
C (,. -

Computing Science Technical Report #33

A User?s Guide to DODES, a Double Precision
Ordinary Differential Equation Solver

N. L. Schryer

August 1975



A User’s Guide to DODES, a Double Precision Ordinary
Differential Equation Soler.

N. L. Schryer

- Bell Laboratories,
Murray Hill, New Jersey07974

ABSTRACT

DODES ( Double precision Ordinary Differential Equation Solver ) is a
packageof portable FORTRAN subprogramsfor integrating first order initial
valueproblemsof the form

dx f(i,x), x(t5) = x5 (1)

wherex(t) is a vector valued function of time t, f is a vector valued function
of i and x, and x~ is a vector of initial conditions. Thesesubprogramsallow
easyusercontrol over both the accuracyand theoutput of the integrationpro-
cess.

The algorithm used is a variable order, variable step-sizeextrapolation
schemeaugmentedby several mechanismsfor dealing with discontinuitiesin
the derivativesof the solution. Previousextrapolationbaseddifferential equa-
tion solvers lack one or more of thesefeaturesof DODES. Thus, DODES is a
more robust,efficient andreliable methodfor solving (1).
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1. introduction
DODES ( Double precisionOrdinary Differential EquationSolver ) is a packageof port-

able FORTRAN subprogramsfor integratingfirst order initial value problemsof the form
f(~’,x) (1.1)

dt

subject to initial conditions

= x~ (1.2)

wherex(j) is a vectorvalued function of time l, fis a vector valuedfunction of iandx, andx~
is a vectorof initial conditions. Thesesubprogramsallow easyusercontrol over both the accu-
racy and the output of the integrationprocess. The algorithm used is a variable order,variable
step-sizeextrapolationschemewhich is locally “optimal”. That is, at eachstep in the integra-
tion procedure,the order and step-sizeare chosen to minimize the cost per unit time-step.
This extrapolationschemeis augmentedby several mechanismsfor dealing with discontinui-
ties in the derivatives of the solution. This makes DODES a robust,efficient and reliable
methodfor solving (1.1) subjectto (1.2).

The basic algorithm used by DODES is extrapolation to the limit of Gragg’s modified
mid-point rule 181. This techniquehas been used previously in several differential equation
solvers, [2, 3, 171. It has been found [5, 11, 19] to be efficient and competitivewith other
methods[7, 12] for solving (1.1).

The step-sizeand ordermonitor describedin 114] is usedto drive the integration process.
This makes the overall procedurefar more robust and reliable, as well as increasing its
efficiency. The efficiency (cost) of DODESis substantiallyindependentof the initial time-step
chosenby the user. It is sufficient to havethe initial time-stepmerely within a few ordersof
magnitudeof the “correct” value.

The techniquesof [21and [31are fixed (
14ih ) order, variable step-sizemethods,with

rathercrudestep-sizemonitors. The fixed-orderstep-sizemonitorof 1171 was a greatimprove-
ment over thoseused in 121 and 13]. However,one assumptionmadeby 1171 is often violated
in practice. This situation typically arises when the solution of (1.1) is pleasantlysmooth in
someregions,while being exceedingly“kinky” in others. In suchcases,the use of [17] results
in rather inefficient integration. DODES has a locally optimal monitor for both order and
step-size,and a mechanism for dealing with “kinky” solutions. This makes DODES more
efficient, andmorereliable, than [21,[3] or [171- in somecasesby morethanan order of mag-
nitude. A thoroughcomparisonof the performanceof DODES with that of 121, [31,[71,1121
and [171is madein 1151.
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The programunit DODES has beensuccessfullyverified for adherenceto a portablesub-
set of ANS StandardFORTRAN, called PEORT, usingthe PFORTverifier [131. This virtually
guaranteesthat the program will successfullycompileon any existing ANS conformingFOR-
TRAN compiler. DODES usesthe function subprogramIlMACH [4] from the PORT library
[6] to obtain all machinedependentparameters. Thus,DODES may easily be ported to any
machinewhich supportsANS FORTRAN. DODES also usesthe storageallocator [91and the
errorhandling facility [101of the PORT library.

Section 2 briefly discussesthe useof extrapolationandGragg’s modified mid-point rule to
solve (1.1), as well as the application of the monitor [141to drive the process. Section 3
presentsthe calling sequences,and a descriptionof the arguments,for the subroutinesDODES,
DODESi and DODES2. These three routines provide various levels of detailed control over
the integration process. Section 4 givesseveralexamplesof the useof DODES. Finally, sec-
tion 5 discussesvarious implementationdetailswhich someusersof DODES may find useful.

2. The Algorithm
The underlyingdiscretizationprocessused is Gragg’smodified mid-point rule [8]. When

asked to integrate (1.1) between time lj and time t,., using 2N time-steps,that rule sets
h=(tr~ti)/N, x0 —x(t1), and x1 .x(fi)++f(f,,x,). Then, for i=2,~~ ,2N, the quantities

h

arecomputed. This givesx2N as an approximationto XGr). In fact, we have[16]

T(h) X~ — xG,)+~r~h
2~ (2.1)

j—I

wherethe r. are unknown vectorswhich are independentof h. Thus, for small h, eachcom-
ponentof T’(h) resemblesa polynomial in h2. We want to obtain T(0) —x(t.) accurately.

The processof extrapolation is easily described. Let a sequenceof h’s be defined by
h, —h

0/N, 1—1,2,3, ... whereh0 — tr ~ and the A. form a monotone increasing sequence
of positive integers. Bulirsch and Stoer show in [1] that given an operator T(h) satisfying
(2.1), andsuch a sequenceh,, the value at h —o of the polynomial of degreem which interpo-
lates T(h,) for i=O m, is given by 7~ which is determinedfrom the following recursionre-
lations

T6—T(h1) for O~i(m

and
7j’ —T~’4 + ~7”~1~7]—i )/{(h,/h,~1 )2 ~1) (2.2)

forO(i(m—j, 1(j~nL
If the 7’ are organizedinto a lozenge of the form

T(h1)—Td 7’)

T(h)—T~ T1
12 7~2

T(h
3)—T~ 1 7’?

7’? 7’?

T(h5)—7~

then the above recursionrelation (2.2) expresseseachelementofThe j-th column (j>O) in
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termsof its two neighborsin column j-l. In [II it is alsoshownthat the error obeys

7y—T(0)I~M,+1 (h, h,.4.1 )2 (2.3)

for someconstantsM,~ ~. Finally, it is shown that for sufficiently small h0,

11+ 1 Ii

and thus we can estimatethe error in 77. A similar result is establishedfor interpolation by
rational functions [1). From (2.3), we define the order in columni to be 2(j+l). The level of
extrapolation in a lozenge is defined to be the numberof entries in the first column of that
lozenge. The value h0 =i~ —I, is referred to as the time-step while the h, are called sub-steps.
Extrapolationapproximatesthe X(tr) valuesaccurately,but does not accuratelyapproximate
x(t1 + nil,) for 0< n <N,.

Extrapolationof Gragg’s modified mid-point rule gives a processof arbitrarily high order.
Also, not only doesthe extrapolationproceduregenerateaccurate(high-order) results, it also
providesreliableerror estimates,via (2.4) above,for thoseresults.

Relations(2.3) and (2.4) describeboth the rateof convergencein eachcolumn of the ex-
trapolationlozengeand the actual error in eachelementof the lozenge. This is sufficient infor-
mation to determinewhich columnsof the lozengeare locally “optimal” and what step-sizeh0
is locally “optimal.” The step-sizeand order monitor [14] makesuseof thesefacts to provide an
“optimal’ choice of step-sizeand order for the extrapolationprocess. Since the extrapolation
processa~sumesthat the solution x(t) hasmany continuousderivatives, the monitor of [14]
also has severalmechanismswhich allow efficient integration eventhrough singularities.

The monitor of’ 1141 is the main driver of~ the solution process. Basically,all the package
DODESdoes is provide the monitor with subroutinesfor computingapproximatesolutionsof
(1.1) using Gragg’s modified mid-point rule, for computingerror tolerances,and for handling
the step-wiseoutput of the integrationprocess.

3. The Subprottrams
This section describes the subroutines DODES, DODESI and DODES2. These

subroutinesprovide various levels of control over the integration process. A function subpro-
gram DODESE is describedfor controlling the accuracyof the computedsolution.

The simplestway to solve (1.1) is to usethe

SUBROUTINE DODES(F, X, NX, TSTART, TSTOP, DT, ERRPAR, HANDLE)

The input to this subroutineconsistsof:

F - A subroutinefor computing the right-handside of (1.1). CALL F(T,X,NX,FTX)
should return FTX(l) = the l-th componentof the vector f(T,X), for 1=1 NX.
The subroutineF should be declaredEXTERNAL in the programcalling DODES.

X - The initial values for the solution, X=x(TSTART).

NX - The lengthof the solution vectorX.

TSTART - The initial time, that is, X=x(TSTART).
TSTOP- The final time, the point in time at which integrationshould stop.

DT - The initial time-stepto be used. The performanceof DODES is quite independent
of the value of DT chosenby the user. It is sufficient to merely haveDT within a
few ordersof magnitudeof being “correct”. The value of DT will be automatically
adjustedby DODES, during the integrationprocess,to achievethe accuracydesired
at the least possiblecost.
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ERRPAR - A REAL vector of length 2 for use in controlling the accuracy of the computed
solution. Specifically, each componentX(l) of the solution will be computed to
v~ithin an absolute error of

ERRPAR(l) * DABS(X(l)) + ERRPAR(2)

for 1=1 NX, at each time-step. This error requestmust always be positive.

HANDLE - A subroutine for interacting with the integration process. At the end of each
time-step there is a good deal of information which DODEShas internally available.
This information includes such items as the solution x at a new point in time, an
error estimate for that computed solution, and an ‘optimal DT for the next time-
step. The subroutine HANDLE is used by DODESto communicate this informa-
tion to the user. On the other hand, the user may also communicatewith DODES
through HANDLE, as describedbelow. Thus, HANDLE gives the usera “handle”
on both the resultsof the integration and on the way DODES does its job. At the
endof eachtime-step,DODESwill executethe statement

CALL HANDLE(TO, XO, TI, Xl, NX, DT, TSTOP,E)

where XO=x(TO) is the value of the solution at the endof the previoustime-step
and XI=x(TI) is the value of the solution at the end of the current time-step.
HANDLE should be declared EXTERNAL in the program calling DODES. If
TO=TI then DODES failed to convergeusing the previousvalue of DT, the values
in Xl are garbage, and integration from time TO will be re-tried with the current
value of DT. If the solution being obtainedis reasonablysmooth,oncethe integra-
tion processhasmade progress( TO ~ TSTART ), such restartsshould not occur.
The otherinput to this subroutinefollows:

NX - The length of the solution vector X, sameas in the call to
DODES.

DT - The proposed“optimal’ size for the next time-step.

TSTOP - The current value of the final time for the integration.
E - A REAL array of estimatesfor the errors in the valuesof Xl

for the single current time-step. The error in Xl(l) is E(l)
for 1=1 NX, assumingthat XO is exact at the beginningof
the time-step.

On return from HANDLE, if TI=TSTOP,integration will ceaseand DODES will re-
turn control to its caller. The user may alter any of the values Xl, DT or TSTOP
before returning from HANDLE. HANDLE can do many things - print the solu-
tion out, save it for later processing,simply return, create plots of the solution or
whateverthe userdesires.

The output from DODESconsistsof

X - The final value for the solution, X=x(TSTOP).

TSTOP- May be alteredby the usersuppliedsubroutineHANDLE.

DT- Proposed“optimal” size for the next time-step,if an”.
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The subroutineDODES has 7 error states:

I Must have NX ~ I.

2 Must have Sign(DT) = Sign(TSTOP - TSTART) for the input values of thosevariables.
3 Must haveTSTART+DT!=TSTART, in floating-point arithmetic, for the input valuesof

those variables.

4 HANI)LE cannot alter DT and/or TSTOP so as to violate the condition Sign(DT) =

Sign(TSTOP- Ti)
5 HAN 1)LE cannot alter DT so that TI+DT=TI in floating-point arithmetic. This error is

recoverable.

6 The error tolerance for each component of the solution vector X must be positive. This
error is recoverable.

7 The step-sizemonitor has chosena value for DT which obeysTl+DT=TI in floating-
point arithmetic. This may simply mean that the system (1.1) is “stiff’. In that case, a
“stiff differential equation solver should be used, see 17] or 118]. Another possible expla-
nation is that the subroutineF for computing the right-handside of (1.1) is improperly
coded - the “function” it actually computes is not really a decent function.

The amount of scratch space allocated by DODESis

S(DODES) ( 165+26*NX+Max(3*NX+S(F),l0*NX+30,S(HANDLE))(3.l)

INTEGER words, where S(SUBPROG) is defined to be the number of INTEGER words of

scratch storage allocated by subprogramSLJBPROG.

More detailederror control over the integrationprocessis obtainedby using the

SUBROUTINE DODESI(F,X, NX, TSTART, TSTOP, DT, ERROR,ERRPAR,HANDLE,
GLBMAX, ERPUTS)

The extra arguments(ERROR, GLBMAX and ERPUTS)in this subroutineprovide direct user
control over the accuracyof the integrationprocess.

Thereare severalpossibleoptions availablefor error specification. First, the user, via the
subprogramERROR,may specify literally any accuracyrequirementhe wishesfor the solution.
Second,thereare severalpopularmethodsof error control which arecontrolledby the switches
GLBMAX and ERPUTS,and implementedby the subprogramDODESE.

The error control provided in the subroutineDODES is basedon the local value of the
variables. That is, the error acceptablein X(l) is

ERRPAR(1)*DABS(X(I))+ERRPAR(2) (3.2)

which dependsonly upon the current value of X(l). However, in somecasesit is desirableto
have the error in a componentof the solution dependupon the maximumabsolutevaluethat
componenthasattainedsince the start of the integration processat time t=TSTART. In that
case, the error desired in X(l) is of the sameform as (3.2) above,but with X(l) replacedby

Max I x,(,) I (3.3)
it I I’.5T4R1 71 I

That option is controlledby the switch GLBMAX, as describedbelow.

The error control provided in the subroutine DODES is an error per time-step criterion.
This can be rather bad if the time-stepstaken during the solution processget very small -

manY. time-stepswill be takenand the errors may pile up in unacceptableamounts. Another
error option is to usean error per unii-Iiine-ste, criterion. By making the error tolerancein X (I)
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look like

DABS (DT) • (ERRPAR(1) • DABS (X (I)) + ERRPAR(2)), (3.4)

whenthe time-stepgetssmall, sodoesthe error requirement.However,when usingthe error
per unit-time-stepcriterion, the reverseargumentholds - when DT is large, so is the error
tolerance. The error per time-stepversusunit-time-stepoption is controlledby the switch ER-
PUTSas describedbelow.

The inputs for DODESi are as previously described in DODES, with the following addi-
tions:

ERROR - This is a subprogramfor computingaccuracyrequirementsfor the solutionprocess.
It mustbe declaredEXTERNAL in thesubprogramcalling DODESi. DODESuses
ERROR in determiningwhen the extrapolation processhas “converged”. When
DODEShas computed a tentative solution vector, it also hasan estimateavailable
for the error in that vector. DODESusesthe function subprogramERRORto ask
the user if the computedsolution vectoris sufficiently accurate. ERRORmusthave
theform

LOGICAL FUNCTION ERROR(X, NX, T, DT, ERRPAR,ERPUTS,E)

whereX=x(T) is the solution vector of length NX for which an error toleranceis to
be suppliedby ERROR. Theotherinputs to ERROR are

DT - The time-stepusedto obtain X—x(T).
ERRPAR - A REAL vector of length two, as passedto DODESi, or as

modified by a previouscall to ERROR. (Seebelow.)
ERPUTS- This LOGICAL variable hasthe samevalueas the input vari-

ableERPUTSpassedto DODESI. (Seebelow.)

E - This REAL vectorgives the absoluteaccuracyof thesolution
X, as computedby DODESi. The absoluteerror in X(I) is
E(I), for I=1,...,NX, for thesinglecurrenttime-step.

Thevaluereturnedby ERRORto DODESi is
- .TRUE. if thetentativesolution X is satisfactoryto theuser;

otherwise.FALSE..
Theoutputfrom ERROR is

ERRPAR- This vectormay be altered,if desired.
E - The vectorof REAL absoluteerrorsthe userwill toleratein

the proposed solution vector X. E(I) is the acceptable abso-
lute error in X(I), for I—1,...,NX. All of the returnedE(I)
must be positive.

ERRPAR - This REAL vector of length two will be passedto ERROR, just as receivedby
DODESi. Possibleusesfor this vectorareshownin (3.2) and (3.4).

GLBMAX - If GLBMAX is TRUE., then the global maximumabsolutevalue (3.3) of each
componentof the solutionX is to be recordedas describedin Section 5. If the ER-
ROR subprogramsupplied by the user is DODESE, then either the global max-
imum absolutevalue or the local value of the solution will be used in the error
tolerance,dependingon whetherGLBMAX is TRUE. or FALSE. . If the user
supplieshis own ERRORsubprogram,thentheerror toleranceis at his discretion.

ERPUTS- If the ERRORsubprogramsupplied by the useris DODESE, theneitheran error
per unit-time-stepcriterion like (3.4), or an error per time-stepcriterion like (3.2),
will be used,dependingon whether ERPUTSis TRUE. or FALSE. . If the user
supplieshis own ERRORsubprogram,then the error tolerancefor eachcomponent
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ot the solution should be proportional to DABS(DT) if ERPUTS=.TRUE.,and
should not havethis propertyotherwise.

The output from DODESI is the sameas that for DODESwith the additional possibility
that the user mayalter ERRPAR through his subprogramERROR.

The error statesfor DODESI are the sameas thosefor DODES. The scratchstorageallo-
catedby DODESI is

S(DODESI) ~ 165 + 2NX(13 + (If (GLBMAX)thenl,ElseO ) ) +

Max(YNX +S(F),IONX + Max(30,S(ERROR)),S(HANDLE) ) (3.5)

INTEGER words. Note that (3.1) is a specialcaseof (3.5), with GLBMAX=.FALSE. , and
S(ERROR)=S( DODESE)=0.

Finally, control over the orderof the integrationprocedureis allowed by

SUBROUTINEDODES2(F, X, NX, TSTART, TSTOP, DT, ERROR,ERRPAR,HANDLE,
GLBMAX, ERPUTS,KMAX. MMAX)

The additional argumentsin this subroutine( KMAX and MMAX ) control the maximumord-
er ( 21K M \X ) and the maximumlevel of extrapolation( MMAX ) used by the process. The
extrapuiation lozenge is computedin such a mannerthat only its lower edge need be stored.
Thus, if the length of the lower edge is truncated(limited), the level of extrapolation ( the
numberof entries computed in the first column of the lozenge ) may get arbitrarily large
without increasing the amount of memory neededto store this truncated lozenge. The
subroutineDODES2 allows usercontrol over both the maximumnumberof columnsretained
in the lozenge,and the maximumlevel ot~ extrapolationpermitted. The argumentsof DODES2
are the sameas thoseof DODESI with the following additions:
KMAX - The maximumnumberof columnsallowedin the extrapolationlozenge. The maxi-

mal order that DODES2can achieveis then2*KMAX.
MMAX - The maximumnumberof levels of extrapolationpermitted. MMAX =KMAX+ 2

is requiredand MMAX ~ KMAX +4 is a good idea.

Thereare two additionalerror statesfor DODES2:

9 Must have KMAX=I.

10 Must haveMMAX ~ KMAX + 2.
Scratchspaceof length

S (DODES2) =SKMAX + 7MMAX + 3 +

2NX (KMAX + 3 + (If (GLBMAX )then I ,ElseO) ) + (3.6)

Max (3NX + S(F),NXKMAX + Niax ( 3*KMAX,S(ERROR) ),S(HANDLE))

INTEGER words is allocated by DODES2. Note that (3.5) is a special case of (3.6), with
KMAX=l0 and MMAX 16.

ThesubroutinesDODESJ and DODES2require a function subprogramto specify theer-
ror tolerable in the solution. The subroutineDODES usesthe default function subprogram
DODESE. This routine is listed below to providean exampleof what a usersupplied ERROR
subprogrammight look like. Notice that DODESEcan provide error control on a per time-step
or per unit-time-stepbasis. DODESE can also use either the local value or the global max-
imuni absolutevalueof the solution in determiningthe error control.
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LOGI CAL FUNCTION DODESE(X NX T , DT , ERRPAR ERPUTS E
C
C STANDARD
C BASED ON
C COMPONENT.

THE OPTION
ERROR PER T

ERROR ROUTINE FOR DODES WITH THE OPTION FOR ERROR CONTROL
EiTHER THE LOCAL VALUE OR THE GLOBAL MAXIMUMOF EACH

FOR ERROR CONTROL ON AN ERROR PER UNIT~TlME~STEP OR
lME~STEP BASIS IS ALSO PROVIDED.

C INPUT

X=X(T) THE APPROXIMATE SOLUTION
CRITERION IS DESIRED.
THE LENGTH OF THE SOLUTION
CURRENTVALUE OF THE TIME
CURRENT TIME~STEP.
TWO PARAMETERSFOR USE IN DETERM
IF ERPUTS=.TRUE. , THEN THE ERROR

PROPORTIONAL TO DABS(DT) OTHERW
X( I) IS ACCURATE TO A REAL ABSOL

FOR WHICH AN ERROR

VECTOR X.
VARIABLE.

INING THE
IS TO BE

ISE IT WILL NOT.
UTE ERROR OF E(I),

=1 NX, FOR THE SINGLE CURRENTTIME•STEP.

DESIRED ERROR.

C COMMONINPUT
C
C
C
C
C

I GMAK

C
C OUTPUT
C
C
C

E

THE POI~{TER TO THE REAL VECTOR OF
VALUES ATTAINED BY EACH COMPONENT
IGMAX=O MEANS THIS
ALLOCATED.

CURRENT MAXIMUMABSOLUTE
OF THE SOLUTION.

VECTOR IS NOT USED AND HAS NOT

THE REAL ERROR VECTOR. E(I) IS THE

TOLERABLE IN X(I), FOR 1=1 NX.

BEEN

ABSOLUTE ERROR

LET V(I) = ABS(X(I)) IF IGMAX=O
OTHERWISE

= MAXIMUM(ABS(X( I )(T)))
THIS VALUE IS STORED
POSITION RS( 1+1 GMAX 1

AND EPS =

OVER ALL PREVIOUS TIME.
IN THE REAL STACK

1 IF ERPUTS=.FALSE.
OTHERWISE

= DABS(DT),

THEN

E(I)=EPS ‘ (ERRPAR(1)V(l)+ERRPAR(2)),

FOR 1=1 NX.

C FUNCTION VALUE
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C

X

NX
T
DT
ERRPAR
ERPUTS

E

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C DODESE . TRUE. IF EACH X(l) IS ACCURATE TO WITHIN AN
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ABSOLUTE ERROR OF E(I),

SCRATCH SPACE ALLOCATED

1=1 NX OTHERWISE . FALSE.

NONE.

ERROR STATES . NONE.

COMMON/DODESM/IGMAX, IGMAXO

DOUBLE PRECISION X(NX),T,DT
REAL ERRPAR(2),E(NX)
LOGICAL ERPUTS

COMMON /CSTAK/S
DOUBLE PRECI
REAL RS(1000
EQUI VALENCE

DTPOW=1.OEO
IF (ERPUTS)

SION S(500)
DTPOW,TEMP

(5(1) ,RS( 1))

DTPOW=DABS(DT)
DODESE=.TRUE

1=1 GMAX

DO 10 I=1,NX

IF (IGMAX.GT
IF (IGMAX.EQ
TEMP=DTPOW(

.0) TEMP=RS(J)

.0) TEMP=ABS(SNGL(X( I)))
ERRPAR(1)TEMP+ERRPAR(2))

C
IF (E(I).GT.TEMP) DODESE=.FALSE

E (I )~=TEMP

J=j+1

RETURN

END

A very simple-mindeddefault HANDLE subroutine
It simply returnsat the endof eachtime-step. It is listed
supplied I-IAN I)LE subroutinemight look like.

DODESH is provided with DODES.
below as an exampleof what a user

SUBROUTINE DODESH(TO,XO.TI Xl .NX,DT.TSTOPPE)

C THE DEFAULT OUTPUT ROUTINE FOR USE WITH
C IT SIMPLY RETURNS.

DODES.

C
C SCRATCH SPACE ALLOCATED
C
C ERROR STATES NONE.
C

C
C
C
C
C
C

C

C

C

C

C

C

C

C
10

C

C

C

NONE

DOUBLE PRECISION TO,XO(NX) ,T1 ,X1(NX) ,DT.TSTOP
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REAL E(NX)

RETURN

END

Figure 1 gives a picture of the basic flow of control through DODES and
plied subprograms. DODEScalls DODESI with ERROR=DODESE,GLBMAX
ERPUTS.FALSE..DODES1 calls DODES2 with KMAX=lO and MMAX=16.

the usersup-
=.FALSE. and

4. Examples

This section provides
systemstudiedis

severalexamplesof the useof the subprogramsin DODES. The

x’1 ——x1

x’2 =x3 (4.1)
3 =

on [0,10],subjectto

x1 (O)=l

x2 (0) =0 (4.2)
A3 (0) =1.

The solutionof (4.1) subject to (4.2) is,

x1 (t)we’

A2 (t) =sin (t) (4.3)
A3 (t) =cos(t).

Thus,we know the exact solution of the problem and can comparethe results DODES gives
with it.

The simplestway to solve (4.1) subjectto (4.2) would be to codethe main program

DOUBLE PRECISION X(3),DT
REAL ERRPAR(2)
EXTERNAL F123DODESH

C COMPUTETHE SOLUTION TO AN ABSOLUTE ERROR

ERRPAR(1 )=O ODO
ERRPAR(2)=1 .OD6

OF 1O””(•6).

C
C DT MUST BE A VARIABLE SINCE DODES WILL
C

ALTER IT.

DT=1 .0D2

C SET UP THE INITIAL CONDIT IONS

X(1)=l ODO
X(2)=O.DDO
X(3)=1 ODO

C

C

C

C

C

C

C
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CALL DODES(F123,X,3,O.ODO, 10.ODO,DT,ERRPAR,DODESH)

WRI TE(6 .9000)
9000 FORMAT(9H X(1

STOP
END

( X( I) =1 .3)
0) = , 1P3D20.8)

and the subroutine

SUBROUTI NE F 123(1, X , NX .FIX)
C

DOUBLE PRECISION TX(3),FTX(3)

FTX( 1 )=~X( 1)
FIX (2 )=X (3)
FTX(3)=•X(2)

RETURN
END

The output of this program unit is

C

C

4 .53999295D~O5 5 .44O2112OD~O1 ~8. 3907 152OD~01

A skeptical user might next decideto checkthat the solution is in fact accurateto about
10 6, counthow manytimes the subroutineF123 is called, as a meansof measuringthe cost
of using DODES, and also check the claim that the cost of using DODES is substantiallyin-
dependentof the initial value of DT chosen. In that case,the user might write a main program
like

C
C NFCALL WILL COUNT THE NUMBEROF FUNCTION CALLS.

COMMON/FCOUNT/NFCALL
DOUBLE PRECISION X(3),DT
REAL ERRPAR(2)
EXTERNAL F123,CHKOUT

ERRPAR( 1 )=O . ODO
ERRPAR(2)=1 .0D~6

DT=1 0. ODO

DO 10 I=1,2

C WHEN =1, DT=1O AND WHEN 1=2,
C

IF (I.EQ.2) DT=1.OD12
WRITE(6,9000) DT

9000 FORMAT(10H FOR DT =

DT=1O~( •12)

C

X(1O) =

C

C

C

C

C

1P1D20 .8//I)
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X(1 )=‘1 .000
X (2 )=O . 000
X (3 )=1 . 000
NFCALL=O

10 CALL DODES(F 123, X 30. ODO.10.000, DT , ERRPAR, CHKOUT)

STOP
END

The subprogramF123 would then be altered to increaseNFCALL by
called. Finally, the outputCHKOUT subroutinemight look like

one every time it is

SUBROUTI NE CHKOUT( TO, XO ,Tl, Xl, NX , OT , TSTOP , E )

COMMON /FCOUNT/NFCALL
DOUBLE PRECISION TO,XO(
REAL E(NX)

3),T1,Xl(3),DT,TSTOP

IF (TO.EQ.T1) RETURN

C COMPUTEAND PRINT OUT THE ERROR IN THE SOLUTION X.

ERROR1=X1(
ERROR2=X1(
ERROR3=X1(

1)• DEXP( Ti)
2) ~DSIN(T1 )

WRI TE(6 .9000) TI ,ERROR1
9000 FORMAT (9H ERRORS(

IF (TI.EQ.TSTOP)
9001 FORMAT(IH ///34H

,ERROR2 ,ERROR3
,IP1D12.3,5H )= ,1P3D12

WRITE(6 .9001)
THE NUMBEROF

NF CALL
FUNCTION

3)

CALLS WAS

RETURN
END

The output from this programunit is

1 . OOOOOOOOD

)
)
)
)
)
)
)

01

— 7.3130-08
— 7.0070-08
— 5.1650-08
— 2.1880-08
— 3.838D-09
— 2.3420-10
— 6.739D-12
— 2.625D•12

C

C

C

C

C

C

C

C

C

C
16///)

FOR DT —

ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(

1 .9270
6.2770
3.5960
I .2150
2 . 896D
5.5370
9. 049D
1 .0000

•02

02
•01

00
00
00
00
01

7.4540
7.4360
6.9460
2 .631D

.7. 156D
5. 429D

-6 .883D
6.2630

-08
-08

08
08

-08
-08
-08
-08

-1.4370
.4 675D
•2.6240
-69410
-1 .874D

5 .0600
-2.7490
4.3200

-09

-09
08

~08
•08
-08
-08
-08
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THE NUMBER

FOR DT =

OF FUNCTION CALLS WAS

1 .00000000D-12

1 .0000-12
1 .043D-09
1.0860-06
1 .132D-03
4.4630-02
3 .404D-01
1.193D 00
2.8800 00
5.4920 00
8.9730 00
1.OOOD 01

)

)

= 7.0770-17
= 7.061D-17
= 7.046D-17
= 1.5040-11
— 6.7710-11
— -3664D-1O
= -2.414D-lO
— -29480-10
= -5.6160-11
— -1 .951D-12
— -5107013

1 .972D-30
1.6160-27
1 .332020
1 .506011
3.1690-11

-3.0780-10
2. 9680-10
2 .873D- 10

-1 .3550-09
6.3150-10
2.0500-09

0.0000-39
-2. 168D- 19
.4 337D- 19
-1.7040-14
4.3510-13

-9.0890-12
4.4070-10

-29830-09
2.1610-09

-2.4980-09
-6.4790-08

THE NUMBER OF FUNCTION CALLS WAS

The resultsof this simple test bearout the claim that DODES producesresults as accurateas
the user hasrequestedand that the cost of obtaining theseresults is indeedquite insensitiveto
the initial choiceof DT.

The perspicaciousreader notes that -~ (10) =e 1() which is roughly 10 ~. Thus,
~ (10) may not have any good digits when (4.1) is solved to an absoluteerror of say 10 2•
He can easily remedythis problem by coding his own error subprogramto provide for a rela-
ti\C error test on ~ and an absoluteerror test for .v, and x3.

LOGI CAL FUNCTION RAEROR(X , NX , T - OT , ERRPAR, ERPUTS, E

DOUBLE PRECISION
REAL ERRPAR(2),E
LOGICAL ERPUTS

X(3) ,T,DT
(3)

C
C RELATIVE ERROR FOR Xl, ABSOLUTE ERROR FOR X2 AND X3.

RAEROR=- TRUE
TEMP~ ERRPAR(
IF (TEMPLI.
E( 1 )=TEMP
DO 10 1=2,3
IF (E(I).GT

10 E( I )=ERRPAR

1 )DABS(X( 1))
E (1)) RAEROR=.FALSE.

- ERRPARC2))
(2)

RAEROR=. FALSE.

RETURN
END

341

ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(

355

C

C

C

The main programwould he alteredto read
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COMMON /FCOUNT/NFCALL
DOUBLE PRECISION X(3),DT
REAL ERRPAR(2)
EXTERNAL F123 ,CHKOUT,RAEROR

ERRPAR(1)=1 .00-6

ERRPAR(2)=1 .00-6

DO 10 1=1,2

IF (I .EQ.1)
IF (I .EQ.2)

DT=1 0.000
DT=1 - 00-12

WRITE(6,9000) DT
9000 FORMAT(10H FOR OT = ,1P1020.8///)

X (1 )=1 - ODO
X (2 )=O - ODO
X(3)=1 ODO
NFCALL=0

C
10 CALL DODESI(F123,X.3,O.000, 1O.ODO,DT,RAEROR,ERRPAR,CHKOUT,

- FALSE. , . FALSE
C

1

STOP
END

and the output subroutineCHKOUT would be alteredto Print out the relativeerror in x1 rath-
er than the absoluteerror. The output from this programunit is then

FOR DT = 1.000000000 01

02 )
02 )
01 )
00 )
00 )
00 )
00 )
01 )

— 7.4550-08
— 7.461D-08
— 7.406D-08
— 7.3850-08
— 7.249008
— 6.465008
— 5.8830-08
— 5.873008

THE NUMBER OF FUNCTION CALLS WAS

7 4540-08
7.4360-08
6 .958D-08
3.1100-08

.7 .1150-08
21120-08

6.0040-08
-6.6900-08

357

1 .000000000-12

— 7.0800-17
— 7.0690-17
— 7.047D-17

I .972D-30
1.6160-27
1.3320-20

0.0000-39
-2. 1680-19

4 3370 -19

C

C

C

C

C

ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(
ERRORS(

1 .9270
6.2770-
3.5590-
1.1410
2.6900
4.4450
7.0000
1.0000

-1.4370
-4.6750
-2.5980
-6.7450
-3.3080

7.7110
-5.2790
4.3790

-09
-09
-08
-08
-08
-08
-08
-08

FOR DT =

ERRORS(
ERRORS(
ERRORS(

1 0000
1.0430
1.0860

-12
-09
-06

)
)
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ERRORS( 1.1320-03 )= 1.506D-l1 1.506D-l1 ~1.704D-14
ERRORS( 4.4630-02 )= 7.080D-11 •3.169D-11 4.351D-13
ERRORS( 3.377D-O1 )= 4.7560-10 2.909D-1O •7.893D-12
ERRORS( 1.1220 00 )= 6.890D-1O 9.083D-12 2.946D-1O
ERRORS( 2.675D 00) = 2.0930-09 8.637D-10 -3.8400-10
ERRORS( 4.422D 00 )= 9.452D-09 -1.643D-09 9.4800-10
ERRORS( 6.985D 00) = 1.555D-08 2.275D-09 -1.401D-1O
ERRORS( 1.OOODO1 )= 1.E~66D-O8 -2.2810-09 -1.2300-10

THE NUMBEROF FUNCTION CALLS WAS 371

Theseexamplesillustrate the ways in which the user may control both the accuracyof
the computed solution and the way in which the computedsolutionis used,saved,printed,etc.

The subroutineDODES2 providescontrol over the orderof the integration methodused.
If the user wants to solve a large, say NX=1000, systemof ordinary differential equationsand
he usesDODESto solve it in DOUBLE PRECISION,then roughly 18,000 DOUBLE PRECI-
SION words of memory will be allocated in the stack, see (3.1). This is becauseDODES in-
directly calls DODES2 with KMAX=I0 and MMAX=16. If, however,the useronly wants the
solution accurateto 10/a, then it is pretty clear that KMAX=lO ( up to a 20ihorder method ) is
not needed. In fact, KMAX=3 ( a 6”’ order method ) is probably quite sufficient. If he uses
DODES2 with KMAX=3 and MMAX=9, thenonly about 7,500 DOUBLE PRECISIONwords
will be used in the stack, see (3.6). Section 5 shows how the user can easily find out what
maximal order is being used by DODES during the integration process. Thus, after one run,
the usercan setKMAX and MMAX appropriately.

5. ImplementationDetails

This sectiondiscussesvariousdetailsof the implementationof DODES by which the user
with sophisticatedneedsmay accessthe integrationprocess.

A rare,but important,problemarises when the function .f(t.x) cannot be evaluatedfor
somevaluesof i and x. For example, the equation x’—x

t2 runs into real trouble if x ever
goes negative. This can happenbecausethe solution is typically not computedvery accurately
by Gragg’s modified mid-point rule, the algorithm relying on extrapolationto provideaccurate
answers.Thus,somemechanismmust be providedfor the userto say that he cannotcalculate
f(t,x). This is accomplishedas follows: A labelledcommonregion

COMMON/DODESF/OKAY

contains the LOGICAL variable OKAY which indicates whether or not the call to
F(T,X,NX,FTX) was successful. A subroutine DODESG implementsGragg’s modified mid-
point rule and before each call to F, that routine setsOKAY=.TRUE. - ( The subroutine’s
nameDODESG follows the PORT library convention of using names,for seldomused global
variables,which havea digit as their secondcharacter,to avoid conflictswith uservariables.
Thus, the user need only set OKAY (=.FALSE.) when he cannot evaluate.f(t,x). When
DODESO detectsOKAY=.FALSE. upon return from a call to F, it returns to its caller, the
step-size and order monitor DSXTRP[141. The default response of DSXTRPis to lower DT
by a factor of IO~ and do a few other reasonable things. In HANDLE, the user may elect to
overridethat defaultaction by simply lowering DT himself. However,this leadsto an 8 ~ error
state in DODES - which an alert readermay have noticed was omitted betweenerror states7
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and 9 in section 3 - The subroutineHANDLE cannot raise DT when OKAY=.FALSE..

The following subroutineillustratesthe use of OKAY when trying to solve x ~=xt2.

SUBROUTI NE F CT, X , NX , FTX )
C

COMMON /DODESF/OKAY
DOUBLE PRECISION T,X(NX),FTX(NX)
LOGICAL OKAY

C
IF (X(1) .GE.0.ODO) FTX(1)=DSQRT(X(1))
IF (X(1).LT.O.ODO) OKAY=.FALSE.

C
RETURN
END

If GLBMAX=.TRUE., then the maximumabsolutevalue of eachcomponentof the solu-
tion is to be recordedby DODES. This information is storedin the labelledcommonregion

COMMON /DODESM/IGMAX,IGMAXO

in the form of pointersIGMAX and IGMAXO into the stack [9]. IGMAX is the pointer to
the REAL vector, of length NX, of current maximumabsolutevaluesattainedby eachcom-
ponentof the solution since the start of the integration procedureat time TSTART. That is,
the maximum absolutevalue of x

1 C,) achievedso far during the run is stored in the REAL
stackat location RS(IGMAX+I-l). IGMAXO is the pointer to the REAL vector, of length
NX, of maximumabsolutevaluesattainedby eachcomponentof the solution,as of the previ-
ous time-step. IGMAX=O means that GLBMAX=.FALSE. and these vectors are not to be
usedand havenot beenallocatedin the stack.

The monitorDSXTRP 114] providesa labelledCOMMON region

COMMON/D9XTRP/ICOM(9)

which contains information about the current status of the integration processand also pro-
videsa means for altering the way DSXTRP does its iob. The truly ambitiousreadermay con-
sult 114] for the detailsof what this commonregion containsand what can be donethrough it.
The first two elementsof this region are useful in following what order processis being used
by the step-sizeand order monitor DSXTRP. ICOM( I) is the current level of extrapolation,
that is, the number of entries already computed in the first column of the extrapolation
lozenge. ICOM(2) is the size (numberof columns)of the optimal lozengeas predictedfor the
next time-step. ICOM( I) is defined for use by any of the user subprogramsF, ERROR and
HANDLE. However, lCOM(2) is only definedfor use by HANDLE.

When usinga “small’ ‘value of KMAX, it would be wise to monitor the maximumvalue
of ICOM(2) ( the numberof columnsin the optimal size lozenge ) used during the integra-
tion process. If that value is equal to KM AX, thenKMAX should be increasedfor subsequent
runswith similar input data. This shouldlower the cost of theselater runs.
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