
Computing Science Technical Report No. 89

A Test of a Computer’s Floating-Point Arithmetic Unit

N N. . L L. . S Sc ch hr ry ye er r

February 4, 1981

A Test of a Computer’s Floating-Point Arithmetic Unit

N N. . L L. . S Sc ch hr ry ye er r

February 4, 1981

A Test of a Computer’s Floating-Point Arithmetic Unit

N N. . L L. . S Sc ch hr ry ye er r

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes a test of a computer’s floating-point arithmetic unit. The test
has two goals. The first goal deals with the needs of users of computers, and the second
goal deals with manufacturers of computers. The first and major goal is to determine if
the machine supports a particular mathematical model of computer arithmetic. This
model was developed as an aid in the design, analysis, implementation and testing of
portable, high-quality numerical software. If a computer supports the arithmetic model,
then software written using the model will perform correctly and to specified accuracy on
that machine. The second goal of the test is to check that the basic operations perform as
the manufacturer intended. For example, if division (x x / / y y) is implemented as a com-
posite operation (x x × (1/ / y y)), then the test should detect that fact. Also, the accuracy
lost in such a division due to the extra arithmetic operations can tell the manufacturer
whether it has been implemented with sufficient care.

Most computers allow the representation of far too many floating-point numbers to
allow exhaustive testing of the floating-point arithmetic unit. A small and well-motivated
set of floating-point numbers is presented that can be used to detect a vast number of
floating-point arithmetic "problems" in existing machines. In fact, that set can be used to
detect at least one instance of every floating-point arithmetic problem known to the
author.

The test is written in portable FORTRAN and has been run on seven different
vendor’s hardware, with results that range from perfection to disaster.

1. Introduction

Most users of computer software have, at one time or another, asked the question:

Does the floating-point arithmetic unit of this computer perform correctly?

All too often, the answer to this question is no. The difficulties range from gross hardware problems to
subtle design errors.

For example, the Honeywell 6080 computer once had the property that a small number (approxi-
mately − − 10 − − 39) when divided by roughly 2 gave a large result (approximately 10 + + 38). A subtle design
feature on the CRAY-1 results in 1 × x x = = ∞ whenever x x has the largest legal floating-point exponent in the
machine. These are not isolated or rare cases; the computing world is a jungle of individualistic and some-
times too clever arithmetic units.

It is not sufficient for the user to simply look in the owner’s manual for the machine and conclude,
for example, that it is a base 2 machine with 56 bits in the mantissa, even though those facts may be correct.
The user needs to know the d dy yn na am mi ic c behavior of the arithmetic unit upon the stored data. To make the
point clear, assume that addition is botched and x x + + y y is only computed accurate to 24 bits, rather than 56.
Then some algorithms are not going to behave correctly if they believe that floating-point operations are
accurate to 56 bits. For example, if x x is the current Newton iterate and y y is the current Newton correction in
a nonlinear equation solver, then x x + + y y, the next Newton iterate, will only be good to 24 bits. Hence,

- 2 -

asking for 30 bits in the solution of a nonlinear equation, while reasonable with a 56 bit mantissa, will
result in an infinite-loop for Newton’s method. It can take a user a great deal of time to discover that the
problem is not in the code for Newton’s method, but in the floating-point addition operator. The user needs
to know the manner in which floating-point numbers are represented and how accurately the arithmetic unit
operates upon those stored data values.

It is not easy for the user to assess the computer’s dynamic floating-point behavior. A major problem
is that most computers allow the representation of far too many floating-point numbers to allow exhaustive
testing of the arithmetic unit. For example, the IBM 370 series, in single-precision, is a machine with 6
hexadecimal digits in the mantissa and a base-16 exponent range of [− − 64 , + + 63]. This represents more
than 109 floating-point numbers. Checking that x x + + y y gives the correct result for all (x x , y y) pairs would
involve 1018 tests, or, at 1 test per micro-second, many thousand cpu-years.

We cannot expect to be able to prove the arithmetic unit of a machine correct. In general, all we can
do is gain c co on nf fi id de en nc ce e that it is correct.

Many attempts have been made previously to test the floating-point arithmetic units of a computer [1,
5, 7]. These efforts have either been aimed at a specific class of machines or have proven to be ineffective
on some machines. Further, these attempts have used ad-hoc, or "folk", algorithms to test a small, selected
set of conditions with an extremely limited set of operands. None of them have used a systematic definition
of "correct" floating-point arithmetic as part of the test.

The folk-algorithm approach fundamentally assumes that the machine being tested is healthy. That
is, any errors in the arithmetic are assumed to be in the last digit of its floating-point representation. Under
that assumption, it is sufficient to find an i i so that the i i t th h digit in the machine behaves correctly and the
(i i + + 1) s st t digit behaves in a certain strange manner. From that value of i i, the precision of the machine can be
determined. However, when a machine is not healthy, the i i t th h digit may behave correctly and the (i i − − 2) n nd d

digit may not. Thus, the folk-algorithm approach may not correctly determine precision on a sick machine.
The present test uses a much larger set of test operands and a comprehensive mathematical definition of
correct floating-point arithmetic.

Section 2 of this paper presents a small and well-motivated subset of all floating-point (FP) numbers
that, when used as test operands, triggers all anomalous FP behavior previously known to the author and
has found further unsuspected errors. For a base-b b machine with t t base-b b digits in the mantissa, there are
O O(b b t t) possible mantissas. The sample subset of section 2 involves only O O(t t) mantissas. This reduces
the amount of testing to a reasonable level. The careful choice of those O O(t t) mantissas also allows a good
deal of confidence that they will uncover any FP troubles in the machine being tested.

To use the selected mantissas of section 2 to detect problems, we need some definition of what the
"correct" result of, for example, x x + + y y is. Section 3 describes a previously developed model of FP arith-
metic that will be taken to define correct arithmetic.

Sections 2 and 3 completely define the test by giving the FP numbers to be used as test operands and
by stating the criteria by which to judge the FP arithmetic unit’s performance upon those operands. The
implementation of the test was a ticklish and tedious chore, involving some 70 subprograms and more than
12,000 lines of portable FORTRAN. Section 4 describes this implementation and the tools from the
UNIX operating system used to create the FORTRAN code for the test from the d do oc cu um me en nt ta at ti io on n for the
test cases.

Since the test is implemented in FORTRAN, it should be noted that it is n no ot t the arithmetic unit of the
machine a al lo on ne e that is being tested. The entire compiler-operating system-hardware configuration will be
tested. This is as it should be, since a correctly designed and implemented piece of hardware may be
misused by the compiler. Conversely, a well designed and implemented compiler may compensate for a
badly designed piece of hardware. In this paper, the term "machine" will refer to the compiler-operating
system-hardware configuration.

Section 5 is a user’s guide to the FP test software. Drivers for the test are provided so that the user
can request either a "Yes-No" answer to such questions as "Is this a base 2 machine with 48 bits in the man-
tissa?", or a numerical response to such questions as "What is the base b b of this machine and how many
base-b b digits does it correctly support?".

- 3 -

Section 6 describes two small main programs for driving the test in the above two modes and gives
detailed run-time and memory requirements for using them.

Section 7 is a wish-list of things that should be done, in the future, to make the test more effective.

There are seven appendices that give, in alphabetical order, the results of running the test on hard-
ware from: Amdahl, Cray, DEC, Honeywell, IBM, Interdata and Perkin-Elmer. You might enjoy turning to
the appendix dealing with the vendor supplying your local computation center.

2. Sample Subset.

Since we cannot afford to test all FP numbers, we can only test a subset. The choice of that subset is
crucial to the success and effectiveness of the test. The subset should be large enough to detect all known
anomalous FP behavior and, if possible, increase the list of such. Yet the subset should be sufficiently
coherent that people can easily grasp it and have "confidence" in its ability to trigger incorrect FP behavior,
if it exists, in the machine being tested.

To motivate and make clear the subset choice, we need to have a simple, clear model for the
r re ep pr re es se en nt ta at ti io on n of FP numbers. For this we use the tried and true representation of [12] and [4]. This
machine model is based on the assumption that FP numbers can be represented in the signed, base b b, t t digit
form

±b b e e (
b b

a a 1_ __ + + . . . + +
b b t t

a a t t_ __) = = ±b b e e

i i = = 1
Σ
t t

b b i i

a a i i_ __ , (2.1)

where either a a 1 = = . . . = = a a t t = = 0 or 0 < < a a 1, 0 ≤ a a i i < < b b, i i = = 1 , . . . , t t, and e e min ≤ e e ≤ e e max.

For our purposes, the unknown parameters in (2.1) are the base b b, the number of base-b b digits t t, and
the exponent range limits e e min and e e max.

This representation model is sufficiently abstract that it can be used to describe all existing FP
machines. The model does not worry about whether the numbers a ar re e stored in the machine in the form of
(2.1), it only asserts that they c ca an n be represented in that form. This allows analysis to proceed independent
of such nitty-gritty details as whether the mantissa is stored in 1’s or 2’s complement, or whether the
mantissa is stored in the machine as a fraction or an integer (as on CDC machines). All these questions,
and many more, are submerged in the abstract representation model of (2.1). Yet, this model is delightful
for a numerical-analyst to work with. That is, it is practical. Virtually all rounding-error analyses of the
last 25 years have been based on it. Thus, as a representational model, (2.1) is an excellent balance between
abstraction and specialization.

The immense number of FP numbers that machines support is due nearly entirely to the number of
base-b b digits t t, not to the number of exponents. For example, on the IBM 370 series in single-precision,
there are only 128 exponents, but there are millions of mantissas. This paper concentrates on reducing the
number of FP mantissas to be used, and does nothing in particular to reduce the number of exponents to be
used. Practical experience with the test has shown how the number of exponent samples can be reduced
(see section 6), but that reduction was not built into the test.

It seems a good idea to use test operands with mantissas near the smallest (b b − − 1) and largest

(
i i = = 1
Σ
t t

(b b − − 1) b b − − i i ≡ 1 − − b b − − t t) normalized mantissas. It also seems desirable to use operands with strings of

0’s, 1’s and (b b − − 1)’s in their representations, so that isolated bits and bursts of bits are used. With these
thoughts in mind, there are 5 "obvious" mantissa patterns

- 4 -

b b − − 1 + + b b − − i i for i i = = 2 , . . . , t t , T Ty yp pe e1 ,

j j = = 1
Σ
i i

b b − − j j for i i = = 1 , . . . , t t , T Ty yp pe e2 ,

0 T Ty yp pe e3 , (2.2)

(b b − − 1)
j j = = 1
Σ
i i

b b − − j j for i i = = 1 , . . . , t t , T Ty yp pe e4 ,

(b b − − 1) (b b − − 1 + + b b − − i i) for i i = = 2 , . . . , t t , T Ty yp pe e5.

On a base-10 machine, for i i = = 5, examples from these five mantissa classes are
0. 100010 . . . 0

0. 111110 . . . 0

0

0. 999990 . . . 0

0. 900090 . . . 0 . .

For b b = = 2, clearly Types 4 and 5 are redundant and are not used in the test. The mantissas of (2.2)
are natural in that they "bunch" together near 1/ / b b and 1, the endpoints of the range for normalized mantis-
sas. (2.2) also c co on nt ta ai in ns s the smallest (b b − − 1) and largest (1 − − b b − − t t) mantissas. As with software, most of
the errors in machine design arise in the handling of conditional statements (IF’s). Re-normalization is
such a conditional response to the mantissa of the computed result being less than b b − − 1 or greater than
1 − − b b − − t t . Thus, the FP unit is most likely to fail near these extremities and that is where (2.2) samples the
mantissa most densely.

Other choices of mantissa could, and perhaps should, be made. However, the appendices show that
those of (2.2) are extremely useful.

Absolutely no claim is made that (2.2) is sufficient to detect all anomalous FP behavior. The only
claim made for (2.2) is that it is a small, simple and well-motivated subset of all FP mantissas that can be
used to detect a vast number of FP arithmetic "problems" in existing machines. In fact, (2.2) can be used to
detect at least one instance of every FP arithmetic problem known to the author. However, there are
specific cases of pathology not in the sample set. For example, on the Interdata 8/32, x x − − 16 − − 64 x x ≡ 0 for
all machine x x’s; yet the test finds this only for sample x x’s. The author would appreciate additions to the
collection described in the appendices.

A somewhat offbeat example of the utility of (2.2) in detecting errors is the now famous wiring error
on the early models of the HP-45 hand calculator. That error resulted in log (exp (1. 01)) not even being
close to 1. 01. Since the HP-45 is a base 10 machine, 1. 01 is one of the numbers which would be used from
(2.2). log and exp are hard-wired processes and log (exp (x x)) ∼∼ x x would be a logical relation to test. In
fact, log (exp (x x)) ∼∼ x x failed for all x x’s with type 1 mantissas from (2.2), not just 1. 01.

The number of FP mantissas represented by (2.1) is O O(b b t t), while (2.2) only represents O O(t t) man-
tissas. This reduces the number of mantissas to be used in the test to a very reasonable level. For example,
on an IBM 370 machine in single-precision, we have b b = = 16 and t t = = 6. Using (2.2) as test mantissas,
rather than all of (2.1), reduces the number of mantissas from roughly 106 to a few dozen. This reduction,
from O O(b b t t) to O O(t t), allows testing to be done in minutes instead of millennia.

3. Dynamic Model.

Section 2 presented a sample set of FP numbers (2.2) to be used as mantissas of operands in testing
the dynamic behavior of the FP arithmetic unit of the host computer. How do we decide if x x + + y y, for exam-
ple, has been computed "correctly" by the machine? This section describes a previously developed model
of FP arithmetic that will be used to define correct arithmetic for the purposes of the test.

Let f f l l (x x * y y) be the machine computed value of x x * y y, where * is any of + + , − − , × and / /. Then one
way to assess the accuracy of FP arithmetic would be to use the representation model (2.1). Using the

- 5 -

relation [4],

f f l l (x x * y y) = = (x x * y y) × (1 + + δ) , δ ≤ ε ≡ b b 1 − − t t (3.1)

for all x x and y y in the sample set, we could attempt to compute ε ≡
x x, y y

M Ma ax x δ and then, indirectly, t t. How-

ever, this approach has serious problems. First, δ is very difficult or impossible to compute accurately from
(3.1). Second, (3.1) allows 1 + + 1 = = 2 + + δ, for δ ≠0, which is not acceptable since most everyone agrees
that 1 + + 1 = = 2 must hold on any reasonable machine. Thus, (3.1) is not suitable to define "correct" FP
arithmetic.

Clearly, at least some FP results are going to have to be exactly right, like 1 + + 1 = = 2, but which
ones? A model of the dynamic FP behavior of a machine, which takes this and many other things into
account, is given in [13]. That model will be used to define "correct" FP arithmetic. In the interest of com-
pleteness and conciseness, an outline of the axioms and results of that paper is presented below.

First, we need to define some terms. The numbers defined by (2.1) are called m mo od de el l n nu um mb be er rs s, and
the parameters must be chosen so they are a subset of the machine numbers. The smallest positive model
number is

σ ≡ b b e emin − − 1

and the largest model number is

λ ≡ b b e emax (1 − − b b − − t t).

The maximum relative spacing of FP numbers is

ε ≡ b b 1 − − t t

t t ≥ 2 is required. For any real number x x, we say that x x is λ λ- -b bo ou un nd de ed d if x x ≤ λ. We say that x x is i in n- -r ra an ng ge e
if x x = = 0 or σ ≤ x x ≤ λ, and is o ou ut t- -o of f- -r ra an ng ge e otherwise. If 0 < < x x < < σ, we say x x u un nd de er rf fl lo ow ws s, , while if
 x x > > λ, we say that it o ov ve er rf fl lo ow ws s. . Since error analysis is closely akin to interval analysis [8], it is
convenient to formulate the axioms in terms of intervals. In particular, if the endpoints of a closed interval
are both model numbers, we call it a m mo od de el l i in nt te er rv va al l; ; if they are adjacent model numbers, we call it an
a at to om mi ic c m mo od de el l i in nt te er rv va al l. .

If x x is a λ-bounded real number, we let x x ′ ′ denote the smallest model interval containing x x. Thus, if x x
is a model number, then x x ′ ′ = = x x; otherwise, x x ′ ′ is the atomic model interval that contains x x.

Since the model is presented in terms of intervals, we need definitions similar to the above for inter-
vals. We say that a real interval X X is i in n- -r ra an ng ge e or λ λ- -b bo ou un nd de ed d if all its elements are. Similarly, a real interval
under or over flows if one of its elements does.

If X X is a λ-bounded real interval, let X X ′ ′ be the smallest model interval containing X X.

For given X X, we also define an interval X X + + that is generally a little larger than X X ′ ′. If neither endpoint
of X X ′ ′ is 0 or ± λ, then X X + + is obtained from X X ′ ′ by adjoining an atomic model interval at each end. If an end-
point of X X ′ ′ is ± λ, then it is impossible to adjoin an atomic model interval at that end and we shall say that
X X + + o ov ve er rf fl lo ow ws s in this case. On the other hand, if an endpoint of X X ′ ′ is 0, we let X X + + share that endpoint,
instead of making the extension to ± σ.

There are machine numbers and model numbers. The former is a superset of the latter, although the
two sets may be identical.

The b ba as si ic c a ar ri it th hm me et ti ic c o op pe er ra at ti io on ns s are addition, subtraction, multiplication, negation and division by
B B = = ±b b k k where k k is any integer such that B B is in-range. Since division is sometimes implemented as a
composite of two or more sub-operations, each susceptible to round-off, it cannot realistically be considered
b ba as si ic c.

For division, and perhaps other non-basic operations, Axioms 1a and 2a are given below as weak
alternatives to Axioms 1 and 2. Any operation that conforms to Axiom 1 or 2 will be called s st tr ro on ng gl ly y s su up p- -
p po or rt te ed d. Any operation that conforms only to Axiom 1a or 2a will be called w we ea ak kl ly y s su up pp po or rt te ed d.

The parameters must be chosen so that the basic operations satisfy Axioms 1 and 2, and so that divi-
sion at least satisfies the weaker Axiom 2a.

- 6 -

Axioms

We now present the axioms of [13] that define "correct" arithmetic. Let x x and y y be λ-bounded
machine numbers. We first present the "strong" versions of the Axioms.

Axiom 1 (For + + , − − , × and possibly / /.)

Let * be a strongly supported binary operator. Then

f f l l (x x * y y) ∈ ∈ (x x ′ ′ * y y ′ ′) ′ ′

provided that the interval x x ′ ′ * y y ′ ′ is λ-bounded.

Axiom 2 (For negation, division by ±b b k k , and possibly reciprocation.)

Let * be a strongly supported unary operator. Then

f f l l (* x x) ∈ ∈ (* (x x ′ ′)) ′ ′

provided that the interval * (x x ′ ′) is λ-bounded.

The "weak" versions of the above 2 Axioms follow.

Axiom 1a (Alternative for division and perhaps other operators.)

Let * be a supported binary operator. Then

f f l l (x x * y y) ∈ ∈ (x x ′ ′ * y y ′ ′) + +

provided that the interval (x x ′ ′ * y y ′ ′) + + is defined.

Axiom 2a (Alternative for reciprocation; not used in the test.)

Let * be a supported unary operator. Then

f f l l (* x x) ∈ ∈ (* (x x ′ ′)) + +

provided that the interval * (x x ′ ′) + + is defined.

We now consider arithmetic comparison between machine numbers that are λ-bounded.

Axiom 3

In comparing λ-bounded machine numbers x x and y y, the computer may report any result obtainable by
an exact comparison of any x x̂∈ ∈x x ′ ′ and any y ŷ∈ ∈y y ′ ′, but it may not report any other result.

The containment assertions of Axioms 1-2 and comparison assertions of Axiom 3 are the relations to
be tested. If Axioms 1-3 hold for all x x and y y in the sample set, we shall declare the machine to perform FP
arithmetic "correctly."

Theorems 1 and 2 of [13] show that Axioms 1-2 imply relation (3.1). However, Axioms 1-2 also
imply the following exactness results.

Theorem 1

Let x x and y y be model numbers, and let * be a strongly supported binary operator. If x x * y y is also a
model number, then

f f l l (x x * y y) = = x x * y y. .

Thus, 1 + + 1 ≡ 2.

Theorem 2

Let x x be a model number and let * be a strongly supported unary operator. If * x x is also a model
number, then

f f l l (* x x) = = * x x . .

- 7 -

Thus, f f l l (1/ / b b) ≡ b b − − 1.

It is these additional exactness theorems that make Axioms 1-3 especially well-suited to testing FP
arithmetic, as we shall see in the next section. These exactness theorems allow exact evaluation of the
mantissas of (2.2) and of numbers like b b e e ×m m. The same cannot be said of the δ model of (3.1)

The model of [13] also requires the following relations between ε, σ and λ.

σ < < ε2 , that is, e e min ≤ 2 (1 − − t t)

1 / / ε2 < < λ , that is, e e max ≥ 2 t t − − 1

(3.2)

σ / / ε < < 1 / / (σ λ) , that is, 2 e e min + + e e max ≤ 3 − − t t

1 / / (σ λ) < < ε λ , that is, t t + + 1 ≤ e e min + + 2 e e max . .

These relations will prove useful when we consider the automatic determination of b b, t t, e e min and e e max in
section 5.

4. Implementation

The test can now be completely specified: the elements of the sample set of section 2 are to be used
as operands in the operations of Axioms 1-3 of section 3 and the test will check whether or not those
axioms are valid for any given set of parameters. This section shows how to compute the inclusion inter-
vals in the axioms w wi it th ho ou ut t rounding error, provided those axioms are valid for the claimed parameters on
the machine being tested. This computation is a rather tricky and tedious chore. The software
implementing the test in portable FORTRAN is massive and the tools from the U UN NI IX X operating system
facilitating the implementation are described. Finally, some portability issues are discussed.

Inclusion Interval Computation

Axioms 1-3 define "correct" FP arithmetic in terms of the computed result being an element of a
m mo od de el l i in nt te er rv va al l. . Thus, to test the validity of those axioms, we need to be able to compute the model
intervals e ex xa ac ct tl ly y. . Many different schemes were considered before the technique described below was
evolved for computing the model intervals. For example, multiple-precision (integer) arithmetic, while
being able to compute any x x * y y, is far too slow to be useful. The method used was analytic hand-
derivation of x x * y y for all sample model numbers x x , y y and operations + + , − − , × and / /.

The idea is easy to illustrate. Take, for example, the product of 2 numbers with Type 1 mantissas
from (2.2). We desire a normalized exponent-mantissa representation for the result of

 b b e e 1 (b b − − 1 + + b b − − i i1)

 ×

 b b e e 2 (b b − − 1 + + b b − − i i2)

 ≡

(4.1)

b b e e 1 + + e e 2

b b − − 1 (b b − − 1 + + b b − − i i1 + + b b − − i i2 + + b b − − (i i1 + + i i2 − − 1))

where i i1 , i i2 ≥ 2. If we can obtain a normalized FP representation for the item in braces { ... }, say b b e e m m,
then we can easily obtain one for x x * y y, namely b b e e1 + + e e 2 + + e e m m. The item in braces { ... } is a normalized rep-
resentation unless b b = = 2 and i i1 = = i i2 = = 2, when it is b b 0 (b b − − 1 + + b b − − 4). Put more succinctly, the normal-
ized representation for the braced-part of (4.1) is given by

If (b b = = 2 & & i i1 = = 2 & & i i2 = = i i1)
{ b b 0 (b b − − 1 + + b b − − 4) }

(4.2)

Else
{ b b − − 1 (b b − − 1 + + b b − − i i1 + + b b − − i i2 + + b b − − (i i1 + + i i2 − − 1)) }

- 8 -

Although this is a trivial example of deriving, by hand, the e ex xa ac ct t result of x x * y y, it does illustrate the
technique.

Once the exact result of x x * y y is known, the smallest model interval [L L , R R] containing it is also eas-
ily computed by hand. Consider, for example, the braced-part of (4.1) given by (4.2). If the result is
exactly a model number, then L L = = R R. Otherwise, it suffices to get the left-hand-side L L of the model inter-
val, since the right-hand-side R can simply be obtained by adding b b − − t t to the normalized mantissa for L L.
The formula for L L of the model interval containing the braced-part of (4.1) is, using (4.2),

If (b b = = 2 & & i i1 = = 2 & & i i2 = = i i1)
{
b b 0 (b b − − 1 + + b b − − 4)
If (t t ≥ 4) { Exact }
}

(4.3)

Else
{
b b − − 1 (b b − − 1 + + b b − − i i1 + + b b − − i i2 + + b b − − (i i1 + + i i2 − − 1))
If (i i1 + + i i2 − − 1 ≤ t t) { Exact }
}

where it is understood that only digits between 1 and t t are to be used. That is, if i i1 + + i i2 − − 1 > > t t in the
"Else" above, then that last term is not added in. The above "code" also notes whether the result is exactly
computed. Note that each of the above expressions for L L involve adding together powers of the base b b. By
Theorems 1 and 2, each of the powers and sums of them are exactly computable, and, thus, so is L L, pro-
vided the machine supports the model to t t base-b b digits.

Note that in using formulae like (4.3) to determine the containment intervals we are using the
machines FP arithmetic to check itself. This self-referential technique is believable only because formulae
like (4.3) are derived independently of any machine and hence give an independent mechanism for evaluat-
ing the containment intervals. Furthermore, as noted above, the FP model guarantees that the formulae will
be evaluated exactly if the model is supported. If the model is not supported, then containment interval
evaluation a an nd d mantissa (2.2) evaluation may fail. In that case we will use the wrong operands in the arith-
metic operations and attempt to find their results in the wrong containment intervals. In short, if the model
is supported, the test will run without a hitch, and if it is not supported, the test will encounter all kinds of
trouble.

Formulae like (4.3) allow computation of a normalized exponent-mantissa form for the left-hand-side
of the smallest model interval containing x x * y y, for all sample model numbers x x , y y and operations * , pro-
vided the machine supports the model. Once the interval [L L , R R] has been computed, we then have to ver-
ify that f f l l (x x * y y) ∈ ∈ [L L , R R]. This is accomplished by comparisons, as in

z z = = f f l l (x x * y y)

If (L L ≤ z z & & z z ≤ R R) { OK }
Else { WOOPS! }

Since L L and R R are model numbers, when z z is a model number, Axiom 3 guarantees that the comparisons
will be done correctly. When z z is n no ot t a model number, however, the model does n no ot t guarantee that these
comparisons will be done correctly. Specifically, if z z is just outside [L L , R R], z z may test inside it because
Axiom 3 allows equality comparison for numbers in the same model interval. This somewhat fuzzy
situation is tolerable for 2 reasons. First, if z z is more than one model interval outside of [L L , R R], the error
will be detected. Second, if z z is outside of [L L , R R], but so close to being in it that the error cannot be
detected by a comparison, there will probably be another case where the comparison error will go the other
way, and the error will be detected.

Thus, if the machine supports the model, then the test will run to completion without incident. Other-
wise, we can expect detect a blizzard of errors, among which will be examples of each anomaly. For

- 9 -

example, if f f l l (b b − − 1) is incorrectly computed, then the inclusion interval [L L , R R] of (4.3) will not be cor-
rect, and neither will the x x or y y operands of the input to x x × y y, even if the multiply itself is correct. Thus, an
error in one operator (division) m ma ay y trigger spurious error messages for other operators (multiplication) as
well as itself. Usually, such things don’t occur, but when they do, a careful examination of the output must
be made if the user wishes to determine what r re ea al ll ly y went wrong.

U UN NI IX X Tools Used

The above outline of the computation of the e ex xa ac ct t containment intervals uses the simplest example of
all the x x * y y results to be obtained. Most such derivations are 2-3 pages in length, and the worst one
required 12 pages to derive. Furthermore, there are 42 distinct cases of x x * y y to be considered. Clearly, it
is sufficient to work with positive x x and y y, for example, (+ + x x) + + (− − y y) ≡ (+ + x x) − − (+ + y y). Since the
formulas are trivial when either operand is zero, we can confine our attention to 4 types of operands. Hence
there are potentially 16 cases for each of the operators. However, commutativity reduces this to 10 cases
each for + +, − − and ×. For division, each of the 4 cases in which both operands are of Type 4 or Type 5 yields
the same formula as another case in which both are of Type 2 or Type 1, so only 12 distinct cases remain.
Most of these cases of x x * y y are fairly routine, but taken together they represent a major effort — more than
100 pages of formulae to implement.

The author attempted to implement these formulae by hand and was quickly convinced that manual
transcription of the formulae into a programming language is a silly and dangerous waste of time.

It is silly because of the incredibly nasty nature of the code, with If ... Else’s nested as many as 8 lev-
els deep and very messy expressions to evaluate. It is dangerous in that it is v ve er ry y important that the
program be c co or rr re ec ct t, , that is, faithfully reflect the derivations for the exact results of x x * y y. Yet, the
derivations, at least initially, were full of errors (bugs) and changes would have to be reflected in both the
derivations a an nd d the program. When attempted by hand, these got out-of-phase in a hurry. "Bugs" in the
program did not mean "errors" in the derivations, and "errors" in the derivation did not mean "bugs" in the
program.

For these reasons it was decided to let the computer do the work. Fortunately, the U UN NI IX X operating
system was available. The U UN NI IX X operating system supports many software tools that, when viewed as a
whole, are unusually powerful aids to programming. The documentation, implementation and maintenance
of the test was made much easier with these tools. The result of this effort was a program created automati-
cally from the documentation describing the test cases. Thus, only the documentation had to be written; the
program was automatically produced from it. Also, changes in the document (debugging) were automati-
cally reflected in the program.

The way the U UN NI IX X tools were used is now outlined. It is much simpler to look at a derivation like
(4.1)-(4.3) than at a program implementing the actions it contains. That is, (4.3) is easily seen to be the cor-
rect normalized form for the containment interval of the braced-part of (4.1). The same could not be said of
a program written to implement (4.3). Indeed, it is easier to write and study equations than the programs
implementing them. Now equations may be written in linear (typewriter) fashion using a phototypesetter
language. Thus, the formulae for the test cases can be entered into the computer in a language that permits
the production of formulae like (4.1)-(4.3) on paper. This phototypesetter language can also be transformed
into another computer language that, when executed, evaluates L L and notes if it is the exact result or not.
There are huge advantages here: the derivation text is entered only once. The pretty listings, like (4.1)-
(4.3), and the executable code for obtaining L L are both created automatically from that one input source.
Thus, the cerebral cortex can debug the formulae and the computer can make the program for computing L L.

The U UN NI IX X tools used are briefly described below.

EQN — A mathematical equation-setting language [3].

When you want to say a ai i j j
k k you simply type a sub ij sup k. A general rule of thumb for using EQN is

that you type at it the words you would use in describing the object to a friend on the telephone. The output
of EQN is TROFF.

- 10 -

TROFF— A phototypesetting language [11,pp.2115-2135]

This processor lays out text according to user given commands and built-in rules. For example, the
subheading for this paragraph was produced by typing

.SH
TROFF-
A phototypesetting language
[11,pp.2115-2135]

where the .SH command tells TROFF to make the following input lines bold. TROFF also justifies the text
on the page, does hyphenation, and generally produces a tidy document from more or less free-form input.
This paper is an example of its output.

EFL — A FORTRAN pre-processor language [2].

This pre-processor provides a language of considerable power and elegance. It has an Algol-like syn-
tax, portable FORTRAN [9] as output, the usual control-flow constructions (IF ... ELSE ..., WHILE, FOR,
etc.), as well as data structures and a macro facility. A useful feature of EFL is the ability to take input
while inside one program from another file during compilation, via the INCLUDE statement.

MAKE [6]

This U UN NI IX X command makes sure that if A and B are two files, and B can be derived from A by a
command sequence, then that command sequence is executed if and only if the last date-of-change of A is
later than that of B. Thus, MAKE is often used to keep object libraries up to date with respect to their
source code.

ED — The U UN NI IX X text editor [11, pp.2115-2135]

A line oriented editor with sophisticated pattern matching ability. For example, the ED command

g/b sup [ˆ]*/s/b sup \([ˆ]*\)/B(\1)/g

(don’t worry, it’s easier to type than to read one of these!) changes all occurrences of b sup String into
B(String), where String is any string of non-blank characters.

SHELL — The U UN NI IX X command interpreter [11, pp.1971-1990]

Each process on U UN NI IX X has a standard input and a standard output. These standard i/o "devices" may
be files, teletypes, or even other processes. Thus, for example, the editor ED may take its editing com-
mands from a file (script). Also, the output from one process may be input directly to another process.
This connection is called a "pipe" and is denoted by a " ". A typical use of a pipe is to create a document
with the aid of EQN and TROFF, as in

EQN files TROFF

where EQN produces TROFF input that is then shipped directly to TROFF to make the document.

Use of the U UN NI IX X Tools

There is a grand ideal to which software writers aspire — document what you want to do, and then
do it. Believing this, the test cases were written before writing any code. A typist entered the text into a
file, transcribing mathematical formulas into the notation of EQN. As an example, the preceding display
for the result of (4.3) was entered as

- 11 -

If $(˜b˜=˜2˜&˜i1˜=˜2˜&˜i2˜=˜i1˜)$
{
$b sup 0 (b sup -1 + b sup -4)$
If ($t˜>=˜4$) { Exact }
}

(4.4)

Else
{
$b sup -1 (b sup -1 + b sup -i1 + b sup -i2 + b sup -(i1+i2-1))$
If ($i1 ˆ+ˆ i2 ˆ-ˆ1 ˜<=˜ t$) { Exact }
}

The "$" is a delimiter telling EQN what to act on, and the "ˆ" and "˜" tell EQN to leave a little white space.

The problem now consisted of translating such formulae into a programming language (EFL). Also,
great care must be taken that the code agree with the document describing it. This means that debugging
such code (and formulae) must result in both the program and documentation being changed correctly and
simultaneously.

The solution was quite simple: Use an ED script to convert the TROFF input into EFL and use
MAKE to keep the whole thing up to date.

It is quite clear that the TROFF input for (4.3), (4.4), given earlier rather resembles an EFL program
in structure (IF ... ELSE ...), but not in detail — indeed, it is a rare language that can make sense of
b b − − 1 (1 + + b b − − i i). However, the EQN input corresponding to b b − − 1 (1 + + b b − − i i) can be converted into a form EFL
can recognize — B(1) × (1+B(i)) — by a rather general ED script fragment

g/b sup [ˆ]*/s/b sup -\([ˆ]*\)/B(\1)/g
g/) *(/s/) *(/)*(/g

and we can easily construct an array B B such that B B(i i) = = b b − − i i . A complete ED script may be constructed
along the above lines. It is a long (6 pages) but simple script. The ED script applied to the TROFF input
for (4.3), (4.4), gives the EFL program fragment

If (b == 2 & i1 == 2 & i2 == i1)
{
E = 0; M = (B(1)+B(HiLo(4)))
If (t >= 4) { EXACT = True }
}

Else
{
E = − −1
M = (B(1)+B(i1)+B(i2)+B(HiLo(i1+i2− −1)))
If (i1+i2− −1 <= t) { EXACT = True }
}

which gives the normalized FP representation b b E E ×M M for the braced-part of (4.1), by defining an array B B(i i)
and a function HiLo(i) so that

B B(H Hi iL Lo o(i i)) ≡

 0 ,

b b − − i i ,

i i < < 1 or i i > > t t. .

1 ≤ i i ≤ t t

This is accomplished by extending the array B B(i i) = = b b − − i i , for i i = = 1 , . . . , t t, to have B B(0) = = 0 = = B B(t t + + 1),
and by defining the statement function

HiLo(i) = Max(0,Min(i,t+1))

which is used to get the left-hand endpoint of the smallest floating-point interval containing the exact result.
There are 42 such EFL program fragments. They form the heart of the floating-point test. There is a

- 12 -

standard EFL driver into which these fragments fit, via the EFL INCLUDE mechanism. The resulting 42
programs essentially form the floating-point test.

The above ED script mechanism produces the EFL code directly and automatically from the TROFF
input. Thus, only the TROFF input must be altered by hand, the EFL production is automatic. Debugging
was literally carried out at the TROFF (not the EFL) level.

However, one great problem still remained. The EFL depends on the TROFF input. How can one be
sure that both the EFL and the document for it have been produced from the most recent version of the
TROFF input? In all there are 42 such dependencies which must be checked. Here MAKE is invaluable.
A file is created for MAKE, giving the dependencies and desired command sequences. Whenever the
MAKE file is executed (by saying simply "make"), any TROFF input which has been altered since the last
MAKE will be TROFFed, and a copy of it will be converted into EFL.

In all, there are 75 subprograms and some 12,700 lines of FORTRAN in the FP test. The automatic
TROFF → EFL conversion mechanism outlined above accounts for 42 of these subprograms and 7351
lines of FORTRAN. Only 33 subprograms were hand-coded, in EFL, resulting in 5349 lines of FOR-
TRAN. These hand-coded subprograms are simple drivers with loops running over all exponents and man-
tissas to be tested, a subprogram to check that L L ≤ z z ≤ R R, and, finally, a subprogram (NAN) for checking if
a storage location contains an item that is not-a-number. Thus, 60% of the code and 90% of the effort was
handled automatically with the help of U UN NI IX X. Without this help, the project would still be a glimmer in the
eye.

Form to be Checked

There are many possible arithmetic combinations, such as register-to-register, register-to-memory,
memory-to-memory, etc. We have to decide which of these modes we will test and then stick to it, other-
wise we will be comparing apples (registers) and oranges (memory). Also, unless we fix the mode to be
tested, we cannot tell which mode we h ha av ve e tested. The implementation language, FORTRAN, does not
allow the user to determine if a number is in a register or not. Thus, we shall force the storing of all
computed results before checking to see if they are in the correct containment interval. This is
accomplished by putting the results in an array Z, and the containment intervals into arrays L and R.

To see if L(i i) ≤ Z(i i) ≤ R(i i), a subroutine "CheckInterval" is called with arguments L, R, Z and N,
where N is the length of the arrays. Since the arrays L, R and Z are assigned to the PORT [10] stack (with
L(1) ≡ Stack(iL), where iL is the pointer to L on the stack, etc.), the separate compilation requirements of
FORTRAN virtually force the results Z(i i) to be stored into the array Z before calling CheckInterval. Thus,
only the stored values of L, R and Z are tested.

Portability

The FP test passes the PFORT Verifier [9] with two exceptions. First, the code uses arrays with 4
subscripts. This is illegal in the 1966 ANSI standard for FORTRAN, but it i is s legal in the new 1977
FORTRAN standard, which allows 7 subscripts. Second, character strings are packed 2 characters per
integer word, while only one per word is considered portable by the Verifier. It is extremely useful to have
these 2 character words (for LT, LE, EQ, NE, GE, GT). The alternative to this would be to use two words
(one for "L" and another for "T", for example) and have a character-compare routine to decide what they
represent ("LT", for example). However, character compare inside Integer words is not a portable concept.
So the two-character-per-word usage inside the test remains. This is a minor restriction, and should not
cause any trouble. Other than the above 2 exceptions, the code is portable in the s st ta at ti ic c sense of the Verifier,
that is, it will compile successfully on any machine supporting the ANSI 1966 FORTRAN standard.

When it comes to r ru un nn ni in ng g the program there are 2 subtle points for the user to be aware of. One con-
cerns vector machines and the other concerns machines with FP words reserved for non-numeric items, like
instructions, ∞, etc.

All f f l l (x x * y y) results are computed in loops like

Do i = 1, N { Result(i) = x(i) * y(i) }

so that the machine’s vector arithmetic is tested if it exists, and if the compiler recognizes the construct. To

- 13 -

guarantee that the result registers have been stored (and do not remain in registers or other strange places),
the test passes the vector Result to a subprogram that checks that Result(i) is in [L(i), R(i)], for i = 1 , ,
N. On vector machines this means that the user must check that the vector registers a ar re e stored in memory
before a subroutine call. Also, if the user wishes to check the s sc ca al la ar r arithmetic unit of a vector machine, it
will be necessary to tell the compiler not to produce vectorized assembly language.

The other important portability consideration is whether the machine being tested has reserved FP
words, or not-a-number (NAN) representations.

The NAN problem is most serious when testing that z z ∈ ∈ [L L , R R] and one of z z , L L or R R is not-a-
number, that is, a reserved word representing an instruction, ± ∞ , ∞ (projective, unsigned), underflow, or
some other non-numeric object. This is especially bad if ∞ is both ≤ and ≥ all numbers. For example, on
the CRAY-1 the result of an exponent overflow is ∞, and ∞ ≤ x x ≤ ∞ holds for a an ny y number x x. Conversely,
neither ∞ < < x x nor x x < < ∞ is true for any number x x. In such a case, L L ≤ ∞ ≤ R R tests true for a an ny y numbers L L
and R R, even though ∞ is clearly not the correct result. If such NAN’s are not detected, they may give rise to
incorrect model parameters. Detection of NAN’s is not a provably portable concept. However, in the inter-
est of making the test as robust as possible, a NAN test has been provided that at least works for the
CRAY-1, the only machine with NAN’s to which the author has access.

Infinities, infinitesimals (0 + + for an underflowed positive quantity, etc.), undefineds, and any other
NAN’s are expected to have strange properties, such as ∞ / / 2 = = ∞ and 0 + + + + 0 + + = = 0 + + , that cannot be sat-
isfied by ordinary FP numbers. Hence, the following code is likely to detect them.

If (x x ≤ − − 1) { NAN = x x / / 2 ≤ x x } # Is x x = = − − ∞?
Else If (x x ≥ + + 1) { NAN = x x / / 2 ≥ x x } # Is x x = = + + ∞?
Else If (x x ≡ 0) { NAN = false }
Else If (x x ≤ 0) { NAN = x x + + x x ≥ x x } # Is x x = = 0 − −?
Else { NAN = x x + + x x ≤ x x } # x x = = 0 + +.

where N NA AN N is a Logical variable and the # indicates the rest of the line is a comment. This code correctly
detects NAN’s on the CRAY-1, but may not on other machines. Users should carefully check to see if their
machine has NAN’s and perhaps alter the subprogram NAN to g gu ua ar ra an nt te ee e it detects them, otherwise the test
may not tell the truth.

Output

When FP errors are detected, the user may elect to print-out the offending x x, * and y y along with the
inclusion interval [L L , R R]. This is most useful when done in base-b b notation ("octal" or "hex"), so that the
user can see the base-b b digits in x x, y y, f f l l (x x * y y), L L and R R. Errors as subtle as we are trying to detect may
not show up if the results are printed in decimal (unless it’s a decimal machine) because of rounding-error
in the conversion from base-b b to base-10. A program may have to be written by the user of the package for
printing such "octal" results. The calling sequence is

SUBROUTINE OCTALP (MESSG, NMESSG, IA, NIA)

and it should print the message MESSG of NMESSG characters, followed (on the same line) by the Integer
array IA of length NIA, in "octal" or "hex", or whatever is appropriate on the machine being tested. IA has
been Equivalenced to a FP number in the program calling OCTALP. Typically, in single-precision NIA is
1 and in double-precision NIA is 2. A default, reasonably portable, version of OCTALP is distributed as
part of the test software. When the base b b is 2 , 4 , or 8 the "octal" format "O24" is used, otherwise it is
assumed that the machine is base-16 and the "hex" format "Z18" is used.

If the machine being tested requires another format from those provided by the above default, and the
user wants to see the numbers that are causing the trouble, OCTALP will have to be recoded. However, if
the format desired is of the form ?## where ? is some single character, say "B", and ## is the character ver-
sion of NIA (i.e., if NIA = = 10 then ## ≡ "10"), then changing the statement

DATA ZEE / 1HZ /

to

- 14 -

DATA ZEE / 1HB /

in OCTALP will suffice.

See the DEC appendix for an example of the output produced by OCTALP.

5. Basic Software

There are three levels of software available for testing FP units. First, there is the bottom level
FPTST that allows the user maximum flexibility in getting a "Yes-No" answer to questions like

Is this a base-2 machine with 48 bits in the mantissa?

Since this software is flexible, it is messy to use. At the next level, when the user wishes to use FPTST in a
simple manner, a driver for FPTST has been written to make its usage easier. Finally, a top-level driver for
FPTST has been written to answer, numerically, such questions as

How many base-b b digits t t does this machine support?

The next section presents main programs to drive these three levels of software.

Lower Level Software

The lowest level software is FPTST, which takes as input the values of b b, t t, e e min and e e max, some
arrays describing the sample FP mantissas from (2.2) to use, the operators (+ + , − − , × , / / , . . L LT T. . , . . . , etc.) to
be tested, plus a few flags to control the output of the test. It decides whether the model is supported for the
given parameter values.

The declaration for FPTST is

LOGICAL FUNCTION FPTST(B,T,EMIN,EMAX,
EX,NEX,IX,NIX,
EY,NEY,IY,NIY,
EXPAND,
CHEKPM,CHEKTM,CHEKDV,
CHEKNG,CHEKCM,CHEKUF,
TYPE,
EPRINT,JTEST,
OUTPUT)

The arguments to FPTST are, where → denotes an input value and ← denotes an output value,

B → The Integer base-b b of the machine.

T → The Integer number of base-b b digits in the mantissa.

EMIN → The Integer minimum exponent e e min.

EMAX → The Integer maximum exponent e e max.

EX → An Integer array of exponents for operands x x in x x * y y.

NEX → The length of the array EX.

IX → An array of i i values to be used in the sample set of mantissas (2.2) for X.

NIX → The length of the array IX.

EY → An Integer array of exponents for operands y y in x x * y y.

NEY → The length of the array EY.

IY → An array of i i values to be used in the sample set of mantissas (2.2) for Y.

NIY → The length of the array IY.

EXPAND → The maximum number of interval expansions to be allowed for division, that is, the
number of X X + + expansions to be made for the division inclusion interval, if it is neces-
sary, see section 3. The model of [13] assumes EXPAND to be 1, at most.

- 15 -

EXPAND ← The actual number of interval expansions needed for division.

CHEKPM → A Logical flag that determines if Plus and Minus are to be tested.

CHEKTM → A Logical flag that determines if Times is to be tested.

CHEKDV → A Logical flag that determines if Division is to be tested.

CHEKNG → A Logical flag that determines if Negation is to be tested.

CHEKCM → A Logical flag that determines if Comparison is to be tested.

CHEKUF → A Logical flag that determines if UnderFlow is to be tested. That is, whether results
that underflow are to be generated and tested. When CHEKUF is .TRUE., the NAN
check for 0 + + and 0 − − (underflow) is disabled.

TYPE → A Logical array TYPE(5,2). TYPE(i,j) tells if Type i is to be tested for x and y, with
j=1 corresponding to x and j=2 to y, see (2.2)

EPRINT → A Logical flag to say if error conditions are to printed out when they arise.

JTEST → A Logical flag that determines if the test is looking for all errors or will stop if it
encounters severe trouble. JTEST = .TRUE. means that the test won’t stop under any
circumstances. Otherwise certain conditions may cause an abort of the run. Also, if
JTEST is .TRUE., FPTST does no printing at all.

OUTPUT → The name of a subprogram that is to be called by FPTST whenever an error is detected
and EPRINT is TRUE. OUTPUT must be declared EXTERNAL in the program call-
ing FPTST. A default, reasonably portable version of OUTPUT, called FPTSO, is dis-
tributed with the test software. The calling sequence to OUTPUT is

SUBROUTINE OUTPUT (SX, TX, IX, EX, X,
OP,
SY, TY, IY, EY, Y,
RESULT, L, R)

SX → An Integer giving the sign of X, 1 is + + and 2 is − −.

TX → An Integer giving the Type (1 , , 5) of X, see (2.2).

IX → An Integer giving the value of i i used in (2.2) for the mantissa of X.

EX → An Integer giving the base-b b exponent of X.

X → The Real number X that caused X OP Y to fail.

OP → The operation OP that has failed. OP is an Integer with 2 characters
stored in it. The characters and what they stand for are

" +" stands for addition.

" —" stands for subtraction.

" *" stands for multiplication.

" /" stands for division.

"EQ" stands for equality comparison.

"LT" stands for less-than comparison.

"GT" stands for greater-than comparison.

"LE" stands for less-than or equal comparison.

"GE" stands for greater-than or equal comparison.

"NE" stands for not-equal comparison.

"NG" stands for negation. When OP = "NG", all values of
input relating to Y are undefined, since negation is only
applied to X.

"RE" stands for reciprocation.

- 16 -

SY → An Integer giving the sign of Y, 1 is + + and 2 is − −.

TY → An Integer giving the Type (1 , , 5) of Y.

IY → An Integer giving the value of i i used in (2.2) for the mantissa of Y.

EY → An Integer giving the base-b b exponent of Y.

Y → The Real number Y that caused X OP Y to fail.

RESULT → The Real computed value of f f l l (X OP Y).

L → The Real left-hand-endpoint of the containment interval for
RESULT.

R → The Real right-hand-endpoint of the containment interval for
RESULT.

The user can do whatever is desired in OUTPUT to print, store, analyze, etc. the num-
bers that are causing the trouble.

The function value of FPTST is

TRUE if errors have been detected, FALSE if no errors have been detected.

Higher Level Software

One of the problems in using FPTST is the necessity for the user to create arrays IX, IY, EX and EY
telling FPTST what sample set numbers to use. Typically, the user wants to test some IX’s near 1, t t and
maybe t t / /2, and some EX’s near e e min, − − t t, 0, + + t t and e e max, that is, some parameters near the "edges" of the
representation. For addition and subtraction, exponents near ±t t are considered "edges" because when num-
bers with such exponents are added to or subtracted from numbers with 0 exponents they tend to "fall off
the end" and get lost. Similar things are usually wanted for Y. To make the creation of such arrays easier,
a driver, FPTSD, was created for FPTST. The calling sequence for FPTSD is the same as that for FPTST
except that IX, NIX, EX, and NEX, and the corresponding items for Y, are replaced by descriptions of the
"edges" the user wants tested.

The calling sequence for FPTSD is

LOGICAL FUNCTION FPTSD(B,T,EMIN,EMAX,
BEX,LBEX,BEY,LBEY,
BIX,LBIX,BIY,LBIY,
NBEX,NBEY,
NBIX,NBIY,
EXPAND,
CHEKPM,CHEKTM,
CHEKDV,CHEKNG,
CHEKCM,CHEKUF,
TYPE,
EPRINT,JTEST,
OUTPUT)

The arguments to this subprogram are precisely as for FPTST, with the exception that IX, NIX, EX, NEX,
and the corresponding items for Y, have been replaced by

BEX → An Integer array of exponents of X about which exponent samples are to be clustered,
see NBEX below. A typical array would be BEX = (EMIN, − −T, 0, +T, EMAX).

LBEX → The length of the array BEX. In the preceding example, LBEX = = 5.

BEY → An Integer array of exponents of Y about which exponent samples are to be clustered.
A typical array would be BEY = (EMIN, − −T, 0, +T, EMAX).

LBEY → The length of the array BEY. In the preceding example, LBEY = = 5.

- 17 -

BIX → An Integer array of i i’s for the mantissa of X, see (2.2), about which mantissa samples
are to be clustered, see NBIX below. A typical array would be BIX = (1, T/2, T).

LBIX → The length of the array BIX. In the preceding example, LBIX = = 3.

BIY → An Integer array of i i’s for the mantissa of Y, see (2.2), about which mantissa samples
are to be clustered. A typical array would be BIY = (1, T/2, T).

LBIY → The length of the array BIY. In the preceding example, LBIY = = 3.

NBEX → An array giving the number of "basic" samples to be taken for X exponents. For
i i = = 1 , . . . , LBEX, if BEX(i) is in (EMIN, EMAX), exponents BEX(i)− −NBEX(i)+1,
... ,BEX(i)+NBEX(i)− −1 will be used. Only exponent samples in the legal exponent
range [EMIN, EMAX] are taken.

NBEY → An array giving the number of "basic" samples to be taken for Y exponents.

NBIX → An array giving the number of "basic" samples to be taken for X mantissas. For
i i = = 1 , . . . , LBIX, if BIX(i) is in (EMIN, EMAX), mantissas of (2.2) with parameters
BIX(i)− −NBIX(i)+1, ... ,BIX(i)+NBIX(i)− −1 will be used. Only mantissa samples in [1 ,
T] are taken.

NBIY → An array giving the number of "basic" samples to be taken for Y mantissas.

The function value of FPTSD is

TRUE if errors have been detected, FALSE if no errors have been detected.

When either of the exponent or mantissa sampling schemes generate overlapping sample fields, no
redundancies are taken. Only distinct elements of the fields are used. For example, NBEX ≡ 1 ≡ NBEY
and NBIX ≡ T ≡ NBIY would test a al ll l mantissa patterns for x x and y y, with a few exponents of x x and y y.

Very High Level Software

The programs FPTST and FPTSD described above decide whether a given set of model parameters
are correctly supported by the host machine. It is often useful to have a program that will decide what the
"correct" model parameters are from scratch. Many have set out in quest of this grail. None have found it,
and perhaps nobody ever will. However, since people want such a beast, an attempt was made using the
driver FPTSD. The following algorithm was created in a spirit of "let’s see what can be done." It is also a
useful example of what can be done using FPTST and FPTSD.

To discover what b b, t t, e e min and e e max are, a au ut to om ma at ti ic ca al ll ly y, a few corners must be cut. For example,
within the model of section 3, it is not possible to reliably tell the difference between a base-16 machine
and a base-2 machine. Indeed, within that model, the base is not uniquely defined [13]. Let t t 2 be the num-
ber of base-2 digits correctly supported and t t 16 be the number of base-16 digits correctly supported. If
t t 2 = = 4 t t 16 − − 3, then the machine is quite probably base-16. However, the converse is not the case, see the
Interdata appendix. In general, if a machine’s base is a power of 2, we cannot reliably tell which power it
is. Thus, we will test the machine for bases 2, 3 and 10, with the notion that these are the only plausible,
and only existing, choices. The test will discover whether b b is a power of 2 , 3 or 10, but not which power.
Now note that a base-2 machine cannot pass the test as a base 3 machine because 1 / / 3 is not exactly repre-
sentable in binary. Similar arguments show that the base choices 2, 3 and 10 are mutually exclusive, only
one of them can be valid on a given machine. This makes the search for the base-b b fairly easy and defini-
tive. The problem is deciding if the machine supports base-b b arithmetic according to the model of section
3.

To decide if the machine supports some kind of base-b b arithmetic, we can treat t t, e e min and e e max as
independent variables. We can first find out what t t is by running FPTSD with all exponent samples ≡ 0, so
that exponent effects are eliminated. In this manner, a value of t t is found which passes FPTSD. We can
then find the smallest value of e e min which is supported with t t base-b b digits, and then find the largest value
of e e max that is supported with t t base-b b digits.

We obtain t t using bisection. If we have some given upper-bound on t t, we use it. Otherwise, we can
obtain one by inverse-bisection. That is, for t t = = 2 , 4 , 8 , 16 , . . . use FPTSD to see if t t base-b b digits are
supported. This testing sequence must terminate with a value of t t that fails the test. Thus, we can assume

- 18 -

we are given an upper bound on t t. We have a lower-bound on t t, namely 2 or the preceding power of 2.
Hence, we can use bisection to find the largest value of t t that passes the test.

It is important that t t be found before e e min and e e max. For example, finding e e min using t t = = 2 may give
an incorrect value for e e min. An example of this is given in the CRAY-1 appendix, where using t t = = 2 in
finding e e min in double-precision would give too small a value for e e min.

With a maximal value of t t now available, we can get e e min using a similar algorithm. First we check
that t t, e e min (t t) ≡ 2 (1 − − t t) and e e max (t t) ≡ 2 t t − − 1 pass the test, where e e min (t t) and e e max (t t) are the
largest, and smallest, respectively, values of e e min and e e max that satisfy (3.2). That is, we check the smallest
permissible exponent range consistent with t t. If we have some given lower-bound on e e min, we use it. Oth-
erwise, we keep doubling e e min until it finally fails the test. This gives both lower and upper bounds on e e min

and we can use bisection to obtain the smallest value of e e min that passes the test.

While bisecting, we must be careful that as the value of e e min is lowered, the relations of (3.2) remain
valid. This means that e e max may also have to be raised as e e min is lowered. We test the smallest value of
e e max consistent with e e min and t t in (3.2).

With the smallest value of e e min determined, we can play the same game and find the largest value of
e e max that passes the test. At the end of this sequence, we have a l lo oc ca al ll ly y o op pt ti im ma al l r re es su ul lt t, that is, none of t t,
e e min or e e max can be extended by 1 and still pass the test.

In short, the algorithm used to obtain b b, t t, e e min and e e max is

- 19 -

For (b b = = 2 , 3 , 10)
{
If (No upper-bound given for t t)

{
For (t t b ba ad d = = 2 , 4 , 8 , 16 , . . .)

{
Test t t b ba ad d with FPTSD, using all exponents ≡ 0.
If (t t b ba ad d fails the test) { Break }
}

}
Else { Let t t b ba ad d be the given upper-bound }

Bisect in [2 , t t b ba ad d] to get largest supported t t b ba ad d.

Test t t, e e min (t t) and e e max (t t) with FPTSD, using all exponents ≡ 0.

If (Fails the Test) { Check the next base b b }

If (Lower-bound not given for e e min)
{
e emin

b ba ad d = = e e min (t t)
While (e emin

b ba ad d passes the test)
{ e emin

b ba ad d = = 2×e emin
b ba ad d }

}
Else { e emin

b ba ad d = = the given lower-bound }

Use bisection in [e emin
b ba ad d , e e min (t t)] to

get the smallest supported value of e e min.

If (Upper-bound not given for e e max)
{
e emax

b ba ad d = = 4 − − t t − − 2 e e min

}
Else { e emax

b ba ad d = = the given upper-bound }

Use bisection in [e e max (t t) , e emax
b ba ad d] to

get the largest supported value of e e max.
}

The software implementing this is called FPTSB and its declaration is described below.

LOGICAL FUNCTION FPTSB(B,
T,EMIN,EMAX,
CHEKUF,
NBEX,NBEY,NBIX,NBIY,
EXPAND)

The arguments B, EXPAND and CHEKUF to FPTSB have the same meaning as in FPTSD.

T → If T = = 0, then no upper-bound on t t is known. Otherwise, use T + + 1 as the upper-bound.

T ← The supported value of t t.

EMIN → If EMIN = = 0, no lower-bound on e e min is known. Otherwise, use EMIN − − 1 as the lower-
bound.

- 20 -

EMIN ← The supported value of e e min.

EMAX → If EMAX = = 0, no upper-bound on e e max is known. Otherwise, use EMAX + + 1 as the
upper-bound.

EMAX ← The supported value of e e max.

The function value of FPTSB is TRUE if base-B arithmetic passes the test, FALSE otherwise.

When testing for t t, FPTSD is called with (NBEX,NBEY,NBIX,NBIY) ≡ (1 , 1 , NBIX, 1), BEX ≡ BEY ≡
(0), BIX ≡ BIY ≡ (1, T/ /2, T), and again with "NBIX, 1" changed to "1 , NBIY". These calls to FPTSD
are cheap, and effective.

When testing for e e min and e e max, FPTSD is called with (NBEX,NBEY,NBIX,NBIY) ≡ (NBEX,
1 , 1 , 1), BEX ≡ BEY ≡ (EMIN, − −T, 0, +T, EMAX), and again with the "NBEX, 1" changed to
"1 , NBEY". Again, these calls to FPTSD are cheap, and effective.

If the host machine can be told to continue execution after FP under and over flow, its FP accuracy
may be determined by calling FPTSB with T = = EMIN = = EMAX = = 0. This is accomplished without using
a an ny y information about the machine’s architecture.

When the values (NBEX,NBEY,NBIX,NBIY) ≡ (4 , 4 , 8 , 8) are used in the call to FPTSB, it cor-
rectly reports the values of b b, t t, e e min and e e max on all machines listed in the appendix. Empirically, FPTSB
reports the correct results when the search parameters NBEX, NBEY, NBIX and NBIY are chosen suffi-
ciently large.

The Double-precision versions of FPTST, FPTSD and FPTSB are DFPTST, DFPTSD and DFPTSB,
with all Real arguments made Double-precision.

6. Main Programs

This section discusses two main programs, one each for driving FPTSD and FPTSB. The parameters
in each main program are described and the effect these have on the run-time, memory usage and effective-
ness of the test are illustrated.

The main program for driving FPTSB will be called MAINB. In EFL [2], it is, in double precision,

- 21 -

Procedure

To get floating-point model parameters from scratch.

Integer I1MACH,B,T,Emin,Emax,nbEX,nbEY,nbIX,nbIY,Expand
Logical DFPTSB,CheckUF

Define StackLength 20000
Common (CSTAK) { Long Real Dstak(500) }
Long Real Wstak(StackLength); Equivalence Dstak(1),Wstak(1)

ISTKIN(StackLength,4) # Tell the Stack how long it is.

B = I1MACH(10)
T = I1MACH(14)
Emin = I1MACH(15)
Emax = I1MACH(16)

CheckUF = True # Generate and test underflow results.

Set the sampling sizes.

nbEX = 1; nbEY = 1
nbIX = 1; nbIY = 1

Expand = 1 # Default model value.

If (DFPTSB(B,T,Emin,Emax,CheckUF,nbEX,nbEY,nbIX,nbIY,Expand)) {}
Else If (DFPTSB(3,T,Emin,Emax,CheckUF,nbEX,nbEY,nbIX,nbIY,Expand)) {}
Else If (DFPTSB(10,T,Emin,Emax,CheckUF,nbEX,nbEY,nbIX,nbIY,Expand)) {}
Else
{
SETERR(
"MAINB - Machine base is not a power of B, 3 or 10 - strange.",60,

1,2)
}

Wrapup()

Stop()

End

The Common region CSTAK declares the PORT [10] stack, and the Define tells the stack how long it is.
I1MACH is the PORT Library [10] machine constant subprogram, for example, I1MACH(2) is the local
FORTRAN write unit. Wrapup prints out the stack usage at the end of the run. SETERR is the PORT
Library error handler [10].

When run on the CRAY-1 in single-precision, and pretending that I1MACH uses the raw machine
parameters as described in the user manual for that machine, the output of the above program is

- 22 -

1real floating-point bisection test with

b = 2, t = 48
emin = -8192, emax = 8191

nbex = 1, nbix = 1
nbey = 1, nbiy = 1

this test produced and tested results which underflow.
if overflow or divide check errors occurred,
then the basic machine constant bounds have been incorrectly set.

the correct real floating-point model values for b = 2 are,
assuming that x/y is implemented as a composite operation (1),

t = 47
emin = -8189
emax = 8190

used 1110 / 40000 of the stack allowed.

which took 18 seconds to run. The output here is in lower-case because the CRAY-1 has only that case.
The above run shows the ability of the program to detect that / / is a composite operator on the CRAY-1,
requiring (1) X X + + expansion in the model, and that it is a base-2 machine. The reasons for these values of t t,
e e min and e e max are discussed in the CRAY-1 appendix.

When run on the VAX 11/780, running the U UN NI IX X operating system, in single-precision the output is

- 23 -

1Real Floating-point Bisection Test With

B = 2, T = 24
Emin = -127, Emax = 127

nBEX = 1, nBIX = 1
nBEY = 1, nBIY = 1

This test produced and tested results which underflow.
If overflow or divide check errors occurred,
then the basic machine constant bounds have been incorrectly set.

The correct Real floating-point model values for B = 2 are,

T = 24
Emin = -127
Emax = 127

USED 834 / 20000 OF THE STACK ALLOWED.

which took 2 minutes 59 seconds to run. Note that the above run correctly determines that the VAX’s static
representation is supported in its dynamic operation.

The run-time and storage requirements of FPTSB are linearly proportional to NBEX, NBEY, NBIX
and NBIY. Note that FPTSB required only a few minutes to do its job, it was tuned to be fast and reason-
ably reliable.

The results for the above examples were obtained with NBEX, NBEY, NBIX and NBIY all equal to
1. But with those values, we can not have great confidence that FPTSB was right. For example, on the
Interdata 8/32 the values of NBEX, etc., must be 4 , 4 , 8 , 8 in order to give the correct results. That
machine and the VAX 11/750 are the only machines for which the default parameters in MAINB some-
times report the wrong results, see those appendices.

If the machine being tested is reasonably healthy, with errors (if any) near the ends of the mantissa
and exponent ranges, then FPTSB will report the correct result. However, if the machine is really sick,
with errors in the "middle" of the mantissa and exponent ranges, FPTSB may report the wrong results,
unless NBEX, etc., are chosen sufficiently large.

Once FPTSB has done its job, we need to test in more thorough and expensive ways. There are many
ways to drive FPTSD and the following main program, which will be called MAIN, is canonical. In EFL
[2], it is, in double precision,

- 24 -

Procedure

Main procedure to test the PORT machine constants.

Integer I1MACH,B,T,Emin,Emax,
BEX(5),lBEX,BEY(5),lBEY,BIX(3),lBIX,BIY(3),lBIY,
nbIX(3),nbIY(3),nbEX(5),nbEY(5),Expand,j

Logical CheckPM,CheckTimes,CheckDiv,CheckNeg,CheckComp,CheckUF,
Type(5,2),
EPrint,JustTest,DFPTSD,valu

External DFPTSO

Define StackLength 20000
Common (CSTAK) { Long Real Dstak(500) }
Long Real Wstak(StackLength); Equivalence Dstak(1),Wstak(1)

ISTKIN(StackLength,4) # Tell the Stack how long it is.

B = I1MACH(10); T = I1MACH(14)

Emin = I1MACH(15); Emax = I1MACH(16)

Set the Exponent sampling range.

BEX(1) = Emin; BEX(2) = -T; BEX(3) = 0; BEX(4) = +T; BEX(5) = Emax
lBEX = 5
BEY(1) = Emin; BEY(2) = -T; BEY(3) = 0; BEY(4) = +T; BEY(5) = Emax
lBEY = 5

Set the mantissa sampling range.

BIX(1) = 1; BIX(2) = (T+1)/2; BIX(3) = T; lBIX = 3
BIY(1) = 1; BIY(2) = (T+1)/2; BIY(3) = T; lBIY = 3

Set nbE, the number of basic exponent samples.

Do j = 1, 5 { nbEX(j) = 3; nbEY(j) = 3 }

Set nbI, the number of basic mantissa samples.

Do j = 1, 3 { nbIX(j) = 4; nbIY(j) = 4 }

Expand = 1 # Default model value.

CheckUF = True # Generate and test underflow results.

Set the flags for performing the tests.

CheckPM = True; CheckTimes = True; CheckDiv = True
CheckNeg = True; CheckComp = True

Do j = 1, 2
{
SETL(5,False,Type(1,j))

- 25 -

If (B == 2) { SETL(3,True,Type(1,j)) } # Test Types 1-3.
Else { SETL(5,True,Type(1,j)) } # Test all Types.
}

EPrint = False; JustTest = False

valu = DFPTSD(B,T,Emin,Emax,
BEX,lBEX,BEY,lBEY,
BIX,lBIX,BIY,lBIY,
nbEX,nbEY,nbIX,nbIY,
Expand,
CheckPM,CheckTimes,CheckDiv,
CheckNeg,CheckComp,CheckUF,
Type,
EPrint,JustTest,DFPTSO)

Wrapup()

Stop()

End

When run on the CRAY-1 in double-precision the above program prints

1long real floating-point test with

b = 2, t = 94
emin = -8099, emax = 8190

bex = -8099 -94 0 94 8190
bey = -8099 -94 0 94 8190
bix = 1 47 94
biy = 1 47 94
nbex = 3 3 3 3 3
nbey = 3 3 3 3 3
nbix = 4 4 4
nbiy = 4 4 4

nex, ney = 21 21
nix, niy = 15 15

this test will produce and test results which underflow.
if overflow or divide check errors occur,
then the basic machine constants have been incorrectly set.

floating-point test completed successfully,
provided that x/y is implemented as a composite operation (1).

used 6356 / 80000 of the stack allowed.

which took 554 seconds to run. MAIN echoes its input and prints nEX, nEY, nIX and nIY, the total

- 26 -

number of exponent and mantissa samples used in the test.

When run on the VAX 11/780 in double-precision the above main program printed

1Long Real Floating-point Test With

B = 2, T = 56
Emin = -127, Emax = 127

BEX = -127 -56 0 56 127
BEY = -127 -56 0 56 127
BIX = 1 28 56
BIY = 1 28 56
nBEX = 3 3 3 3 3
nBEY = 3 3 3 3 3
nBIX = 4 4 4
nBIY = 4 4 4

nEX, nEY = 21 21
nIX, nIY = 15 15

This test will produce and test results which underflow.
If overflow or divide check errors occur,
then the basic machine constants have been incorrectly set.

Floating-point test completed successfully.

USED 5444 / 40000 OF THE STACK ALLOWED.

which took 55 minutes 27 seconds to run.

The run-time for FPTSD is proportional to nEX × nEY × nIX × nIY. Thus, doubling all of them
makes it run 16 times longer. The storage required is proportional to M Ma ax x (nEX, nEY, nIX, nIY). These
statements are true for sufficiently large values of nEX, nEY, nIX and nIY. We now show how the run-
time and storage requirements for FPTSD vary with these parameters, and illustrate a battery of tests that
thoroughly test FP arithmetic.

Once MAINB has been used to obtain the "correct" values for the machine being tested, and MAIN
has been used to more thoroughly test those parameters, even more thorough searching is in order. A
glance at the appendices shows that errors pop up all over the exponent and mantissa range. The default
test in MAIN will catch most of those errors, but not the serious errors found on the Interdata 8/32 and
VAX 11/750. To make sure that such disasters are not lurking about somewhere in exponent-mantissa
space, we need to check more exponents and/or more mantissas. This will be more costly, and we should
proceed cautiously, lest we spend time and money that needn’t be spent.

There are precisely 4 knobs in MAIN to be twiddled — the arrays NBEX, NBEY, NBIX and NBIY.
By varying these 4 parameters, a sequence of tests can be constructed to quickly discover problems, if they
exist, and determine the correct model parameters. For the rest of this section, it will be assumed that each
of the arrays NBEX, NBEY, NBIX and NBIY is a constant. If we wish to test more thoroughly, we could
take NBEX = = e e max − − e e min + + 1 = = NBEY and NBIX = = t t = = NBIY. This would test every exponent and
every mantissa pattern. However, as we shall see, this would be very expensive and probably overkill as
well.

- 27 -

We can test the exponents and mantissa patterns in four basic ways.

1) Let the elements of one of the arrays be large, and the other 3 be small.

2) Let the elements of two of the arrays be large, and the other two arrays be small.

3) Let the elements of three of the arrays be large, and the other array be small.

4) Let the elements of all four of the arrays be large.

If all the large elements are called n n, then these four regimes have run-times proportional to n n , n n 2 , n n 3 , n n 4,
respectively. Clearly, since there may be errors in the parameters, we should run the n n-time regime first.
That way, any errors that can be detected will be, cheaply. If that test is successful, then the n n 2-time regime
should be run, and so on.

In this way, a hierarchy of runs can be made, each of which contains the testing of the previous runs,
and extends that testing to new test samples and combinations. If the parameters are in error, the cheapest
test that can detect it will.

A Test Paradigm

It is recommended that the following paradigm be used when testing the model parameters.

Run MAINB
Run MAIN to test the output of MAINB
Run the n n-time tests:

MAIN with (NBEX,NBEY,NBIX,NBIY) = = (E E , 1 , 1 , 1)

MAIN with (NBEX,NBEY,NBIX,NBIY) = = (1 ,E E , 1 , 1)

MAIN with (NBEX,NBEY,NBIX,NBIY) = = (1 , 1 ,M M , 1)

MAIN with (NBEX,NBEY,NBIX,NBIY) = = (1 , 1 , 1 ,M M)

where E E = = 100 and M M = = 100, say. If any of these runs uncovers an error in the model parameters, they
should be changed appropriately, and the paradigm should be restarted at the MAIN stage.

Once the above battery of tests is successfully completed, the quadratic tests should be done. That is,
MAIN with (NBEX,NBEY,NBIX,NBIY) = = (E E ,E E , 1 , 1), (E E , 1 ,M M , 1), etc. In these tests, since the run-time
is proportional to the product of the large elements of the basic arrays, it would be good to keep E E and M M to
say 10 or so, at least at first.

Similarly, the cubic and quartic tests using MAIN can be run, one after the other. The final quartic
test, MAIN with (NBEX,NBEY,NBIX,NBIY) = = (E E ,E E ,M M ,M M), will run for a very long time. As a back-
ground job, this makes it a good candidate for finding transient, intermittent floating-point problems. At
the same time, it is beating the exponent-mantissa space of the machine to death.

For illustrative purposes, the run-time and memory usage results of running the above paradigm for
testing on the VAX 11/780 in single-precision are now given. MAINB took 2 minutes and 38 seconds to
run and used 2252 Integer locations on the PORT stack. Table 1 gives the run-time and stack requirements
for the various runs using MAIN.

- 28 -

Table 1
_ ___
NBEX NBEY NBIX NBIY Integer stack used Run-time (hr:min:sec)_ ___

1 1 1 64 3837 49
1 1 64 1 3837 43
1 64 1 1 1334 5 : 18
64 1 1 1 1334 5 : 02
8 8 1 1 1058 14 : 54
8 1 8 1 3949 9 : 42
8 1 1 8 3949 9 : 37
1 8 8 1 3949 9 : 09
1 8 1 8 3949 9 : 24
1 1 8 8 3984 7 : 13
1 1 64 64 3984 7 : 25
4 4 4 1 2646 15 : 57
4 4 1 4 2646 16 : 12
4 1 4 4 2682 15 : 40
1 4 4 4 2682 15 : 21
6 6 8 8 4144 9 : 11 : 41_ ___

Using the information in Table 1, we can predict that the test using (NBEX,NBEY,NBIX,NBIY)
= = (t t / /2 , t t / /2 , t t , t t) would run for 36.8 hours. Such a run would test every mantissa pattern in (2.2) and a
very large number of exponents. The full test, testing all exponents and mantissa patterns, would run for
12.3 days. For the manufacturer, this may be acceptable during development, for users this thorough a test
would be a useful background job.

It is worthwhile noting that all floating-point errors detected so far have been found with the linear (
i.e., (1 , E E , 1 , 1), etc.) and/or quadratic (i.e., (E E , 1 , T T , 1), etc.) test paradigms. These tests require
only minutes to run and appear to be just as effective as the more expensive testing schemes.

It is also worth noting that all floating-point errors detected so far on machines with b b > > 2 have been
found with Type 1 and Type 4 matissas. Thus, it appears that only two Types of mantissa need be active
for any given test. This could considerably lower the cost of running the test when b b > > 2.

7. Wish-List

There are many things that could or should be done to improve the efficiency and effectiveness of the
test. Some of these are easy to do and others will require substantial effort. In no particular order, they are

Register Arithmetic

Checking that register-to-register and register-to-memory operations work would be invaluable, but
from a standard FORTRAN environment this appears impossible. However, with a special compiler it may
be possible to force such arithmetic and thus test it. This seems worthwhile, but difficult.

Correct Rounding

The current test does not report if the machine has done correct rounding because the model of [13]
does not require it. However, manufacturers may wish to test that they have done it "right". It would be a
bit of work, but the formulae for computing the containment intervals could be made to specify which end-
point corresponds to correct rounding. This seems fairly easy and worthwhile.

Testing Underflow Operands

The current test assumes that all operands in the test are model numbers. Many people assume that
computation can continue when underflows are generated. The current test only checks that any underflow
results generated are correct. It does not check that any subsequent operations with those underflowed
quantities are valid. Extending the formulae for the containment intervals to include the case where the
exponents for either x x or y y are less then e e min would be fairly easy and worthwhile, see the Interdata

- 29 -

appendix.

Extra-precise Operands

The current test assumes that all patterns of the form (2.2) have i i ≤ t t, that is, they are all model num-
bers. It would be good to know that operations with extra-precise operands, i i > > t t, if any, are also correct,
see the DEC appendix dealing with the VAX 11/750. Axioms 1-3 would then require looking at x x ′ ′ * y y ′ ′,
rather than x x * y y. Since any element x x of (2.2) with i i > > t t has the property that x x ′ ′ is a model interval with
endpoints in (2.2), with i i ≤ t t, the current formulae can still be used. However, the logic governing their use
would become more complex. This is a rather messy and tedious, but worthwhile, job.

Exponent Sampling

The cost of testing the mantissa arithmetic has been lowered tremendously in this test. However,
nothing has been done to sample the exponents cleverly. Something should be done about exponent sam-
pling. It is unclear just what, however.

Integer Arithmetic

The formulae used in the FP test can also be used to test Integer arithmetic. For example, with e e = = t t,
b b e e times the mantissas of (2.2) are all integers. Conversion of the test to testing Integer arithmetic would be
reasonably simple. However, most Integer units work correctly because users really get upset when they
don’t. Thus, there seems little to gain from creating such a test.

Mixed-Mode

Testing mixed-mode arithmetic, that is, Real-Integer, Integer-Double-precision, etc., would be a bit
of work and would be marginally useful.

A Missing Type Combination

All x x * y y results have been successfully hand-computed, with the exception of the case of (Type 2) / /
(Type 5) of (2.2), with i i 1 > > i i 2. For this case, the testing of the result has been ignored because the result is
unknown. Several people have tried to get a closed-form, normalized result for this case, and nobody has
succeeded, yet. Completing this case would be satisfying and useful. (Anyone wishing to try is more than
welcome to it.)

8. Conclusions

The appendices show the ability of the test to detect floating-point arithmetic errors due to hardware
malfunction and/or design, and software bugs. The results for the Interdata 8/32 and VAX 11/750 espe-
cially show that simply testing a digit or two at the "end" of the mantissa or exponent range is not
sufficient to detect serious trouble. Anomalous behavior may be triggered by tickling the 40t th h bit of the
mantissa or the exponent − − 64. The test allows such items to be tested easily in a methodical manner.

It does appear that treating the exponent and mantissa separately is sufficient. That is, all mantissa
problems uncovered so far have had the property that they can be triggered with an exponent at e e min,
− − 2 , − − 1 , 0 , + + 1 , + + 2 or e e max. Conversely, all exponent problems uncovered so far have had the property
that they can be triggered with a mantissa pattern with i i = = 1, t t / /2, or t t. Since it appears that there is no need
to test all kinds of strange mantissa and exponent patterns together, testing them separately is a reasonable
way to determine the floating-point unit’s integrity. Such a test requires at most a few minutes of run time,
and seems extremely reliable. However, on the chance that there is evil lurking in a corner of exponent-
mantissa space, a complete exponent-mantissa test should be run in the background. Such a background
job, which might require a cpu-month or more, is also an excellent way to detect transient malfunction of
the floating-point units.

- 30 -

Acknowledgments

This effort is part of the continuing development of portable mathematical software at Bell Labs.
Many enlightening and spirited discussions within the numerical group continue to accompany this devel-
opment. For their interest in, and comments on, this test, A. D. Hall, S. I. Feldman and P. A. Fox deserve
many thanks. W. S. Brown deserves great credit for creating a model of FP arithmetic that makes it possi-
ble to test the arithmetic, for many comments on the test and a willingness to revise the model in response
to real-world FP behavior. The model and the test have grown up together. The designers of the FP unit on
the Honeywell 600-6000 series deserve special thanks for having done nearly everything correctly, so that
the errors in the derivations and code could be detected and corrected. They also deserve thanks for having
done enough wrong to make the test an interesting project. The people at Cray Research, DEC, Honeywell
and Perkin-Elmer were quite responsive to the bug reports generated by the test. They quickly explained
and repaired all serious problems brought to their attention. Finally, I thank Jim Cody of Argonne for
bringing the problem of NAN’s on the CRAY-1 to my attention; see the CRAY-1 appendix.

Bibliography

[1] W. J. Cody and W. M. Waite, Software Manual for the Elementary Functions, Prentice-Hall,
1980.

[2] S.I. Feldman, "The Programming Language EFL", Bell Laboratories Computing Science Technical
Report #78, 1979.

[3] B.W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics", C Co om mm m. . A AC CM M 18, 151-
157(1975).

[4] G. Forsythe and C. Moler, Computer Solution of Linear Algebraic Systems, Prentice-Hall, New
York, 1967.

[5] W. M. Gentleman and S. B. Marovich, "More on Algorithms that Reveal Properties of Floating-Point
Arithmetic Units", C Co om mm m. . A AC CM M, , 17, 276-277(1974).

[6] S. I. Feldman, "Make — A Program for Maintaining Computer Programs", Bell Laboratories Com-
puting Science Technical Report #57, 1977.

[7] M. A. Malcolm, "Algorithms to Reveal Properties of Floating-Point Arithmetic", C Co om mm m. . A AC CM M, , 15,
949-951(1972).

[8] R. E. Moore, Interval Analysis, Prentice-Hall, 1966.

[9] B.G. Ryder, "The PFORT Verifier", S So of ft tw wa ar re e — — P Pr ra ac ct ti ic ce e a an nd d E Ex xp pe er ri ie en nc ce e 4, 359-377(1974).

[10] P.A. Fox, A.D. Hall and N.L. Schryer, "The PORT Library Mathematical Subroutine Library",
T TO OM MS S, , 4, 104-126(1978).

[11] "UNIX Time-Sharing System", B BS ST TJ J 57, 1897-2312(1978).

[12] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, New York, 1963.

[13] W. S. Brown, "A Simple but Realistic Model of Floating-Point Computation", Bell Laboratories
Computing Science Technical Report 83, November, 1980.

Appendix Alliant

These machines have a base-2 hardware representation with an exponent range of − − 125 to + + 128 and
t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
they implement the IEEE Floating-point standard for single and double precision.

FX8
This machine has been thoroughly tested by Prof. Wolfgang Fichtner of the ETH, Zurich, and Dave

Berkeley, and the above parameters are correctly supported.

FX/2800

After an initial blaze of compiler errors, Dave Berkeley found that this machine correctly supports the
IEEE parameters.

Appendix Amdahl

470/V8
This machine has a base-16 hardware representation with an exponent range of − − 64 to + + 63, t t = = 6 in

single-precision, and t t = = 14 in double-precision.

This machine has been thoroughly tested, and the above parameters are correctly supported under the
MVS operating system with the Fortran H Extended compiler.

Appendix Apollo

300
The 300 has a base-2 FP representation with an exponent range of − − 127 to + + 127, t t = = 24 for single-

precision, and t t = = 56 for double-precision. The FP is implemented in software.

This machine has been probed by Prof. Bill Gropp of Yale and the above parameters are not yet cor-
rectly supported. The software is buggy and t t = = 23, e e min = = − − 75 and e e max = = 50 are currently supported.
The penalty on e e min is due to comparisons being done by subtract and compare to zero, causing very small,
close but not identical numbers to compare equal through underflow. The rest of the problems have been
reported to Apollo and are being fixed.

420
The 420 has a base-2 FP hardware representation with an exponent range of − − 127 to + + 127, t t = = 24

for single-precision, and t t = = 56 for double-precision.

This machine has been thoroughly tested by Prof. Bill Gropp of Yale and the above parameters are
correctly supported.

Appendix CCI

6/32
This machine has a base-2 hardware representation with an exponent range of − − 127 to + + 127, with

t t = = 24 in single-precision and t t = = 56 in double-precision. This machine was tested by John Walden and
found to be healthy.

The Past

Early versions of this machine had serious errors. For example, in double precision,

f f l l (1 − − 2 − − 55) ≥ 1

and

f f l l ((2127 (2 − − 1 + + 2 − − 54)) × (− −
i i = = 1
Σ
53

2 − − i i)) = = − − 2 + + 126 ×
1
Σ
25

2 − − i i

which is off in the 26t th h bit.

In single precision, for x x = = 225 (2 − − 1 + + 2 − − 15) and y y = = 0, got

f f l l (x x × y y) = = 2 − − 104 (2 − − 1 + + 2 − − 15 + + 2 − − 28 + + . . .) ,

which is not 0.

Appendix CDC

7600
The CDC-7600 has a base-2 FP hardware representation with an exponent range of − −974 to +1070,

t t = = 48 in single-precision, and t t = = 95 in double-precision. The test was run under the FTN5 compiler by
Kirby Fong at Lawrence Livermore Laboratories.

Single Precision

Two penalties must be assessed to obtain correct model parameters. First, t t = = 47, rather than 48,
must be used. Second, e e min = = − − 929 must be used, rather than − − 974.

The reason for the first, precision, penalty is that one bit is lost when certain pairs of operands are
compared. Comparisons are done by subtraction followed by a compare to zero.

The second, minimum exponent, penalty is due to FTN5 normalizing a result after subtracting two
numbers. If two numbers that are different but both very small, the normalization leads to an underflow so
that FTN5 thinks they are identical.

With these two penalties, the CDC-7600 passes the test in single-precision.

Double-Precision

Even though the CDC-7600 software has t t = = 96 bits in the mantissa, the manufacturer only claims
95 bit accuracy.

The parameters supported in the FP test are t t = = 47, e e min = = − − 926 and e e max = = + + 1069.

Most operations are good to 95 bits, but multiplication and division are sometimes only good to 49
bits.

In .EQ. and .NE. FTN5 forgets that the hardware needs to shift coefficients to align exponents and
this can allow the 48t th h bit to be shifted off. It is thus possible for two numbers that differ in bit 48 to appear
equal.

Appendix Convex

Convex 200
This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by John Walden and the above parameters are correctly
supported.

Appendix Cray

Cray-1
The Cray-1 has a base-2 FP hardware representation with an exponent range of − −8192 to +8191,

t t = = 48 in single-precision, and t t = = 96 in double-precision. The test was run under the COS 1.08 operating
system on hardware modified to make multiplication commutative.

Single Precision

Three penalties must be assessed to obtain correct model parameters. First, t t = = 47, rather than 48,
must be used. Second, e e min = = − − 8189 must be used, rather than − − 8192. Third, the largest exponent must
be e e max = = 8190, rather than 8191.

The reason for the first penalty is that multiplication uses a phantom 49t th h bit for pre-rounding. For
example, for x x = = 2 and y y = = 0. 1 . . . 1 2 we have f f l l(x x×y y) = = 2, and t t = = 48 would not result in exact
multiplication being valid.

The minimum exponent penalty is due to x x / / y y being a composite operation, essentially we have
x x / / y y ≡ x x×(1/ / y y). Thus, f f l l(x x / / (2 − − 8192 ×2 − − 1)) ≡ x x×(2 + + 8194 ×2 − − 1) = = ∞, the projective, un-signed
infinity.

The maximum exponent penalty results from the way the Cray-1 tests for overflow in multiplication.
In taking a × b, if exponent(a)+exponent(b) > > e e max, the result is defined to overflow. This is often correct,
but sometimes is too conservative.

With these three penalties, the Cray-1 passes the test in single-precision.

Double-Precision

Even though the Cray-1 hardware has t t = = 96 bits in the mantissa, the manufacturer only claims 95
bit accuracy.

The parameters supported in the FP test are t t = = 94, e e min = = − − 8099 and e e max = = + + 8190.

The penalty on t t is due to / / being done in software, using multiple operations. The value of t t = = 94
passes the FP test with o on ne e expansion (X X + +) of the containment interval for division results.

If t tw wo o expansions are allowed, t t = = 95 passes the test. However, this extra expansion is contrary to
the model, and 95 is not used. But it does show that the other arithmetic operations are supported to 95
bits. Also, since division involves three arithmetic sub-operations, it should require the extra expansion.
So the designers of the double-precision division software can tell that they have introduced the minimum
possible error.

The minimum exponent must be penalized by 93, to − − 8099, because the comparison operations (
.eq., .lt., etc.) are done by subtraction and comparison to zero. Unless the 93 penalty is put on e e min, x x − − y y
may underflow causing x x .eq. y y to be true when x x ≠ y y. This problem does not arise in single-precision
because although x x − − y y may underflow, its representation, b be ef fo or re e b be ei in ng g s st to or re ed d, , has the correct sign.

The reason for the penalty on e e max is the same as it was in single-precision.

The Past — Single-Precision

Early in 1980, the FP test reported most of the above results, but failed to detect the penalty on e e min.
The reason for this is that comparison operations on the machine give L L ≤ ∞ and ∞ ≤ R R for any FP num-
bers L L and R R. This fooled the FP test into believing the result had been correctly computed. When this ano-
maly was discovered, the not-a-number detector of section 4 was introduced into the FP test so that such
fakery cannot happen so easily any more. In fact, ∞ has some strange properties on the Cray-1. Let x x be
any floating-point number or ∞. Then ∞ ≤ x x ≤ ∞. Yet none of the following are ever true: x x = = ∞, ∞ < < x x
or x x < < ∞.

This example shows that FPTST should always be run on the final results with CHEKUF = .FALSE.,

– Cray-2 –

and it should run correctly and p pr ro od du uc ce e n no o e er rr ro or r m me es ss sa ag ge es s (underflow, overflow, divide-check, etc.).

The Past — Double-Precision

Even with the above penalties, the double-precision arithmetic failed the test. This was due to a
rather obvious bug in the comparison operators .eq. and .ne. . For example, given

x x = = 2 − − 1 + + . . . + + 2 − − 48

and

y y = = 2 − − 1 + + . . . + + 2 − − 95

we had that x .eq. y was true and that x .ne. y was false. The bug in the software was reported to Cray and
repaired in the next system release. This had the effect of repairing a similar bug in the c co om mp pl le ex x .eq. and
.ne. comparison operators, since the same software was used for both multiword comparisons.

"Un-Rounded" Arithmetic

The Cray-1 has the ability, in single precision, to turn "rounding" off for multiplication. The Hard-
ware Reference Manual for that machine states that "The effect of this error ("rounding") is at most a round
up of bit 2 − − 48 of the result." From that statement, one might conclude that when "rounding" is off, multi-
plication is "chopped." That is not the case.

When FPTSB was run with "rounding" off, it reported that t t = = 33 was correctly supported. When
FPTSD was run with t t = = 34 and EPRINT = = .TRUE., the first example of trouble was

failure for operation *
x = 0200037777777777740000
y = 0400007777777777740000
result = 0200037777777777677777
l = 0200037777777777700000
r = 0200037777777777740000
sign(x) = +, type(x) = 2, i(x) = 34, exponent(x) = -8189
sign(y) = +, type(y) = 2, i(y) = 34, exponent(y) = 0

The first line and the last two lines of the above output say that for x x = = + + 2 − − 8189 ×(2 − − 1 + + . . . + + 2 − − 34)
and y y = = + + 20 ×(2 − − 1 + + . . . + + 2 − − 34), which are Type 2 mantissas (see (2.2)), result = = f f l l(x x×y y) is not in
the correct containment interval [l,r]. For clarity, the values of x, y, result l and r are printed in octal (base
8). The last 16 octal digits give the mantissa and the leading octal digits give the sign and biased exponent.
Thus, when "rounding" is turned off, multiplication sometimes produces a result which is smaller than the
correct chopped result, by one bit in the last place. This example also shows that "rounding" does more
than simply round the result to 48 bits. Without "rounding", some multiplication results are not even in the
correct model interval, let alone "chopped" to the wrong end-point.

Appendix DEC

VAX 11/780
The VAX 11/780 has a base-2 FP hardware representation with an exponent range of − − 127 to + + 127,

t t = = 24 for single-precision, and t t = = 56 for double-precision.

This machine has been thoroughly tested and the above parameters are correctly supported when run
under the U UN NI IX X operating systems 32V V and 4B BS SD D.

Although the 11/780 has correctly designed FP arithmetic, the machines don’t necessarily stay cor-
rect. Our Murray Hill computing center has had considerable fun with FP intermittents in their zoo of a
dozen or so 11/780’s. The high point was when our statisticians spent a week looking for a bug in their
code only to discover the problem was that the FP on the 11/780 was broken. The FP accelerator (FPA)
had partially fallen out of the backplane. The DEC field-engineers ran their test and diagnosis (T&D) soft-
ware on the FPA and declared that all was well. We knew better, and asked them to remove the FPA and
repeat the T&D. Lo and behold, it ran just fine! This is just more proof of the old saw "T&D is the only
thing that will run when nothing else will". This example is not given to pick on DEC, which has been
most responsive to reports of FP problems in their hardware, see the 11/750 example below. The problem
is generic in hardware, it needs continued maintenance. IBM, Interdata and others suffer from the same
problems.

As a result of the week-long bug chase that ended at the backplane, the computing center installed a
tastefully designed use of FPTST to be run at 3am every day on every 11/780. Since its installation it has
found that FPA’s have partially fallen out of the backplane on three occasions and sent that information to
the system gurus. In each case, the system was repaired before the normal working shift began. The com-
puting center folks and their users can sleep better knowing such tests are being run daily.

The author was duly pleased to see his test running on the central computing center’s 11/780s but
failed to apply the same alertness to our two local 11/780s. Sure enough, the same thing happened on May
24, 1984 to one of our local 11/780s. It cost a member of the staff a day to track the problem down to the
FPA. The FPTST now runs daily on our local 11/780s, and two of our 11/750s, as well.

VAX 11/750
The VAX 11/750 has a base-2 FP hardware representation with an exponent range of − − 127 to + + 127,

t t = = 24 for single-precision, and t t = = 56 for double-precision.

The above parameters are correctly supported.

The Past.

The above parameters were correctly supported for all floating-point operators except addition and
subtraction in double-precision, when tested under the U UN NI IX X operating systems 32V V and 4B BS SD D.

In double-precision, addition and subtraction were accurate to only single-precision. Specifically,
when t t = = 56 was tested, with EPRINT = = .TRUE., and (NBEX,NBEY,NBIX,NBIY) = = (1 , 1 , 1 , 56), the fol-
lowing "hexadecimal" example was produced by FPTSD

Failure for operation +
x = 3F80 10000
y = BF80 200
Result = FFFFB07F 0
L = FFFFB07F 8000
R = FFFFB07F 8000
Sign(x) = +, Type(X) = 1, I(X) = 56, Exponent(X) = -1
Sign(y) = -, Type(Y) = 1, I(Y) = 31, Exponent(Y) = -1

The first line and the last two lines of the above output say that for x x = = + + 2 − − 1 ×(2 − − 1 + + 2 − − 56) and
y y = = − − 2 − − 1 ×(2 − − 1 + + 2 − − 31), which are Type 1 operands (see (2.2)), we have that Result = = f f l l(x x + + y y) is

– DEC-2 –

not in the correct containment interval [L, R]. For clarity, the values of x, y, Result, L and R are printed in
"hex" (base-16). The last two hex digits of the first word in the representation give the most significant
digits in the 56 bit mantissa (the leading 1 in the mantissa is implicit), the fifth and sixth hex digits give the
sign and biased exponent, the first four hex digits of the first word give more of the mantissa, the last four
hex digits of the second word give, in decreasing significance, even more of the mantissa, and the first four
hex digits of the second word give, in decreasing significance, the rest of the mantissa. Leading 0’s are
suppressed in the hex output and the length of the representation of the words varies. The output shows
that addition failed in the 25t th h bit.

When tested for t t = = 54, the machine passed the above test correctly. However, this was quite mis-
leading since we knew that the precision of addition was no better than 24 bits. The test allows detection of
the trouble with addition, but unless we keep that fact in mind, the test may also lull us into believing that
addition is more accurate (54 bits) than it really is (24 bits). This is an example where testing "extra-
precise" operands would be helpful in determining precision, see section 7.

The error was reported to DEC and the bug in the microcode for + + and − − was repaired.

System 20/60
The System 20/60 has a base-2 FP hardware representation with an exponent range of − − 128 to + + 127,

t t = = 27 for single-precision, and t t = = 62 for double-precision. The first bit of the second 36 bit word is not
used in double-precision, so t t = = 62 not 63.

This machine has been thoroughly tested by Prof. Stan Eisenstat of Yale and the above parameters
are correctly supported when run under the TOPS 20 operating system.

DEC 10, Model 1091
This machine has a base-2 FP hardware representation with an exponent range of − − 128 to + + 127,

t t = = 27 for single-precision, and t t = = 62 for double-precision. The first bit of the second 36 bit word is not
used in double-precision, so t t = = 62 not 63.

This machine has been thoroughly tested by Greg Astfalk of AT&T Technologies Research Center
and the above parameters are correctly supported when run under the TOPS 10 operating system, version
7.01v07.

Appendix Data General

Eagle
This machine has a base-16 hardware representation with an exponent range of − − 64 to + + 63, t t = = 6 in

single-precision, and t t = = 14 in double-precision.

This machine has been thoroughly tested, by Wolfi Fichtner of AT&T Bell Laboratories, and the
above parameters are correctly supported.

Appendix Elxsi

This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and
t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by John Walden and the above parameters are correctly
supported.

The Past

In single precision, comparison of 0 with 0 was incorrect. That is, things like "x .lt. y" were ".true."
when x x = = y y = = 0.

Appendix Floating-point Systems

164
The 164 has a base-2 FP hardware representation with an exponent range of − − 1021 to + + 1023, with

t t = = 52 for single-precision. There is no double-precision on this array processor.

This machine has been thoroughly tested by Prof. Bill Gropp of Yale and the above parameters are
correctly supported.

Appendix Gould

NP 1
This machine has a base-16 hardware representation with an exponent range of − − 64 to + + 63, t t = = 6 in

single-precision, and t t = = 14 in double-precision.

This machine has been thoroughly tested by John Walden and the above parameters are correctly
supported.

The Past

An early version of this machine failed for the division of small numbers:

f f l l ((16 − − 64 × 16 − − 1) / / (16 − − 64 × (16 − − 1 + + 16 − − 2))) ∼∼ 0. 03

instead of 16/ /17 ∼∼ 0. 94.

Appendix Honeywell

6080N
This machine has a base-2 hardware FP representation with an exponent range of − −128 to +127,

t t = = 27 in single-precision, and t t = = 63 in double-precision. The test was run under the SR-JS1 operating
system using the unoptimized fortran compiler.

The smallest positive number x x = = 2 − − 128 ×0. 1 2 does not have a representable negative because
floating-point numbers are represented in 2’s complement. Thus, e e min = = − − 127, rather than − − 128, must be
used.

This machine has been thoroughly tested, and with the above penalty on e e min the model is correctly
supported.

The Past.

Before System Release J, when underflow was not tested (CHEKUF = .FALSE.), this machine
passed the FP test with the minor penalty on e e min noted above. However, in single-precision, when under-
flow was tested, a gross error in the operating system underflow trap-handler was uncovered. FP exponent
wrap-around could occur and FP underflow could result in huge numbers. Any operation whose mathemat-
ical result was − − 2 − − 129, an unrepresentable FP number, could result in a monstrously large computed result.

The FP test detected this for both the × and / / operators. Take, for example, a Type 1 mantissa, with
i i = = 27, x x = = 2 − − 127 (2 − − 1 + + 2 − − 27) and a Type 2 mantissa, with i i = = 27, y y = = − − 2 − − 1 (2 − − 1 + + . . . + + 2 − − 27).
Then x x × y y = = − − 2 − − 128 (2 − − 1 + + 2 − − 29 + + . . .). To 27 bits, this result is − − 2 − − 129. Yet, the computed result
was − − 2 + + 127, which is off by a factor of 2 + + 256.

Another example found was for any Type 1 (see (2.2)) mantissa m m

f f l l (− −

2 − − 2 m m

/ /

2 + + 127 m m

) = = − − 2 + + 127

just as in the previous case of x x × y y.

The above errors were reported to Honeywell and the trap-handler has been repaired in System
Release J.

The above situation shows that any anomaly may imply real trouble. FPTSB reported that
e e min = = − − 127 was correctly supported when CHEKUF = .FALSE., and the report that multiplication and
division fail when CHEKUF = .TRUE. could have been written-off as "small errors in small numbers." Any
anomaly may imply serious trouble, which further runs can define. In this case, with CHEKUF = = .TRUE.
and EPRINT = = .TRUE. in FPTSD, the above examples of gross trouble would be printed out and the user
could see that the errors were not "small."

Appendix HP

9000/210
The 9000/210 has a base-2 FP hardware representation with an exponent range of − − 125 to + + 128,

t t = = 24 for single-precision, and t t = = 56 for double-precision.

This machine has been probed by Rick Becker. e e min = = − − 102 and e e max = = 127 are correctly sup-
ported. The penalty on e e min is due to comparisons being done by subtraction followed by compare to zero.
Thus, small, close but not equal numbers may compare equal through underflow. The largest exponent is
simply not handled correctly. These problems have been reported to HP and they are being fixed.

9000/720
The 9000/720 has a base-2 FP hardware representation with an exponent range of − − 125 to + + 128,

t t = = 24 for single-precision, and t t = = 56 for double-precision. Paul Layman tested this machine and found
the parameters correctly supported.

9836
The 99836 has a base-2 FP representation with an exponent range of − − 125 to + + 128, t t = = 24 for

single-precision, and t t = = 56 for double-precision.

The current situation for this machine is the same as for the 9000/210 above. It too is being repaired.

Appendix IBM

370/168, 3032, 3081, 4341-1
These machines have a base-16 hardware representation with an exponent range of − − 64 to + + 63,

t t = = 6 in single-precision, and t t = = 14 in double-precision.

These machines have been thoroughly tested, and the above parameters are correctly supported.

Intermittents

Intermittent errors are common and IBM is no exception. During testing, our 3032 had precisely one
intermittent fault detected. The test reported that a containment interval [L L , R R] for one of the results had
L L > > R R. This is not only a logical impossibility, but it has never happened before or since on that machine.
The owner of this busy machine was concerned enough to run the test 15 minutes a day for two months
looking for the bug to pop up again, to no avail.

PC/XT
This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by Leonilda Farrow of Bell Central Research, and the above
parameters are correctly supported.

RS6000
This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested and the above parameters are correctly supported.

The Past

Due to compiler and micro-code errors, the early versions of these machines had some strange behav-
ior. For example, in double precision

f f l l (
i i = = 1
Σ
53

2 − − i i) > > 1 . .

Appendix ICL

2900
This machine has a base-16 hardware representation with an exponent range of − − 64 to + + 63, t t = = 6 in

single-precision, and t t = = 14 in double-precision.

This machine has been thoroughly tested by Brian Wichmann of NPL in England. The above param-
eters are correctly supported with the exception that the machine suffers from terminal exponent wrap-
around. The smallest exponent in the machine is − − 64 and if any computed result should have an exponent
less than that it becomes positive. For example, f f l l (16 − − 65 / / 1613) = = 16 + + 50 ∼∼ 1. 6 10 + + 60.

Appendix Intel

8087
This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by Wayne Fullerton of IMSL, and the above parameters are
correctly supported.

Appendix Interdata

8/32
This machine has a base-16 hardware FP representation with an exponent range of − − 64 to + + 63, t t = = 6

in single-precision and t t = = 14 in double-precision.

This machine has been thoroughly tested and the above parameters are correctly supported under the
manufacturers operating system and complier.

The Past.

This machine had a very serious design error

f f l l (x x − − 16 − − 64 x x) ≡ 0

for a an ny y number x x. Thus, for example,

f f l l(1 − − 16 − − 64) = = 0 !

This error was detected by FPTSB and reported to Interdata, which had been purchased in the meantime by
Perkin-Elmer. Perkin-Elmer immediately identified the error, in the division micro-code, and re-designed
their newer models as a result.

Perkin-Elmer ran the test software in both single and double precision, under their own operating sys-
tem, pretending that the machine was base-2. In single-precision, the machine tested correctly with b b = = 2,
t t = = 21, e e min = = − − 256 and e e max = = + + 252. This is consistent with a base-16 machine with 6 hex digits. In
double-precision, the exponents were the same, and t t = = 53. This is consistent with a base-16 machine with
14 hex digits.

The repaired machine is correct to all the digits the manufacturer claims.

Local Intermittent Errors

Fortunately for the floating-point test software, our Bell Laboratories in-house machine displayed
other anomalous FP behavior not found in any other 8/32’s, old or new. Specifically, division lost accu-
racy, and the amount varied from day to day, month to month. This shows the ability of the test to detect
and provide evidence of intermittent floating-point errors. As a result of this discovery, we corrected tem-
perature control problems and expanded our program of machine repair and maintenance. We then gave
the machine away.

The test was run on an in-house 8/32 that used the U UN NI IX X 6. 0 operating system. The FORTRAN com-
piler on this system only supports double-precision. The program can say REAL, but the compiler would
compile double-precision. So only double-precision could be checked in-house. We continued to model
the 8/32 as a t t 2 bit base-2 machine, even though it was base-16, because the number of bits correctly sup-
ported was not reflected by the number of hex digits t t 16 supported. That is, t t 2 ≠ 4 t t 16 − − 3. The final bad
news on / / was that it was only good to 39 bits, that is, for b b = = 2 only t t = = 39, rather than t t = = 53, was cor-
rectly supported. What happened to the 14 missing bits? To see what the problem was, FPTSD was run
with T = = 40. FPTSD reported that T = = 40 was correctly supported, provided that division was imple-
mented as a composite operation. However, division on the 8/32 is not a composite operation. Thus, the
above warning about division is serious. To see what the problem was, the above run was repeated with
EXPAND = = 0 and EPRINT = = .TRUE. . This doesn’t allow any Expanding of containment intervals for / /.
The printout gave the following example.

– Interdata-2 –

Failure for operation /
x = 40800000 40000
y = 40200000 4000
Result = 41400000 ffff
L = 41400000 10000
R = 41400000 18000
Sign(x) = +, Type(X) = 1, I(X) = 38, Exponent(X) = 0
Sign(y) = +, Type(Y) = 1, I(Y) = 40, Exponent(Y) = -2

The first line and last two lines of the above output shows that for x x = = + + 20 (2 − − 1 + + 2 − − 38) and
y y = = + + 2 − − 2 (2 − − 1 + + 2 − − 40) we have that Result = = f f l l(x x / / y y) was not in the correct containment interval [L,
R]. For clarity, the values of x, y, Result, L and R are printed in "hex" (base-16). The last 14 hex digits are
the mantissa and leading hex digits are the sign and biased exponent. Leading 0’s are suppressed in the hex
output and the length of the second word in the representation of the FP numbers varies. The error was
very small, in the last bit. However, this division was done correctly on other 8/32’s, both old and new.

When the user is told that the test has been passed with the assumption that division is a composite
operator, there are two possible responses. If the user is a physicist trying to get some work done, he can be
happy and go on with his work. However, if the user is a mainframe designer or maintenance engineer,
who knows that division was not intended to be composite, the response must be to see if the message
means digits are being dropped.

Appendix MIPS

Mips 2000
These machines have a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
they implement the IEEE Floating-point standard for single and double precision.

These machines have been thoroughly tested and the above parameters are correctly supported.

Appendix Miscellaneous Machines

This appendix is a compilation of tidbits about various machines. The test has not been run on these
machines but the errors discussed would have been found if the test had been run on them. The errors are
too good to pass up discussing.

Ancient History

The first two examples are from "old" machines.

Atlas-1
David Wheeler of Cambridge notes that the Atlas-1 made by Ferranti in 195? had the last bit of its

FP result register stuck at 1, permanently.

HP-45 Hand Calculator
A somewhat offbeat example of the utility of (2.2) in detecting errors is the now famous wiring error

on the early models of the HP-45 hand calculator. That error resulted in log (exp (1. 01)) not even being
close to 1. 01. Since the HP-45 is a base 10 machine, 1. 01 is one of the numbers which would be used from
(2.2). log and exp are hard-wired processes and log (exp (x x)) ∼∼ x x would be a logical relation to test. In
fact, log (exp (x x)) ∼∼ x x failed for all x x’s with type 1 mantissas from (2.2), not just 1. 01.

The Present

Now for some more modern machines.

Apple II Plus and Apple IIe
This example is from Prof. Kendall Atkinson of the University of Iowa and was also reported in the

SIGNUM Newsletter, volume 18, 1983, page 2. The base is 2 and the mantissas of these machines are 4
bytes (32 bits) long. That is, t t = = 32. Let z z = = 0. 5 + + 2 − − 25. We would expect that w w = = 2* *(z z / /2) should
give w w = = z z. However, we get w w = = 0. 5 + + 2 − − 26. Thus, the best supported value of t t is 24, quite a bit dif-
ferent from 32.

A C language Vax 11/780 FP Simulator
Andy Koenig made a simulator for Vax 11/780 FP arithmetic in the C programming language. The

intent was to provide a familiar FP to micro-computers with the only assumption being that 16 bit integer
arithmetic is correctly supported. He wanted to test his simulator.

This was done by changing 12 lines of code in the FPTST software to call the C simulation routines
to do the FP operations. That is, statements like "z = x + y" were changed to read "call add(x,y,z)". The
test was run on a Vax 11/780, which has the identical FP representation. So the Vax was used to check the
C simulator. Two minor errors were found. First, the sign bit was lost when adding 0 to a negative num-
ber. Second, underflow was checked against an exponent threshold that was one too small.

Prime 400/550.
This machine has a base-2 hardware representation with t t = = 47 and e e max = = 32639 in single-

precision. The problems discussed below were reported by E. H. Stafford at Georgia Tech in "A Report on
the Accuracy of Prime Computer’s Floating Point Hardware and Software", Technical Report GIT-ICS-
83/09, 1983.

Whenever a number x x with the smallest possible exponent is multiplied by a number greater than 0.5
an overflow occurs, thus, 1×x x overflows. Also, multiplication always sets the last two bits of the result to
zero. Thus, 1 is not the multiplicative identity unless t t = = 45 is used.

Telefunken TR 440

– Miscellaneous Machines-2 –

This is a bizarre base-16 machine with 9.5 base-16 digits in the mantissa and a base-16 exponent
range of − − 64 to 63. It was brought to my attention by Thomas Haarmann of the University of Osnabruck.
The problem here is how to represent 9.5 hex digits in the model used in the test. Clearly, using b b = = 16 is
out of the question. However, by using b b = = 2 the arithmetic can be modeled with t t = = 35. The 3 bits lost
are due to the "wobbling" precision of hex arithmetic.

Appendix Multiflow

This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and
t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

The Past

An early version of this machine was thoroughly tested by John Walden and errors were found. In
double precision,

f f l l ((2 − − 1021 ×
i i = = 1
Σ
53

2 − − i i) / / (21 × 2 − − 1)) = = 0

instead of just returning the first argument.

Appendix Perkin-Elmer

3320.
The Perkin-Elmer 3220 has a base-16 hardware FP representation with an exponent range from − − 64

to + + 63, t t = = 6 in single-precision, and t t = = 14 in double-precision.

This machine has been thoroughly tested, and the above parameters are correctly supported when run
under the manufacturer’s operating system and compiler.

Appendix Pyramid

This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and
t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested and the above parameters appear to be correctly supported
by the hardware, but the machine gives non-reproducable results. That is, the errors reported by the test are
not repeatable from one run to the next. Furthermore, Stu Feldman of Bell Central Research has deter-
mined that a small FORTRAN program can get random results as well. The current conjecture is that the
problem is due to internal FP registers not being saved on context switches or page faults.

The Past

This machine had a serious design error

f f l l (2 − − 54

i i = = 1
Σ
53

2 − − i i − − 2 − − 54) ≡ − − 2 − − 85 (2 − − 1 + + 2 − − 22)

The correct result is − − 2 − − 107 and the computed result is off by about 2 + + 22.

Appendix Sequent

Balance 8000
This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by Ken Thompson, in double precision, and the above
parameters are correctly supported.

Appendix Silicon Graphics

These machines have a base-2 hardware representation with an exponent range of − − 125 to + + 128 and
t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
they implement the IEEE Floating-point standard for single and double precision.

These machines have been thoroughly tested and the above parameters are correctly supported.

The Past

Early verions of the Iris 2400 Turbo using the Weitek chip had problems in single precision, causing
things like

f f l l ((2 − − 125 × 2 − − 1) × 1) ≡ 0 . .

Appendix Solbourne

This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and
t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by John Walden and the above parameters are correctly
supported.

Appendix Sun

Sun 3 and Sun 4/280
These machines have a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
they implement the IEEE Floating-point standard for single and double precision.

These machines have been thoroughly tested by John Walden and the above parameters are correctly
supported.

Appendix Tandy

2000
This machine has a base-2 hardware representation with an exponent range of − − 125 to + + 128 and

t t = = 24 in single-precision, in double-precision the exponent range is − − 1021 to + + 1024 with t t = = 53. Thus,
the machine implements the IEEE Floating-point standard for single and double precision.

This machine has been thoroughly tested by David Gay of AT& Bell Laboratories and the above
parameters are correctly supported.

Appendix Univac

1100
This machine has a base-2 hardware FP representation with an exponent range of − −128 to +127,

t t = = 27 in single-precision, and t t = = 63 in double-precision.

The compiler used ("field-data") was so buggy that not much of the test could be run, but we got
some information. The first fact we got was that 1 is not the multiplicative identity, that is, f f l l (1×x x) ≠ x x
for some x x. The last bit is lost in such operations, not a great loss. The next piece of news was much more
interesting. There are numbers x x < < 0 and y y < < 0 such that f f l l (x x×y y) < < 0! The problem arises when x x and
y y are chosen to be so small that f f l l (x x×y y) will underflow. The underflow trap then sets the sign of the
result to be the same as one of the operands.

The test of this machine remains incomplete: the machine has been sold and we no longer have
access to one.

