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A BSTRA CT

This note is a tutorial description of Galerkin’s method,and its imple-
mentationusing B-splines,for solving linear one-dimensionalseif-adjoint boun-
dary value problems. The emphasisis on motivating and making clear what
Galerkin’s method is, what it does,what it is useful for andwhat must be done
to produce a practical program for implementing it. The generalizationof
Galerkin’s method to other equations,including nonlinearandnon-self-adjoint
equations,is discussedandmotivated.

Galerkin’s methodwith B-splinesallows approximationof the solution of
the equationto within O(hk), where h is the meshspacingusedand k ~ 2,
the order of the B-spline, is any integer the user desires. For most problems,
the “optimal’ order k is between4 and 6. This higher order rate of conver-
gencemakes Galerkin’s method faster and much cheaperto use than finite
differences.

An automatic and reliable error estimationschemeis presentedfor use
with Galerkin’s method using B-splines. Several sample problems are then
solvedandthe numericalresultsdiscussed.
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1. Introduction.
This note is a tutorial descriptionof Galerkin’s method,and its implementationusing B-

splines, for solving linear one-dimensionalself-adjoint ( divergence form ) boundary value
problems. The emphasisis on motivatingand making clear what Galerkin’smethod is, what it
does,what it is useful for and what must be done to produce a practical program for imple-
menting it. The generalizationof Galerkin’s method to other equations,including nonlinear
and non-self-adjointequations,is discussedandmotivated. A detailedmathematicalanalysisof
Galerkin’s method,which this paper tries to avoid as much as possible, is available in 123].
Anyone interestedin the theoreticalunderpinningsof Galerkin’s method is urged to browse
through that excellenttext.

The equationstudiedis

(a(x)y’(x))’+b(x)y(x)+c(x)0 on (L.R) (1.1)

subject to boundaryconditions

aLy(L) +t3Ly’(L)vL

(1.2)

aRy(R) +I3RY (R) YR

where a(x) > 0, b(x) =0, andc(x) are given functionson (L,R), aL ~ ‘13L ‘PR ~VL~ and
YR aregiven constantsobeying

aLPL =0and (aL, 13L) !=(0,0)

(1.3)

aRPR >0 and(aR, PR) !=(0,0).

Underreasonableassumptionsabout the smoothnessof the coefficientsa, b and c, the solution
of (1.1) subject to (1.2) and (1.3) is known to exist and be unique. If (1.3) is violated, the
solutionmay not exist,andevenif it does,it may not be unique.

Problems of this type arise in many situations [1619,201and their solution must be
accomplishedcheaply,accuratelyandreliably. The numericalsolutionof (1.1) has traditionally
beenaccomplishedusing classicalfinite differences [141. If the mesh spacingis h, then the
error in the finite difference approximation to the solution is 0(h2). The popularity of finite
difference methodsresultedmainly from their flexibility andeaseof implementation,as well as
the fact that therewas no knownreal alternativemethodfor practicalproblems.

However, there is now an alternativemethod to finite differences - Galerkin’s method
using B-splines. It is easyto implement ( althoughnot as easyas most finite differencetech-
niques), extremelyflexible andefficient, andvery robust.

Galerkin’s method [2,3,12,21,231is a techniquefor finding the “best” approximatesolu-
tion of (1.1) in any spaceof functionsthe userspecifies. Galerkin’s methodbasically finds the
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projection of the true solution onto the spacegiven to it. The spaceof piecewisepolynomials
given by B-splines [6,7,91can be used to approximatealmost any function very accurately.
Thus, the use of Galerkin’s method to find the best approximatesolution of (1.1) over the
spaceof B-splinesis a very robust and accuratenumericalsolution technique.

In particular, Galerkin’s method with B-splines of order k > 2 allows approximationof
the solution of (1.1) to within O(hA), where h is the meshspacingused. For most problems,
the “optimal” order k ( the one which minimizes the cost of solving the problem ) is typically
between4 and 6. Thesehigher order methodsare faster and much cheaperto use than finite
differences.

Throughoutthis paperthe size of a function f over an interval [L,RI is measuredby the
maximum norm

IL/H Max I.t’(x)I (1.4)
\E[L.RI

and the size of a vector v (v~ v~) is measuredby the maximum norm

HvH A/fax (1.5

Theseare the only norms we shall use or define for functions and vectors.

Section 2 discussesthe definition and propertiesof B-splines. Section 3 discussesthe
Rayleigh-Ritz methodand shows that it converges. Section 4 definesand motivatesGalerkin’s
method. Section 5 shows how Gale~kin’s method is actually implementedon a digital com-
puter. Section6 describesa robust and reliable techniquefor estimatingthe error in the Galer-
kin solution, so the userof Galerkin’s method can tell how good an answerhasbeenobtained.
Finally, section 7 presentsseveralnumericalexamples.

2. B-splines

The way in which the approximatenumericalsolution of (1.1) is to be representedis a
very important decision. The choice of representationaffects the entire solution process.
Specifically, we would like to choosea spaceof functions,out of which we will try to obtain the
elementclosestto the solution of (1.1). This spaceshouldhaveseveralnice properties,includ-
ing being (1) easyto work with and (2) capableof approximatingthe solution accurately.

Sucha representationexists - expansionin B-splinesof order k [6,7,9]. This is a method
for representingfunctions by piecewisepolynomials,that is, polynomialsof degree~—1or less
over each sub-intervalof a mesh or grid. Here the integer k is any numberk > 2 the user
desires. The piecewise polynomial representationis requiredto satisfy certain continuity res-
trictions at the end points of each mesh sub-interval. Specifically, let ir = (x1 . . . x~,
where L =x1 ~ x2 ~ . =xp.~R,be a grid on the interval (L,R). Let m, be the multipli-
city of x,, or the numberof times x, appearsin the list ~r. The spaceof B-splinesof order k
definedon the mesh ir is definedto be the collection of all functions /,
(2.1) which are polynomialsof degree< k on each interval (x, x~1) for /=1 N—i,

k—I—rn A —I—rn
(2.2) for which d ‘1(x,) /dx exists and is continuousat eachx,, for ,==1

when viewed asa function definedonly on [L.RJ, and

(2.3) for which I 0 outside [L,R].

The multiplicity m, of a point x, is restrictedto be in the range 1 = ~ k. For m=1
we have dk

2f/dx&2 continuousat x,. This is the mostcontinuity which can be imposedat x,
without making f a polynomial of degree k—I on (x

1, x,+1). For m, = k the condition that
d’f/dx’ be continuous is interpretedto mean that I is continuousfrom the right (but not
necessarilyfrom the left) at x = x,, for x, < R, and continuous from the left if x, = R. This
meansthat B-splines are continuousat the end points of the mesh when viewed as functions
defined only on [L~R1. This collection of functions is denotedby B~k. These

8~A spaces
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have rather nice approximation properties, as summedup by deBoor [6], in the case when
= k = my

Theorem 2.1

Let f be any function with f(O) through f(A) continuouson [L,RI, where ,(i) denotesthe
}h’7 derivative of /1 Let h = un Max x,~1 —x, I be the largest mesh interval length.

~=1.
Then thereis an elementg of

8~A so that

ILt~’1(x) —g1’1(x) II =C(k,f) hA/

for 0 ~ j ( k, where C(k,f) representsa constantwhich dependsonly upon k and .1~ but not
h.

That is, as h—0, the error in the best B-spline approximationto f goes to zero like hA,
the error in its derivativebehaveslike hAl; etc.

Note that this theorem makes no assumptionabout the relative spacing of the mesh
points of ~r in order to get 0(hA) error. However, finite differencemethodsrequire a uniform
mesh to achievean error of 0(h2). Any deviation from a uniform meshresults in 0(h) error
for such methods. In many problems,the ability to grade the meshwith B-splinesand still get
0(hA) error is a decidedadvantage.

In practice,k is usually takento be 4, 6, 8 or even 10, dependingon what the function /
looks like and how much accuracyis desired. k is usually taken to be evendue to the rather
natural way in which such splinesarise and their smoothingpropertieswhen used to approxi-
mate functions describedby discrete data [51.Typically, the more accuracydesired, the larger
the value of k shouldbe. For example,if k=8 and the meshlength h is halved, then Theorem
2.1 indicatesthat the error shoulddecreaseby a factor of 28 — 256. However, as we shall see,
the work neededto solve a problem usingB-splinesis 0(Nk3). Thus, a k=8 solution will cost
8 times as much as a k=4 solution for the same mesh. Hence, the optimal k results from
minimizing 0(N~k3), where N~ is the numberof meshpoints neededto solve the problem to
the desiredaccuracyusinga k order B-spline. This optimizationis highly problem dependent.

A computationallyconvenientbasisexists for the spacesBRA. The dimensionof B~ is
N—k and the basisconsistsof elementsB,(x), i=1 N—k. A completedescriptionof the
B, is given in [91and [71. Briefly, when the multiplicities of the first and last meshpointsare
both k, so that

=xA

and

= = xN

then the main propertiesof the B,(x) follow:

(2.4) Each B, is non-zeroonly on [x,, x,+A] and is identically zero elsewhere,as well as at
x,

1 andx,+A+I xN, evenif theyare in [x, x,+11.
(2.5) The sum B1(x)+ . +B~v~(x) is identically one.

(2.6) EachB, obeys0 =B,(x) =1 everywhereandpossessesonly onemaximum.
Theseare very nice propertiesandwill be usedin later sections.

The convergenceresultof Theorem2.1 is independentof the multiplicities m, of the inte-
nor points x, ( k < i ( N—k ) of the mesh. Usually, for smooth functions f, m,=1 is taken
for all theseinterior (that is, strictly betweenL andR ) meshpoints.

The end points of the mesh typically havemultiplicity k sincethe function f usually has
f(L) !=0 and f(R) !=0, and the elementsof Bff A cannot be non-zeroat L and R, unless
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m1 =k =mv becauseof (2.2) and (2.3). In fact, relations (2.2)-(2.5) show that the only B,
which are not zero at L and R are B1 and BVA, and thesevalues are respectivelysimply
B1(L) = 1 and BV~~A(R) = 1.

If the function [has a discontinuity in say its ~ derivative,at x,, then m, = k—i is chosen
becausethis allows the elementsof Bff,A to havethe samebehavior. If a smaller multiplicity
were chosen,the ~h derivativeof all the elementsof B~A would be continuousat x,, and the
best fit to [from Bff A would not be very good at x,.

Another importantproperty of B-splinesis their numericalstability or condiuon. Since any
V — k

B-splineI is of the form f = a, B, and each B, obeys0 =B, =1 we seethat if I Ill I is small

compared with I Ia II~ then many significant digits are lost when computing f from
a1 a%~/~ in floating-pointarithmetic [25]. Specifically,

V—k

d =Log1o(IIa Il/Il X a,B,II) (2.7)

decimal digits are lost, due to cancellation,in evaluatingf In [61de Boor showsthat
V—A

IX a,B,II > CkIIaII (2.8)
1=I

where Ck is a constantdependingonly upon k, and therefore

d =Log10(CJ’).

In particular, he shows for a uniform mesh, one where all the mesh intervals have the same
length, that

CA 10—A/5 (2.8)

Thus, when evaluating a B-spline defined on a uniform, or nearly uniform, mesh, we would
expect to lose no more than about k/S decimal digits. This is a very satisfactoryresult since it
indicatesthat, at least for uniform meshes,the conditioningof the B-spline basisis independent
of the size of the mesh.

3. Rayleigh-Ritz Method

The Rayleigh-Ritz method for solving (1.1) approximately is extremely powerful and is
directly applicable to problems substantially more complex than (1.1). It has a very rich and
successfulhistory [2,3,4,16,20,211.

This sectionbegins by introducingthe Rayleigh-Ritzmethod for a simple, classicalprob-
lem wherea variationalor “energy” principle can be applied. The convergencepropertiesof the
Rayleigh-Ritzmethodfor this canonicalproblemare obtainedsimply andconcisely.

Consider the simple but classical problem of Poisson’sEquation ( which is (1.1) with
a = 1, b = 0 and c = —f ),

= f(x) on (0,1) (3.1)

subject to

y(O) =O=y(l) (3.2)

where f is some sufficiently smooth function on [0, 11. Physically, this may be viewed, for
example, as either finding the electrostatic potential y given the charge distribution I or finding
the displacement of an elastic string, clamped at the ends, subject to a transverse force f [81.
An equivalentformulation of theseproblemsis the following “variational” principle:
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Find a smoothfunction ywhich obeys(3.2) and minimizes the ‘energy” F(w) given by

0

This formulation of the problemusesthe principle of “least energy” [81to find the potential,or
displacement, y. It is rather easy to see that (3.3) and (3.1) are equivalent. For considerthe
function g(E) F(y +~) where e is a real numberand ~ is some smooth function which
satisfies (3.2). Then the statement that y minimizes F(w) implies that g(0) is the minimum of
g and thus g’ (0)=0, since y makes F(w) smallestover all smoothfunctions, including thoseof
the form y + ~ But g’ (0) =0 meansthat

(y’4+-i~f)dx =0

Using integrationby partsand (3.2) we then have

f (—y”+f)’T)dx =0 (3.4)
0

for any suitably smooth function ~ satisfying (3.2). This clearly meansthat (3.1) must hold.
The reverseargumentis just as easyand shows that any solution of (3.1) is a minimizer of
(3.3).

Now there is a venerableand powerful techniquefor approximatelyfinding functions y
which minimize functionalslike F(w). It is called the Rayleigh-Ritz method [8] and it has
beenused for many yearsas a tool for minimizing such functionals. The idea is quite straight-
forward - Pick a few basis functionsw1 WV which are smoothand satisfy (3.2). Thenany
linear combination w of the w, of the form

w=a1w~+ +a54vV (3.5)

is also smooth andsatisfies (3.2). All linear combinationsof the form (3.5) form a linear sub-
spaceof the spaceof all smooth functions. This spaceis called the spanof w1 W,~ and is
denotedby < w, WN >. The span is called a linear spacesince the sum of any two ele-
ments in it is still in it, alsoany scalarmultiple of an elementremainsin it. If the w, arejudi-
ciously chosen,then minimizing F over the large subset( sub-space) <w1 WV> of the
spaceof all smoothfunctions should give a good approximationto the solutionof (3.1)-(3.2).
Specifically,we choosea1 aN to minimize the function

l(a1 av) F(a1w1+ ... +aNwN). (3.6)

Minimizing (3.6) is an easytask since 1 is a quadraticfunction of its arguments. The

minimumof I is attainedat the point where
...,aV)=O, i=1 N

I’

which leadsto the equations

0=J’[~a1W1~W’+W1fJdx~ 1=1 N. (3.7)

Now considerthe symmetric,positive-definite(as we shall seelater) matrix A given by

A,, = f W,’W;dK (3.8)
0

I I

and the vector b = ( —f w1fdx —f WNf dx). Then the solution a of the linear
0 0
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systemof algebraicequations

A a = b (3.9)

is the vector of coefficients a for the linear combination (3.5) which minimizes (3.6). The
numericalsolution of the abovesystem (3.9) is a well-understoodand well-posedproblem and
is easily solved [13,251.

Thus, the Rayleigh-Ritz methodof minimizing (3.3) over finite dimensionalsubspacesof
smooth functions reducesthe original problem (3.3), whosegeneralizationsnobody knows how
to solve directly and constructively,to a problem (3.9) which can be easily solved. Moreover,
if the basis-functionsW, are well chosen,the function v which results from minimizing (3.6)
should be quite close to the solution y of (3.1) and (3.2).

If B-splines are taken as the basis-functionsw,, then, since they can approximateany
smooth function w to within 0(h A) it is clear that they can approximatethe solution y at least
that well. The questionis:

Does the Rayleigh-Ritz method produce a B-spline which is as accurate as can be achieved.
0(hA)?

The answeris, of course,yes. The proof of such results [2,3,4,241is in generala rathercom-
plicatedmatter. However,a weak form of the convergenceresult can be easily obtainedfor the
simple exampleunderconsideration(3.1)-(3.2).

Let if be any meshon [011 with the multiplicity of x1 and xv both k. Then, since the
\ —A

Rayleigh-Ritzapproximatesolution~ X aB, which minimizes I(a1 a~,A ) must also
= I

satisfy the boundaryconditions (3.2), we see that a1 = 0 = a\A. Thus, the subspaceof B~
which obeys(3.2) is just the spanof B2 BWAI and the Rayleigh-Ritzbasis functions w,
are simply ~ for i=1 N—k—2.

It is assumedthat any mesh if is chosenso that

Max Ix,±1—x,I/MinIx,.,.r—x,I (~ (3.10)

where ~ is some fixed constant. This relation simply assures that the mesh w cannot stray too
far from being uniform. This restriction on the meshis importantand will be used in later sec-
tions.

Now note that (3.3) is equivalentto (3.4), which in turn is equivalent, using integration
by parts, to

I (y4+frj) dx =0, (3.11)
p

But, from (3.7), the Rayleigh-Ritzsolution is just the solution 5 of

N—k—I, (3.12)

where ~< B~ BVAI >. Since (3.11) must hold, in particular, for ~j = B,, we then
have, subtracting(3.12) from (3.11) with i~ = B,,

(y—’)B,’ dx = 0. (3.13)

This relationstatesthat ~ is also the solutionof

Mm 5 (y’—)
2 dx. (3.14)

I~< B
2. . B%~~j > 0
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That is, . minimizesthe above measureof the differencebetween~and the solution v. This is
the first key observation:

The Ravleigh-Rit: method does in /~ct minimize some measure Qf tile error in the approximate
solution, even though it doesn ‘t minimize the error I ly — I itself

We know from Theorem2.1 that

Mm5 (y’— ~)2dx = O(hA -1)2
0

A naturalquestionnow arises:

Is the minimum achieved in (3. 14) also Q (Ii A — 1)2 2

We can show that the answeris yes as follows. By Theorem2.1 there is an element v of B
7 A

for which both I Iy(x) — v(x) II 0(hA) and I Iy’ (x) — v (x) I = 0(hAl). However, Theorem
2.1 doesnot guaranteethat v will satisfy the boundaryconditions(3.2). We must show that v

\ —A
comeswithin O(hA ‘) of satisfying (3.2). Let v = X b,B, then since B1 (0) = I and all other

B,(0) = 0 we have b1 = O(hA). Similarly, b\ -A = 0(hA). Thus, by simply setting
- A—I

= 0 = b\A we obtain VE< B2 B\ A-I >~ given by = X b,B,, which differs from
=2

v by b1B1(x)+b\AB~A(x). We shall show that ~is the function we are looking for. Anyone
not interestedin the proofof this result may skip the next paragraph.

We have [7] that (2.l)-(2.5) imply

BI(x)=(xA±I~x)AI/(xA±I~~xl)AI and

—A (x) = (x — ~~\—A )A -- I / (~ — ~ -A )A I

Thus,

Iv’— ~ I = IbIIB~(x)I ±Ib\ AHB\ AWl

= 0 (hA) (k 1) r )A2 + ~ )AA 2

= 0(hAI)

making use of the mesh restriction (3.14). This gives us IIv’— H = O(hA ‘) and thus
I I

5 (y’—~’)~ dx —f (y~v±0(hAI))
2 dx

0 0

= 5 (y’ — v’ )2 dx + 2O(hAI)f (v’ — v’ ) dx + 5 0(hA - I)2 dx
0 (1 (1

= 0(hA<)2.

This shows that

5 (y’— ~)2dx =

0

for someelement%f < B
2 BVAI > and we then have

Mm 5 (y—~’)
2dx = 0(h~I)2 (3.15)

~ < 82. 8V-A—l > 0
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With this knowledgewe canask how big the error y — is in termsof y — 5, which we
know has beenmade as small as possible. Let I = y — ~. The starting point is the derivative
relation, which usesthe fact that [(0) = 0,

f(x) = fi’ (i:) d~
0

which gives

0

We can thenapply the Cauchy-Schwarzinequality [81

fIf(x)g(x)Idx =(ff2dx)I/2(J’g2dx)I/2
0 0 0

to the right-hand-sideof the aboverelation, with g E 1, to get

0

which in turn gives

0

This Is the secondkey observation:

The error in 5 is bounded above by a measure of the error in 5” and the latter is minimized by

By combining (3.15) and (3.16) we have

II~ —511 = 0(hkI) (3.17)

This shows that the Rayleigh-Ritz method convergeswhen applied to (3.1)-(3.2) and even
showsthat the convergencerateis at least as fast as

The sameresult, (3.17), canbe easily obtainedfor (1.1) subjectto y(O) 0 = y(l) using
precisely the sametechniquesas were used above for (3.1)-(3.2). The interestedreaderis
invited to obtain this result as an exercise. The “energy” associatedwith the equation

(ay’)’±by+c=0 onIO,11

(3.18)

y(O) 0 y(l)

Is

f [ia(y~)2iby2...cy1dx (3.19)

anda function y solves (3.18) if and only if it also minimizes (3.19). By assumingthat both

(all and (lb II are finite, and that a(x) > o- >0 for some const~nt o~, the error in the
Rayleigh-Ritz solution of (3.19) can easily be shown to be no greaterthan 0(hkI) using pre-
cisely the sameargumentsas wereusedabove. Such a proof of 0(h kI) convergencefor the
Rayleigh-Ritzsolutionof (3.18), under the aboveassumptions,is presentedin Appendix I.

We haveseenthat the error in the Rayleigh-Ritzapproximatesolution of (1.1) subject to
y(L) = 0 = y(R) is at most 0(hkI).
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The actual rate of convergence for the Rayleigh-Ritz solution of (3.18) is 0(hA)

The proof of such results is rather deepandcomplex 124], andwe must be content to use the
abovesimple argumentsto obtain 0(hkI) convergencerate estimates.

4. Galerkln’s Method

So far we havediscussedthe Rayleigh-Ritz method,but what is Galerkin’s method? This
section first formulatesthe generalGalerkin equations. Finally, a general statementis made
about the relation between Galerkin’s method and variational principles, and why Galerkin’s
method may be viewedas an extensionof them.

The starting point for Rayleigh-Ritz is an “energy” functional like (3.3) or (3.19) and it
resultsin equationslike (3.12) or moregenerally

(—a5’B,’+b5B,+cB,)dx =0 (4.1)

for (3.19).

Galerkin’s method starts from another point of view but arrives at precisely the same
result as Rayleigh-Ritzgives. Specifically, Galerkin’smethod for (3.18) is to solve

f((a’)’+b+cB,dx=0~ i=2 N—k—i (4.2)
0

for 5. The idea is simply to make the error in the differential equation (3.18) small by making
it “orthogonal” to < B2 BV~k~I >. Actually (4.2) is not used in practice, rather integra-
tion by partsis used to convertit into

(—a5’B,’+ b5B, +cB,) dx = 0,

using y(0) = 0 = y(l), which is identical to the Rayleigh-Ritz equations(4.1) for (3.18). In
fact,

Whenever there is an energy functional for a differential equation, the Rayleigh-Ritz method
applied to that differential equation is the same as Galerkin ‘s method for that equation.

To show the general nonlinearself-adjoint case 121 and the equivalenceof Rayleigh-Ritz and
Galerkin’smethod,the two formulationsare presentedbelow for the equation

(ay’)’=f(x,y) on (0,1) (4.3)

subject to y(0) = 0 = y(1). The Rayleigh-Ritzfunctional for (4.3) is 121

~ Iia(W~)2+ ~‘f(x~~)d%ij dx (4.4)

andits minimum over < B2 BNkI >, .P, is attained when

o=5 (a5’B,’+f(x,5) B,) dx (4.5)
0

Thus, (4.5) are the Rayleigh-Ritzequationsfor (4.3). The Galerkinequationsfor (4.3) are

5 ((a5’)’—f(x,5))B,dx =0 (4.6)
0

which, using integration by parts, is exactly (4.5). Thus, for this very general class of equa-
tions, the Rayleigh-Ritz and Galerkin solutions are identical, and a proof of convergence for
Rayleigh-Ritz also showsthat Galerkin’s methodis convergent.
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Since Rayleigh-Ritz requiresan “energy” functional, its use is limited to differential equa-
tions which havesuch functionals. Galerkin’s method doesnot needor use an energy func-
tional andcan thusbe applied to equationswhere Rayleigh-Ritzcannot. For example,the gen-
eral,non-self-adjoint,linear two-point boundaryvalueproblem

ay”±by’+cy+d=0 on (0,1) (4.7)

subject to y(0) = 0 = y(l) has no known Rayleigh-Ritz functional. However, Galerkin’s
method for (4.7) is trivial to write down:

o=fB,(a;”±b;’±c;±ddx~ #2 N—k—i (4.8)
0

which, asusual, is re-writtenas

o=f[—(aB,)’;’±B,b’±B,c+Bdjdx (4.9)
0

This techniqueconvergesas 0(hA) evenfor this non-self-adjointequation [21, 24].

In general,evenfor nonlineardifferential equationssubject to y(0) = 0 = y(1), writing
down the Galerkin equations is trivial and may be summedup as:

0 = 5 (the error in the differential equation)B, dx, i=2 N—k—i. (4.10)
0

If the differential equationis nonlinear,then so is the Galerkinsystemof equations,obviously.
Thus, at least conceptually,writing down the Galerkinequationsis a very easymatter. It is in
this sensethat Galerkin’s methodmay be viewedas an extensionof the Rayleigh-Ritzmethod:

Galerkin ‘s method can be applied to literally any differential equation, but when applied to a
differential equation with an “energy” functional, it agrees exactly with the Rayleigh-Ritz solu-
tion.

The abovediscussionhas shown that Galerkin’s method is rather simple to describe,even for
nonlinear equations,and that it convergesfor simple, linear equations like (1.1) subject to
y(0) =0=y(l).

We now needto formulate the Galerkin equationsfor the generalcaseof (1.1) subject to
(1.2). For i=2 N—k—i the following usualGalerkin equationshold

R
o=5 (—a5’B,’+b5B,+cB,)dx (4.11)

L

Whenwe write

5 X a,B, (4.12)

relation (4.11) becomesthe systemof linear equations

V~~kR R

— bB,B, + aB,’B)dx=fcB,dx, i=2 N—k—i. (4.13)
~—I L L

Equations (4.13) may be viewed as determining a2 aNkI. Equation (4.13) cannot be
usedfor i = 1 and i = N—k since the integrationby partswhich led to (4.11) is not valid for
thesevaluesof i. We now needequationsfor determininga1 andaNk.

The previousGalerkin formulationsof this sectionwere basedon the assumptionthat the
boundaryconditionswere homogeneousDirichlet, that is y(L) = 0 = y(R). Theseboundary
conditions determined the coefficients a1 and aNk in the Galerkin solution, namely
a1 = 0 = aNk. The same principle still holds, even for boundaryconditionslike (1.2). The
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boundary conditions do determine a1 and aVA, although not as simply as in the
y(L) = 0 = y(R) case.

In determininga1, there are two basic casesto consider. The first case is when f
3L = 0,

which gives y(L) = YL /aL. In this case,then, a
1 = y(L) is known and any appearanceof a~

in (4.13) can be moved to the right hand side of those equationsand the equation for a1 is
simply

a1 = YL/aL. (4.14)

The secondboundarycaseis when 1
3L !=0. Here the value of 5(L) = a

1 is unknown a
priori. A natural and logical, but improper, way to specify al would be to force the boundary
condition (1.2) to hold exactlyat x=L:

aLy(L) + PLY’ (L) = -y~ (4.15)

It is easily seenthat this cannotbe a properthing to do, for (4.15) would meanthat

aLe(L) +/3Le’(L) =0 (4.16)

where e = y—f’ is the error. But we want, andexpect, e to be 0(hk) and know that e’cannot
in generalbe better thanO(hA—I) Thus, sincein generalaL !=0, (4.16) implies that

e(L) = — (4.17)—e’ (L) = 0(hA
1)

aL

and forcing the boundaryconditionsto hold exactlyat x=L results in a lower convergencerate
than is possible,expectedandoptimal.

A similar argumentcan be made againstdoing the next most “obvious” thing, namely
forcing the boundaryconditionsto hold in the “Galerkin” senseby requiring

R

5 (aJ’+f3L’—YL)BIdx =0 (4.18)
L

to hold. Thus, the boundaryconditionsalone, in a vacuum,are not sufficient to determinea
1.

The only other information available is that provided by the differential equation (1.1)
itself. This observationresults in the following formulation of the equationfor a1, and requires
a detailedlook at the derivationof the Galerkin equations.

The startingpoint for Galerkin’s equationsfor (1.1) is the relation
R

0 = 5 ((a53’)’+b~’+c)B,dx
L

which, using integration by parts,becomes
R

o=5 (—afl’B,’+b5B,+cB,)dx + aB,5”I~. (4.19)
L

For i=2 N—k—i we have B,(L) = 0 B,(R), by (2.2)-(2.6), and thus for
i=2 N—k—i equations(4.19) are exactly (4.11). The previousdiscussionof the boun-
dary conditionsat x=L, when

13L !=0, then leadsto a natural, and healthy, interest in (4.19)
for i=1. For in the casewhere 13L !=0 we cansolve (1.2) for

y’(L) = — -~--~--y(L) (4.20)

IJL f-k

Equation (4.19), as written, containsno information aboutthe boundaryconditions. However,
by replacing5’ (L) by the right hand side of (4.20) in (4.19) for i=l gives
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0=r(—a5’B’+b5B+cBi)dx—a(L)(———-—Y(L)) (4.2W
PL PL

This is a slightly re-writtenGalerkin equationfor i=1 which doescontain information about the
boundaryconditions.

Equation (4.21) is the correct equation for determining a~ when PL !=0 and a similar
relationholds for avA whenPR !=0. This schemeis shownto be convergentas 0(hk) in [41.

Now that we have the equationsfor the Galerkin solution 5, namely (4.11) and either
(4.14) or (4.21), we needto find out what equationsthey representfor a

1 aV~k. Let S,,
denote the standard Kronecker delta function, that is 8,, 0 for all i !=jand8 = 1. Also,

R
let (f,g) 5 f(x)g(x) dx for any functionsf andg. Then we havethe following four cases,

L
where carehas beentakento write the equationsso that their symmetric and bandedstructure
is clear:

Case1: PL=O=PR

al = -IL/aL

andfor i = 2 N—k—i,
‘~ —A—I

X a,[(aB>B,’)—(bB,,B,)] =

/ =2

(c,B,) + 2k( — (aB,B,’) + (bB1,B,))+ (4.22
aL

YR ~ (aB~k,B,’) + (bBVA,B,))
af~

andfinally,

= YR/aR

Case2: PL !=O=PR.

For i = 1 N—k—i,

NkI aL

X a,[(aB>B,’) —(bB,,B,)—8,18,1a(L)—1=

PL

(c,B,) + ~ — (aB,k,..k,B,’)+ (bBv..k,B,))— (4.23)
aR

YL

PL

andfinally,

aNk = YR/aR

Case3: PL=O!=PR.

a1 = YL/aL

andfor i = 2 N—k,
Nk aR

Z a,[ (aB,,B,’) — (bB~,B,) +a (R)8,NABJN —k~ I =
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-IL

(c,B,)+ —( — (aB~.B,’) + (bB1.B,))+ (4.24)

8,VAa(R) PR

Case4: 1
3L!=O!=PR.

Fori=1,..., N—k,
\ —A crL aR
Xa,[(aBYB,’) —(bB,,B,)—8,I8,Ia(L)—-—+8,vA~,VAa(R)—] =

PL’ PR

(c,B,) + 8,.V~Aa(R)PR (4.25)

-IL

Equations(4.23)-(4.25)all havethe form

Ga b (4.26)

where G is an N—k by N—k matrix and b is a known N—k vector. Such systemsare easily
solved, see 1131 for example. The systemof linear algebraicequationsgiven by (4.26) has
somevery nice properties. First, it is symmetric, that is, G,, = G,, for all i and j. This means
that we only need to store G,, for I =i. The matrix G is also bandedin that G,, = 0 if
li—il > k, this propertycoming from the fact that eachB-spline basisfunction B, is only non-
zero on the interval [x,,x,+k 1. The matrix G is also positive-definite. This is easily seenin the
caseof (1.1) subject to y(L) = 0 = y(R): The statementthat G is positive definite meansthat
for any non-zerovector a we havea’Ga > 0. If thereis a vector a so that a’Ga =0, then for

N —k—I R

= X a,B,(x) we have 0 > a’Ga = 5 (av’B,’—bvB,)dx, for #2 N—k—l, which
=2 LR

simply means that 0 > 5 (a(v’)2—bv2) dx. But since b=0 on (L.R) we then have
L

R
0 > 5 a(v’)2dx which implies that v’ 0 on [L,RI sincea(x) > 0 there. Having v(L) 0

L
and v’ (x) 0 on (L,R) gives v(x) 0 on [L,RI and hence a

1 = = a~ = 0. Thus,
the only vectora suchthat a’Ga ( 0 is a=0andG is positive-definite.

Now a banded,symmetricand positive-definitematrix is an especiallynice matrix to deal
with andthe solution of such systemsof equationsas (4.26) can be achievedcheaplyandaccu-
rately [131. Specifically, only the elementsG,1 for i= 1 N—kand i—k+1 =I = needbe
stored. This requires about k(N—k) storagelocations. The systemof equations (4.26) can
then be solvedin about k

2(N—k)operations.

S. Implementationof Galerkin’sMethod

It is good to know that the Galerkin equationscan be solvedcheaply andaccurately,once
they are formed, and that the resultingapproximatesolution convergesto the true solutionof
the problem like 0(hA)

But exactly how does one set-up the Galerkin equations?

The matrix G and the right-hand-sideb of (4.26) involve the integrationof many functions.
One way of computing them would be to call a good automaticquadratureroutine for comput-
ing integralsas accuratelyas possible. However, this would be an expensiveover-kill of the
problem since a typical user only wants the solution of his problem accurateto somewhere
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between3 and6 decimal places. Thus, it would be nice if the necessaryintegralscould be com-
putedonly as accuratelyas neededin order to give a computedGalerkinsolution which is accu-
rate to 0(hk).

To get some ideaof how this might be accomplished,considerthe canonicalproblem of
Poisson’sequation

y”=f on(0,1) (5.1)

subject to y(0) = 0 = y(1). The Galerkinmatrix Gin this caseis simply

= 5 B,’(x)B(x) dx
0

and the integrandsare all simply piecewisepolynomialsof degree2(k—2). Thus, all we needto
do is, piecewise,integratepolynomialsof degree2(k—2) 2k—4. By far and away the easiest
way to do this is to use Gauss-Legendrequadrature[181 on each B-spline mesh interval
[x,,x,+11. Since an m point Gauss-Legendrequadraturerule is exactfor polynomialsof degree
=2m—1,we seethat a k—i point Gaussianquadraturerule is exact for polynomialsof degree
=2k—3.Thus, a k—I point Gauss-Legendrequadraturerule, applied to each B-spline mesh
interval, will exactly computethe Galerkin matrix G for the simple equation (5.1). This raises
an interestingquestion:

Is a k—i point Gauss-Legendre quadrature rule, applied over each B-spline mesh interval,
always accurate enough to compute an approximate Galerkin matrix G’ and right-hand-side b’
so that the computed Galerkin solution a of

G’ a’ = b’ (s.2
still gives

N—A

lly(x)— X a,B,(x) (I = 0(hA)
=1

where y is the solution of (1. 1)- (1.2)?

The answerto this question is, of course,yes. We shall now show why it is true, andalso why
no fewer than k—i points can be used in the quadraturerule. Thus, we shall seethat precisely
a k—I point Gauss-Legendrequadraturerule shouldbe usedto computethe integrals.

The first step is to studythe sensitivity of the Galerkinsolution coefficientsa of (4.26) to
perturbationsin G and b. Later we shall study the perturbationsof G and b introducedby only
approximatelycomputing the integrals. We know that if the right-hand-sideb is perturbedby
bb then the solutionsof the two equations

Ga=b and G(a+Sa)=b+8b

differ by ~a =

Now the norm of a matrix A is simply definedin terms of the vector norm to be

(IA II Max llAxl

(

x!=olIxIl
It is an easymatter to seethat

(lABl( =(IA II lIBlI
and

((A +BI( =l(All±llBll,
these relations being inherited from the same relationshipsfor the vector norm. Thus,
((ball II G’ II ll8b II. Also, since IlbIl = ((GIl ((all we can divide these two relations



- 15 -

to obtain 1131

((all (lb (I
The quantity ((GIl (( G1 (I in (5.3) is called the condition number of G and is denoted by
Cond(G). The condition numberof G clearly relatesthe relativechange in the right-hand-side
b to the relativechangein the solution a. If Cond(G) is not too large, thena small changein b
will result in only a small changein a. Similarly it can be shown [131 that perturbingG by ~G
as in the equations

Ga=b and (G+8G)(a+~a)=b

gives, for sufficiently small ((BG (I,

Thus, perturbingeither G or b by a relative changeof ~, results in a relative changein a of at
most Cond(G)E. This tells us how sensitivethe solution a of (4.26) is to changesin eitherthe
matrix G or the right-hand-sideb.

We now study the perturbationsintroducedby approximateintegration. By using a k—i
point Gauss-Legendrequadraturerule, we obtain all integralsaccurateto 0(h2(kIi) and thus
the perturbationsare all 0(h2(k~)). Thus, we may write

=Cond(G)0(h2ikI)) (5.5)

((all
and if we can show that Cond(G) doesn’t grow too fast with h—0, then (5.5) will show that
the computed Galerkin solution coefficients a’ stay close to the exact Galerkin solution
coefficients.

As a start we first considerPoisson’sequation (5.1). To estimateCond(G) we first find
an upperboundon (I G ((. This is obtainedby noting that for any vector a we have

(XG,,a,(=(XaiSB,’B,’dx11 X a,5B,’B>lxI=(IaIIO(h’)

since ((B,’(( = 0(h’), see Appendix 2. This gives

((GIl = 0(h’). (5.6)

We next needan upperbound on (I G’ (I. This is obtainedby noting that for any vector a we

have

Xa,aiG,, = 5 ~a,a,B,’B dx = 5 (X a,B,’)2 dx > (I X a, B, 112 (5.7)
0 ,.j 0

usingthe sameargumentthat led to (3.16). But we know from section2, equation(2.8), that

(IX a,B,(( > Ck(Ia(I (5.8)

for any vector a. When this result is coupledwith (5.7) we see that

But, sinceG is positive-definite,

Xa,a,G,, = IX a,(X G,~a,)( ( ((a((0(h~~’)((Ga((,
‘.1 ‘ /
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sinceN=0(h’), and by combiningthis with (5.9) we see

which gives

((G—’(( =C,j20(h—’). (5.11)

By combining (5.6) with (5.11) we obtain the very nice result that

Cond(G) = 0(h-2) (5.12)

Thus, the Galerkin equationsfor (5.1) are well conditioned. In fact, the Galerkin equations
condition numberof O(h2), is the sameorderas that for centeredfinite differences[221.

The interestedreaderis encouragedto show that the sameresult - Cond(G) = 0(h 2) -
holds for the Galerkin matrix of (1.1) subject to y(L) = 0 = y(R), under the sameassump-
tions as were made in section 3 to make the proof of the 0(hkI) Rayleigh-Ritz convergence
rate for (1.1) easyto obtain, as an exercise. The proof follows the aboveoutline exactly. Such
a proof is presentedin Appendix 3. A generalproof that Cond(G) = 0(h2) is given in [221.

Also, by (5.5), we thenhave

(I a —a’ I — 0(h2(k2)) — 0(h4h k-4)

((all
which showsthat, for k >4,

= 0(hA). (5.13)

This shows that the error in the computedGalerkin coefficientsa is on the order of the error

in the Galerkinsolution itself. Since
((y—y (I =Il/—S ((+((5—y (I

= (IX (a~~a,)B,((+0(hA).

we may use (2.5) and(2.6) to see,for k>4,

(I ( ((a —a’ I(+0(hk) = 0(hA), (5.14)

This establishesthat, for k >4, using a k—i point Gauss-Legendrequadraturerule to compute
the necessaryintegralsresults in a computedapproximateGalerkinsolution which convergesat
the correct rate. The sameresult holds for k=2 and 3, but a more detailedargumentmust be
used [231.

If k—i quadraturepoints per mesh interval is sufficient to guaranteethe correct rate of
convergenceof the computedGalerkinsolution,can fewer than k—i points be used in the qua-
draturerule to give the sameresult? It is easyto seethat no fewer than k—I quadraturepoints
canbe usedby consideringthe sampleproblem (5.1) again. In that case,the Galerkin matrix is

= 5 B,’B;dx
0

which is to be computedby say a k—2 point Gauss-Legendrequadraturerule. Let the quadra-
ture rule haveabscissaef,,, and weights Win, m=1 k—2. Then for any function g(x) on
(—1,+l1 we have

fg(xdx A~W,g(~,)+O(( (g(2(k2))( I)
—1 —1

Now consider the simplest mesh possible, that is, just one mesh interval,
= = xk = 0 , xk+l = = x2k = 1. In this case,the approximateGalerkin matrix



- 17 -

is, ignoringa factor of 2.
A —2

= X w,,,B,’(x,,,)B,(xrn), (5.15)
= I

where x~ = (1 ~ /2. We shall show that this approximateGalerkin matrix is singular,and
hencethat a less than k—i point quadraturerule cannotin generalbe sufficient to computean
accurateGalerkin matrix. To show that G is singular,it is enoughto exhibit a non-zerovector

a = (0,a2 a~A.I,O) such that Ga = 0. Now we know that G,, = 5 B,’B;dxand thus
0

X G,,a, =5 B,’(X a,B) dx (5.16
0

We can exhibit the appropriatevector a by constructinga non-zerofunction v X aB, which

is a polynomial of degree =k—1,whosefirst derivativevanishesat the x,,, for m=1 k—2,
and for which v (0) = 0 = v (1). A polynomialof degreek—2 which vanishesat the quadrature
points is given by

The polynomial of degreek—i given by

0

has v’ (xrn) = z(x~,) = 0 for m=1 k—2, v(0)=0 and v(1)=fz(.r,) d-r) = 0 by virtue of the
0

fact that the x~ are the Gaussianquadraturepoints for the interval [0, 11. The polynomial v is
not zero since the coefficient of xkI is 1 / (k—I). Thus, the non-zeropolynomial v given by
(5.17) providesthe necessarynon-zerocoefficient vector a for which Ga = 0 and G is in fact
singular. Theseresultsmay be summedup as follows:

Precisely k—i Gauss-Legendre quadrature points should be used per mesh interval to compute
the integrals. The use of more points would increase the cost, but not the convergence rate,
while the use offewer quadrature points could result in a singular matrix.

We now havea completeformulation of Galerkin’s method - the equationsanda method
for forming the integrals which make up the equations. The most obvious way to form the
Galerkin equationsis then basically to compute G,, for 1=i by doing each integral, piece by
piece,in its turn, as in the code

For i=2 N—k—I

Forj=Max(i—k+1,1)

(
+1,

Compute 5 (aB,’B,~—bB,B,)dx
x

usingk—l Gaussianquadraturepoints on eachmeshinterval.

This then requiresroughly (N~k)±(k2~l)evaluationsof a(x) and b(x), and as many multi-2
plications, to computeall integrals. However, this is exceedinglywasteful in that both a (x)
and b(x) are really only evaluated at the quadrature points of each interval, or about
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(N—k)(k—1) points. This could of coursebe remediedby evaluatingand storingthe necessary
a (x) and b (x) valuesjust beforeenteringthe outer loop. However, this would require about
2(N—k)(k—1)storagelocations, which is more than that usedby the Galerkin matrix itself,
which usespreciselyk(N—k) locations. Another way would be to evaluateand storethe a and
b valuesandall the non-zeroB, and B at all the Gaussianquadraturepoints of all the intervals
(x,,x,+1) (x,+k1,x,+A) at the top of the outer loop. This would require 2k(k—1) storage
locations for storing the a and b values,but requires2k

2(k—1) words to store all the non-zero
B, and B values.

By re-orderingthe loops to do the operationsinterval by interval we can construct the
equationsin the samenumberof operationsand yet use less storage. On any interval (x,x,±

1)
the only B, which are non-zerothereare for j1k +1 1. Thus, we canform the Galer-
kin equationsby

For 1=1 N—k

Evaluateand store a,b andall non-zero B, and B,’
at the k—I quadraturepointsof (x,,x1+1).
For i=I—k+1 1

For j=I—k+1

‘1,-I

Compute 5 (aB,’B,—bB,B,)dx

usinga k—i point Gaussianquadraturerule.

This usesonly

!(k21)(Nk) (5.18)
2

operations, (N—k)(k—1) evaluationsof a and b, and 2(k—1)+2(k—1)k = 2(k
2—1) scratch

storagelocations.
The aboveoutline for evaluatingthe Galerkin matrix, as well as the right-hand-sideb, can

be implementedin less than 35 FORTRAN statements,with the treatmentof the boundary
conditionsrequiring less than 35 FORTRAN statementsas well. This is roughly twice as much
FORTRAN code as the implementation of a centeredfinite difference schemefor solving
(1.1)-(1.2). Thus, the benefits of Galerkin’s method - higher order rate of convergence,
greateraccuracy,the ability to use a non-uniformmesh - comeat a price which is not too high
for the implementorof such techniques.

Galerkin’smethod, usingB-splines,has beenimplementedfor solving the boundaryvalue
problem for systemsof linear differential equationsin a single variable. This packageis in use
as the coreof the time-varyingpartial differential equationsolver POST [201.

6. Error Estimation
Now that we havea techniqueavailable for finding an approximatesolutionof (1.1)-(1.2)

accurateto 0(hA), and it is thus known to convergeas h—0 to the true solution of the prob-
lem, a very importantpracticalquestionarises:
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For a given mesh ~, how accurate is the computed Galerkin solution 5 based upon that mesh?

This is a tidy paraphraseof the eternalquestionaskedby all usersof computersoftware ( and,
sometimes,hardware):

I just spent K Kilobucks getting this basket of numbers, how good are they?

There is, in general, no way to guarantee,in a finite amount of computertime and memory
(Dollars), that a given Galerkin solution is accurateto a certain amount. No matter how much
treasureis expended,the coefficientsa, b and c of the differentialequationcan only be sampled
at a finite numberof points, yet the solution y of (1.1)-(l.2) is very strongly dependentupon
the value of thesecoefficientseverywhere. Thus, no matter how carefully the coefficientsare
sampled,theymay be sufficiently “kinky” betweenthe sampledpoints that the solutiony is radi-
cally differentfrom .

Even though the abovequestion is, in general, unanswerablein a definitive sense,users
will continueto ask it and many will demandsomesort of statementabout the accuracyof the
computedapproximatesolutions. This sectionmakesa “reasonable”attempt to respondto this
unanswerablequestion.

We want to estimatethe error in a given computedGalerkinsolution 5 to (1.1)-(1.2) over
a mcsh ir. We know that the error II~ —SII = 0(hA), which simply meansthat thereis a con-
stantC so that as h—0 we have

((y—5(( =Ch4. (6.1)

If we can estimatethe constant C, then by (6.1) we will havean estimatefor (Iy —~II. The

actual, observedbehaviorof the erroras h—0 is
((y—5(( = ChA. (6.2)

This is an asymptoticstatementaboutthe observedbehaviorof the error as the mesh spacing
approacheszero, but we shall assumethat it holds for all meshes. Let if

1 and iT2 be two
meshes,with (7r2( < (if1(, and let y, be the computedGalerkin approximatesolution over the
mesh ir, for ~=1,2. If we set o~ = h~2(/(~i( < 1, then we obtain

= C(n~2lk = ~.k(~y~~y1(( (6.3)

and thus

=
We also have from the triangle inequality,

((y—y1(( > ((y2—y1((—((y—y2(( =

whichwhen combinedwith the previousinequality gives

This relationgives

I(y2—y111 =((y—yi(( .< I (y2 —y1 (6.5)
1±crk

Since typically 0A « 1 we see from (6.5) that a very good estimate ( upper bound ) for

((y—y1(( is given by

I (y~ y1 (6.6)

The estimategiven by (6.6) is obviouslycomputablesinceboth y1 andy2 are known B-splines.
The estimategiven by (6.6) is very accurateand reliable, as we shall see in section 7. It is
accurate,asymptotically,because(6.2) does hold, in practice, very well. It is reliable because
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when (6.2) does not hold, the difference I Iy2 —y~ II is quite likely to be large, giving a large
estimateof I Iy —y1 II by (6.6).

The value of ((y2 —y1 (I neednot be computedexactly, a good estimatefor it will do just
as well. Let ir be the meshwhich is the union of all the points in both if1 and if2. Then on
each interval of the mesh if, the differencey1(x) —y2(x) is just a polynomial of degreek—I.
So estimating I Iy2 —y1 II can be reducedto the problem of estimatingthe maximum absolute
valueof a polynomialoveran interval.

The Bernstein Inequality [1] may be used to estimatethe norm of a polynomial over an
interval. Specifically, the BernsteinInequality statesthat for any polynomial P,,(x) of degreen
on the interval [—1,+11, the trigonometricpolynomial T,,(O) = P,, (cos(O))on [—if, +7T1 obeys

If we sample T,1(O) at m equally spacedpoints 0, on [0,ifJ, then for any 040, if] we see that,
by the MeanValueTheorem,

=IIT;,I( b—el.
Thus,

= _ Max IT,,(O,)I+n(IT,,(I ~
_ I. ,rn 2(m—1)

andfor m > nif+1, we see that

((TJ( ( 2 _ Max (T,(O,)I

Consequently,if we searchthe interval [—1,+1] at x, = cos(O,), for i = 1 m, we obtain

Max (P~(x,)( =I(PJ( =2 Max IP,,(x,)I
= 1. .rn , = I..

andthe norm of P~ may be estimatedto within a factor of 2 by usinga searchpatternof nif+1
points. Such a search,over each interval of the mesh if, is sufficient for our needs,and results
in the computationof the error estimatesto within a factor of 2.

The very first usercomplaintabout using (6.6) to estimatethe error in the Galerkin solu-
tion is that the Galerkin equationsmust be formed and solved for two different meshesin
order to estimatethe error in one of them. Just how big an overheaddoes (6.6) require above
just solving for y2, the numericalsolution which will be usedbecauseit is the more accurateof
y1 andy2? Well, typically k>4 ando~ (if2(/(if1( 2/3, andthus cr~ 1/5. Since the cost
of obtaininga Galerkin solution is proportional (5.18) to the numberof points in the mesh,the
ratio of the cost of computingboth y1 andy2 to just computingy2 is 5/3. This, at first glance,
appearsto be a rather large price to pay for error estimates. However, the alternative is the
relatively cheapcomputationof a pile of numbersof absolutelyunknown accuracy. The situa-
tion may be summedup as:

We can get the (potentially) wrong answer cheaply, the correct answer costs more to obtain.

Another error estimationschemethat can be used is obtained from (6.6) by noting that

o
1j(y—y~((andhence,from (6.6),

(6.7)1 ~

This relation can be used to estimatethe error in the most accurateapproximatesolution we
havecomputed,y

2, ratherthan the least accurate,y1. This seemslike a good idea, to use the
best information available, and in the limit as h—~0, it is a good idea. However, (6.7) suffers
from a seriousdefect. If the solution is not approximatedwell by eithery1 or y2, andwe have,
for example,o~ = 2/3 and k=6, then o~k 10—I andwe will estimatethat
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(Iy—y211 l(y2—y1((/10
Thus,althoughboth y1 andy2may only be good to 101, (6.7) will estimate((y—y2(( 1O~.
The problemof courseis that the estimate(6.7) may be small (for 0.k « 1) when I(y2—y1(I
and ((y —y2(I are quite large. In section 7 we shall see that (6.7) must indeedbe usedwith
somecare, but that (6.6) is extremelyreliable. In any case,no matter which error estimateis
believed, the moreaccuratey2 valuesare usedas the solution.

7. Numerical Examples

This sectionappliesGalerkin’smethod,using B-splines, to two problems. The first exam-
ple servesseveralpurposes. First, it consistsof 2 differential equations,each holding on one
side of an “interface”. Such interfaceproblemsoccur frequently in practiceandit is useful to
see how Galerkin’s methodhandlesthem. Second,it is a problem to which the exactansweris
known and we can examinethe convergencerate of Galerkin’s method,and the error estima-
tion schemesof section6, for this simple problem. The last purposeservedby the first exam-
ple is to exhibit a “superconvergence”property [10,11,241of Galerkin’s method. We can then
note that the error estimationschemesof section6 are robust enoughto detectand exhibit this
property as well. The secondexample is cookedup to “break” the error estimationschemesof
section6. The extentto which thoseschemesbreak down is discussedandcompared,showing
that the seconderror estimationschemeof section6 is in fact ratherunreliable,while the first
schemeis quite reliable.

The previous sections have describedGalerkin’s method for a rather clean, textbook
problem, (l.I)-(1.2). Problemsin real life areoften not that simple. The first sampleproblem
illustratesa common “unclean” problem which can be launderedinto the form of (1.1)-(1.2).
Considerthe problem

y’=0 on (—1,0)

(7.1)

~ =0 on(0,+1)

with y1(—1) = 0 andy2(+1) = = .~/~777i7, subjectto interfaceconditions

y1(0) =y2(0) (7.2a)

yj (0) = 2y~ (0). (7.2b)

The solutionof this problemis

y1(x) = x+1 on (—1,0)

(7.3)

on (0,±1).

Interfaceconditions(7.2) do not fit into the problemformulation (1.1)-(1.2), which only allows
conditionsto be imposed on the solution of the differential equationat the end points of the
interval.

To see how Galerkin’s methodcan be used to solve (7.1)-(7.2) requiresa little analysis,
andhandwaving. It is instructive to seehow suchinterfaceproblemsarise in practice. In elec-
trostaticsproblems [171 where thereare two materialsof different dielectric constantsin con-
tact, the dielectric constant is in fact continuous acrossthe point of contact. However, the size
of the transition region where the dielectric constantchangesfrom one constantvalue to the
other is exceedinglysmall. Let us assumethat a (x) representsthis essentiallypiecewisecon-
stantdielectric constantand that the space-chargepresentis given by f(x). Then Poisson’s
equationfor the electrostaticpotentialy is
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(a(x)y’)’=f on (—1,+1) (7.4)

where the interval (—1, +1) has beenchosenfor no particular reason. Further, let us assume
that a(x) looks like

x

whereaL andaR representthe two dielectricconstantsand28 is the (small) width of the transi-
+8

tion region. Thenby taking5 of (7.4) we have

ay’(+8~.~f f(x)dx = 0(8)
—8

which gives

~ (0) — a~yj (0) = 0(8). (7.5)

The physicalargumentthen saysthat the potentialy is insensitiveto the choiceof 8 in (7.4), SO

long as 8 is small, and thusthat we might as well take 8 = 0, andliterally makea (x) a step-
function. But 8 = 0 gives, from (7.5),

(0) = a~yj (0), (7.6)

which has preciselythe sameform as (7.2b). Thus,such interfaceconditionsare a consequence,
in the limit as 8—0, of solving the differential equation,ratherthan a condition placedupon the
solution. Specifically, it showsthat a jump discontinuity in the coefficient, a, of y” implies an
interface condition of the same form as (7.2b). The trick is to re-write (7.1) SO that its
coefficient a of y” obeysaL — 1 and aR — 2 at its jump discontinuity. It is also good to note
that the aboveargumentwhich led to (7.6) is independentof (did not use ) the boundarycon-
ditions on y at x — —1 and+1.

Now supposethat Galerkin’smethodwas applied, blindly, to an equationlike (7.4), with
a knot placedat 0. What would happen? Well, Galerkin’s method will sample a (x) at k—i
Gaussianquadraturepoints strictly inside the meshintervals on either side of 0. From that

0(x)

Op

+8

-8 I
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information Galerkin’s method cannot tell whether a (x) is continuousor discontinuousat 0.
In fact, for a given mesh,the Galerkinsolution will be independent of what a (x) does between
the quadraturepoints immediately to the left and right of 0. Thus, we might as well assume
that a(x) is continuous,but changingfrom aL tO a~ over an exceedinglysmall interval. The
argumentwhich led to (7.6) then saysthat we shouldobtain the Galerkin approximationto the
solutionof (7.4) with a~y~ (0) = aRy5 (0). This is preciselywhat we want of course.

However, we canjust as well assumethat a (x) changessmoothly, not abruptly, from aL

to aR betweenthe Gaussianquadraturepointson either side of the origin. In this case,we are
trying to approximateanother,slightly different, solution.

How does Galerkin ‘s method know which solution to approximate?

The main difference between the two solutions, for a (x) smooth and discontinuous,is of
coursein the continuity of y’at 0, the former being smooth and the latter being discontinuous.
Rememberthat the continuity of a B-spline at a knot x, is determinedby the multiplicity m, of
that knot in the mesh. Specifically, for any B-spline u, we havethat u101(x,) u iA—tn, ~(x,)
are all continuousat x,, but all higher derivativesof u may be discontinuousat x,. Recall that
this forced, in general, the multiplicity of the first and last mesh points to be k and allowed

= I at all other knots of u where u is smooth. Here howeverwe have a point where the
solution is not smoothat a meshpoint. Thus,

it is the multiplicity of the knot at 0 which determines the type of solution we are trying to
approximate.

Insteadof choosingthe multiplicity of 0 to be 1, we take it to be k—I, giving only u101 continu-
ous. With this choice for the multiplicity of 0 in the mesh,we can expectto find the solutiony
of (7.4) accurateto 0(h A)

We can now re-formulate(7.1)-(7.2)as

y’=0 on(—1,0)

(7,7)

e’12 =0 on(0,±1),
2

with y
1(—I) = 0, )‘2(+1) = -‘./~i and the knot at 0 of multiplicity k—I in the B-spline mesh.

This gives the ratio of the coefficientsof y” on the left and right sides of 0 as 2. The above
handwavingthenindicatesthat we should havey1’ (0) =

2y5 (0) which is precisely (7.2b). Note
that (7.2a) is guaranteedby the choice of k—I for the multiplicity of 0 in the mesh.

Figures 1,2 and 3 show the true error and the two error estimatesof section 6 for
k = 2, 4 and 6 of the Galerkin solution of (7.7), or (7.1)-(7.2), using N equally spacedmesh
pointson (—1,+1). Thus, h = 2/(N—1) andwe shouldhave the error ~C/(N~1)A for some
constant C. As the plots show, both error estimation schemesof section 6 give excellent
results for this example. The rate of convergencefor y

2 is as expected - 0(hA) - since the
slopeof In (error in y2 ) versusln (N—i) is —k.

However, the error in y1 is too good. In fact, the error for y1 when k = 6 is at the round-
ing error level ( about 1018 for the Honeywell HIS 6070 ) for all N ! For k = 2 the error in

y1 is clearly 0(h
2) which is no surprise. For k = 4, the error in y

1 is clearly 0(h
6). This is an

exampleof a “superconvergence”result. It is known [10,11,241that the error at the mesh points
x, of the B-spline Galerkin solution is 0(h2(AI)). This meansfor our problem that 51(0), 0
being a meshpoint, is accurateto 0(h2(k~~~)). We alsoknow that 51(—1) = y

1(—1). The error
in 51 at 0 and —1 is thus 0(h

2~41~). But (7.7a) meansthat y
1 should be a straight line, and

the Galerkin solution has this property as well. Thus y1—51, being a straight line which is
0(h

2(k1)) at its endpoints, is simply 0(h2(AI)). This result certainlyagreeswith the numeri-
cal evidencepresentedin figures 1-3. This shows that the error estimationschemesof section
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6 can detectconvergencerateswhich are different from the expected0(h A)

The aboveexampleexhibits all kinds of nice behavior- Galerkin’s method works for such
interfaceproblems,the rate of convergenceis as expected,or better,and it showsthat the error
estimationschemesof section6 work properly.

While it is nice to see that a numerical techniqueworks as advertised,it is much more
interesting, fun and instructive to find out where the technique breaks down. The second
example is designedto break the error estimationschemesof section6. This is easilyaccom-
plishedby trying to approximatea spiky function like y = sin(x)rn, for somelarge m, on [0, ~].

The equation

y” — (sin (x)~’+ 1)y +sin(x)2t?!+(m2+1)sin(xY1!~m(m—l)sin(x)”’2 = 0 (7.8)

on (0, if) subject to y(0) = 0 = y(if), has the solution y = sin(xll”’. Note that for large m,
(7.8) is nearly the equationy”—y = 0, for all x not near if/2, which has the solution y = 0,
the wrong answer.

Clearly, by choosingm sufficiently large we can fool any techniquefor approximatelysolv-
ing (7.8), and/or estimatingthe error in the solution, which doesnot use the point ir/2 in its
computations. Using this test equationit is easy to see that the seconderror estimationscheme
of section 6 is quite unreliable. By choosingm = 10, we obtain the resultsshown in figures 4-
6. As those plots show, the seconderror estimationschemesometimesgrosslyunderestimates
the error. The amountof underestimationgoes up with k, as the handwavingin section 6 said
it should, and the error for k = 6 is underestimatedby two ordersof magnitude! On the other
hand, the worst underestimateby the first error estimationschemeof section 6 was, by less
thana factor of 3, for k = 6.
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Appendix 1

The Convergenceof Rayleigh-Ritzfor (3.18).

The Rayleigh-Ritz solution, v, of (3.18) is the minimizer of (3.19) over
< B2 BVAI >. Thus, as before,5 is the solution of

S (a5’B,’—b5B,—cB,)dx =0 (All)
0

while the solutionof (3.18) certainlysatisfies

S (ay’B,’—byB,—cB,)dx =0 (AI.2)
0

by taking 5 B, dx of (3.18) and usingintegrationby parts. Subtracting(Al.l) from (A1.2) we
0

seethat

S (a(y—5)’B,’—b(y—5)B,)dx =0 (A1.3)
0

Thus, 5 minimizesthe functional

F(5) =5 (a(y’—5’)
2—b(y—5)2)dx (A1.4)

0

over <B
2 BVAI >. Since ((all and ((b(( are assumedto be finite, we can show, pre-

cisely as before, that the minimum of this functional is 0(hAI), and thus

F(5) = 0(h AI)2~ (AIS)

Now all we needto note is that, since b =0 on (0, 1),

F(S) > f a (y’—5’)
2 dx.

0

This in turn, sincea > o- on (0, 1), gives

F(S) > oj (y’—5’)2dx (AI.6)
0

Thus, by (3.16), (AI.5) and (A1.6),

I
((y—5(( =(—F(S))2 = 0(hki)0~

and we are done.



Appendix 2

To show ((B,’(x)(( = 0(h’)

We have [61,when all m, = I for 2 = =N—k—i,

B,(x) = (x,+A—x,)X i—I k+1

if (x,~,.1 — x,+11) ‘77• (x,+, I —

1=1 ii-4—I

andthus, for k > 3,
A+I

iT

where ~+ is definedto be ~ for ~ > 0 and0 for ~ =0.
restriction (3.10),

A+I

From this we see that, using the mesh

A+I

(k—1)khX i-I
i—I

A+I

=k(k—1)h~
i=I

A +1
if (i—I) if (l~j)(h/pJk

1=1

(j—I)! (k + I —j) ! (h /.~) A

k+I (k±1~j)k
2

= 0(h’)

(x,~,...
1 — x,~,1) if (x,.~.11—

IIB,’(x)(l =

andwe are done.



Appendix 3

To showCond(G) = 0(h2).

We have
R

= 5 (aB,’B;—bB,B,)dx (A3.1)
L

andfor any vectora
R

IX G,,a, I = IX aif (aB,’B—bB,B,)dx I (A3.2)
L

R

=1 X a,5(aB,’B,’—bB,B,)dx(
I,—i~(A L

But, since ((all and ((b(( areboth finite, we haveexactly as before,
R

5 aB,’B dx = 0(h’)
L

and
R

S bB,B, dx = 0(h),
L

andwe have, using (A3.2),

((GIl = 0(h’). (A3.3)

To obtain an upperboundon (I G’ I I we note that, as before,
R

Xa,a,G,, = 5 ~a,a,( aB,’B — bB,B) dx
L ‘i

R

R

> 5 a(X a,B,’)2dx
L

(IX a,B,((2

> R-L

usingthe fact that b ( 0. But we also know from (2.8) that

(IX a,B,(( > CkIIa(I

for any vectora. This coupledwith the above inequality gives,

From thiswe seethat,exactlyas before,



A3-2

IlGall (Ia lI0(h’) > CA2ci((a((2/(R—L)

and

(IGall > CA2 R—L 0(h)l(aI(.

Thus,

(1G’(I = C
47~ R—L 0(h’)

andusing (A3.3)

Cond(G) —

andwe are done.
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