST TI IC CS S
EBADF, ECONC, EFAULT, EIO, ENOTTY (FIOAPX and FIOANPX)
ECONC for forbidden IO calls in other processes.
EBUSY for an undrained queue.

Page 35 Tenth Edition January 17, 1992

CHANGES (5) CHANGES (5)

N NA AM ME E
filsys, fstab, passwd – changes to manual

D DE ES SC CR RI IP PT TI IO ON N
This section covers small changes in the named manual pages for IX relative to v10.

f fi il ls sy ys s
A disk inode in a regular file system contains an extra field for the file’s security label.

#include <sys/label.h>

struct label labeldi;

f fs st ta ab b
The table of normally mounted file systems, /etc/fstab, contains an extra field for the file system ceil-
ing; see fmount(2).

p pa as ss sw wd d
In addition to the usual password file, /etc/passwd, there is a highly secret file /etc/pwfile, which
is used by pwserv(8) to authorize clearances. Each content line contains the following fields, separated by
colons:

name
encrypted password
SNK key
process license (unused)
clearance (maximum ceiling)

The license and label fields are in the form understood by labtoa(3); thus the label field may contain white
space. Lines with fewer than five fields are ignored.

The name field contains a user name for option -u of /bin/session. It is customary, but not necessary,
for names in pwfile also to be registered in passwd(5).

The SNK field gives a 24-digit octal key for a Secure Net Key (or Atalla) challenge box.

The label field gives the maximum permissible label for option -l, and the ceiling label otherwise.

January 17, 1992 Tenth Edition Page 36

LOG (5) LOG (5)

N NA AM ME E
log – format of security logging records

S SY YN NO OP PS SI IS S
#include <sys/log.h>

D DE ES SC CR RI IP PT TI IO ON N
The structure of system log file records as declared in <sys/log.h> is
struct logbuf {

short len; /* total length of whole record */
short pid; /* process id */
long slug; /* transaction number */
char code; /* kind of record */
char mode; /* sub-kind */
char colon; /* ’:’, aids sync */
char body[LOGLEN];

};
The code field identifies the kind of record; for legal values see the include file. In kernel records the
mode field identifies where in the kernel the logging record originated, for user records it contains the
minor device number of the /dev/log/logxx file used to create the record.

The body field contains the logging record proper; its actual length is determined from the len field. In
kernel records the body is a sequence of values, each prefixed by one or more format bytes according to
the following list. Multibyte numbers are represented low byte first.

s Next two bytes are a byte count for following string.

$ Next one byte is a byte count for following string, which is typically a file component name.

C Next byte is a byte count for following string, which is the command name.

j Next value is a security label: two bytes of lb_priv followed by two bytes of index into the
kernel’s shared label table for the lattice value of the label; see getflab(2).

J Next value is a security label: two bytes of lb_priv followed by two bytes of index into the
kernel’s shared label table for the lattice value of the label, followed by 60 bytes of bits of the lat-
tice value of the label.

n Next n bytes (n=1,2,3,4) represent a number.

I Next bytes name an inode: two bytes of device followed by two bytes of inumber.

E The current system call suffered an ELAB error.

e Next byte is an errno code; see intro(2).

The various bits of the log mask (see syslog(2) are named LN, LS, LU, LI, LD, LP, LL, LA, LX, LE, LT,
with the same meanings as the corresponding key letters defined in syslog(8).

F FI IL LE ES S
/dev/log

S SE EE E A AL LS SO O
syslog(2), log(4), syslog(8)

B BU UG GS S
The various kinds of kernel logging records are understandable only by reading the kernel source code.
It takes 7 bytes, not 4, to name an inode.

Page 37 Tenth Edition January 17, 1992

PRIVS (5) PRIVS (5)

N NA AM ME E
privs – privilege file

D DE ES SC CR RI IP PT TI IO ON N
The file /etc/privs expresses the rules whereby priv(1) grants privilege. It consists of a list of state-
ments, each terminated by a semicolon. One or more comments, each extending from # to newline, may
precede each statement.

R Ri ig gh ht ts s
Rights are defined thus:

DEFINE rights-list;

Each right in the comma-separated rights-list has a name, and optionally a parenthesized parameter type.
The types are

LAB Label, ordered by lattice value.

RE Regular expression ordered by language inclusion. Regular expressions are in the form of
regexp(3), with enclosing ˆ(and)$ understood.

PRIV Set of privileges in atopriv form, ordered by inclusion; see labtoa(3).

Examples:

DEFINE ceiling(LAB), filename(RE), privinstall;

Rights are identifiers used solely by priv; they have no other manifestation in the system. In the example,
the ceiling right involves label comparisons, but has no necessary connection to process ceilings. The
name could be changed globally to, say, floor without affecting the interpretation of /etc/privs.

A Au ut th ho or ri iz za at ti io on n
Authorization is expressed by a tree. Nodes of the authorization tree are named, like files in the file system,
by full pathnames starting from the root, /. Associated with each node are statements to grant rights, and
statements to admit access to the node. Rights are monotone in the tree: the rights at a node must be a sub-
set of the rights at its parent. Access to a node implies access to its children.

Right-granting statements have the form

RIGHTS nodename rights-list;

A rights-list is as in a rights definition, but with explicit values for parameters. White space or one of the
metacharacters ;,() may be included in a value by placing double quotes around it. Examples:

RIGHTS /admin priv(upxnl), ceiling(ffff...);
RIGHTS /admin/security priv(p), ceiling("ffff ...");
RIGHTS /admin/operations priv(xn)

Access statements have the form

ACCESS nodename pred-list;

Access to the named node is granted when the comma-separated pred-list is nonempty and all the predi-
cates in the list are satisfied. A node may have more than one ACCESS statement. Legal predicates are

ID(lognames)
A regular expression for login names that have access to this node.

PW(name ...)
The password associated with one of the names in pwfile(5) must be presented.

SRC(source)
A regular expression for the stream identifier of the standard input.

R Ru ul le es s
Rules give patterns for requests and show the prerequisite rights for and the actions to carry out each
request:

January 17, 1992 Tenth Edition Page 38

PRIVS (5) PRIVS (5)

REQUEST(arguments) NEEDS rights DOES actions ;

The request part shows arguments supplied to priv(1); normally the arguments spell out the prefix of a
UNIX command. The NEEDS part tells what rights are needed to perform the request. The rights are as in a
rights statement, with substituted parameters; see ‘Parameter values’.

If the process has access to a node that grants the needed rights (with the parameter in each grant dominat-
ing the parameter of the corresponding need), then the actions for the request are performed. Otherwise the
request is denied. Legal actions are

PRIV(gunxlp)
Set one or more process licenses, abbreviated as in labtoa(3).

EXEC(args)
Execute a program given by the args. Members of the args list are separated by white space and
may specify substitutions; see ‘Parameter values’. EXEC does not do a sh(1)-like $PATH search.

DAEMON(args)
Same as EXEC, but do not wait for the command to complete.

CEILING(label)
Set the process ceiling.

PRIVEDIT(node file)
Read editing commands from the named file . Only the subtree at node is editable; nodes closer to
the root cannot be touched.

ANYSRC
Skip the normal check for a trusted source; see priv(1).

The order in which nodes of the authorization tree are visited in evaluating a NEEDS clause is undefined,
however at each node the predicates of the request are evaluated in order. The actions of a granted request
are also performed in order, with effects such as privilege settings persisting until the end of the priv com-
mand or until overridden by a later action.

P Pa ar ra am me et te er r v va al lu ue es s
Parameter values appear in members of NEEDS and DOES lists. A value may be surrounded by double
quotes, in which case the value may contain white space or one of the metacharacters ,;(). A value may
contain substitution marks, $0, $1, ... Each such mark is replaced from the priv invocation, $0 standing
for the match to the first argument of the REQUEST and so on. If a star is appended to the mark (e.g. $0*,
$1*), the argument and all following ones are copied into the parameter list. Nothing can follow a star
mark in a parameter.

E Ed di it ti in ng g
Statements of the above forms may be used with action PRIVEDIT to augment a privs file. Further types
of statements exist for editing only:

RMDEFINE rights-list ;
Remove all occurences of the listed rights from the file.

RMACCESS nodename pred-list ;
RMRIGHTS nodename rights-list ;

Remove the given access list or the given rights from the named node. If the list is empty, remove
all access lists or rights.

RMREQUEST(arguments);
Remove the REQUEST with identical arguments.

RMNODE path-list;
Remove the listed subtrees.

DEFINE, RMDEFINE, REQUEST, and RMREQUEST are understood to modify the root.

Page 39 Tenth Edition January 17, 1992

PRIVS (5) PRIVS (5)

E EX XA AM MP PL LE ES S
REQUEST(session -l)

NEEDS ceiling($2)
DOES PRIV(nx) EXEC(/bin/session -l $2);

REQUEST(/etc/downgrade -l)
NEEDS downgrade($2)
DOES PRIV(nx) EXEC($*);

F FI IL LE ES S
/etc/privs

S SE EE E A AL LS SO O
priv(1), privserv(8)

B BU UG GS S
There is no way to quote a newline or an initial double quote in parameters.
If an ACCESS or RMACCESS statement contains duplicate predicates, RMACCESS may remove an unin-
tended list.

January 17, 1992 Tenth Edition Page 40

SRC (5) SRC (5)

N NA AM ME E
src – form of a stream identifier

D DE ES SC CR RI IP PT TI IO ON N
Stream identifiers, defined in stream(4), are conventionally set by init(8) and dkmgr(8) to designate the
source of the login stream. A datakit source begins with dk! followed by a dial string.

Session(1) may append to the stream identifier of the standard input a colon and a name, which is under-
stood by pwserv(8) as an assertion that the agent on that stream knows the password associated with that
name, which obviates further demands for that password.

E EX XA AM MP PL LE ES S
dk!201/mu/attbl:doug

S SE EE E A AL LS SO O
getstsrc(3)

Page 41 Tenth Edition January 17, 1992

APX (8) APX (8)

N NA AM ME E
apx – mark an open stream device trusted

S SY YN NO OP PS SI IS S
/etc/apx [arg]

D DE ES SC CR RI IP PT TI IO ON N
By default, a freshly opened stream device has the APX bit cleared: it will reject all pex requests. If
invoked without an argument, apx will set the APX bit on its standard input (by calling the FIOAPX con-
trol). If invoked without an argument the APX bit is cleared. Apx needs licence T_EXTERN to run. It is
usually automatically invoked at login time, provided that the source identifier of the standard input of the
login session is worthy.

F FI IL LE ES S
/etc/privs

S SE EE E A AL LS SO O
pex(4)

January 17, 1992 Tenth Edition Page 42

CHANGES (8) CHANGES (8)

N NA AM ME E
init, mount – changes to manual

D DE ES SC CR RI IP PT TI IO ON N
This section covers small changes in the named manual pages for IX relative to v10.

i in ni it t
In single-user operation, init invokes nosh(8) with security label set at bottom and all capabilities; see
getplab(2). At the end of single-user operation, init invokes nosh to run the startup script
/etc/rs.nosh, again with bottom label and all capabilities.

In multiuser operation, init opens each terminal port with a security label set to the a ‘floor’ value, which is
the label of the file /etc/floor.

m mo ou un nt t
New option:

-l label
The label, specified as in labtoa(3), becomes the file system ceiling; see fmount(2).

Page 43 Tenth Edition January 17, 1992

CL (8) CL (8)

N NA AM ME E
cl, integrity – file system label check

S SY YN NO OP PS SI IS S
/etc/cl [specfile dir] ...

/etc/integrity [rootdir]

D DE ES SC CR RI IP PT TI IO ON N
Cl examines file trees for correctness of labels. Each specfile argument names a file containing a descrip-
tion of the labels expected in a given subtree of a file system. Each line of a specfile has the form

filename uid,gid mode capabilities licenses label

User and group ids are specified in the style of chown(8). The mode is specified in the style of chmod(2);
only the 07777 bits are significant. Capabilities and licenses are in the style of atopriv; see labtoa(3). The
label is in the style of atolab, without capabilities or licenses.

The first valid line names the root of the tree in question. Subsequent lines name particular files in the tree.
A report is made for each ‘suspicious’ file and for each particular file which does not match its description
in specfile.

A suspicious file is a file that is not named in the specfile for which one of the following holds:

The label has flag L_UNDEF or L_YES.
The file is a special file the label flag is L_NO.
The file is not a special file the label flag is not L_NO.
The lattice value of the label is not dominated by the label in the first line of specfile.
The capability or license is not dominated by the corresponding value in the first line of specfile.

Each named directory argument dir is treated as if there were a specfile argument consisting of just a single
line

dir bin,bin 666 ----- ----- 0000...
Integrity surveys the directory tree dependent from rootdir, or / if no rootdir is given. It reports
non-bottom labels, which are possible signs of loss of integrity – modification without privilege.
The search cuts off at directories with non-bottom labels.

S SE EE E A AL LS SO O
getflab(2), ftw(3), lcheck(8)

B BU UG GS S
Extraneous diagnostics may be produced if this command is applied to active file systems.

January 17, 1992 Tenth Edition Page 44

NOSH (8) NOSH (8)

N NA AM ME E
nosh – ‘no-suprise’ shell, a sub-standard command interpreter

S SY YN NO OP PS SI IS S
/etc/nosh [file]

priv nosh -gunxlp file

D DE ES SC CR RI IP PT TI IO ON N
Nosh executes commands read from its standard input or from the named file . It has few of the advanced
features of sh(1), making it more trustable for use in security administration tasks. In the second usage,
nosh is endowed with one or more of the licenses gunxlp; see labtoa(3).

C Co om mm ma an nd ds s
A command is either simple or builtin. Each command consists of a sequence of words separated by white
space, terminated by a new-line character or end of input. Backslash quoting and sharp commenting are
honored. The first word specifies the name of the command to be executed. If the command name matches
one of the builtins listed below it is executed in the shell process. If the command name matches no builtin
command, it is taken to be the pathname of an executable file; the name must begin with / or .. A new
process is created and an attempt is made to execute the file via exec(2) with an empty environment.

I In np pu ut t- -O Ou ut tp pu ut t R Re ed di ir re ec ct ti io on n
The standard input is inherited by simple commands. Simple > output redirection to named files as in sh(1)
works only for simple commands, and only for file descriptors 1 (default) and 2.

B Bu ui il lt ti in n C Co om mm ma an nd ds s
cd dir Change the current directory to dir.
exit status

Exit with given status, 0 by default.
set +e
set -e

Turn an ignore-error switch on (+e, default) or off (-e). Nosh normally ignores nonzero exit sta-
tus from an executed command, but exits with that status if -e is set.

set +x
set -x

Refrain from echoing (+x, default) or echo (-x) each command as it is executed.
lmask licenses command [arg ...]

Run a simple command, allowing licenses indicated by a nonempty string from the set gunxlp-
to be inherited from nosh. Normally no licenses are inherited.

M Mi is ss si in ng g f fe ea at tu ur re es s
Features of sh(1) that nosh lacks include: background commands, pipelines, compound commands, most
builtins, multicharacter quotation, command substitution, parameter substitution, variables, environments,
file name generation, redirection of input, signal traps, search paths, mail notification, .profile, user
specification of prompts.

D DI IA AG GN NO OS ST TI IC CS S
Nosh prints nonzero exit or termination status of executed commands as octal numbers labeled e= and t=;
see wait(2). If invoked with a file argument, it exits unconditionally for nonzero termination status or syn-
tax error, and conditionally (under control of set) for nonzero exit status.

Nosh exits immediately if invoked with more than one argument, if invoked with an argument with a rela-
tive path name, if invoked by a relative path name, or if invoked with interrupt or quit signals ignored.

S SE EE E A AL LS SO O
sh(1)

Page 45 Tenth Edition January 17, 1992

PRIVSERV (8) PRIVSERV (8)

N NA AM ME E
privserv – privilege server

S SY YN NO OP PS SI IS S
lmask nuxl /etc/privserv [option ...]

D DE ES SC CR RI IP PT TI IO ON N
Privserv is the keeper and interpreter of the privs(5) file. Priv (1) calls on privserv to hand out privileges in
accordance with the rules given in privs. Privserv is a permanent process, normally started by the boot
script rc(8). It receives service requests through the mounted pipe /cs/priv. The options are

-p name
The file name of the server, /etc/privserv by default (used to reinvoke the priv server when
the privs(5) file is modified by a PRIVEDIT request.)

-m mountpt
The file system mount point for privilege service, /cs/priv by default.

-l logfile
The file in which to record logging information, /usr/adm/privlog by default.

-f privs
The data base of privileges, /etc/privs by default. Unless privs is itself a privileged file,
privserv will not actually grant the privileges there specified.

F FI IL LE ES S
/etc/privs
/cs/priv

S SE EE E A AL LS SO O
priv(1)

January 17, 1992 Tenth Edition Page 46

PWSERV (8) PWSERV (8)

N NA AM ME E
pwserv – password verification service

S SY YN NO OP PS SI IS S
/etc/pwserv

D DE ES SC CR RI IP PT TI IO ON N
Pwserv, normally started from rc(8), handles password verification requests initiated by (say) pwquery(3)
through the conventional process mount point /cs/pw. When a request is made a file descriptor (called the
‘line’ below) is passed to pwserv together with a user name and an optional parameter string. Normally,
pwserv writes a prompt on the line, reads a reply, and returns an indication of success to the invoking client.
Valid passwords are taken from the file /etc/pwfile, which lists for each user an ordinary (encrypted,
crypt(3)-style) password and an SNK (Secure Net Key) challenge-response key. Before prompting, an
FIOPX IO control is attempted to render the line to the end user private; see pex(4). If this succeeds either
a classical or an Atalla password is accepted. If the pex bid fails, the prompt warns that the line is not pri-
vate, and only an SNK response is accepted.

In the pexed case the prompt looks like Password(pjw:31416): and in the unpexed case like
Password(TAPPED LINE:01492): The five digit string after the colon is the Atalla challenge string.
Only the first five digits of the Atalla response string are significant. Hex digits in the response must be
typed in lower case.

Possible values of the optional parameter string are

pex (specified by opening the server with ipcopen("/cs/pw!pex")) Accept passwords only if
the FIOPX succeeds.

When the line’s stream identifier asserts previous confirmation of the same password, pwserv answers
affirmatively without demanding a password; see session(1) and src(5).

F FI IL LE ES S
/etc/pwserv
/etc/pwfile

S SE EE E A AL LS SO O
pwquery(3), ipc(3), pex(4), stream(4), pwfile(5), passwd(1)

B BU UG GS S
Jammable.

Page 47 Tenth Edition January 17, 1992

SYSLOG (8) SYSLOG (8)

N NA AM ME E
syslog, logpr – system security logging

S SY YN NO OP PS SI IS S
priv syslog command [arg2 [arg3]]

/etc/logpr file [offset]

D DE ES SC CR RI IP PT TI IO ON N
Syslog controls the mandatory logging scheme. License T_LOG is required. The variety of different com-
mands and command formats reflects the full complexity of the protean syslog(2) system call. In the
usages given below a mask argument is a combination of letters NILESDATUPX, meaning:

N Record all uses of file names.
S Record all seek calls.
U Record all writes to the ‘u area’.
I Record all accesses of inode contents.
D Record possession and use of file descriptors.
P Record process history: exec(2), fork(2), kill(2), exit(2).
L Record all explicit changes of labels by setflab (see getflab(2)) and setplab (see getplab(2)).
A Record all changes of labels.
X Record all uses of privilege.
E Record all ELAB error returns.
T Record all uses of a traced file or process.

Valid arguments to syslog are:

on file logdev
Nominate file as repository for user generated logging records written to logging special file
logdev. File must be a full path name, and must be openable for writing. If logdev’s minor device
number is zero, file will also receive mandatory (kernel generated) logging records. Logdev may
be a full path name or a minor device number.

off logdev
Cancel the effect of an on command.

get n Print the value of the n-th log mask. Values of n are 0, 1, 2, or 3 for the ‘poison’ masks; 4 is ‘glo-
bal’ mask.

set n mask
Set the value of the n-th log mask.

fget file
Print the poison level of file , one of the integers 0, 1, 2, or 3. File must be the full path name of a
readable file.

fset file n
Set the poison level of file to n . File must be the full path name of a readable file.

pget pid
Print the logging mask of process pid .

pset pid mask
Set the logging mask of process pid to mask.

Logpr converts to cryptic ASCII the cryptic binary format of a log file described in log(5). The optional
numerical byte offset tells where in the file printing is to start.

F FI IL LE ES S
/dev/log/log00 where syslog makes voluntary entries

S SE EE E A AL LS SO O
syslog(2), log(4), log(5).

D DI IA AG GN NO OS ST TI IC CS S
‘Covert channel warning’: the log file has a label that is neither top nor flagged L_NO.

January 17, 1992 Tenth Edition Page 48

SYSLOG (8) SYSLOG (8)

B BU UG GS S
Logpr is very primitive.

Page 49 Tenth Edition January 17, 1992

XS (8) XS (8)

N NA AM ME E
xs – checksums

S SY YN NO OP PS SI IS S
xs [-s] [-k keystring] [-f official-list] file ...

D DE ES SC CR RI IP PT TI IO ON N
Xs computes and reports checksums of named files, one report per line, in the form

filename s1 s2 s3 s4

where the checksum comprises four groups of four hex digits each. The checksum algorithm may be per-
turbed by specifying a keystring argument. The -s argument causes the file’s mode, label, owner and
group to enter into the checksum calculation.

The -f argument causes xs to verify checksums of files against values given in the official-list file, which
has the format of the output of an earlier xs run: lines consisting of one file name followed by four groups
of hex digits per line. Text after a # sign is ignored.

The checksum algorithm used is meant to be secure: to create a file whose checksum agrees with that of
another given file is very difficult.

E EX XA AM MP PL LE ES S
xs -s ‘find /bin -print‘ | xs /dev/stdin

This should return a different value if /bin changes in any way.

January 17, 1992 Tenth Edition Page 50

