
@een Laboratories Cover Sheet for Technical Memorandum
The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEi 13.9-3)

Title- Implementation of Large Contiguous
Files and Asynchronous I/0 in UNIX

Author(s)

Other Keywords - UNIX
Operating Systems
Time-sharing
Large Files

Location and Room

Lycklama, H. MH 7C-211

Extension

Date- January 4, 1974

TM- 74-1352-1

Charging Cose - 39394

6170
Filing Cose- 39394-11

ABSTRACT

Large contiguous files and asynchronous I/0 have

been implemented in the UNIX time-sharing system on a

Digital Equipment Corporation PDP-11/45 computer. These

features were implemented to aid in handling the large

volumes of data required for picture processing research

in Center 135. It is now possible to transfer large

amounts of data (>512 bytes) directly to or from a user's

address space.

12 2 14 Pages Text Other Totol _

0 0 2 No. Figures No. Tables No. Refs. _

Address Lobel

~-1n"l 'l....r {~7"l\

TELEPHONE LABORl' !l'ORIES, INC.

DISTR IBUTION
(llFFER GEI 13.9-3)

MPLETE MEMORANDUM TO

RRESPONDENCE FILES -HO

JFFICIAL FILE COPY
(FORM E-7770) - PLUS

:JNE WHITE COPY FOP
EACH ADDITIONAL
F'ILING CASE
REFERENCED

~ATE FILE COPY
(FORM E-1328)

13 REFERENCE COPIES

10 EYD
1353
1355
1357
135R
135 DPH
13 DIR

\F:F,t-J 0
~DWIN,GAPY L
,RANG,J E
!ER, JEAN-DAVID
:;wnRTH,R H
IEN, EDWARD G
(D,G D
\IN!\RD,RALPH C
JWN, EARL F
'.HSBAUM,S J
lPII<IS,Z L
·!CY, JAMES C
:N,GEN M
>ISTENSEN,C
lGSTON,A M
,DREN,LARRY A
IDON,J H
'LER,C CHAPIN
JGHTY, DAVID W
,ENBERGER,ROBERT L
mNY,S L
,LETTE, DEAN
lRDANO, PHILIP P
tDON,P L
,LCCJ<, ROBERT W
INAY,N B
,KELL, BARRY G
IVIS,JOHN F
IZYNA,E S
)ICE,CHARLES N
1FAUVER,W L
:BURTZ,R BRUCE
ISEN, ARTHUR B
IB,J O
:ACS,M E
:KLAMA,HEINZ
ICUSI,M D
:ANZANO,JOSEPH F
:I<THALER,MISS G E
>ONALD,H S
,LER,S E
IA,KENT V
INTS, FRANK W

+ NAMED BY AUTHOR

COMPLETE MEMORANDUM TO

MULLER,J F
MURPHY,J ARTHUR
NETRAVALI,ARUN N
NINKE,WILLIAM H
NOOLANDI,J

+PATEL,C KN
PEDERSEN,T J
PERUCCA,JAMES R
PRASADA,BIREN
PRIM,ROBERT C
RENTSCHLER,JOHN A

+RITCHIE,DENNIS M
+ROBERTS,CHARLES S
ROBINSON,FRANK
ROSENBERG,ROBERT L
ROWLINSON,D E
RUBINSTEIN,CHARLES B
SCATTAGLIA,JAMES V
SCHMIDT,ROBERT L
SLICHTER,W P
STORZ,FREDRICK G
SWANSON,GEORGE K
TEWKSBURY, S K
THOMPSON,JOHN S

+THOMPSON,K
THURSTON,R N

+TILLOTSON,L C
+VARNEY,ROBERT C
WALSH,K A
WEBBER,H T
WENGER,J L
WHITACRE,W E
WHITTEN,J H
WILD,J CHRISTIAN
WOLONTIS,V MICHAEL
YAMIN,MRS EE
YOUNG,JAMES A

80 NAMES

COVER SHEET ONLY TO

CORRESPONDENCE FILES -HO

5 COPIES
PLUS ONE COPY FOR
EACH ADDITIONAL
FILING SUBJECT

1271
1273
135
3!J12
q555
Q561
5222
8215
823Q
COOSDC

ABRAHAM,STUART A
ACKERMAN,A F
AHO,A V
AHRENS,RAINER B
ALBERTS,BARBARA A

COVER SHEET ONLY TO

ALC:ALAY,DAVID
ALL!IN,JAMES R
AL!,ES,HAROLD G
ANDERSON,
ANDERSON,D Q
ANDERSON,ROBERT V
ANDERSON,WILLIAM A
APIDAS,E J
APMBRUSTER,MISS ME
ARMb"TRONG,ANGUIN
APNOLD,GEORGE W
ARNOLD,S L
AP'!'HURS, EDWARD
ATAL,B S
AVERILL,R M JR
l\.XON,S L
BACXLAR,MISS MICHELE S
BAC'KMAN,G A
BI\RTLETT,WADE S
BAllER,ERICH 0
BAUGH,C R
BAYER,OOUGLAS L
BA'fER,JESSE A
BENDA.M
HFNGTSON,A H
PFNJAMIN,O CONNELL J
BERGHOLM,MRS SHARON A
BF1lGLAND,G DAVID
BERNSTEIN,LAWRENCE
BIAZZO,MARTIN R
BIGELOW,C W JR
BIGELOW,J H JR
BltINSKI,D J
BILOWOS,RICHARD M
BIRCHALL,R H
BIRECKI,MRS KM
BIREN,MRS IRMA B
BI'!'TNER,MRS BB
OI.INN,JAMES C
l!IY,JOSEPH A
BODEN,F J
BODNAR,J J
BOGl§!T,P JEFFREY
BOHACHEVSKY,I 0
OONACHEA,R N
BOWEN,F W
BOWRA,J W
BOWYER,L RAY
BOVCE,W M
BRADY,PAUL T
BPANDT,RICHARD B
BREECE,HARRY T III
BPEWER,F A
BPIGGS,P R 3a
BRIGIIT,N F
BRISSON,R J
SROWN,COLIN W
BROWN,G W
BROWN,W STANLEY
BUCK,I D
BURDETTE,WILLIAH A
BUTZIEN,PAUL E
BYPNE,EDWARD R
CABLE,GORDON G JR
Cl\MLET,J V JR
CARRAN,J H
CARUSO,A F

COVER SHEET ONLY TO

CASPERS,HRS BARBARA E
CAVINESS,JOHN D
CEMASHKO,FRED
CHAFFEE,N F
CHAMBERS,J H
CHEN,STEPHEN
CHERRY,MS L L
CLAYTON,DANIEL P
CLEARY,ROBERT W
CLIFFORD,ROBERT M
COBEN,ROBERT M
COHEN,HARVEY
COLE,LOUIS M
COLLIER,ROBERT J
CONNERS,R R
CONNOLLY,C V
CONWAY,MISS MAUREEN A
COOK,THOMAS J
COOPER,C ANTHONY
COPELAND,JOHN A
COPP,DAVID H
CORASICK,MISS M J
COULTER,J REGINALD
COURTNEY-PRATT,J S
CRANE,RODERICK P
CRUDUP,G D
CRUME,LARRY L
CRUSE,MISS BARBARA L
DALE, 0 BRUCE
DAVIDSON,CHARLES L
DAVIS,MISS ED
DAVIS,MISS LP
DAVIS,R L JR
DAYE,C M
DE JAGER,D S
DETRANO,MRS HK
DEUTSCH, DAVID N
DICKERT,L S JR
DICKMAN,B N
DICK,GEORGE W
DIMINO,L A
DIHMICK,JAMES 0
DOLAN,MRS MARIE T
DOLOTTA,T A
DRYDEN,JOHN J
DUBIS,M
DUFFY,FRANCIS P
ECKENRODE,MRS JUDY C
EDELE,JAMES S
EITELBACH,DAVID L
ELLIOTT,R J
ELY,T C
ERB,R W
ESSERMAN,ALAN R
ETRA,RICHARD H
FABISCH,MICHAEL P
FELS,ALLEN M
FELTS,W J
FETTE,CHARLES J
FIGLIUZZI,MISS ME
FISCHER,H B
FISCHER,W C
FISHER,MRS DIDINA
FLANAGAN,J L
FLEISCHER,HERBERT I
FORD,GERARD A
FORT,JAMES W

COVER SHEET ONLY TO

FOUGHT,B T
FOUNTOUKIDIS,A
FOWLER,BRUCE R
FOY,J C
FRANKLIN,MISS CM
FRANK,HISS A J
FRANK,RUDOLPH J
FRARY,HISS EILEEN S
FRASEP,A G
FREEMAN,K GLENN
FREENY,ANNE E
FRICF.E,J A
FROST, H l!ONNELL
P'ULTON,ALAN W
FURCZYK,MRS HE
FU,CHEN
GARCIA,R F
GATES,G W
GAWRON,L J
GAY,FRANCIS A
GEBALA,S GE
GELBER,MISS CHERON L
GEPNER,JAHES R
GERARD,ALLAN
GEYLING,F T
GIBB,KENNETH R
GILBERT,MRS HINDA S
GIMPEL,JAMES F
GITHENS,JOHN A
GLASER,W A
GLOVER,HRS S G
GLUCK,F
GOLABEK,MISS R
GOLDSMITH,L D
GOLOSTEIN,A JAY
GOODRICH,LEWIS M
GRAHAM,R L
GRANDLE,J A.JR
GRAVES,DONALD A
GREENBAUM,H J
GREENBERG,JACK M
GREENE,MRS DELTA A
GREENHALGH,H WAIN
GREISEN,MISS lit E
GRIPP,MISS N
GROSS,ARTHUR G
GUERRIERO,JOSEPH R
GUTT,OONALD J
HAAS,L J
HAGELMRGER,D W
HAGGERTY,JOSEPH P
HALFIN, SHLOMO
HALL,ANIREW D JR
HALL,MILTON S JR
HAMILTON,MISS PA
HANSEN,MRS G J
HANSEN,R J
HARASYMIW,J
HARKNESS,MRS CAROL J
HARPER,MRS G F
HARRISON,NEAL T
HARTHANN,MRS NANCY L
HARTMANN,ROBERT H
HARTMAN,D W
HARTWELL,WALTER T
HARU'l'A,K
HASZTO,EDWARD D

> CITED AS REFERFNCE SOURCE

1187 TOTAL

RADY,J E; MH 7B201;

TH-711-1352-1 TOTAL PAGES 15

ET A COMPLETE COPY:

E SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHF.P SIDE.

OLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.

IRCLF THE ADDRESS AT RIGHT. USE NO ENVELOPE.

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE.
NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER
SHEET TO THE COMPLETE COPY.
IF COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE FILES.

@
Bell Laboratories

subject: Implementation of Large Contiguous
Files and Asynchronous I/0 in UNIX
- Case 39394

date:

from:

January 4, 1974

H. Lycklama

TM-74-1352-1

~emorandum ~Qr File

INTRODuc~.rION

The UNIX operating system (ref. 1) running on the DEC

PDP-11/qS computer was chosen to support picture processing

research in center 135 (ref. 2) because of the large amount of

support software which had been written for it. However picture

processing requires the dynamic creation, deletion and accessing

of large files (up to 32,000,000 bytes). The version of UNIX

available at the time was limited to 65,536 byte files. There

was also the need to be able to read and write large amounts of

data for real-time applications in an asynchronous manner. These

requirements have led to the design and implementation of large

contiguous files and asynchronous I/0 within the framework of

the UNIX operating system as described below.

- 2 -

Large contiguous files are implemented within the framel«>rk

of the UNIX file system. That is. the names of the files follow

the UNIX convention of a simple hierarchical structure. Each

large contiguous file has an inode associated with it which con

tains a bit in the "flag" word indicating that it is a large con

tiguous file and is to be treated specially. The bytes in the

inode for such a file are used as follows:

0-1
2
3
4-5
6
7-21
22-25
26-29
30-31

flags
number of links
user ID of owner
size(least sig. word) in bytes
volume number of pack on which file exists
must be zero
cr'e at.Loa time
modification time
size(most sig. word) in bytes

~he flags are used as follows:

100000
040000
020000
010000
004000
000040
000020
000010
000004
000002
000001

inode is allocated
directory
file has been modified (always on)
large file
big contiguous file
set user ID on execution
executable
read, owner
write. owner
read, non-owner
write, non-owner

These files are implemented only for RP02 and RP03 disk

packs. The RP02 disk pack contains 203 cylinders of which only

the first 200 are used for the file system. The RP03 disk pack

contains 406 cylinders of which only the first 400 are used for

the file system. For both packs. each cylinder has 20 tracks of

10 (256 word) sectors each. Thus the total capacity of an RP02

disk pack is 20M bytes whereas that of the RP03 disk pack is 40M

- 3 -

bytes,

In a typical UNIX installation, one pack is used as a per

manently mounted system pack with one or more file systems of

7000 sectors each on the pack. Any number of other packs may be

mounted or dismounted without disrupting the operation of the

UNIX time-sharing system. On the system pack, the area not

reserved for the UNIX file systems are set aside for contiguous

files. on the other dismountable packs, the complete pack is

used for the allocation of contiguous files. For example, for an

RP03 system pack with 5 UNIX file systems the last (80000-5•7000)

= usooo sectors on the pack are used for contiguous files. On a

dismountable RP03 disk pack, the total 80000 sectors are used fpr

contiguous files.

~he contiguous files are allocated on the disk area outside

of the file systems defined by the UNIX bit maps. The area on

each pack used for contiguous files is defined by a volume label

at the beginning of each dismountable pack (rp1 ••• rp7) • The

volume label for the system pack occurs just beyond the end of

the UNIX file systems. Files are allocated in units of a track.

In the contiguous file area, tracks are assigned as follows:

1 volume label and bit map
2-x VTOC entries
(x+1)-n contiguous file areas

where (x-1) tracks are devoted to VTOC entries and the last (n-x)

tracks are devoted to the actual contents of the contiguous

files. Unless otherwise stated, the following values of x, n are

used:

- 4 -

X
RP02 system pack 20
RP03 system pack 20
RP02 dismountable pack 20
RP03 dismountable pack 20

n
500

Q500
4000
8000

The sectors in the first track are used as follows:

1
2
3-10

volume label
bit map (bit per 2 ·tracks)
unused

The words in the first sector of the first track are used as

follows:

0
1-2
3
Q

5
6,
7-Q9
50-254
255

volume number
date labelled
number of tracks available for file system
number of tracks for label
number of tracks for VTOC entries
size of VTOC entry (in bytes)
character string label supplied by pack owner
unused (zero)
checksum

The next sector contains the bit map for the contiguous file area

on the pack. Each bit represents 2 tracks. A 1 bit indicates an

un-allocated track whereas a Obit indicates an allocated track.

The VTOC entries currently consist of 64 bytes of informa

tion on the contiguous file which it describes. Thus one sector

contains 8 VTOC entries. The VTOC entries contain sufficient

information to reconstruct the bit map if required. The bytes in

a VTOC entry are used as follows:

0-31
32-33
34-35
36-39
40-41
LJ2-43
44-45
LJ6-61
62-63

complete path name of file
inode of file
ldev of inode
size of file (in bytes)
record size (in bytes)
starting track number
number of consecutive tracks allocated
other extents
checksum

- 5 -

To find the starting disk sector address of a contiguous file the

i-node and idev number of the file are hashed to obtain a pointer

to a VTOC block on disk. This disk sector is read in and

searched for the given i-node and idev, which are the keys to the

VTOC entry.

To support these large contiguous files, the following sys-

tem calls have been added to the UNIX operating system:

sys alloc
sys pckm
sys pcku
sys dseek

These system routines are invoked by passing the address of the

list of arguments in ro.

al!Q£: - allocate disk space for a contiguous file

mov $arg,r0
sys alloc
.

arg: name
mode
packvol
ntracks
rsize

where

name - points to null-terminated string naming a file

mode - mode bits of file as in "sys creat"

packvol - pack volume number

ntracks - number of consecutive tracks to be allocated

rsize - record size

pckm: - mount given volume number on given drive number

mov Sarg,rO

- 6 -

sys pckm
arg: drivno

packvol

where

drivno - physical drive number

packvol - pack volume number

pcku: - unmount given volume number

mov $arg,r0
sys pcku
.

arg: packvol

where

packvol ~ pack volume number

dseek: - move read/write pointer by double word offset

mov iarg,rO
sys dseek

arg: filed
offset
ptrname

where

filed - file descriptor (0 - 9) refers to file open for

reading or writing

offset - double word offset pointer

ptrname - O - pointer is set to offset

1 - pointer is set to current location plus offset

2 - pointer is set to size of file plus offset

Normally the system pack is mounted when the UNIX system is
•

- 7 -

booted up and 11/etc/init" is executed. other packs· must be

mounted specifically. To enable the user to mount and dismount

other packs at will and also to allocate disk space for contigu

ous files easily, the following commands have been written:

This program allocates space on a given volume number with

sufficient consecutive space to hold the given number of records.

Space is allocated in 2 track quanta. Packf is invoked by means

of:

packf name mode volume rsize nrecords

where name - pathname of file to be created

mode - mode bits of file

volume - pack volume number

rsize - size of a record

nrecords - maximum number of records in file

This program initializes a disk pack for large contiguous

files with all VTOC entries zeroed out and a label put at the

beginning of the pack. The bitmap is appropriately initialized.

The program may only be invoked by the super-user as follows:

packi drive volume label

where drive - physical drive number

volume - volume number to be put on pack

label - up to 80 character user specified label

- 8 -

~ pack is mounted on the given drive number by means of:

packm drive

where drive is the given drive number. Before a volume can be

mounted the label block checksum is verified. Upon a successful

mount the volume number of the pack is printed out.

A given volume number is dismounted on a drive by means of:

packu volume

where volume is the given volume number that is to be dismounted.

oackl

In order to find out what contiguous files exist on a volume

on a given drive, one may invoke:

packl drive

where drive is the given drive number. This program will print

out all the pertinent information about the volume mounted on the

given drive including a list of all files on the volume. It will

essentially give a synopsis of the information contained in the

volume label sector and give an indication of how many ~racks of

the volume have been allocated for files and how many tracks are

left unallocated and may still be used. A file map is printed

out indicating which VTOC block has been used. where the inode

for the file exists, the name of the file, its size in bytes and

- 9 -

the total number of· tracks which have been allocated for the

file.

Two UNIX commands have been modified to give the user more

information about his contiguo~s files. The "ls" command will

now indicate whether or not a file is contiguous by means of a

"c" in the mode bits of the file description. The "stat" command

will indicate the mode of a file (whether contiguous or not) and

will also give the true size of the file (in bytes) making use of

the most significant size word in the inode.

As far as UNIX code is concerned, all contiguous files may

be accessed in the normal way by means of the standard UNIX sys

tem calls such as 11open, close, read, write, stat". When a "sys·

creat" is done on a contiguous file, its length is truncated to

zero tut the space which had been allocated for it is left in

tact. To make full use of these large contiguous files, one can

utilize the asynchronous I/0 features which have been added to

UNIX.

For some real-time applications involving large amounts of

data, it is often necessary to perform more sophisticated i/o

operations than possible with the standard file read and write

operations in UNIX. specifically it is desirable to be able to

do I/0 directly to or from the user's address space without the

use of the system side buffers. The reasons for this are two

fold - reduce system overhead time and allow the input or output

of more than 512 bytes of data at a time. In some cases one

- 10 -

would also like to initiate more than one transfer of data simul

taneously and then wait for them to finish separately thus reduc

ing transfer set-up times where these are critical. For in

stance, using asynchronous I/0 ·directly into the user·s area, one

can transfer a track of data (2560 words) fran an RP disk in no

more than two revolutions of the disk. Using the standard UNIX

read would take more than 10 revolutions of the disk as 10

separate I/0 operations are required.

Asynchronous I/0 routines have been incorporated into the

UNIX operating system to allow one to initiate I/0 directly to or

from such block-oriented devices as magtape, dectape and all disk

devices. For magtape specifically, one is now able to read or

write records which are not necessarily 512 bytes long. The

impleroentation of large contiguous files also allows one to ini

tiate asynchronous I/0 to or from these files. An error condi

tion will be indicated however if one attempts to initiate asyn

chronous I/0 to or from a standard UNIX file.

Two new system calls have been added to the UNIX operating

system in order to implement asynchronous I/0:

sys srtio
sys static

This call is invoked to initiate asynchronous I/0. Its cal-

ling procedure is the same as for "sys read" and 11sys write":

(file descriptor in rO)
sys srtio;buffer;nbytes
(system buffer descriptor index in rO) ...

- 11 -

The file descriptor is the word returned from a successful open,

creator alloc and determines whether the I/0 operation to be

initiated is a read or a write. Here "buffer" is the address of

the buffer into which or from which the "nbytes" of data are to

be transferred. Upon return from the system the I/0 has not been

completed yet, but the system buffer descriptor which has been

allocated for this I/0 transfer is returned in rO and must be

remembered when testing the status of this particular I/0

transfer. The error bit will be set if the I/0 could not be ini

tiated. conditions for error may include: bad buffer address,

11nbytes11 which would cause transfers outside the user'• s address

space, bad file descriptor or no more system buffer descriptors

available. currently only 4 buffer descriptors are available in

the system to be used for asynchronous I/0 transfers. This

number is an assembly parameter and may be increased if need be.

statio:

~his system call is invoked to check the status of a given

asynchronous I/0 transfer as follows:

mov $bufst,r0
sys statio

...
bufst: bptr

flags
nbytes

where bptr - index to the system buffer descriptor which
describes the I/0 transfer requested as passed
back by "sys srtio"

flags - status of this particular I/0 operation
04000 - read active
02000 - read outstanding
01000 - write active
00400 - write outstanding

nbytes - number of bytes returned.

- 12 -

The user must pass the index to the system buffer descriptor

which describes the I/0 transfer requested as passed back by "sys

srtio" in "bufst". The flags and nbytes are returned to him in

"bufst+2" and "bufst+4" respectively.

All asynchronous I/0 initiated must be waited for. but the

order in which they are waited for is not important. The flag

bits are returned as zero upon a successful completiori of the I/0

transfer. The error bit will be set upon an error condition

detected such as physical I/0 errors or if the user is not the

owner of this system buffer descriptor. While there is any out

standing asynchronous I/0 for a user. he is guaranteed not to be

swapped out. Upon exiting from a process all asynchronous I/0

started is first waited for.

A simple example of the use of these asynchronous I/0

routines is given in Appendix A. The program copies data from an

RP02 drive Oto an RP02 drive 1, one track at a time. Total exe

cution time is less than 5 minutes compared to almost 40 minutes

by using the standard "sys read" and "sys write" routines in

UNIX.

MH-1352-HL-JER

Att.
References
Appendix A

H. Lycklama

- 13 -

References

(1) MM-71-1273-4, "The UNIX Time-sharing system"
D. M. Ritchie.

(2) J. D. Beyer, Dept. 1353.

- 14 -

Appendix~

/ copy rpO to rp1 using asynchronous io routines

srtio = 50.
statio = 51.
nsect. = 10.

sys open;rpO;O
bes oerr
mov rO,-rptr
sys open;rp1;1
bes oerr
mov rO,wptr
niov $200.*203.,r3

2:
mov rptr,rO
sys srtio;buffer;nsect*512.
bes rerr
mov rO,bufst

1 :
mov $bufst,r0
sys statio
bes serr
mov $bufst,r0
bit $7400,2 (rO)
bne 1b
mov wptr,rO
sys srtio;buffer;nsect*512.
bes werr
mov rO,bufst

1:
mov $bufst,r0
sys statio
bes serr
mov $bufst,r0
bit $7400,2 (rO)
bne 1b
sub $nsect,r3
bne 2b
sys exit

oerr: 4
rerr: 4
werr: 4
serr: Q

rptr: 0
wptr: 0 -----
rpO: </dev/rpo,o>
rp1: </dev/rp1,o>

.even
bufst: .=.+6
buffer: .=.+[nsect*512.]

