
@eell Laboratories Cover Sheet for Technical Memorandur
The information contained herein is for the use of employees of Be// Laboratories and is not for publication (see GEi 13.9-3

Title- A Structured Operating System
for a PDP-11/45

Date- May 6, 1975

TM- 75-1352-4

Other Keywords - UNIX
Multi-Environment
Real-Time

Author(s) Location and Room

Lycklama, H.

Bayer, D. L.

MH 7C-211

MH 7C-207

Extension

6170

3080

Charging Case - 39394

Filing Case- 39394-11

ABSTRACT

A structured operating system, MERT, consisting of

a set of autonomous processes has been designed and implemented

on a PDP-11/45 computer in Department 1352. The MERT system is

a multi-environment, real-time operating system consisting of a

set of basic kernel procedures providing services for the inde­

pendent processes which support the different operating system

environments. A well-developed set of inter-process communica­

tion primitives have been implemented, including event flags,

message buffers, shared memory and shared files. We believe

this provides a good base for providing support for various

operating system environments and for providing real-time

response for processes. The UNIX time-sharing system has been

implemented as one environment on the MERT system. This paper

(*) provides an overview of the MERT system.

* - Submitted to COMPCON Conference, September 7-9, 1975

11 5 16 Pages Text Other Total _

2 O 4 No. Figures No. Tables No. Refs. _

DATE FILE COPY
Bell Telephone Laboratories

Incorporated

E-1932-0-4 (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

LL TELl:.PHONE LA.bORATO.cUES, fo<:.

OMPLETE MEMORANDUM TO

ORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR
EACH ADDITIONAL FILING
CASE REFERENCJ:.D

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

,LBERTS,BARBARA A
.NDERSON,MRS C M
,RDIS,R B
,RNOLD,S L
IAYER,DOUGLAS L
IIREN,MRS IRMA B
ILUM,l•il<S MARION
!OYD,GARY D
!RANDT,RICHARD B
,ROWN,W STANLEY
!UCHSBAUM, S J
!URROWS,T A
:ANADAY ,RUDD H
:AROOZA, WAYNE M
:ARRAN,J H
:ARR, DAVID C
:HRISTENSEN,C
:LOGSTON, A l~
:ONOON,J H
:ooK,THOMAS J
:RANE,RODERICK P
:UNNINGHAM,STEPHEN J
;uTLER,C CHAPIN
)E JAGER,D S
)ICK,GEORGE W
)OLOTTA,T A
)OWD,PATRICK G
WMUNDS,T W
oRRICHIELLO,PHILIP M
o'EDER,J
e'ORTNEY,MRS VIRGINIA J
fRANK,H G
fREENY,S L
iATES,G W
,ILLETTE,DEAN
,IORDANO,PHILIP P
,LASSER,ALAN L
:iRAVEMAN,R F
liAIGHT,R C
liAMMING,R W
liANNAY,N B
liASKELL,BARRY G
liUPKA,MRS FLORENCE
IVIE,EVAN L
JOHNSON,STEPHEN C
KAPLAN,A E
KAUFMAN,LARRY S
KEVORKIAN,DOUGLAS E
LARSEN,ARTHUR B
LESSEK,PETER V
LIMB,J 0

+ NAMED BY AUTHOR

COMPLETE MEMORANDUM TO

LOZIER,JOHN C
LUDERER,GOTTFRIED WR
LYCKLAMA,HEINZ
LYONS,T G
MACHOL, R E JR
MAKER,MS DA
MALTHANER,W A
MARANZANO,JOSEPH F
MASHEY,JOHN R
MC ILROY,M DOUGLAS
MCDONALD,H S
MILLER, S E
MORGAN,S P
NINKE,WILLIAM H
0 CONNELL, 'I F
0 NEILL,DENNIS M
OSSANNA,J F JR
PATEL,C K N
PERDUE,R J
PEREZ,MRS CATHERINE D
PERNESKI,A J
PETERSON,RALPH W
PHILLIPS,S J
PILLA,MICHAEL A
PINSON,ELLIOT N
PLAUGER,P J
POPPER,C

+PRIM,ROBERT C
ROBERTS,CHARLES S
ROCHKIND,M J
RODIHAN,MRS PA'IRICIA A
ROSLER,LAWRENCE
SATZ,L R
SIX,FREDERICK B
SLICHTER,W P
SMITH,D W
SPENCE,NORMAN A
STAMPFEL,JOHN P
STEVENSON,D E
STURMAN,JOEL N
SWANSON,GEORGE K
TAGUE,BERKLEY A
TERRY,M E
TEWKSBURY,S K
THOMPSON,JOHN S
THURSTON,R N
TILLOTSON,L C
UNDERWOOD,R r.,,
VIGGIANO,F A
VOGEL,G C
WALKER,MISS EA
WANDZILAK,P D
WATKINS,G T
WEBB,FRANCIS J
WEHR,L A
WELLER, DAVID R
WHITE,RALPH C JR
WILSON,GEOFFREY A
WOOD,J L
YAMIN,MRS EE
YOUNG,JAMES A

112 NAMES

ulS l'RlBUTlut.
(RUER GEI 13,9-3)

COVER SHEET ONLY TO

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING
CASE

ABRAHAM,STUART A
ACKERMAN,A F
AHO,A V
AHRENS,RAINER B
ALCALAY,DAVID
ALLEN,JAMES R
ALLES, HAROLD G
ALMQUIST,R P
AMORY,R W
AMOSS,JOHN J
ANDERSON,M M
ARNOLD,GEORGE W
ARTHURS,EDWARD
ATAL,B S
BAKER,BRENDA A
BALDWIN,GARY L
BALDWIN,GEORGE L
BARTLETT,WADE S
BASEIL,RICHARD J
BAUER,BARBARA T
BAUGH,C R
BECKER,R A
BECKETT,J T
BERGLAND,G DAVID
BERNSTEIN,LAWRENCE
BEYER,JEAN-DAVID
BILOWOS,RICHARD M
BIRCHALL,R H
BLEICHER,EDWIN
BLINN,JAMES C
BLY,JOSEPH A
BODEN,F J
BOHACHEVSKY,I 0
BOURNE,STJ:.PHEN R
BOWERS,J L
BOWYER,L RAY
BOYCE,W M
BRAINARD,RALPH C
BREECE,HARRY T III
BREITHAUPT,ALLAN R
BROWN,COLIN W
BUTLETT,D L
BUTZIEN,PAUL E
BYRNE,EDWARD R
BZOWY,D E
CABLE,GORDON G JR
CAMPBELL,J H
CANDY,JAMES C
CASEY,JOSEPH P
CASPERS,MRS BARBARA E
CAVINESS,JOHN D
CHAMBERS,J M
CHAMBERS,MRS BC

COVER SHEET ONLY TO

CHANG,HERBERT Y
CHANG,S-J
CHAPPELL,S G
CHEN,STEPHEN
CHEN,T L
CHERRY,MS LL
CHIANG,T C
CHODROW,MARK M
CHRIST,C W JR
CIRil.LO,CARL
CIAYTON,D P
CLIFFORD,ROBERT M
CLOUTIER,J E
COBEN, ROBERT M
COHEN,HARVEY
COLDREN,LARRY A
COLE,LOUIS M
COLE,M O
COLLIER,ROBERT J
COLTON,JOHN R
COPP,DAVID H
COSTANTINO,B B
COSTON,WALTER P
COULTER,J REGINALL
COURTNEY PRATT,J S
CRUME,LARRY L
D STEFAN,D J
DAVIDSON,CHARLES L
DETRANO,MRS MK
DEUTSCH,DAVID N
DICKMAN,B N
DIMMICK,JAMES 0
OOMPIERRE,J A
DONOFRIO,L J
DREIZLER,HOWARD K
DRISCOLL,PATRICK J
EDELSON,D
EITELBACH,DAVID L
ELLIOTT,R J
ELY,T C
ESSERMAN,ALAN R
ESTOCK,R G
FABISCH,MICHAEL P
FARGO,GEORGE A
FELS,ALLEN M
FIGLIUZZI,MISS ME
FIORE,MRS RHODA J
FISCHER,H B
FLANAGAN,J L
FLEISCHER,HERBERT I
FLUHR,ZACHARY C
FOUGHT,B T
FOUNTOUKIDIS,A
FOWLER, BRUCE R
FOY,J C
FRANK,MISS A J
FRANK,RUDOLPH J
FRASER,A G
FREEDMAN,M I
FREEMAN,K GLENN
FREEMAN,R DON
FREIDENREICH,MRS B
FROST, H BONNELL

COVER SHEET ONLY T'O

FULTON,ALAN W
GARCIA,R Ii'
GAY,FRANCIS A
GEER,EUGENE W JR
GELLINEAU,A C
GELLIS,H S
GEPNER,JAMES R
GEYLING,F T
GIBB, KENNETH R.
GILBERT,MRS HINDA S
GIMPEL,JAMES F
GITHENS,JOHN A
GITLIN,RICHARD D
GLUCK,F
GOETZ,FRANK M
GOGUEN, MS NANCY
GOLABEK,MISS R
GOLDSTEIN,A JAY
GOROON,P L
GRAHAM,R L
GRAMPP,F T
GREENBAUM,H J
GREENE,MRS DELTA A
GREENHALGH,H WAIN
GROSS,ARTHUR G
GUERRlERO,JOSEPH R
HAFER,E H
HAGELBARGER, D W
HAGGERTY,J F
HAHN,J R JR
HALFIN,SHLOMO
HALL,ANDREW D JR
HALL,MILTON S JR
HAMILTON,PATRICIA
HANSEN,MRS G J
HARRISON,NEAL T
HARTWELL,WALTER T
HARUTA,K
HASZTO,EDWARD D
HAUSE,A D
HEATH,SIDNEY F III
HELD,RICHARD W
HENIG,MRS FRANCES H
HERGENHAN,C B
HERMAN,KENNETH 11
HEROLD,JOHN W
HESS,MILTON S
HOLTMAN,JAMES P
HONIG,W L
HOPPERT,D J
HORNBACH,THOMAS S
HOYT,WILLIAM F
HUDSON,E T
HUMCKE,D J
HUNNICUTT,CHARLES F
IMAGNA,CLYDE P
IPPOLI'l'I ,O D
IRVINE,M M
JACKOWSKI,D J
JACOBS,H S
JAMES,DENNIS B
JARVIS,JOHN F
JENKINS,J MICHAEL

> CITED AS REFERENCE SOURCE
438 TOTAL

ERCURY SPECIFICATION •••••••••• , •••••••••• , •• , •••••••••••••••

OMPLETE MEMO TO:
135-DPH 13-DIR 11-EXD

UNOS = UNIX/OPJ:.RATING SYSTEM
15-EXD 16-EXD 127-SUP 135-SUP

OVER SHEET TO:
135-MTS 9152-MTS 1271 1273 8234

COOS = COMPUTING/OPERATING SYSTEMS/SURVEY PAPERS ONLY

RADY,J E
MH 7B201

TM-75-1352-4
TOTAL PAGES 12

'O GET A COMPLETE COPY:

BE SURE YOUR CORRECT ADDRESS rs GIVEN ON THE OTHER SIDE.
FOLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
CIRCLE THE ADDRESS AT RIGHT. USE NO ENVELOPE.

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE

NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER
SHEJ:.T TO THE COMPLETE COPY.

IF COPIES ARE NO LONGER AVAILIU>LE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE FILES.

@
Bell Laboratories

subject A S true tu red Opera ting System for
a PDP-11/45

date: May 6, 1975

trom: H. Lye k 1 ama

D. L. Bayer

TM-75-1352-4

Memorandum for File

Introduction

As operating systems become more sophisticated and complex,

providing more and more services for the user, they become in­

c r e as i nq l y difficult to modify and maintain. Fixinq a "bug" in

some oart of the system may very likely introduce another "bug"

in a seemingly unrelated section of code. Changing a data struc­

ture is likely to have major impact on the total svstem. It has

thus become increasingly apparent over the past years that adher­

ing to the principals of structured modularity (1) ,(2) is the

correct approach to building an operating system. The influence

ot a process must be confined to an environment which is well

• protected from the rest of the system and must never affect the

state of other environments.

Brinch Hansen (2) implemented a nucleus of a multi-

programming system on an RC 4000 computer using message buffering

- 2 -

as the basic means of inter-process communication. our system

uses a different set of message buffering primitives as well as

other communication primitives to achieve orocess synchronization

and information transfer in an efficient manner.

The Hardware

The PDP-11/45 com~uter provides an eight-level hierarchical

interrupt structure with priority levels numbered from 0 (lowest)

to 7 (nighest). Associated with the interrupt structure is the

programmed interrupt register which permits the processor to aen­

erate interrupts at priorities of one through seven. The pro­

grammed interrupt serves as the basic mechanism for driving the

system.

The memory management unit orovides a separate set of ad­

dress mapping and access control registers for each of the pro­

cessor modes: kernel, supervisor and user. Furthermore, each

virtual address space can provide separate mans for instruction

references (called I-space) and data references (called D-space).

Segments may be given read/write protection (3). Each process

has access only to its own separate address space.

System Structure

The basic computer hardware resources consist of the actual

memory, the CPU and the various I/0 devices. The first level

(see Fig. 1) of the operating system structure, called the ker-

nel, controls and allocates these resources.

of a set,of highly privileged procedures and

The kernel consists

therefore must be

- 3 -

very reliable.

The second level of software consists of kernel-mode

processes which comprise the various I/0 device drivers. Each

process at this level has access to a limited number of I-space

base registers in the kernel mode, providing a firewall between

it and sensitive system data accessible only using o-soace mode.

At the third software level are the various operating system

supervisors which run in supervisor mode. These Processes pro­

vide the environments which the user sees and the interface to

the oasic kernel services.

At tne fourtn level are the various user Procedures which

execute in user mode under control of the suoervisorv environ-

ments. The ~rimitives available to the user are orovided by the

supervisory environments wnicj catch the user traos. Actually

the user procedure is merely an extension of the supervisor pro­

cess. This is the highest level of protection orovided by the

PDP-11/45 hardware. Higher levels of software such as aoplica-

tion packages can achieve protection through software strategies

such as running in interpretive mode.

Processes and Segments

A ~rocess is a related collection of logical segments which

are executed by the processor. A logical segment is a piece of

contiguous memory, 32 to 32K 16-bit words, which can grow in

increments of 32 words. A name may be associated with a segment

- 4 -

to provide a label for sharing it between independent processes.

This name is derived from the file system and is thus globally

known to all processes.

The capabilities of a process are defined by the mode of the

processor while executing the process segments. A kernel pro­

cess, running in kernel mode, is limited to 12K words, is locked

in memory and nas direct access to the I/0 registers. Kernel

processes can execute at processor priorities of three to seven

and are driven by both software and external interrupts. These

processes can respond to interrupts within 100 microseconds.

All processes which do not run in kernel mode are supervisor

processes. These processes all execute at processor Priorities

one and zero and are scheduled by the kernel scheduler process.

Associated with each supervisor process is a special read-only

segment (in supervisor mode) called the process control block

(PCB). Tne PCB contains space to save the state of the process

and a segment table which describes the virtual address space of

the process. The process can manipulate the segment table by

trapping to the kernel. Supervisor processes can be either swap­

pable or non-swap depending u9on real time constraints. The max­

imum size of a process is limited by the addressing capability of

the hardware to 124K words. Real time response attainable by

supervisor processes is of tne order of several milliseconds.

Process Communication

A number of methods are available to the processes for com­

municating with each other. These include:

- 5 -

event flags
messages
shared memory
tiles

These methods can be used to guarantee the synchronization of

parallel, cooperating processes and for maintaining the modulari­

ty of these processes.

1'he most basic communication mechanism transmits one bit

event flags:

event(orocid, event)

which will cause tne process orocid to receive an interrupt and

the word ~ven_!:_, which contains one or more event flags. The

receiving Process can inhibit event interrupts bv selectively

enabling particular events.

A higher-bandw~dth communication path is provided by the

message sending and receiving mechanisms in the kernel. A com­

mon pool of message buffers (multiple of 16 words) and a message

queue is provided for each process. See Figure 2 for tne message

format. Communication between all Processes can be achieved bv

means of the following kernel orimitives:

send message(message-buffer)

receive rnessage(message-buffer)

receive message type(message-buffer)

Send message copies the messaqe from the process message buffer

into the next available kernel message buffer and places it on

the input message queue of the intended receiver and sends a mes-

sage event to the receiver. Receive message copies a message

- 6 -

into the process message buffer if there is a message on its

input o ueue , If the aueue is empty, the process decides whether

to continue or roadblock wnile waiting for a message. A process

may also look for a particular type of message on its inout mes-

saqe aueue by means ot the re<:_~~~~ !!)~Ssaqe tyoe primitive. 'l'nis

enables a Process to synchronize the Processing of its ack­

nowleaqement messages. ~he transmission of a message almost

always results in the receiot of an acknowledqement or answer

message.

Processes nave the capability to share seqments. For exam­

ple, a segment mav be shared as a common pool of I/0 buffers for

the use of co-operating processes. This sharing mechanism is

used in the implementation of a time-sharing supervisor in the

system. Shared segments are also be used to transfer information

between two co-operating processes.

The use of files for inter-process communication is common

in many operating systems. In our case named files are passed

between communicating processes. We also provide the mecnanism

to lock a file, i.e. make it inaccessible to otner processes.

Tne existence of the locked file is a means of inter-process com­

munication. The contents of a file mav of course also be shared

by a number of processes.

'l'ne Kernel

The kernel consists of a process dispatcher, a trap handler,

and routines which implement the system primitives.

- 7 -

The process dispatcher fields all interrupts, sets up the

aopropriate kernel mode process, and transfers control to it.

~ne trap handler fields all traps and faults and, in most

cases, transfers control to a trap handling routine in the pro­

cess which caused the trac or fault. For the purposes of debug­

qinq, the "break point trap'' executed from supervisor or kernel

mode will cause an image of the process to be written in a file

and the orocess to be terminated. This feature has proven to be

an invaluable tool for debugqing kernel processes which control

I/0 devices and new versions of our time sharing supervisor.

The kernel orimitives deal primarily with four logical

functions:

1) The sending and receiving of messages and events.

2) Tne allocation and manipulation of segments which in­

cludes such operations as locking for I/0, growing, and

sharing segments.

3) The manipulation of a process virtual address space.

This includes specification of access permissions, start­

ing virtual address, and growth direction of segments.

4) The manioulation of process attributes which influence

scheduling. Included here would be altering the process

priority and making the segments of a orocess unswappa­

ble.

Closely associated with the kernel are the memory management

and scneduler processes. These two processes are special in the

sense that they have access to kernel D-space and reside in the

kernel segments. In all other respects they follow the

- 8 -

discipline established for kernel processes.

The memory manager process communicates with the rest of the

system via messages and is capable of handling three types of

reauests:

1) Setting the segments of a process into the active state,

making space by swapping or shifting other segments if

necessary.

2) Loading and locking a segment contiguous with other

locked segments to reduce memory fragmentation.

3) Deactivating the segments of a process.

The scheduler process is responsible for scheduling all

supervisor mode processes. The scheduler utilizes both time­

sliced, round robin and preemptive priority scheduling tech­

niques. The main responsibility of the scheduler is to select

the next process to be executed. The actual loading of the pro­

cess is accomplished by the memory manager.

File System

The system has the capability to provide such diverse en­

vironments as those suitable for real-time applications, data­

base auery systems and time-sharing systems. The types of files

normally provided by operating systems cover the range from

linked files to large and contiguous files, although these types

rarely all appear on one system. Large and contiguous files in

particular are appropriate for real-time applications and data­

base auery systems, and lend themselves to more sophisticated

file I/0 capabilities.

- 9 -

~he file manager process provides the capabilities for all

ot these tile types using a single type of file map entry. A

tile map entry describes the file layout by a series of 2-word

extents consisting of starting block number and number of con­

secutive blocks. This format enables the user to allocate secon-

dary storage space tor a large contiguous file. For tirne-sharino

apolications the file may consist of a number of small extents.

~he maximum file size which can currently be accommodated under

this scheme is 850,000,000 bytes.

Tne file manager process is implemented as a separate pro­

cess controlling all accesses to files and is the only process

whicn may alter the file map entries. Other processes communi­

cate with the file manager entirely by means of messages. The

messages to the file manager are handled by a number of tasks

running in parallel, one on behalf of each message.

Status

The Operating System as discussed above has been implemented

on a PDP-11/45 computer with 80K words of memory. The size ot

the kernel is BK including system tables. Two basic system

processes are started up with the system, a process manager and a

file manager. A time-sharing supervisor, logically eouivalent to

UNIX (4), nas been implemented as an environment, requiring about

llK of memory. At the current state of implementation of the

system, the system overhead introduced by the message traffic and

context changing reduces the throughput of the UNIX time-sharing

- l~ -

processes by about 5 percent.

Development of new and existing supervisors is being done

using this time-sharing system for which many user application

programs have been written over the years. One real-time super­

visor currently being developed is an experimental telephone

office co~mon control used for call processing. This process is

locked in memory and runs at high priority upon receiving a mes­

sage or an event. This process may be loaded dynamically and run

under control of the time-sharing supervisor. It is debugged by

planting break-point traps and dumping out a memory image of the

process on a file. In fact many of the kernel device drivers

have been debugged in this manner. This allows the system to

remain operational while some very sensitive code is being de­

bugged. The debugging facilities allow a user to examine the

state of any process in detail either while running or after

being dumped.

The flexibility of the system is perhaps best shown by the

ability to run and debug a new version of the time-sharing super­

visor using the current version of that supervisor. This enables

the system designer to test out new features of the time-sharing

supervisor without running the risk of disrupting other users.

The debugged version of the supervisor may then be installed

without taking down the system. The structure of the operating

system continues to provide a base for doing further operating

systems research.

- 11 -

~~~~owl edgme nts 

Some of the concepts incorporated in the basic kernel were 

developed in a previous design and im~lernentation of an operating 

system kernel by Mr. C. S. Roberts and one of the authors (H. 

Lycklama). The authors are pleased to acknowledge Mr. C. s. 

Roberts for many fruitful discussions during the design stage of 

the current operating system. 

l'itj-13 5 2-HL-J ER 

Att. 
References 
Figures 

»: D. bf.;~ 





- 12 - 

References 

(1) Dijkstra, E.W., The Structure of the 'THE' Multi-Programming 
System. Comm. ACM 11, (May 1968), p341. 

(2) Brincn Hansen, P., The Nucleus of a Multi-Programming System. 
Comm. ACN 13, (April 197t:J), p238. 

(3) PDP -11/45 Processor Handbook, Digital Eauiprnent Corporation, 
Maynard MA, 1971. 

(4) Thompson, K. and Ritchie, D.M., The UNIX Time-Sharing System. 
Comm. ACM 17, (July 1974), P365. 





LEVEL 
4 6 

[ 

~---1 USER WI n I 1' ' 
\'/ 

3 I PROC I I R. T. R.~ G1w MGR SUP. 1 SU~. 2 s 

l fi\- i,\ 1 

I I 

2 I I~, 
MGR I I 

I 
EMT Traps and Messages 
\'J \'/ \'/ \jf 

TSS 
1 

'f 

... , 
J, 

,v 

--- 

r ·'r'\ i/U 
DRIVE 

't 
j_J' 

TSS 
n 
,,; 

• 

R D 
1/0 
RIVER 
~ 
I' 

1 
'l,t.! 

KERNEL: Traps, Interrupts, Primitives, Scheduler, Memory Manager 

Figure 1 System S tructure 



LINK 

FROM PROCESS NUMBER 

TO PROCESS NU1V18ER 
1 I I I I -· 

TYPE I I I I : size 
I I I I 

SEQUENCE NUMBER -- 
I DENTI Fl ER 
ststem user 
s atus status --. 

MESSAGE DATA 

--·· 

FIGURE 2 Message format 


