@ Bell Laboratories Cover Sheet for Technical Memorandur

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEl 13.9-3

Title— A Structured Operating System Date— May 6, 197
for a PDP-11/45 ote ¥ 0, 1975

M- 75-1352-4

Other Keywords UNIX
Multi-Environment

Real-Time
Author(s) Location and Room Extension Charging Case — 39394
Lycklama, H. MH 7C-211 6170 4
Bayer, D. L. MH 7C-207 3080 Filing Case~ 39393-11

ABSTRACT

A structured operating system, MERT, consisting of
a set of autonomous processes has been designed and implemented
on a PDP-11/45 computer in Department 1352. The MERT system is
a multi-environment, real-time operating system consisting of a
set of basic kernel procedures providing services for the inde-
pendent processes which support the different operating system
environments. A well-developed set of inter-process communica-
tion primitives have been implemented, including event flags,
message buffers, shared memory and shared files. We believe
this provides a good base for providing support for various
operating system environments and for providing real-time
response for processes. The UNIX time-sharing system has been
implemented as one environment on the MERT system. This paper

(¥) provides an overview of the MERT system.

* . Submitted to COMPCON Conference, September 7-9, 1975

11 5 16
Pages Text Other Total DATE FILE COPY
o 0 n Bell Telephone Laboratories
No. Figures______ = No. Tables_~____No.Refs. _"___ Incorporated

E-1932-C~4 (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

LL TELEPHONE LABORATORIES, Iiv.

OMPLETE MEMORANDUM TO

ORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR

EACH ADDITIONAL FILING

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

\LBERTS,BARBARA A
\NDERSON, MRS C M
\RDIS,R B
\RNOLD, S L

JAYER, DOUGLAS L
JIREN,MKS IKMA B
\LUM, MKS MARION
30YD, GARY D
JRANDT, RICHARD B
JROWN, W STANLEY
JUCHSBAUM, S J
JURROWS,T A
'ANADAY ,RUDD H
'ARDOZA,WAYNE M
IARRAN,J H

ARR, DAVID C
*HRISTENSEN,C
ILOGSTON,A M
JONDON,J H

200K, THOMAS J
JRANE, RODERICK P
JUNNINGHAM, STEPHEN J
CUTLER,C CHAPIN
JE JAGER,D S
>ICK,GEORGE W
YOLOTTA,T A

JOWD, PATRICK G
EDMUNDS, T W
ERRICHIELLO, PHILIP M
FEDER,J

FORTNEY ,MRS VIKGINIA J

FRANK,H G

FREENY,S L

SATES,G W
31ILLETTE, DEAN
S5IORDANO,PHILIP P
3LASSER,ALAN L
SRAVEMAN,R F
HAIGHT,R C
HAMMING,R W
HANNAY,N B
HASKELL, BARRY G
HUPKA, MRS FLORENCE
IVIE,EVAN L
JOHNSON, STEPHEN C
KAPLAN,A E
KAUFMAN,LARRY S
KEVORKIAN, DOUGLAS E
LARSEN,ARTHUR B
LESSEK,PETER V
LIMB,d O

+ NAMED BY AUTHOR

COMPLETE MEMORANDUM TO

LOZIER,JOHN C

LUDERER,GOTTFRIED W R

LYCKLAMA,HEINZ
LYONS,T G
MACHOL, R E JR
MAKER,MS D A
MALTHANER,W A
MARANZANO,JOSEPH F
MASHEY, JOHN R

MC ILROY,M DOUGLAS
MCDONALD,H S
MILLER, S E
MORGAN, S P
NINKE,WILLIAM H

O CONNELL,T F

O NEILL,DENNIS M
OSSANNA,J F JR
PATEL,C K N
PERDUE, R J

PEREZ,MRS CATHERINE D

PERNESKI,A J
PETERSON, RALPH W
PHILLIPS,S J
PILLA,MICHAEL A
PINSON, ELLIOT N
PLAUGER,P J
POPPER, C
+PRIM,ROBERT C
ROBERTS,CHARLES S
ROCHKIND,M J

RODIHAN,MRS PATRICIA A

ROSLER, LAWRENCE
SATZ,L R
S1X,FREDERICK B
SLICHTER,W P
SMITH,D W
SPENCE, NORMAN A
STAMPFEL,JCHN P
STEVENSON,LD E
STURMAN,JOEL N
SWANSON,GEORGE K
TAGUE, BERKLEY A
TERRY,M E
TEWKSBURY,S K
THOMPSON,JOHN S
THURSTON,R N
TILLOTSON,L C
UNDERWOOD,R W
VIGGIANG,F A
VOGEL,G C
WALKER,MISS E A
WANDZILAK,P D
WATKINS,G T
WEBB,FRANCIS J
WEHR,L A
WELLER, DAVID R
WHITE,RALPH C JR
WILSON, GEOFFREY A
WOOD,J L
YAMIN,MRS E E
YOUNG,JAMES A
112 NAMES

VISIRIBUTION
(REFER GEI 13.9-3)

COVER SHEET ONLY TO

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 COPIES PLUS ONE

COPY FOR EACH FILING

CASE

ABRAHAM, STUART A
ACKERMAN,A F
AHO,A V

AHRENS, RAINER B
ALCALAY, DAVID
ALLEN, JAMES R
ALLES, HAROLD G
ALMQUIST,R P
AMORY,R W

AMOSS, JOBN J
ANDERSON,M M
ARNOLD, GEORGE W
ARTHURS, EDWARD
ATAL,B S

BAKER, BRENDA A
BALDWIN, GARY L
BALDWIN, GEORGE L
BARTLETT,WADE S
BASEIL,RICHARD J
BAUER, BARBARA T
BAUGH, C R
BECKER,R A
BECKETT,J T
BERGLAND,G DAVID
BERNSTEIN, LAWRENCE
BEYER, JEAN-DAVID
BILOWOS, RICHARD M
BIRCHALL,R B
BLEICHER, EDWIN
BLINN,JAMES C
BLY,JOSEPH A
BODEN, F J
BOHACHEVSKY, I 0
BOURNE, STEPHEN R
BOWERS,J L
BOWYER,L RAY
BOYCE,W M
BRAINARD,RALPH C
BREECE,HARRY T III
BREITHAUPT,ALLAN R
BROWN, COLIN W
BUTLETT,D L
BUTZIEN,PAUL E
BYRNE, EDWARD K
BZOWY,D E

CABLE, GORDON G JR
CAMPBELL,J H
CANDY, JAMES C
CASEY,JOSEPH P

CASPERS,MRS BARBARA E

CAVINESS,JOEN D
CHAMBERS,J M
CHAMBERS,MRS B C

> CITED AS REFERENCE SOURCE

COVER SHEET ONLY TO

CHANG, HERBERT Y
CHANG, S-J
CHAPPELL,S G

CHEN, STEPHEN
CHEN,T L

CHERRY,MS L L
CHIANG,T C
CHODROW,MARK M
CHRIST,C W JR
CIRILLO,CARL
CLAYTON,D P
CLIFFORD, ROBERT M
CLOUTIER,J E
COBEN,ROBERT M
COHEN, HARVEY
COLDREN, LARRY A
COLE, LOULIS M
COLE,M O
COLLIER,ROBERT J
COLTON,JOHN R
CoPP,DAVID H
COSTANTINO,E B
COSTON,WALTER P
COULTER,J REGINALL
COURTNEY PKATT,J S
CRUME, LARRY L

D STEFAN,D J
DAVIDSON, CHARLES L
DETRANO, MRS M K
DEUTSCH, DAVID N
DICKMAN,B N
DIMMICK,JAMES O
DOMPIERRE,J A
DONOFRIO,L J
DREIZLER,HOWARD K
DRISCOLL, PATRICK J
EDELSON, D
EITELBACH,DAVID L
ELLIOTT,R J

ELY,T C
ESSERMAN,ALAN R
ESTOCK,R G
FABISCH,MICHAEL P
FARGO, GEORGE A
FELS,ALLEN M
FIGLIUZZI,MISS M E
FIORE,MRS RHODA J
FISCHER,H B
FLANAGAN,J L
FLEISCHER, HEKBERT I
FLUHR, ZACHARY C
FOUGHT,B T
FOUNTOUKIDIS,A
FOWLER, BRUCE K
FOY,J C

FRANK,MISS A J
FRANK, RUDOLPH J
FRASER,A G
FREEDMAN,M I
FREEMAN, K GLENN
FREEMAN, R DON
FREIDENREICH,MRS B
FROST,H BONNELL

TH=75=1354-4

COVER SHEET ONLY TO

FULTON,ALAN W
GARCIA,R F
GAY,FRANCIS A
GEER, EUGENE W
GELLINEAU,A C
GELLIS,H 8
GEPNEKR,JAMES kK
GEYLING,F T

GIbB, KENNETH R
GILBERT,MRS HINDA S
GIMPEL,JAMES F
GITHENS,JOHN A
GITLIN,RICHARD D
GLUCK,F
GOETZ,FRANK M
GOGUEN, M5 NANCY
GOLABEK,MISS R
GOLDSTEIN,A JAY
GORDON, P L
GRAHAM,R L
GRAMPP,F T
GREENBAUM,H J
GREENE, MRS DELTA A
GREENHALGH,H WAIN
GROSS,ARTHUR G
GUERRIERO,JOSEPH K
HAFER,E H
HAGELBARGER,D W
HAGGERTY,J F
HAHN,J R JR

HALFIN, SHI.OMO
HALL,ANDREW L JK
HALL,MILTON S Jk
HAMILTON, PATRICIA
HANSEN,MRS G J
HARRISON,NEAL T
HARTWELL,WALTER T
HARUTA, K
HASZTO,EDWARD D
HAUSE,A D
HEATH,SIDNEY F II1
HELD, RICHARD W
HENIG,MRS FRANCES H
HERGENHAN,C B
HERMAN, KENNETH M
HEROLD,JOHN W
HESS,MILTON S
HOLTMAN,JAMES P
HONIG,W L
HOPPERT,D J
HORNBACH, THOMAS S
HOYT,WILLIAM F
HUDSON,E T
HUMCKE,D J
HUNNICUTT,CHARLES F
IMAGNA,CLYDE P
IPPOLITI,O D
IRVINE,M M
JACKOWSKI,D J
JACOBS,H 8

JAMES, DENNIS B
JARVIS,JOHN F
JENKINS,J MICHALL

JR

438 TOTAL

—

ERCURY SPECIFICATION:tveccasacascnssssssaceensesoseesssoaccsscssanssossaasacssenessssscsissoscsacssnenssascsccsnsenmscnncsosconsanscaness

OMPLETE MEMO TO:

135-DPH 13-DIR 11-EXD 15-EXD 16-EXD 127-SUP 135-8UP
UNOsS = UNIX/OPLRATING SYSTEM
OVER SHEET TO:
135-MTS 9152~-MTS 1271 1273 8234
Co0s = COMPUTING/OPERATING SYSTEMS/SURVEY FAPERS ONLY
RADY,J E
MH 7B201

. BE SURE YQUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
'« FOLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
CIRCLE THE ADDRESS AT RIGHT.

GET A COMPLETE COPY:

USE NG ENVELOPE.

TM~75-1352-4

TOTAL PAGES 12

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON TLb
OTHER SIDE

NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER

SHEET TO THE COMPLETE COPY.
IF COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE FILES.

.

subject:

Bell Laboratories

A structured OUperating System for date: pMay 6, 1975
a PDP-11/45

from: H, Lycklama

D. L. Bayer

TM~-75-1352-4

Memorandum for File

Introduction

As operating systems become more sophisticated and complex,
providing more and more services for the user, they become in-
creasingly difficult to modify and maintain. Fixing a “bug" in
some vart of the system may very likely introduce another “bug"
in a seemingly unrelated section of code. Changing a data struc-
ture 1is likely to have major impact on the total system. It has
thus become increasingly apparent over the past years that adher-
ing to the principals of structured modularity (1), (2) is the
correct approach to building an operating system. ‘The influence
of a process must be confined to an environment which is well
protected°from the rest of the system and must never affect the

state of other environments.

Brinch Hansen (2) implemented a nucleus of a multi-

programming system on an RC 4@@#@ computer using message buffering

as the basic means of inter-process communication. Our system
uses a different set of message buffering primitives as well as
other communication primitives to achieve vprocess synchronization

and information transfer in an efficient manner.

The gardware

The PDP-11/45 computer provides an eight-level hierarchical
interrupt structure with priority levels numbered from 2 (lowest)
to 7 (highest). Associated with the interrupt structure is the
programmed interrupt register which permits the processor to gen-
erate interrupts at opriorities of one through seven. The pro-
grammed interrupt serves as the basic mechanism for driving the
system.

The memory management unit provides a separate set of ad-
dress mapping and access control registers for each of the pro-
cessor modes: kernel, supervisor and user. Fur thermore, each
virtual address space can provide separate mans for instruction
references (called I-space) and data references (called D-space).

Segments may be given read/write protection (3). Each process

has access only to its own separate address space.

System Structure

The basic computer hardware resources consist of the actual
memory, the CPU and the various 1/0 devices. The first level
(see Fig. 1) of the operating system structure, called the Kker-
nel, controls and allocates these resources. The kernel consists

of a set of highly privileged procedures and therefore must be

very reliable.

The second level of software consists of kernel-mode
processes which comprise the various 1/0 device drivers. Each
process at this level has access to a limited number of I-space
base registers 1in the kernel mode, providing a firewall between

it and sensitive system datea accessible only using D-space mode.

At the third software level are the various operating system
supervisors which run in supervisor mode. These processes pro-
vice the environments whicnh the user sees and the interface to

the pasic kernel services.

At tne fourtn level are the various user procedures which
execute iIn user mode under control of the supervisory environ-
nents. The nrimitives available to the user are nrovided by the
supervisory environments wnich catch the user traos. Actually
the wuser procedure is merely an extension of the supervisor pro-
cess. This is the highest level of protection ©vrovided by the
PCF-11/45 hardware. Higher levels of software such as applica-
tion packages can achieve protection through software strategies

such as running in interpretive mode.

Processes and Segments

A process is a related collection of logical segments which
are executed by the processor. A logical segment is a piece of
contiguous memory, 32 to 32K 16-bit words, which can grow in

increments of 32 words. A name may be associated with a segment

to ptovide.a label for sharing it between independent processes.
This name is derived from the file system and is thus globally
known to all processes.

The cavabilities of a process are defined by the mode of the
processor while executing the process segments. A kernel pro-
cess, running in kernel mode, is limited to 12K words, is locked
in memory and nas direct access to the I1/0 registers. Kernel
processes can execute at processor priorities of three to seven
and are driven by both software and external interruots. These
pfocesses can respond to interrupts within 169 microseconds.

All processes which do not run in kernel mode are supervisor
processes. These processes all execute at processor priorities
one and zero and are scheduled by the kernel scheduler process.
Associated with each supervisor process is a special read-only
segment (in supervisor mode) called the process control block
(PCB). '"Tne PCB contains space to save the state of the process
and a segment table which describes the virtual address space of
the process. The process can manipulate the segment table bv
trapping to the kernel. Supervisor processes can be either swap-
pable or non-swap depending uvon real time constraints. The max-
imum size of a process is limited by the addressing capability of
the hardware to 124K words. Real time response attainable by

supervisor processes is of tne order of several milliseconds.

Process Communication

A number of methods are available to the processes for com-

municating with each other. These include:

event flags
messages
shared memory
tiles
Tnese methods can be wused to quarantee the synchronization of

parallel, cooperating processes and for maintaining the modulari-

ty of these processes.

The most basic communication mechanism transmits one bit
event flags:
event(procid, event)
which will cause the process procid to receive an interrupt and
the word event, which contains one or more event flags. The
receiving ©nrocess can inhibit event interrupts by selectively

enabling particular events.

A higher-bandw.dth communication path 1is provided by the
message sending and receiving mechanisms in the kernel. A com-
mon pool ot message buffers (multiple of 16 words) and a message
aueue is provided for each process. See Figure 2 for the message
tormat. Communication between all processes can be achieved by
means of the following kernel orimitives:

send message (message-buffer)
receive message (message-buffer)
receive message type(message-buffer)

Send messaqge copies the message from the process message buffer

into the next available kernel messaae buffer and places it on
the input messaqge cqueue of the intended receiver and sends a mes-

sage even to the receiver. Receive message copies a message

into the process message butfer if there is a message on its

input gueue. If tne gueue is empty, the process decides whether
to continue or roadblock wnile waiting for a message. A ©Drocess
may also look for a particular type of message on its inout mes-
sage aueue by means ot the receive messade typme primitive. This
enables a process to synchronize the ©processing of its ack-
nowleaqgement messages. fThe transmission of a message almost
always results 1in the receipnt of an acknowledaement or answer

me ssage.

Processes have the capability to share seagments. For exam-
rvle, a segment may be snared as a common pool of I/C buffers for
the use of co-operating processes. This sharing mechanism is
used in the implementation of a time-sharing supervisor in the
system. Shared segments are also be used to transter intformation

between two co-operating processes.

The wuse of files for inter-process communication is common
in many onerating systems. In our case named files are passed
between communicating processes. We also provide the mechanism
to lock a file, i.e. make it inaccessible to otner procesées.
The existence of the locked file is a means of inter-process com-
munication. The contents of a file mav of course also be shared

by @ number of processes.

The Kernel

‘The kernel consists of a process dispatcher, a trap handler,

and routines which implement the system primitives.

The process dispatcher fields all interrupts, sets up the

appropriate kernel mode process, and transfers control to it.

the trap handler fields all traps and faults and, in most

cases, transfers control to a trao handling routine in the pro-
cess which caused tne trav or fault. For the purposes of debug-
ging, the "break point trap" executed from supervisor or kernel
mode will cause an image of the process to be written in a file
and the process to be terminated. This feature has proven to be
an invaluable tool for debugging kernel processes which control
I/U devices and new versions of our time sharing supervisor.

The kernel wvprimitives deal primarily with four logical

functions:

1) The sending and receiving of messages and events.

2) Tne allocation and manipulation of segments which in-
cludes such operations as locking for 1/0, growina, and
sharing segments.

3) Tnhe manipulation of a process virtual address space.
This includes specification of access permissions, start-
ing virtual address, and growth direction of seqments.

4) The manipulation of process attributes which influence
scheduling. Included nere would be altering the process
priority and making the segments of a process unswappa-
ble.

Closely associated with the kernel are the memorvy management

and scneduler processes. These two processes are special in the
sense that they have access to kernel D-space and reside in the

kernel , segments. In all other respects they follow the

discipline established for kernel processes.

The memory manager process communicates with the rest of the
system via messages and is capable of handling three types of
reguests: |

1) Setting the segments of a process into the active state,

making space by swapping or shifting other segments if
necessary.

2) Loading and locking a segment contiguous with other

locked segments to reduce memory fragmentation.

3) Deactivating the segments of a process.

The scheduler process is responsible for scheduling all
supervisor mode processes. The scheduler utilizes both time-
sliced, round robin and preemptive priority scheduling tech-
nigues. The main responsibility of the scheduler is to select
the next process to be executed. The actual loading of the pro-

cess is accomplished by the memory manager.

File System

The system has the capability to provide such diverse en-
vironments as those suitable for real-time applications, data-
base aquery systems and time-sharing systems. The types of files
normally provided by operating systems cover the range from
linked files to large and contiguous files, although these types
rarely all appear on one system. Large and contiguous files 1in
particular are appropriate for real-time aprlications and data-
base guery systems, and lend themselves to more sophisticated

file I/O capabilities.

The tile manager process provides the capabilities for all
or these file types wusing a single type of file map entry. A
tile map entry describes the file layout by a series of 2-wora
extents consisting of starting block number and number of con-
secutive blocks. This format enables the user to allocate secon-
dary storage space tor a large contiguous file. For time-sharina
applications the file may consist of a number of small extents.
The maximum file size which can currently be accommodated under

this scheme is 85#,000,¢%0 bytes.

The file manager process is implemented as a separate pro-
cess controlling all accesses to files and is the only process
whicnh may alter the file map entries. Other processes communi-
cate with the file manager entirely by means of messages. The
messages to tne +file manager are handled by a number of tasks

running in parallel, one on behalf of each message.
Status

The Operating System as discussed above has been implemented
on a PDP-11/45 computer with 88K words of memory. The size ot
the kernel is 8K 1including system tables. Two basic system
processes are started up with the system, a process manager and a
file manager. A time-sharing supervisor, logically ecuivalent to
UNIX (4), nas been implemented as an environment, recquiring about
11K of memory. At the current state of implementation of the
system, the system overhead introduced by the message traffic and

context changing reduces the throughput of the UNIX time-sharing

"lk}‘
processes by about 5 percent.

Development of new and existing supervisors is being done
using this time-sharing system for which many user application
programs have been written over the years. One real-time super-
visor currently being developed is an experimental telephone
office common control used for call processing. This process 1is
locked 1in memory and runs at high priority upon receiving a mes-
sage or an event. This process may be loaded dynamically and run
under control of the time-sharing supervisor. It is debugged by
planting break-point traps and dumping out a memory image of the
process 6n a file. In fact many of the kernel device drivers
have been debugged in this manner. This allows the system to
remain operational while some very sensitive code is being de-
bugged. The debugging facilities allow a user to examine the
state of any process in detail either while running or after

being dumped.

The tlexibility of the system is perhaps best shown by the
ability to run and debug a new version of the time-sharing super-
visor using the current version of that supervisor. This enables
the system designer to test out new features of the time-sharing
supervisor without running the risk of disrupting other users.
The debugged version of the supervisor may then be installed
without taking down the system. The structure of the operating
system continues to provide a base for doing further operating

systems research.,

Acknowledgments

some of the concepts incorporated in the basic kernel were
developed in a previous design and implementation of an operating
system kernel by #r. C. S. Roberts and one of the authors (H.
Lycklama). The authors are pleased to acknowledge Mr. C. S.
Roberts for many fruitful discussions during the design stage of

the current orerating system.

y; Wk 57/'/[‘/2””"‘/&
4

H. Lycklama

MH-1352~HL~JER §
D. L/ Bavye

Att.
References
Figures

(1)

(2)

(3)

(4)

-12 -

§gggrences

Dijkstra, E.W., The Structure of the "THE® Multi-Programming
System. Comm. ACM 11, (May 1968), p34l.

Erincn Hansen, P., The Nucleus of a Multi-Programming System.
Comm. ACM 13, (April 197v), p238.

PDP -11/45 Processor Handbook, Digital Ecuipment Corporation,
Maynard ™MA, 1971.

Thompson, k. and Ritchie, D.M., The UNIX Time-Sharing System.
Comm. ACM 17, (July 1974), p365.

- LEVE
4

USER USER j---1 USE
| 1 n
N N N
\])
PRCC R. T. R. T. NEW 1SS ...} 1SS
MGR SUP. 1 SUP. 2 1SS 1 n
TN Fi)) i) A
FILE /o 1/0
MGR DRIVER DRIVER
I?\ I"’\ /!\
EMT Traps and Messages
\Vd N A4 Y \Y \v \ \t/ \Y

KERNEL: Traps, Inferrupts, Primitives, Scheduler, Memory Manager

Figure 1 System Structure

LINK

FROM PROCESS NUMBER

TO PROCESS NUMBER

N

TYPE b

SEQUENCE NUMBER

| DENTIFIER
system user
status status

MESSAGE DATA

FIGURE 2 Message format

