Programming in C — A Tutorial
Brian W. Kernighan

Bell Laboratories, Murray Hill. N. J.

1. Introduction

: C is a computer language available on the GCOS and UNIX operating systeni$ at Murray

Hill and (in preliminary form) on 0S/360 at Hoimdel. C lets you wrile your programs clearly
and simply — it has decent control flow facilities so your code can be read sgraight down the
page, without labels or GOTO's; it lets you write code that is compact withoul being too cryp-
tic: it encourages modularity and good program organization; and it provides good data-
structuring facilities.

This memorandum is a utorial to make learning C as painless as possible. The first part
concentrates on the central features of C; the second part discusses those parts of the language
which are useful (usually for getting more efficient and smaller code) but which are not neces-
sary for the new user. This is nor a reference manual. Details and special cases will be skipped
ruthlessly, and no attempt will be made to cover every language feature. The order of presen-
tation is hopefully pedagogical instead of logical. Users who would like the full siory should
consult the C Reference Manual by D. M. Ritchie (1], which shouid be read for details anyway.
Runtime support is described in [2] and (3); you will have to read one of these to learn how to0
compile and run a C program.

We will assume that you are familiar with the mysteries of creating files, text editing, and
the lixe in the operaling system you run on, and that you have programmed in some language
before.

2. A Simple C Program

main() {
print!("heito, world");

A C program consists of one or more functions, which are similar t0o the functions and
subroutines of a Fortran program or the procedures of PL/l, and perhaps some external data
definitions. main is such a function, and in fact all C programs must have a main. Execution
of the program begins at the first statement of main. main will usually invoke other functions
lo perform ils job, some coming from the same program, and others from libraries.

One method of communicating data between functions is by arguments. The parentheses
following the function name surround the argument list; here main is a function of no argu-
ments, indicated by (). The {} enclose the statements of the function. Individual statements
end with a semicolon bul are otherwise free-format.

C Tutoria! -2-

printf is a library function which will format and print outpul on the terminal (unless
some other destination is specified). In this case it prints

helio, world

A function is invoked by naming it, followed by a list of arguments in parentheses. There is
no CALL statement as.in Fortran Or PL/L:., -+

U . oy T A L1 A S ..
3..A Working € Program;.Variables; Types-and Type Declarations
Here's a bigger prografn that-adds {hree integers ‘and prints their sum.

-

main() { TR
it a, b, ¢, sum;
a=1 b=2 c=3
sum=ga <+ b <+ C;
printf{"sum is %d", sum);

}

Arithmetic and the assignment statements are much the same as in Foritan (except for
the semicolons) or PL/. The format of C programs is quite free. We can put several state-
ments on ,a”!id_nlg.if we want, or we can §plil a siatement among several lines if it seems desir-
able. The splif may be between any of ‘the operators or variables, but nof in the middie of a
name or operafor.”. AS a matier of style. spaces, tabs, and newlines should be used freely 10
enhance readability.” . ‘ '

C has four fundamental rypes of varisbies:

int . integer (PDP-11: 16 bits; H6070: 36 bits; IBM360: 32 bits)
- char one byte characler (PDP-11; IBM360; 8 bits; H6070: 9 bits)

float single-precision floating point . .-

double double-precision floating point -

There are also arrays-and situcrities of thesg basic types, pointers 10 them and functions thal re-
turn them, all of which we will meet shortly. ,

All variables in a C program must ‘be declared, although this can sometimes be done im-
plicitly by context. Declarations must precede executabie statements. The deciaration

.int @, b, ¢, suny;
declares a, b, ¢,'and sum 10 be iniegers.

Variable names have one 1o eight characters, chosen from A-Z, 2-z, 0-9, and _, and start
with a non-digit. Stylistically. it's much better to use only a single case and give functions and
external variables names that are unique in the first six characters. (Function and external
variable names are used by various assemblers, some of which are limited in the size and case

of identifiers they can handle.) Furthermore, keywords and library functions may only be
recognized in one case.

4. Constants

We have already seen decimal integer constants in the previous example — 1, 2, and 3.
Since C:is often used for sysiem programming and bit-manipulation, octal numbers are an im-
portant part of the language. In C, any number that begins with 0 (zero!) is an octal initeger
{and hence can't have any 8's or 9's in it).. Thus 0777 is an octal constant, with decimal vaiue
SLl. .o .
A *‘character” is one byte (an inherently machine-dependent concept). Most often this
is expressed as a character constani, which is one character enclosed in single quotes. However,
it may be any quantity that fits in a byte, as in flags below:

—

)

/-
(

C Tuiorial -3-

char quest, newline, flags:
quest = '7’;

newiine = ‘\n’; : .
flags = 077; .

The sequence ‘\n' is C notation for “newiine characier”, which, wheén Printed, skips the
terminal to the beginning of the next line. Notice that ‘\n' represents only a single character.
There are several other “escapes™ like ‘\W' fof feprésénting hard-to-ge# 6r-invisible characters,
such as "\t’ for tab. *\b for backspace. \0" for end of file, and ‘\\' fog the backslash itself.

float and double constants are discussed in section 26.

5. Simple I/0 — getchar, putchar, printf

main() { s
char C;
c = getchar();
putchar(c); C - b e e
} . _ .
getchar and putchar are the basic 170 library functions in C getchar fétchs one char-
acter from the standard input (usually the lermmal) each time it is called. and ‘returns that
character as the value of the function. When'il reaches the end of whatever file it is reading,
thereafter it returns the character represented by ‘\0‘ (ascii NUL. \vl'nch hs value zero). We
will see how 10 use this very shorly.
putchar puts one character out on the standard output (usually the lermmal) each time it
is called. So the program above reads one character and writes it back out. ~By ‘itseif, this isn"t
very interesting, bul observe that if we put a loop around this. and add a test for end of file, we
have a complete program for copying one file to-another.
printf is a more complicated funclion for producing formatted output. We will talk about
only the simplest use of it. Basically, printf uses its first argument as formatting information,
and any successive arguments as variables 10 be output. Thus

printf ("hello, worid\n"); .. .
is the simplest use — the string “hello, worid\n" is printed out. No formatting information, no
variables. so the string is dumped out verbatim. The newline is necessary to put this out on a
line by itself. (The construction

*hello, world\n"
is reaily an array of chars. More about this shortly.)

More complicated, if sum is 6,

printt ("sum is %d\n", sum);

prints

(W

sum is 6 .
Within the first argument of printf, the characters “%d™ signify that the next argument in the
argument list is lo be printed as a base 10 number.
Other useful formatling commands are *“%c™ to print out a single character, “%s" to print
out an entire string, and “%0™ 10 print a number as octal instead of decimal (no leading zero).
For example,

n =511,
printf ("What is the vaiue of %d in octai?®, n);

C Tuiorial -d -

printf (* %gl %d decimal is %0 octal\n", “Right", n, n);
prims T '
~ What is the value-of 511-in octal? Right! 511 decimal is 777 octal

Notice that there is no newline at the end of the first output line. Successive calls to printf
(and/or putchar, for that ‘matier) simply- put-ouit characiers. No newlines are printed unless
you ask for them. ‘Similafly, on inpiit, characters are réad one at a time as you ask for them.
Each line is genefilly terminaied by a newline (\n), but there is otherwise no concept of
record.

6. If; relational operators; compound statemterits” -
The basit. condmonal.tesung statement in C is the if statement:

¢ = geétchar(); -
Hcmm'?)
printf("why did you type 8 question mark?\n");
The simplest form of if is

it (expression) statement

The condition to be tested is any expression enclosed in parentheses. Il is followed by a
statement. The expression is evaluated, and if its value is non-zero, the statement is executed.
There's an optional else clause, 10 be described soon.

The character sequence ‘==" is one of the relational operators in C; here is the complete
set:

== equal to (EQ. tc Fortraners)
Jom not equal to

> ' ‘giéater than *-

< - less than

>= . ‘grefiter than or equal to
<= less thah or equal to

The value of “expression relatnon expressaon is 1 if the relation is true, and O if false.
Don't forget that the equality test is ‘=="; a single ‘=" causes an assignment, not a test, and in-
variably leads to disaster.

Tests can be combined with the operators ‘&&' (AND). ‘11’ (OR). and 1’ (NOT). For example,
we can test whether a character is blank or tab or newline with

i c--‘ il c--\t' I E=m=\n") ..

C guaramecs that ‘88" and 11" are evaluated left 10 right — we shall soon see cases where this
matters.
One of the nice things about C ic that the statement part of an if can be made arbitrarily

complicated by enclosing a set of stalements in {}. As a simple example, suppose we want 1o
ensure that a is bigger than b, as part of a sort routine. The interchange of a and b takes three

statements in C, grouped together by {):
it (a < b) |

t =g

a=b;

b=t

Trye

()

C Tutorial -5-

-

As a general rule in C, anywhere you can use a sample statement, you ¢an use any com-
pound statement, which is just a number of simple or compound ones enclosed in {}. There is
no semicolon after the } of a compound statement, but. there is a semicoloniafier the last non-
compound statement inside the {}. \ . :

The ability 10 replace single statements by, complex ones al wull is one featuzc that makes
C much more pleasant to use than Fortran. Loglc\{hke 1he exchange.in (he previous example)
which would require several GOTO’s and' labels. in Fonran can-and should:-be done in C
without any, using compound statements. .

7. While Statement; Assignment within an Expression; Null Statement ... - .

The basic looping mechanism in C is the while statement. Here’s a program that copies
its input to its output a character at a time. Remember that ‘\0’ marks the‘yem‘i of file.

main() { s s
char c; " RN

while((c=getchar()) = "\0') Gy e

| putchar(c); ' '
.]

The while statement is a loop, whose general form is
while (expression) statement '
Hts meaning is

(a) evaluate the expression
(b) if its value is true (i.e., not zero)) L
do the statement, and go back to (a) o

Because the expression is tested before the statement is execuled, the stajement part can be
execuled zero times, which is ofien desirable. As in the if statement, the expression and the
statement can both be arbitrarily complicated, although we haven’t seen that yet. Our example
gets the character, assigns it 10 ¢, and then tests if it's a \0™. . If it is aot.a ‘\0", the statement
part of the while is execuled, printing the character. The while then repeats. When the input
character is finally a \Q°, the while lerminates, and so does main. :

Notice that we used an assignment statement

¢ = getchar()

within an expressuon This is a handy notational shortcut wh:ch oflen produces clearer code.
(In fact it is ofien the only way to write the code cleanly. As an exercise, re-wnu; the file-copy
without using an assignment inside an expression.) It works because an assignment statement
has a value, just as any other expression does. lts value is the value of the right hand s:de
This also implies that we can use multiple assignments like

X=™y=2Zm(

Evaluation goes from right 10 lefl. .
By the way. the extra parentheses in the assignment statement wuhm the conditional
were really necessary: if we had said

¢ = getchar() != "\O’
¢ would be set to 0 or | depending on whether the character feiched was an end of file or not.

This is because in the absence of parentheses the assignment operator '=''is evaluated after
the relational operator !='. When in doubt, or even if not, parenthesize.

[P ' W

C Tuiorial } -6-

Since putchar{c) returns ¢ as its function value, we could also copy the iﬁpul 10 the out-
put by nesting the calls 1o getchar and putchar:

main(){ - - :
\ while(putchar(getchar()) i= "\0') ;.

What statement is being repeated?. Ngne. or technically, the nu// statement, because all the
work is really done within the test part 6f the while. This version is slightly diflerent from the
previous one, because the final \O' is copied to the outpul before we decide (o stop.
L Coew e "
8. Arithmetic
The arithmetic operators are the usual ‘+°, ‘=", **", and /' (truncating integer division if
the operands are both int), and the remainder or mod operator *%":

x = a%b;
sets £ Lo the gch;kigder_;ﬁer a is divided by b (ie.. a mod b). The results.are machine depen-
dent unless a’and b are both positive. o

In arithmetic. char variables can usually be treated like int variables. Arithmetic on char-
aclers is quite legal. and often makes sense:
c = c‘ +":'EA' - vav;_
converls a single lower case ascii characicr stored in ¢ 10 upper case, making use of the fact
that corresponding ascii letters are a fixed distance aparl. The rule governing this arithmeltic is
that all chars are converted 1o int before the arithmetic is done. Beware thal conversion may

involve sign-exiension — if the le“tmost bit of a characler is 1, the resulling integer might be
negative. (This doesn't happen with genuine characters on any current machine.)

So 10 converl a file into lower case:

main() |
char c;
white((c=getchar()) i= "\O')
if(' A'<=c &8 c<="Z")
-putcharic+‘'a’~'A’);
else
putchar(c);

)

Characters have different sizes on different machines. Further, this code won'l work on an
IBM machine, because the letters in the ebcdic alphabet are not contiguous.

9. Eise Clause: Conditional Expressions
We just used an else after an if, The most general form ofitis
if (expression) statement1 eise statement2

the else par! is oplional. but ofien useful. The canonical example sets x 10 the minimum of a
and b:

if {a < b)
x = a,
else
c . X=Db

1 SO

Observe that there's a semicolon afler x=a.

C Tutorial -7-

C provides an alternate form of conditional” which is often more concise: It is called the
**conditional expression™ because it is a conditional which actually has a value and can be used
anywhere an expression can. The valueof =~ - - oyt Lk ot

a<b?a:b:
is @if a is less than b; it is b otherwise. In'general, ihe form

expri ? expr2 : expr3 . . a
means “evaluate expri, If it is not zero, the value of the whole thmg is expra; otherwnse the
value is expr3.”
To set x 10 the minimum of a and b, then: ~

x = (a<b ? a:b);
The parentheses aren’t necessary because “?.’ is evaluated before ‘=" but ;af&y first.
Going a step further, we could write the loop in the lower-case, prng';r'n as

while((c=getchar()) |= \O') -
putchar((A'<=c & c<='Z"} ? c—'A'+ a:c)

Ifs and else’s can be used 1o construct logic that branches one of several ways and then
re;oms a common programming structure, in this way: -

if(...) . .
{...) .
eise if(...) S
(..}
eise if(..)
(...}
oise

{..) o
The conditions are lested in order, and exactly one block is executed — either the first one
whose if is satisfied, or the one for the last eige. When this block is finished, the next state-
ment executed is the one after the last else. If no action is (o be taken for the “‘default™ case,
omit the last eise.

For example, 10 count letiers, digits and others in a file, we could write

main{) {
int let, dig, other, c;
fot = dig = other = Q;
while((cm=getchar()) 1= \0')
i (A'<=c 88 c<="2) Il (a'<=C &% c<='Z)) +-+lot;
else i{ 'O'<=¢c 88 c<='9) +-+dig:
else + +other;
| printi(*%d letters, %d digits, %d others\n", let, dig, other);

The *++" operator means “increment by 1**; we will get to it in the next section.

10. Increment and Decrement Operators
In addition 10 the usual ‘=, C also has two other interesting unary operators, ‘++' (mcre-
ment) and ‘——" (decrement). Suppose we want to count the lines in a file.

main{) {
int c.n;
n=20;

C Tutorial -8-

while((c=getchar()) {= "\0')
i{c == \n)
++n;
l printf{("%d lines\n", n);

+<+n is equivalent 10 n=n+ 1 buti clearer, particularly when n is a complicated expression. ‘++'
and ‘~-"can be applied only 10 int's and char's (and pointers which we haven't got to yel).

The unusual feawure of ‘44" and ‘~=" is that they can be used cither before or after a
variable. The value of ++k is the value of k afrer it has been incremented. The value of k++
is k before it is incremented. Suppose K is 5. Then

X = <+ 4k; 4
increments K to 6 and then sets x (o the resulting value, i.e., to 6. But
X = Kk++;
first sets x 10 10 5, and rhen increments k 10 6. The incrementing effect of ++k and k++ is the

same, but their values are respectively 5 and 6. We shall soon see examples where both of
these uses are important.

11. Arrays

In C, as in Fortran or PL/1, it is possible to make arrays whose elements are.basic types.
Thus we can make an array of 10 integers with the declaration

int x{10];

The square brackels mean subscripiing; parentheses are used only for function references. Ar-
ray indexes begin al zero, so the elements of x are

x[0], {1}, x2], ..., x{9]
If an array has n elements, the largest subscript is n—1,

Multiple-dimension arrays are provided, though not much used above two dimensions.
The declaration and use look like

int name{ 10} [20);
n = namefi+j] [1] + namelk] [2];

Subscripts can be arbitrary integer expressions. Multi-dimension arrays are stored by row (op-
posite to Fortran), so the rightmost subscript varies fastest; name has 10 rows and 20 columns.

Here is a program which reads a line, stores it in a buffer, and prints its length (excluding
_.the newline at the end). . '

main() {
intn, c:
char line[100};
n =0
while((c=getchar()) t= \n' } {
ifln < 100)
lineln] = c;
\ n++,
printf{"length = %d\n", n);

C Tutorial 9=

As a more complicated problem, suppose we want 1o print the count for each line in the
input, still storing the first 100 characters of each line. Try it as an exercise before looking at
the solution: ' . '

main() {
int n, ¢; char line{100};
n=20;
while{ {c=getchar()) I= "\0')
if{ ¢ == \n') { L
printf(*%d\n", n);
n=0;
}

eise {
i n < 100) lineln] = ¢:;
n+<+; .

\
I

12. Character Arrays; Strings

Text is usually kept as an array of characters, as we did with line{] in the example above.
By convention in C. the last character in a character array should be a ‘\0° because most pro-
grams that manipulate character arrays expect it. For example, printf uses the ‘\0" to detect the
end of a character array when printing it out with a ‘%s’.

We can copy a character array 8 into another t like this:

i=0
while((tfij=si]) != \0")
i+ +;

Most of the lime we have 10 put in our own ‘\0" at the end of a string; if we want 10
print the line with printt, it’s necessary. This code prints the character count before the line:

main() {
int n; . . .
char iine{ 100}
n=20 . . -
while((lineln+ +]=getchar()) 1= \n');
lineln} = \O";
} printf("%d:\t%a", n, line);
Here we increment n in the subscript itself, but only after the previous value has been used.
The character is read, placed in lineln), and only then n is incremented.
There is one place and one place only where C puts in the \O' at the end of a character
array for you, and that is in the construction Co

"stuff between doubie quotes”

The compiler puts a \0' at the end automatically. Text enclosed in double.quotes is called a
string; ils properties are precisely those of an (initialized) array of characters.

C Tutorial -10-

13. For Statement
The for statement is a somewhat generalized while that lets us put the initialization and
increment parts of a loop into a single staiement along with the test. The general form of the
for is
for(initialization; expression; increment)
statement
The meaning is exactly
initialization;
while(expression) {
statement
increment;

}

Thus. the foliowing code does the same array copy as the example in the previous section:
for(i=0; (tfi)=sli}) t= \O'"; i++);
This slightly more ornate example adds up the elements of an array:

sum = Q;
for{ i=0; i<n; i++)
sum = sum <+ arrayiil;

In the for siatement. the initialization can be left out if you want, but the semicolon has
10 be there. The increment is also optional. It is nor followed by a semicolon. The second
clause. the test. works the same way as in the while: if the expression is true (not zero) do
another loop. otherwise get on with the next stalement. As with the while, the for loop may
be done zero times. . If the expression is left out, it is taken to be always true, so

for{ ;:) ...
and
while(1) ...

are both infinite loops.

You might ask why we use a for since it's so much like a while. {You might also ask
why we use a while because..) The for is usually preferable because it keeps the code where
it's used and sometimes eliminates the need for compound statements, as in this code that
zeros a (wo-dimensional array:

for{ i=0; i<n; i++)
forl j=0; j<m; j++)
arraylilfjl = ©:

14. Functions; Comments

Suppose we wanl, as pari of a larger program, to count the occurrences of the ascii char-
aclers in sonte inpul lext. Let us also map illegal characiers (those with value>127 or <0)
into one pile. Since this is presumably an isolated part of the program, good practice dictates
making il a separate funclion. Here is one way:

C Tutorial -11 -

main() { o
int hist{129}; /* 128 legal.chars + 1 illegal group */
;ount(hist, 128); /* count the letters into hist */

printf(...); /* comments lock like this; use them */
) /* anywhere blanks, tabs or newiines could appear */
count(buf, size) D

int size, bufl I; { "
int i, ¢;
for{ i=0; i< =gize; i++)
buffi} = O; /* set buf to zero */
while{ (c=getchar()) 1= \0") { /* read til eof */

ilec>sizelic <0)
c = sjze; /7 fix illegal input */

buflc]+ +;

return;

We have already seen many examples of calling a function, so let us concentrate on how to
define one. Since count has two arguments, we need lo declare them, as shown, giving their
types. and in the case of buf, the fact that it is an array. The declarations of arguments go
berween the argument list and the opening ‘{*. There is no need 1o specify the size of the array
buf, for it is defined outside of count.
The retum statement simply says to go back to the calling routine. In fact, we couid have
omitted it, since a return is implied at the end of a function. -
What if we wanted count to return a value, say the number of characters read? The re-
tum statement allows for this too:
int i, ¢, nchar;
nchar = Q;

while{ (c=getchar()) != 0") {
iflc > sizellc <0)
¢ = size;
bufic]+ +;
nchar+ +;

}
returninchar);
Any expression can appear within the parentheses. Here is a function to compute the
minimum of two integers:
min(a, b)

inta, b; {
retum{a < b?7a:b);

To copy a character array, we could write the function

C Tutorial -12 -

strcopyl{s1, s2) /* copies 81 to 82 */
char s1[1, 82{ I {
int i; :
for(i = O; (s2{i] = s1li]) t= \O"; i++),

As is often the case, all the work is done by the assignment statement embedded in the test
part of the for. Again, the declarations of the arguments 81 and §2 omit the sizes, because
they don’t matter to strcopy. (In the section on pointers, we will see 2 more efficient way 1o
do a string copy.)

There is a subtlety in funclion usage which can trap the unsuspecting Fortran program-
mer. Simple variables (not arrays) are passed in C by “call by value™, which means that the
called function is given a copy of its argumeitts, and doesn't know their addresses. This makes
it impossible 10 change the value of one of the actual input arguments.

There are two ways out of this dilemma. One is 1o make special arrangements 10 pass 10
the funcuon the address of a variable instead of its value. The other is to make the variable a
global or external variable, which is known o each function by its name. We will discuss both
possibilities in the next few sections.

15. Loca! and Extema! Variables
If we say

) {

- int x;

}
g)|
int x;

)

each x is /ocal 10 its own routine — the x in f is unrelated 10 the x.in g. (Local variables are
also calied “‘automatic™.) Furthermore each local variable in a routine appears only when the .
function is called, and disappears when the function is exited. Local variables have no memory
from one call 10 the next and must be explicitly initialized upon each entry. (There is a static
storage class for making local variables with memory; we won't discuss it.)

As opposed to local variables, external variables are defined external to all functions, and
are (potentially) available 10 all functions. External storage always remains in existence. To
make variables exiernal we have 10 define them external 10 all functions, and, wherever we
want to use them, make a declaration.

main() {
extern int nchar, hist| I

;ount();

C Tutorial -13 -

count() {
extern int nchar, hist{ };
inti, ¢

oo

}

int hist{129]; /* space for histogram */

int nchar; /* character count */
Roughly speaking, any function that wishes to access an external variable must contain an
extern declaration for it. The declaration is the same as others, except for the added keyword -
extern. Furthermore, there must somewhere be a definiffon of the external variables external
to ail functions.)

External variables can be initialized; they are set to zero if not explicitly initialized. In its

simplest form, initialization is done by putting the value (which must be a constant) after the
definition:

int nchar O;

char flag ‘f;

etc.

This is discussed further in a later section.

This ends our discussion of what might be called the central core of C. You now have
enough to write quite substantial C programs, and it would probably be a good idea if you
paused long enough to do so. The rest of this tutorial will describe some more ornate construc-
tions, useful but not essential.

16. Pointers

A pointer in C is the address of something. It is a rare case indeed when we care what the
specific address itself is, but pointers are a quite common way to get at the contents of some-
thing. The unary operator ‘&’ is used to produce the address of an object, if it has one. Thus

int a, b;

b = &a;
puts the address of a into b. We can’t do much with it except print it or pass it to some other
routine, because we haven’t given b the right kind of declaration. But if we declare that b is
indeed a pointer to an integer, we're in good shape:

int a, *b, c;

b = &a;

c = "h;
b contains the address of a and 'c = b’ means to use the value in b as an address, i.e., as a
pointer. The effect is that we get back the contents of a, albeit rather indirectly. (It’s always
the case that ‘#&x’ is the same as x if x has an address.)

The most frequent use of pointers in C is for walking efficiently along arrays. In fact, in
the implementation of an array, the array name represents the address of the zeroth element of
the array, so you can’t use it on the left side of an expression. (You can’t change the address
of something by assigning to it.) If we say

char *y;
char x{100];

y is of type pointer to character (aithough it doesn’t yet point anywhere). We can make y point
to an element of x by either of

C Tutorial -14 -

point to an eiemen! of x by either of

y = &x0}
y=x
Since x is the address of x{0) this is legal and consistent.
Now ‘ey’ gives x[0]. More importantly,

*(y+ 1) gives x{1]
*(y+i) gives x{i]

and the sequence
y = &x[0}:
y++:
leaves y pointing at x{1].
Let's use pointers in a function length that computes how long a character array is.
Remember that by convention all character arrays are terminated with a ‘\0'. (And if they
aren’t, this program will blow up inevitably.) The old way:

length(s)
char s I; {
int n;
for{ n=0; 's[n] i= \0";)
n++;
returmn(n);

Rewriting with pointers gives
length(s)
char *s; {
int n;
for{ n=0; *s |= \0'; 8+ +)
n+<+;
return(n);

You can now see why we have to say what kind of thing 8 points to — if we're 10 increment it
with s++ we have 1o increment it by the right amount.
The pointer version is more efficient (this is aimost always true) but even more compact
is
forl n=0; *s++ = "\O'; n++),
The ‘es’ returns a character; the ‘++' increments the pointer so we'll get the next character
next time around. As you can see, as we make things more efficient, we also make them less
ciear. But ‘8++' is an idiom so common that you have to know it.
Going a step further, here’s our function strcopy that copies a characier array 8 to anoth-
ert.
strcopyl(s.t)
char *s, *t; {
while(*t+ + = *s++);

We have omitted the test against ‘\0', because ‘\0' is identically zero; you will ofien see the
code this way. (You must have a space after the ‘=": see section 25.)

C Tutorial -15-

For arguments to a function, and there only, the declarations

char sf |;
char °*s;
are equivalent — u pointer 10 a type, or an array of unspecified size of that type, are the same
thing.
If this all seems mysterious, copy these forms until they become second nature. You
don't ofien need anything more complicated.

17. Function Arguments

Look back at the function strcopy in the previous section. We passed il two string
names as arguments, then proceeded to clobber both of them by incrementation. So how
come we don't lose the original strings in the function that called strcopy?

As we said before, C is a “call by value™ language: when you make a function call like
f(x), the raiue of x is passed, not its address. So there’s no way to alrer x from inside f. If x is
an array (char x{10}) this isn't a problem, because x is an address anyway, and you're not lrying
to change it, just what it addresses. This is why strcopy works as it does. And it's convenient
not to have to worry about making lemporary copies of the inpul arguments.

But what if x is a scalar and you do want to change it? In that case, you have 0 pass the
address of x 10 {. and then use it as a pointer. Thus for example, o interchange two integers,
we must write

flip(x, y)
int *x, °y; |
int temp;
temp = °x;
- ix - 'y:
‘y = temp;

)

and to call flip, we have 1o pass the addresses of the variables:
flip (&a, &b);

18. Multipie Leveis of Pointers; Program Arguments

When a C program is called, the arguments on the command line are made available to
the main program as an argument count argc and an array of character strings argv containing
the arguments. Manipulating these arguments is one of the most common uses of multiple
levels of pointers (**pointer 10 pointer to .."). By convention, argc is greater than zero; the
first argument (in argv{O]) is the command name itseif.

Here is a program that simply echoes its arguments.

main{argc, argv)
int argc;
char **argv; |
int i;
for{ i=1;i < arge; i++)
-printf("%s *, argvlil);
putchar(\n');

Step by step: main is called with two arguments, the argument count and the array of argu-
ments. argv is a pointer (o an array, whose individual elements are pointers to arrays of char-

C Tutorial -16 -

acters. The zeroth argument is the name of the command itself, so we start 10 print with the
first argument, until we've printed them all. Each argvli] is a character array, so we use a ‘%s'
in the printf.

You will sometimes see the deciaration of argv writlen as

char *argv{ . .
which is equivalent. But we can't use char argv| }l], because both dimensions are variable and
there would be no way to figure out how big the array is.

Here's a bigger example using argc and argv. A common convention in C programs is
that if the first argument is ‘=", it indicates a flag of some sort. For example, suppose we want
a program 1o be callable as

prog —abc arg1 arg2 ...
where the ‘=" argument is oplional; if it is present, it may be followed by any combination of
2, b, andc.
main{argc, argv)
int argc:
char **argv; (

;ﬂag = bflag = ctlag = O;
ifl argc > 1 && argv[1]l0] == "~) |
for(i=1; (c=argv[1]li}) 1= \O'; i+ +)

i c=="a")
aflag+ +;
else if(c=="b")
btiag+ +;
else il c=='¢')
cllag+ +;
else
printi"%c?\n", c);
— —argc; .
+ +argv;

There are several things worth noticing about this code. First, there is a real need for the
lefi-to-right evaluation that && provides; we don't want to look at argv[1] unless we know it's
there. Second, the staiements

-~ —argc.

<+ +argv;
let us march along the argument list by one position, so we can skip over the flag argument as
if it had never existed — the rest of the program is independent of whether or not there was a
flag argument. This only works because argv is a poinier which can be incremented.

19. The Switch Statement; Braak; Continue
The switch statement can be used to replace the multi-way test we used in the last exam-
ple. When the tests are like this:
if{c == "'a) ..
else iff c == 'b') ...
olse i{ ¢ == 'c’) ..
else ...

C Tutoriai -17 -

lesting a value against a series of consrants, the switch statement is often clearer and usually
gives better code. Use it like this:

switch(¢) {

case ‘a’"
aflag -+ +;
break;
case 'h':
bflag+ +:
break;
case ‘¢
cflag+ +;
break;
default:
printf("%c?\n", c)
| break;

The case statements label the various actions we want; default gets done if none of the other
cases are satisfied. (A default is optional; if it isn'l there, and none of the cases match, you
just fall .out the bottom.)

The break statement in this exampie is new. [t is there because the cases are just labels,
and after you do one of them, you fail through 10 the next unless you take some explicit action
to escape. This is 2 mixed blessing. On the positive side, you can have multiple cases on a
single stalement; we might want to allow both upper and lower case letters in our flag field, so
we could say

case ‘a" case ‘A"
case 'b’: case 'B':
etc.
But what if we just want to get out afier doing.case ‘a’ ? We could get out of a case of the

switch with a label and a goto, but this is really ugly. The break statement lets us exit
without either goto or label.

switch{ ¢) {
case ‘a’;
aflag+ +;
break;
case ‘b":
bflag+ +;
break;

)...
/* the break statements get us hers directly */

The break statement aiso works in for and while statements - it causes an immediate exit
from the loop. .

The continue statement works onlv inside for's and whii@'s; it causes the next iteration of
the loop to be started. This means it goes to the increment part of the for and the test part of
the while. We could have used a continue in our example to get on with the next iteration of
the for, but it seems clearer 10 use break instead.

C Tutorial - 18 -

20. Structures

The main use of structures is 1o lump together collections of disparate variable types, so
they can conveniently be treated as a unit. For example, if we were writing a compiler or as-
sembler, we might need for each identifier information like its name (a character array), its
source line number (an integer), some type information (a character, perhaps), and probably a
usage count (another integer).

char id[10}];
int line;
cr;ar type;
in usage;

We can make a structure out of this quite easily. We first tell C what the structure will
look like, that is, what kinds of things it contains: after that we can actually reserve storage for
it, either in the same statement or separately. The simplest thing is 10 define it and allocate
storage all at once:

struct |
char id{10};
int line;
char type;
int usage;
} sym;

This defines sym to be a structure with the specified shape; id, line, type and usage are
members of the structure. The way we refer to any particular member of the structure is

structure-name . member

sym.type = 077,

ifl sym.usage == 0) ...

while(sym.idlj++]) ...
elc.

Although the names of structure members never stand alone, they still have 10 be unique —
there can’t be another id or usage in some other structure.

So far we haven't gained much. The advantages of structures start 1o come when we
have arrays of structures, or when we want Lo pass complicated data layouts between funclions.
Suppose we wanied 1o make a symbol table for up to 100 ideniifiers. We could extend our
definitions like

char id[100){10};

int linef 100];

char type{100];

int usagel 100}
but a structure lets us rearrange this spread-out information so all the data about a single iden-
tifer is collected into one lump:

struct |
char id[10];
int line;
char type;
int usage;

} sym{100};

C Tutorial -19 -

This makes sym an array of siructures; each array element has the specified shape. Now we
can refer 1o members as

symlil.usage+ +; /* increment usage of i-th identifier ¢/
for(j=0; symlilLidj+ +] != "\0";) ...
elc.

Thus 10 print a list of all identifiers that haven't been used, together with their line number,

for{ i=0; i<nsym; i+ +)
i sym{ilusage == Q)
printf("%d\t%s\n", symlil.line, symlil.id);

Suppose we now want (o write a function lookup(name) which will tell us if name already
exists in sym, by giving its index, or that il doesn't, by returning a —1. We can’t pass a struc-
ture 10 a function directly — we have 1o either define it externaily, or pass a pointer 10 it. Let’s
try the first way first.

int nsym O; /* current length of symbol table °/

struct |
char id{10}
int line;
char type;
int usage.
} sym{100}; /* symboi table */
main{) { ’
|f((index = lookupi{newname)) >= 0)
symiindexl.usage+ +: /* already there ... */
eise
installinewname. newline, newtype);
)
lookup(s)
char *s; {
int i;
extern struct |
char id{10};
int line;
char type;
int usage;
) sym{ J;

for{ i=0; i<nsym; i++)
it compar(s, symlil.id) > 0)
retum(i);
’ retum{— 1);

compar{s 1,82) /* retumn 1 if s1==g2, O otherwise */
char *s1, *s2; |
while{ *S1++ == *32)
if{ 's2++ == \0)
return(1);

C Tutorial -20 -

retum{0);

The declaration of the structure in lookup isn't needed if the external definition precedes its
usc in the same source file, as we shall see in a moment.

Now what if we want 10 use poinilers?
struct symtag |

char id[10];
int line;
char type;
int usage;

| sym[100], *psym;

psym = &sym{O}; /* or psym = sym; */
This makes psym a pointer 1o our kind of structure (the symbol table), then initializes it 1o
point tu the first element of sym.
Nouce that we added something afier the word struct: a *“1ag™ called symtag. This puts
a name on our structure definition so we can refer 1o it later without repeating the definition.
It's not necessary but useful. In fact we could have said

struct symtag |
... structure definition
k

which wouldn't have assigned anyv storage at all. and then said
struct symtag sym{100};
struct symtag *psym;

which would define the array and the pointer. This could be condensed further, to
struct symtag sym{100), *psym;

The way we actually refer 1o an member of a structure by a pointer is like this:
ptr — > structure-member

The symbol *=>" means we're pointing al 2 member of a structure; *—>" is only used in that
context. ptr is a pointer 10 the (base of) a structure that contains the structure member. The
expression ptr— > structure-member refers to the indicated member of the pointed-lo struc-
ture. Thus we have constructions like:

psym—>type = 1;
psym— >idl0} = 'a’;

and so on.

For more complicated pointer expressions, it's wise 10 use parentheses to make it clear
who goes with what. For example.

struct { int x, *y; | *p;

p—>x++ increments x

++p—>x sO does this!

(++p)—>x increments p before getting x
‘p=>y++ uses y as a pointer, then increments it
*(p—>y}+ + so does this

*fp++)—>y uses y as a pointer, then increments p

The way to remember these is that —>, . (dot), () and [] bind very lightly. An expression in-

e

C Tutorial <21 -

volving one of these is treated as a unit. p—>x, ali}, y.x and f(b) are names exactly as abg is.

If p is a pointer 10 a structure, any arithmetic on p takes into account the aculal size of
the structure. For instance, p++ increments p by the correct amount to get the next element
of the array of structures. But don’t assume that the size of a structure is the sum of the sizes
of its members — because of alignments of different sized objects, there may be *“holes™ in a
structure.

Enough theory. Here is the lookup example, this time with pointers.

struct symtag {
char id[10};
int fine;
char type;
int usage;

} sym{100I;

main{) |

struct symtag *iookup();
struct symtag *psym;

if{ (psym = lookup(newname))) /* non—2zero pointer */
psym —> usage-+ +; /* means already there */
eise
installinewname, newline, newtype);

)

struct symtag *lookup(s)
char*s; | -
struct symtag *p;
for{ p=sym; p < &syminsym}; p+ +)
if{ compar(s, p—>id} > 0)
retum(p);
raturn(0);

The function compar doesn't change: ‘p— >id' refers 10 a string.

In main we test the pointer returned by lookup against zero, relying on the fact that a
pointer is by definition never zero when it really points at something. The other pointer mani-
pulations are trivial.

The only complexity is the set of lines like
struct symtag *lookup();
This brings us t0 an area that we will treat only hurriedly — the question of function types. So
far, all of our functions have returned integers (or characters, which are much the same).
What do we do when the function returns something eise, like a pointer 0 a structure? The
rule is that any function that doesn't return an int has 1o say explicitly what it does return.
The type information goes before the function name (which can make the name hard (o see).
Exampies:

char f(a)
int a; {

C Tutorial ' -22-

integ() (..}

struct symtag *lookupls) cher *s; { ... |

The function { returns a character, g returns a pointer to an integer, and lookup returns a
pointer 10 a structure that looks like symtag. And if we're going to.use one of these functions,
we have 10 make a declaration where we use it, as we did in main above.

Notice the parallelism between the declarations

struct symtag *lookup{);
struct symtag *psym;

In effect. this says that lookup() and psym are both used the same way — as a pointer 10 a
strcture — even though one is a variable and the other is a function.

21. Initialization of Variables

An e:ernal variable may be initialized at compile time by following its name with an ini-
tializing value when it is defined. The initializing value has \0 be something whose value is
known at compile time. like a conslant.

int X 0; /* "0" could be any constant */
int a ‘a"s -
char flag 0177;
int *p &yl[1]; 7* p now points to y{1] */
An exlernal array can be tnitialized by following its name with a list of initializations enclosed
in braces:

int xl4] {0.1,2.3): /* makes xfi] = i */
int vil (01,23} /* makes y big enough for 4 values */
char °*msg “syntax error\n"; /* braces unnecessary here °/
char *keyword| |

"if",

"else”,

“tor",

“while",

"break”,

"continue”,

o]

This last one 15 very useful — 1t makes keyword an array of pointers to character strings, with
a zero at the end so we can identify the last element easily. A simple lookup routine could
scan this until it either finds a match or encounters a zero keyword pointer:

lookup(str) /* search for str in keyword[] */
char °*str; |
int i,jr
for(i=0; keywordfi} != O; i++) {
for(j=0; (r=keyword[il[j}) == str{j] && r t= "\O'; j++)
if(r == strfj])
’ return(i);

retum(— 1),

C Tutorial -23 -~

Sorry — neither local variables nor structures can be initialized.

22. Scope Rules: Who Knows About What

A complete C program need not be compiled all at once: the source text of the program
may be kept in several files, and previously compiled routines may be loaded from libraries.
How do we arrange that data gets passed from one routine to another? We have already seen
how 1o use function arguments and values, so let us talk about externai data. -Warning: the
words declaration and definition are used precisely in this section; don't treat ther as the same
thing. -

A major shortcut exists for making extem declarations. If the definition of a variabie ap-
pears before ils use in some function, no extern declaration is needed within the function.
Thus, if a file contains

110 { ..)

int foo;

2(){..foo = 1.}
t3(){..if(foo) ..}

no declaration of foo is needed in either {2 or or 13, because the external definition of foo ap-
pears before them. But if {1 wants 1o use oo, it has to contain the declaration

f1() |
oxtern int foo; .

}

This is true also of any function that exists on another file — if it wants foo it has to use
an extemn declaration for it. (If somewhere there is an extern declaration for something, there
must also eventually be an external definition of it, or you'll get an “undefined symbol’™ mes-
sage.)

There are some hidden pitfalls in external declarations and definitions if you use muitiple
source files. To avoid them, first, define and initialize each external variable only once in the

entire set of files:
int foo 0:

You can get away with multipie external definitions on UNIX. but not on GCOS. sO don't ask for
trouble. Multiple initializations are illegal everywhere. Second, at the beginning of any file
that contains functions needing a variable whose definition is in some other file, put in an @x-
tem declaration, outside of any function:

extern int foo;

1) { ...}
etc.

The #inciude compiler control line, to be discussed shortly, lets you make a single copy
of the external declarations for a program and then stick them into each of the source files
making up the program.

23. #define, #inciude
C provides a very limited macro facility. You can say
s#define name something
and thereafter anywhere “name™ appears as a token, “something™ will be substituted. This is

C Tutorial) -24 -

particularly useful in paramelering the sizes of arrays:
#define ARRAYSIZE 100
int arrfARRAYSIZE];
while(i++ < ARRAYSIZE)...

(now we can alter the entire program by changing only the define) or in selling up mysterious
constants:

#define SET 01
#define INTERRUPT 02 /* interrupt bit ¢/
#define ENABLED 04

it x & (SET | INTERRUPT | ENABLED)) ...
Now we have meaningful words instead of mysierious constants. (The mysterious operators
‘&° (AND) and ‘I' (OR) will be covered in the next section.) It's an excellent practice to write
programs without any literal constanis except in e define sltatements.

There are several warnings about #define. First, there’s no semicolon at the end of a
edefine; all the text from the name to the end of the line (except for comments) is taken to
be the “something™. When it's pul into the text, blanks are placed around it. Good style typi-
cally makes the name in the sdefine upper case — this makes parametlers more visible.
Definitions affect things only afier they occur, and only within the file in which they occur.
Defines can't be nested. Last. if there is a #define in a file, then the first character of the file
must be a *#°, 0 signal the preprocessor that definitions exist.

The other control word known 1o C is #include. To include one file in your source at
compilation time, say '

sinclude “filename”

Q
This is useful for putting a lot of heavily used data definitions and s define stalements at the
beginning of a file 1o be compiled. As with #define, the first line of a file containing a #in-
clude has to begin with a ‘#'. And #include can’t be nested — an included file can't contain
another #include.

24. Bit Operators ‘
C has several operators for logical bit-operations. For example,

x = x & 0177;

forms the bit-wise AND of x and 0177, effectively retaining only the lasl seven bits of x. Other
operalors are

| inclusive OR

‘ (circumflex) exclusive OR

(iilde) 1's complement

! logical NOT

<< left shift (as in x<<2)

>> right shift (arithmetic on PDP-11; logical on H6070, IBM360)

C Tutorial =25 -

25. Assignment Operators
An unusual feature of C is that the normal binary operators like ‘+', ‘=, etc. can be
combined with the assignment operator ‘=" (0 form new assignment operators. For example,
x =— 10;
uses the assignment operator ‘=" 10 decrement x by 10, and

x =& 0177
forms the AND of x and 0177. This convention is a useful notational shortcut, particularly if x
is a complicated expression. The classic example is summing an array:

for{ sum=i=Q; i<n; i++)

sum = <+ arraylil;

But the spaces around the operator are critical! For instance,

X = —10;
sets x 10 =10, while

x =— 10;
sublracts 10 from x. When no space is present,

x= - 10;
also decreases x by 10. This is quite contrary to the experience of maost programmers. In par-
ticular, watch out for things like

C=°S++;

y=&x{0}; _
both of which are almost certainly not what you wanted. Newer versions of various compilers
are courteous enough (o warn you about the ambiguity. .

Because ail other operators in an expression are evaluated before the assignment operator,
the order of evaluation should be waiched carefully:

x = x<<ylz

means “shift x left y places, then OR with 2, and store in x.” But
x =<<ylz

means “shift x left by yiz places”, which is rather different.

26. Floating Point

We've skipped over floating point so far, and the treatment here will be hasty. C has sin-
gle and double precision numbers (where the precision depends on the machine at hand). For
example.,

double sum;

float avg, y{10L

sum = 0.0;

for{ i=Q; i<n; i++)
sum =<+ ylil;

avg = sum/n;

forms the sum and average of the array Y.

All floating arithmetic is done in double precision. Mixed mode arithmetic is legal; if an
arithmetic operator in an expression has both operands int or char, the arithmetic done is in-
teger, but if one operand is int or char and the other is float or double, both operands are con-

C Tutorial ‘ -26 -

verted 10 double. Thus if i and j are int and x is.float,

(x+i)/j converts | and j to float
x + i/ does i/j integer, then converts

Type conversion may be made by assignment; for instance,

int m, n;
float x, y.
m= x;
y=n
converts X 10 integer (truncaling toward zero). and n 1o floating point.
Floating constants are just like those in Fortran or PL/I, except that the exponent letter is
‘e* instead of ‘E’. Thu-:
pi = 3.14159,
large = 1.23456789e 10;

printf will format floating pois.t numbers: "“%w.df" in the formal string will print the
corresponding variable in a field w digits wide, with d decimal places. An e instead of an § will
produce exponential notation.

27. Horrors! goto's and labels
C has a goto staitement and labels, so you can branch about the way you used to. Bul
most of the time goto's aren't needed. (How many have we used up 10 this point?) The code
can almost always be more clearly expressed by for/while, if/else, and compound statements.
One use of goto's with some legitimacy is in a program which contains a fong loop,
where a while(1) would be 100 extended. Then you might wrile

mainloop:

goto mainioop;

Another use is 1o implement a break out of more than one level of for or while. goto's can
only branch to labels within the same function.

28. Acknowiedgements

| am indebted 1o a veritable host of readers who made valuable criticisms on several
drafts of this tutorial. They ranged in experience from complete beginners through several im-
plementors of C compilers 10 the C language designer himself. Needless o say, this is a wide
enough spectrum of opinion that no one is satisfied (including me); comments and suggestions
are still welcome, so that some future version might be improved. :

C Tutorial -27-

References

C is an exiension of B, which was designed by D. M. Ritchie and K. L. Thompson [4].
The C language design and UNIX implementation are the work of D. M. Ritchie. The Gcos ver-
sion was begun by A. Snyder and B. A. Barres, and completed by S. C. Johnson and M. E.
Lesk. The 18M version is primarily due to T. G. Peterson, with the assistance of M. E. Lesk.

{1l D. M. Ritchie, C Reference Manual. Beil Labs, Jan. 1974.
{21 M. E. Lesk & B. A. Barres, The GCOS C Library. Bell Labs, Jan. 1974,
[3] D. M. Ritchie & K. Thompson, UNIX Programmer's Manual. 5th Edition, Bell Labs, 1974,

[4]1 S. C. Johnson & B. W. Kernighan, The Programming Language B. Computer Science
Technical Report 8, Bell Labs, 1972.

