/oo)

The C Programming Language — Reference Manual
Dennis M. Ritchie

Beil Laboratories, Murray Hill, New Jersey

This manual is reprinted, with minor changes, from The C Programming Language, by Brian W. Ker-
nighan and Dennis M. Ritchie, Prentice-Hall, Inc., 1978. '

1. Introduction

This manual describes the C language on the DEC PDP-11, the DEC VAX-11, the Honeywell 6000,
the 18M System/370, and the Interdata 8/32. Where differences exist, it concentrates on the PDP-11, but
tries to point out implementation-dependent details. With few exceptions, these dependencies follow
directly from the underlying properties of the hardware; the various compilers are generally quite compa-
tible.

2. Lexical conventions

There are six classes of tokens: identifiers, keywords, constants, strings, operators, and other separa-
tors. Blanks, tabs, newlines, and comments (collectively, *‘white space’’) as described below are ignored
except as they serve to separate lokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters /+ intreduce a comment, which terminates with the characters »/. Comments do not
nest.

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits; the first character must be a letter. The underscore _
counts as a letter. Upper and lower case letters are different. No more than the first eight characters are
significant, although more may be used. External identifiers, which are used by various assemblers and
loaders, are more restricted:

DEC PDP-11 7 characters, 2 cases
DEC VAX-11 8 characters, 2 cases
Honeywell 6000 ' 6 characters, 1 case
1BM 360/370 7 characters, 1 case
Interdata 8/32 8 characters, 2 cases

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int extern else
char register for
float typedef do
double static while
struct goto switch
union return case
long sizeof default
short break entry
unsigned continue

auto if

The entzy keyword is not currently implemented by any compiler but is reserved for future use. Some

t UNIX is a Trademark of Beil Laboratories.

-2-

implementations also reserve the words fortran and asm

2.4 Constants
There are several kinds of constants, as listed below. Hardware characteristics which affect sizes are

summarized in §2.6.

2.4.1 Integer constants ‘

An integer constant consisting of a sequence of digits is taken to be octal if it begins with 0 (digit
zero), decimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively. A sequence of
digits preceded by 0x or 0x (digit zero) is taken 1o be a hexadecimal integer. The hexadecimal digits
include a or A through f or F with values 10 through 15. A decimal constant whose value exceeds the
largest signed machine integer is taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long.

2.4.2 Explicit long constants
A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a iong
constant. As discussed below, on some machines integer and long values may be considered identical.

2.4.3 Character constants

A character constant is a character enclosed in single quotes, as in ’x’. The value of a character
constant is the numerical value of the character in the machine’s character set.

Certain non-graphic characters, the single quote * and the backslash \, may be represented according
to the following table of escape sequences:

newline NL(LF) \n
horizontal tab HT \t
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote d \!
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the
value of the desired character. A special case of this construction is \0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is not one of those specified, the
backslash is ignored.

2.4.4 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be missing; either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.5 Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type
*“‘array of characters™ and storage class static (see §4 below) and is initialized with the given characters.
All strings, even when written identically, are distinct. The compiler places a null byte \0 at the end of
each string so that programs which scan the string can find its end. In a string, the double quote charac-
ter " must be preceded by a \; in addition, the same escapes as described for character constants may be
used. Finally, a \ and an immediately following newline are ignored. :

2.6 Hardware characteristics

The following table summarizes certain hardware properties which vary from machine to machine.
Although these affect program portability, in practice they are less of a problem than might be thought a
priori,

[SRS

DEC PDP-11 Honeywell 6060 1BM 370 Interdata 8/32
ASCIl ASCII EBCDIC ASClI
chaxr 8 bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16
long 32 36 32 32
float 32 36 32 32
double 64 72 64 64
range +10*38 +10%38 +10%7 +10%76

The VAX-11 is identical to the PDP-11 except that integers have 32 bits.

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by ialic type, and literal
words and characters in bold type. Alternative categories are listed on separate lines. An optional ter-
minal or non-terminal symbol is indicated by the subscript *‘opt,” so that

{ expressionm)
indicates an optional expression enclosed in braces. The syntax is summarized in §18.

4. What’s in a name?

C bases the interpretation of an identifier upon two attributes of the identifier: its storage class and its
ype. The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic vari-
ables are local to each invocation of a block (§9.2), and are discarded upon exit from the block; static
variables are local to a block, but retain their values upon reentry to a block even after control has left
the block; external variables exist and retain their values throughout the execution of the entire program,
and may be used for communication between functions, even separately compiled functions. Register
variables are (if possible) stored in the fast registers of the machine; like automatic variables they are
local to each block and disappear on exit from the block.

C supports several fundamental types of objects:

Objects declared as characters (char) are large enough to store any member of the implementation’s
character set, and if a genuine character from that character set is stored in a character variable, its value
is equivalent to the integer code for that character. Other quantities may be stored into character vari-
ables, but the implementation is machine-dependent.

Up to three sizes of integer, declared short int, int, and long int, are available. Longer
integers provide no less storage than shorter ones, but the implementation may make either short
integers, or long integers, or both, equivalent to plain integers. “Plain’’ integers have the natural size
suggested by the host machine architecture; the other sizes are provided to meet special needs.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where n is the
number of bits in the representation. (On the PDP-11, unsigned long quantities are not supported.) '

Single-precision floating point (£loat) and double-precision floating point (double) may be
synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred
to as arithmetic types. Types char and int of all sizes will collectively be called integral types. float
and double will collectively be called Aoating types.

Besides the fundamental arithmetic types there is a conceptuaily infinite class of derived types con-
structed from the fundamental types in the following ways:

arrays of objects of most types; .

functions which return objects of a given type;

pointers to objects of a given type;

structures containing a sequence of objects of various types;

unions capable of containing any one of several objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Ivalues

An object is a manipulatable region of storage; an halue is an expression referring to an object. An
obvious example of an Ivalue expression is an identifier. There are operators which yield lvalues: for
example, if E is an expression of pointer type, then *E is an lvalue expression referring to the object to
which E points. The name *‘Ivalue” comes from the assignment expression E1 = E2 in which the left
operand E1 must be an ivalue expression. The discussion of each operator below indicates whether it
expects lvalue operands and whether it yields an Ivalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such conver-
sions. §6.6 summarizes the conversions demanded by most ordinary operators; it will be supplemented as
required by the discussion of each operator.

6.1 Characters and integers

A character or a short integer may be used wherever an integer may be used. In all cases the value
is converted to an integer. Conversion of a shorter integer to a longer always involves sign extension;
integers are signed quantities. Whether or not sign-extension occurs for characters is machine dependent,
but it is guaranteed that a member of the standard character set is non-negative. Of the machines treated
by this manual, only the PDP-11 sign-extends. On the PDP-11, character variables range in value from
—128 to 127, the characters of the ASCHi alphabet are all positive. A character constant specified with an
octal escape suffers sign extension and may appear negative; for example, *\377' has the value -1.

When a longer integer is converted to a shorter or to a char, it is truncated on the left; excess bits

are simply discarded.

6.2 Float and double :

All floating arithmetic in C is carried out in double-precision; whenever a float appears in an
expression it is lengthened to double by zero-padding its fraction. When a double must be converted
to float, for example by an assignment, the double is rounded before truncation to float length.

6.3 Floating and integral
Conversions of floating values to integral type tend to be rather machine-dependent; in particular the
direction of truncation of negative numbers varies from machine to machine. The result is undefined if
the value will not fit in the space provided. :
Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the
destination lacks sufficient bits.

6.4 Pointers and integers

An integer or long integer may be added to or subtracted from a pointer; in such a case the first is
converted as specified in the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is converted to an
integer as specified in the discussion of the subtraction operator.

6.5 Unsigned .
Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to
unsigned and the result is unsigned. The value is the least unsigned integer congruent to the signed
_integer (modulo 2%°"si2¢) |n a 2°s complement representation, this conversion is conceptual and there is
no actual change in the bit pattern.
When an unsigned integer is converted to long, the value of the result is the same numerically as
that of the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

6.6 Arithmetic conversions :
A great many operators cause conversions and yield result types in a similar way, This pattern will
be called the *‘usual arithmetic conversions.”’

First, any operands of type char or short are converted to int , and any of type f£loat are con-
verted to double.

W

.5-

Then, if either operand is double, the other is converted to double and that is the type of the
result.

Otherwise, if either operand is long, the other is converted to long and that is the type of the
result.

Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the type
of the result.

Otherwise, both operands must be int, and that is the type of the result.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this sec-
tion, highest precedence first. Thus, for example, the expressions referred to as the operands of + (§7.4)
are those expressions defined in §§7.1-7.3. Within each subsection, the operators have the same pre-
cedence. Left- or right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators is summarized in the grammar of §18.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the subexpressions
involve side effects. The order in which side effects take place is unspecified. Expressions involving a
commutative and associative operator (%, +, & 1, ~) may be rearranged arbitrarily, even in the presence
of parentheses; to force a particular order of evaluation an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine-dependent. All exist-
ing implementations of C ignore integer overflows; treatment of division by 0, and all floating-point
exceptions, varies between machines, and is usually adjustable by a library function.

7.1 Primary expressions
Primary expressions involving ., —>, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression { expression]
primary-expression expression—listop,)
primary-ivalue . identifier
primary-expression —> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type
is specified by its declaration. If the type of the identifier is “‘array of ...”", however, then the value of
the identifier-expression is a pointer to the first object in the array, and the type of the expression is
“‘pointer to ...”". Moreover, an array identifier is not an Ivalue expression. Likewise, an identifier which
is deciared ‘‘function returning ..., when used except in the function-name position of a call, is con-
verted to “‘pointer to function returning ...".

A constant is a primary expression. Its type may be int, long, or double depending on its form.
Character constants have type int; floating constants are double.)

A string is a primary expression. Its type is originally *‘array of chaxr’’; but following the same rule
given above for identifiers, this is modified to “pointer to char’ and the result is a pointer to the first
character in the string. (There is an exception in certain initializers; see §8.6.)

A parenthesized expression is a primary expression whose type and value are identical to those of the
unadorned expression. The presence of parentheses does not affect whether the expression is an Ivalue.

A primary expression followed by an expression in square brackets is a primary expression. The
intuitive meaning is that of a subscript. Usually, the primary expression has type “‘pointer to ..."”, the
subscript expression is int, and the type of the result is **...". The expression E1[E2] is identical (by
definition) to # ((E1)+(E2)). All the clues needed to understand this notation are contained in this sec-
tion together with the discussions in §§ 7.1, 7.2, and 7.4 on identifiers, *, and + respectively; §14.3 below
summarizes the implications.

-6-

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The primary
expression must be of type ‘‘function returning ...”", and the result of the function call is of type **...".
As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is contextually
declared to represent a function returning an integer; thus in the most common case, integer-valued
functions need not be declared.

Any actual arguments of type float are converted 10 double before the call; any of type char or
short are converted to int; and as usual, array names are converted to pointers. No other conversions
are performed automatically; in particular, the compiler does not compare the types of actual arguments
with those of formal arguments. If conversion is needed, use a cast; see §7.2, 8.7.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument-
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot affect the values of the actual parameters. On the other hand, it is possible to pass a
pointer on the understanding that the function may change the value of the object to which the pointer
points. An array name is a pointer expression. The order of evaluation of argumenls is undefined by the
language; take note that the various compilers differ.

Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first expres-
sion must be an Ivalue naming a structure or a union, and the identifier must name a member of the
structure or union. The result is an lvalue referring to the named member of the structure or union.

A primary expression followed by an arrow (built from a - and a >) followed by an identifier is an
expression. The first expression must be a pointer to a structure or a union and the identifier must name
a member of that structure or union. The result is an lvalue referring to the named member of the struc-
ture or union to which the pointer expression points.

Thus the expression E1->MOS is the same as (#E1) .MOS. Structures and unions are discussed in
§8.5. The rules given here for the use of structures and unions are not enforced strictly, in order to allow
an escape from the typing mechanism. See §14.1.

7.2 Unary operators
Expressions with unary operators group right-to-left.

unary-expression:
* expression
& lvalue
- expression
! expression
< expression
++ lvalue
—— lvalue
halue ++
value —-
(type-name) expression
sizeof expression
sizeof (ype-name)

The unary = operator means indirection: the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is ‘‘pointer to ...",
the type of the result is **...”.

The result of the unary & operator is a pointer to the object referred to by the Ivalue. If the type of
the Ivalue is ... ", the type of the result is ‘“*pointer to ...".

The result of the unary — operator is the negative of its operand. The usual arithmetic conversions
are performed. The negative of an unsigned quantity is computed by subtracting its value from 27,
where n is the number of bits in an int. There is no unary + operator.

The result of the logical negation operator ! is 1 if the value of its operand is 0, 0 if the value of its
operand is non-zero. The type of the result is int. It is applicable to any arithmetic type or to pointers.

The = operator yields the one’s complement of its operand. The usual arithmetic conversions are
performed. The type of the operand must be integral.

The object referred to by the Ivalue operand of prefix ++ is incremented. The value is the new value
of the operand, but is not an lvalue. The expression ++x is equivalent 1o x+=1. See the discussions of
addition (§7.4) and assignment operators (§7.14) for information on conversions.

@

—

.7.-

The lIvalue operand of prefix ~- is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an lvalue the resuit is the value of the object referred to by the Ivalue.
After the result is noted, the object is incremented in the same manner as for the prefix ++ operator.
The type of the result is the same as the type of the lvalue expression.

When postfix - is applied to an lvalue the result is the value of the object referred to by the Ivalue.
After the resuit is noted, the object is decremented in the manner as for the prefix —- operator. The type
of the result is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of
the expression to the named type. This construction is called a cast. Type names are described in §8.7.

The sizeof operator yields the size, in bytes, of its operand. (A byte is undefined by the language
except in terms of the value of sizeof. However, in all existing implementations a byte is the space
required to hold a char.) When applied to an array, the resuit is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression. This expression is semanti-
cally an integer constant and may be used anywhere a constant is required. Its major use is in communi-
cation with routines like storage allocators and [/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the
size, in bytes, of an object of the indicated type.

The construction sizeof (fype) is taken to be a unit, so the expression sizeof (ype)-2 is the
same as (sizeof (ype))-2.

7.3 Multiplicative operators

The multiplicative operators #, /, and % group left-to-right. The usual arithmetic conversions are

performed.

muitiplicative-expression:
expression » expression
expression / expression
expression % expression

The binary # operator indicates multiplication. The * operator is associative and expressions with
several multiplications at the same level may be rearranged by the compiler.

The binary / operator indicates division. When positive integers are divided truncation is toward 0,
but the form of truncation is machine-dependent if either operand is negative. On all machines covered
by this manual, the remainder has the same sign as the dividend. It is always true that (a/b)+b + a%b
is equal to a (if b is not 0).

The binary % operator yields the remainder from the division of the first expression by the second.
The usual arithmetic conversions are performed. The operands must not be £loat.

7.4 Additive operators
The additive operators + and — group left-to-right. The usual arithmetic conversions are performed.
There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of
any integral type may be added. The latter is in all cases converted to an address offset by multiplying it
by the length of the object to which the pointer points. The result is a pointer of the same type as the
original pointer, and which points to another object in the same array, appropriately offset from the origi-
nal object. Thus if P is a pointer to an object in an array, the expression P+1 is a pointer to the next
object in the array.

No further type combinations are allowed for pointers.

The + operator is associative and expressions with several additions at the same level may be rear-
ranged by the compiler.

The result of the — operator is the difference of the operands. The usual arithmetic conversions are
performed. Additionaily, a value of any integral type may be subtracted from a pointer, and then the
same conversions as for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same

-8-

array, since pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators

The shift operators << and >> group left-to-right. Both perform the usual arithmetic conversions on
their operands, each of which must be integral. Then the right operand is converted to int; the type of
the result is that of the left operand. The result is undefined if the right operand is negative, or greater
than or equal to the length of the object in bits.

shift-expression:
expression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits; vacated bits are 0-filled.
The value-of E1>>E2 is E1 right-shifted E2 bit positions. The right shift ‘is guaranteed to be logical (0-
fill) if E1 is unsigned; otherwise it may be (and is, on the PDP-11) arithmetic (fill by a copy of the sign
bit).

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; a<b<c does not mean
what it seems to.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal to)
all yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. The usual
arithmetic conversions are performed. Two pointers may be compared; the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

7.7 Equality operators

equality-expression:
expression == expression
expression = expression

The == (equal to) and the I= (not equal to) operators are exactly analogous to the reiational operators
except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and c<d have the same
truth-value).

A pointer may be compared to an integer, but the result is machine dependent unless the integer is
the constant 0. A pointer to which 0 has been assigned is guaranteed not to point to any object, and will
appear to be equal to 0; in conventional usage, such a pointer is considered to be null.

7.8 Bitwise AND operator

and-expression:
expression & expression

The & operator is associative and expressions involving & may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise AND function of the operands. The operator applies
only to integral operands. ’

7.9 Bitwise exclusive OR operator

exclusive-or-expression:
expression ~ expression
The ~ operator is associative and expressions involving ~ may be rearranged. The usual arithmetic

conversions are performed; the result is the bitwise exclusive OR function of the operands. The operator
applies only to integral operands. ‘

7.10 Bitwise inclusive OR operator

inclusive-or-expression:
expression | expression

The | operator is associative and expressions involving | may be rearranged. The usual arithmetic
conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator
applies only to integral operands.

7.11 Logical AND operator

logical-and-expression:
expression && expression

The && operator groups left-to-right. It returns 1 if both its operands are non-zero, 0 otherwise. Unlike
&, && guarantees left-to-right evaluation; moreover the second operand is not evaluated if the first
operand is 0.)

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7.12 Logical OR operator

logical-or-expression:
expression | | expression

The 11 operator groups left-to-right. It returns 1 if either of its operands is non-zero, and 0 otherwise.
Unlike 1, |1 guarantees left-to-right evaluation; moreover, the second operand is not evaluated if the
value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer. The result is always int.

7.13 Conditional operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right-to-left. The first expression is evaluated and if it is non-zero, the
result is the value of the second expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third expressions to a common type; other-
wise, if both are pointers of the same type, the result has the common type; otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the pointer. Only one of the second
and third expressions is evaluated.

7.14 Assignment operators

There are a number of assignment operators, all of which group right-to-left. All require an lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The value is the
value stored in the left operand after the assignment has taken place. The two parts of a compound
assignment operator are separate tokens.

assignment-expression:

Ivalue = expression
lvalue += expression
Ivalue —= expression
lvalue »= expression
lvalue /= expression
Ivalue %= expression
ivalue >>= expression
Ivalue <<= expression
Ivalue &= expression
Ivalue ~= expression
Ivalue = expression

In the simple assignment with =, the value of the expression replaces that of the object referred to by
the lvalue. If both operands have arithmetic type, the right operand is converted to the type of the left

-10 -

preparatory to the assignment.

The behavior of an expression of the form E1 op= E2 may be inferred by taking it as equivalent to
E1 = E1 op (E2); however, E1 is evaluated only once. In += and -=, the left operand may be a
pointer, in which case the (integral) right operand is converted as explained in §7.4; all right operands
and all non-pointer left operands must have arithmetic type.

The compilers currently allow a pointer to be assigned to an integer, an integer to a pointer, and a
pointer to a pointer of another type. The assignment is a pure copy operation, with no conversion. This
usage is nonportable, and may produce pointers which cause addressing exceptions when used. However,
it is guaranteed that assignment of the constant 0 to a pointer will produce a null pointer distinguishable
from a pointer to any object.

7.15 Comma operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator
groups left-to-right. In contexts where comma is given a special meaning, for example in a list of actual
arguments to functions (§7.1) and lists of initializers (§8.6), the comma operator as described in this sec-
tion can only appear in parentheses; for example,

£(a, (t=3, t+2), c)
has three arguments, the second of which has the value 5.

8. Declarations
Declarations are used to specify the interpretation which C gives to each identifier; they do not
necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-lislm H

The declarators in the declarator-ist contain the identifiers being declared. The decl-specifiers consist of a
sequence of type and storage class specifiers.

decl-specifiers: .
ype-specifier decl-spec{ﬂersm
sc-specifier decl-speciﬁersop,

The list must be self-consistent in a way described below.

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

typedef

The typedef specifier does not reserve storage and is called a *‘storage class specifier’ only for syntactic
convenience; it is discussed in §8.8. The meanings of the various storage classes were discussed in §4.

The auto, static, and register declarations also serve as definitions in that they cause an
appropriate amount of storage to be reserved. In the extern case there must be an external definition
(§10) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the com-
piler that the variables declared will be heavily used. Only the first few such declarations are effective.
Moreover, only variables of certain types will be stored in registers; on the PDP-11, they are int, char,
or pointer. One other restriction applies to register variables: the address-of operator & cannot be applied
to them. Smaller, faster programs can be expected if register declarations are used appropriately, but
future improvements in code generation may render them unnecessary.

&\

-11 -

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declara-
tion, it is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

8.2 Type specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

The words long, short, and unsigned may be thought of as adjectives; the following combinations are
acceptable.

short int
long int
unsigned int
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a
declaration. If the type-specifier is missing from a declaration, it is taken to be int.

Specifiers for structures and unions are discussed in §8.5; declarations with typedef names are dis-
cussed in §8.8. '

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of
which may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializerm

Initializers are discussed in §8.6. The specifiers in the declaration indicate the type and storage class of
the objects to which the declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
*» declarator
declarator ()
declarator [constant-expression,,, 1

The grouping is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declara-
tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier head-
ing the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex
declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

-12-

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration makes the
identifier have type *‘... T,”” where the *“...” is empty if D1 is just a plain identifier (so that the type of
xin “int x" is just int). Then if D1 has the form

*D

the type of the contained identifier is *“... pointer to T.”
If D1 has the form

D{)

then the contained identifier has the type **... function returning T.”
If D1 has the form

D [constant-expression)
or
D[]

then the contained identifier has type *‘... array of T.” In the first case the constant expression is an
expression whose value is determinable at compile time, and whose type is int. (Constant expressions
are defined precisely in §15.) When several “‘array of” specifications are adjacent, a multi-dimensional
array is created; the constant expressions which specify the bounds of the arrays may be missing only for
the first member of the sequence. This elision is useful when the array is external and the actual
definition, which allocates storage, is given elsewhere. The first constant-expression may also be omitted
when the declarator is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union,
or from another array (to generate a muiti-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures, unions or functions, although they may return
pointers to such things; there are no arrays of functions, although there may be arrays of pointers to
functions. Likewise a structure or union may not contain a function, but it may contain a pointer to a
function.

As an example, the declaration

int i, »ip, £(), *£fip(), («pfi)();

declares an integer i, a pointer ip to an integer, a function £ returning an integer, a function £ip
returning a pointer to an integer, and a pointer p£fi to a function which returns an integer. It is espe-
cially useful to compare the last two. The binding of *£ip() is # (£ip()), so that the declaration sug-
gests, and the same construction in an expression requires, the calling of a function £ip, and then using
indirection through the (pointer) result to yield an integer. In the declarator (xp£i) (), the extra
parentheses are necessary, as they are also in an expression, to indicate that indirection through a pointer
to a function yields a function, which is then called; it returns an integer.
As another example,

float fal17], =afp(17]);
declares an array of £loat numbers and an array of pointers to £loat numbers. Finally,
static int x3d[3](S][7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an
array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven
integers. Any of the expressions x3d, x3d[i], x3d[i] [§], x3d (i) [§] [X) may reasonably appear in
an expression. The first three have type *“‘array,” the last has type int.

8.5 Structure and union declarations

A structure is an object consisting of a sequence of named members. Each member may have any
type. A union is-an object which may, at a given time, contain any one of several members. Structure
and union specifiers have the same form.

@

ﬂ .

-13-

struct-or-union-specifier:
struct-or-union | struct-decl-list }
struct-or-union identifier { struct-decl-list)
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union. A struc-
ture member may also consist of a specified number of bits. Such a member is also called a field, its
_length is set off from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as their declarations are read left-
to-right. Each non-field member of a structure begins on an addressing boundary appropriate to its type;
therefore, there may be unnamed holes in a structure. Field members are packed into machine integers;
they do not straddle words. A field which does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. Fields are assigned right-to-left on the PDP-11, left-to-
right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful
for padding to conform to externally-imposed layouts. As a special case, an unnamed field with a width
of 0 specifies alignment of the next field at a word boundary. The “‘next field”” presumably is a field, not
an ordinary structure member, because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are
not required to support any but integer fields. Moreover, even int fields may be considered to be
unsigned. On the PDP-11, fields are not signed and have only integer values. In all implementations,
there are no arrays of fields, and the address-of operator & may not be applied to them, so that there are
no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is
sufficient to contain any of its members. At most one of the members can be stored in a union at any
time.

A structure or union specifier of the second form, that is, one of

stxuct identifier { struct-decl-list }
union identifier (struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subse-
quent declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declara-
tion to be given once and used several times. It is illegai to declare a structure or union which contains
an instance of itself, but a structure or union may contain a pointer to an instance of itself.

-14 -

The names of members and tags may be the same as ordinary variables. However, names of tags
and members must be mutually distinct.

Two structures may share a common initial sequence of members; that is, the same member may
appear in two different structures if it has the same type in both and if all previous members are the same
in both. (Actually, the compiler checks only that a name in two different structures has the same type
and offset in both, but if preceding members differ the construction is nonportable.)

A simple example of a structure declaration is

struct tnode {
char twordl[20];
int count;
struct tnode wxleft;
struct tnode *right;
i

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the declaration

struct tnode s, *sp;

deciares s 1o be a structure of the given sort and sp to be a pointer to a structure of the given sort. With
these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right->tword[0]

refers to the first character of the tword member of the right subtree of s. .

8.6 Initialization
A declarator may specify an initial value for the identifier being declared. The initializer is preceded
by =, and consists of an expression or a list of values nested in braces.

initializer:
= expression
= | initializer-list)
= | initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }

All the expressions in an initializer for a static or external variable must be constant expressions,
which are described in §15, or expressions which reduce to the address of a previously declared variable,
possibly offset by a constant expression. Automatic or register variables may be initialized by arbitrary
expressions involving constants, and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0: automatic and
register variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type), it consists of a sin-
gle expression, perhaps in braces. The initial value of the object is taken from the expression; the same
conversions as for assignment are performed. : .

When the declared variable is an aggregate (a structure or array) then the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the aggregate, written in increas-
ing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to
the members of the aggregate. If there are fewer initializers in the list than there are members of the
aggregate, then the aggregate is padded with 0’s. It is not permitted to initialize unions or automatic
aggregates.

:“_‘

-15-

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding
comma-separated list of initializers initializes the members of the aggregate; it is erroneous for there to
be more initializers than members. If, however, the initializer does not begin with a left brace, then only
enough elements from the list are taken to account for the members of the aggregate; any remaining
members are left to initialize the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive charac-
ters of the string initialize the members of the array.

For example,

int x{] = (1, 3, 51

declares and initializes x as a 1-dimensional array which has three members, since no size was specified
and there are three initializers.

float y([41[3] = {
(1,3,51,
{2, 4,61,
{3,571,
Iy
is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0], namely
y[01([0], y(01(1], and y([0] [2]. Likewise the next two lines initialize y[1] and y(2]). The initial-
izer ends early and therefore y({3] is initialized with O. Precisely the same effect could have been
achieved by

float y[41[3] = |

, 1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace, but that for y[0] does not, therefore 3 elements from the

list are used. Likewise the next three are taken successively for y (1] and y[2]. Also,

float y[4]1([3] = {
{11, 21, (3}, (4)
}: '

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest 0.
Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string.

8.7 Type names

In two contexts (to specify type conversions explicitly by means of a cast, and as an argument of
sizeof) it is desired to supply the name of a data type. This is accomplished using a ‘‘type name,”
which in essence is a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:

empty

(abstract-declarator)

= abstract-declarator

abstract-declarator ()

abstract-declarator [constant-expression,,, 1

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be non-empty. Under this restriction, it is possible to identify
uniquely the location in the abstract-declarator where the identifier would appear if the construction were
a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier.
For example,

.16 -

int

int «

int *([3]
int (%) [3]
int *()
int (%) ()

name respectively the types “‘integer,” *‘pointer to integer,” “‘array of 3 pointers to integers,” “‘pointer
to an array of 3 integers,” *‘function returning pointer to integer,” and *“pointer to function returning an
integer.”

8.8 Typedef
Declarations whose *‘storage class™ is typedef do not define storage, but instead define identifiers
which can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier .

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator
therein become syntactically equivalent to the type keyword naming the type associated with the identifier
in the way described in §8.4. For example, after

typedef int MILES, +«KLICKSP;
typedef struct [double re, im;) complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is ‘‘pointer to int,” and that of
z is the specified structure. zp is a pointer to such a structure.

typedef does not introduce brand new types, ‘only synonyms for types which could be specified in
another way. Thus in the example above distance is considered to have exactly the same type as any
other int object.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

9.2 Compound statement, or block
So that several statements can be used where one is expected, the compound statement (also, and
equivalently, called **block™) is provided:

compound-statement:
{ declaration-lislm slatemenl-lis!m }

declaration-list:
declaration
declaration declaration-list

statement-list:
Statement
Statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is pushed
down for the duration of the block, after which it resumes its force.

~)

.17 -

Any initializations of auto or register variables are performed each time the block is entered at
the top. It is currently possible (but a bad practice) to transfer into a block; in that case the initializations
are not performed. Initializations of static variables are performed only once when the program begins
execution. Inside a block, extern declarations do not reserve storage so initialization is not permitted.

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the
second case the second substatement is executed if the expression is 0. As usual the “‘else” ambiguity is
resolved by connecting an else with the last encountered else-less if.

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes
place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-lap, : expression-Zw ; expression-3.) statement

opt
This statement is equivalent to

expression-1 ;

while (expression-2) {
statement
expression-3 ;

}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each
iteration, such that the loop is exited when the expression becomes 0; the third expression often specifies
an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to while (1); other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
The switch statement causes control to be transferred to one of several statements depending on
the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the resuit must be int. The state-
ment is typically compound. Any statement within the statement may be labeled with one or more case
prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same switch may have
the same value. Constant expressions are precisely defined in §15.
There may also be at most one statement prefix of the form

-18 -

default :

When the switch statement is executed, its expression is evaluated and compared with each case con-
stant. If one of the case constants is equal to the value of the expression, control is passed to the state-
ment following the matched case prefix. If no case constant maiches the expression, and if there is a
default prefix, control passes to the prefixed statement. If no case matches and if there is no default
then none of the statements in the switch is executed.

case and default prefixes in themselves do not alter the flow of control, which continues unim-
peded across such prefixes. To exit from a switch, see break, §9.8.

Usually the statement that is the subject of a switch is compound. Declarations may appear at the
head of this statement, but initializations of automatic or register variables are ineffective.

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement
continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for state-
ment; that is to the end of the loop. More precisely, in each of the statements

while (...) { do { for (...) {
contin: ; contin: ; contin: ;
} } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, §9.13.)

9.10 Return statement
A function returns 1o its caller by means of the return statement, which has one of the forms

return ;
return expression ;

In the first case the returned value is undefined. In the second case, the value of the expression is
returned to the caller of the function. If required, the expression is converted, as if by assignment, to the
type of the function in which it appears. Flowing off the end of a function is equivalent to a return with
no returned value. .

9.11 Goto statement
Control may be transferred unconditionally by means of the statement
goto identifier ;
The identifier must be a label (§9.12) located in the current function.
9.12 Labeled statement
Any statement may be preceded by label prefixes of the form
identifier :

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The
scope of a label is the current function, excluding any sub-blocks in which the same identifier has been
redeclared. See §11.

.19 -

9.13 Null statement
The null statement has the form

i
A null statement is useful to carry a label just before the } of a compound statement or to supply a null
body to a looping statement such as while.

10. External definitions

A C program consists of a sequence of external definitions. An external definition declares an
identifier to have storage class extern (by default) or perhaps static, and a specified type. The type-
specifier (§8.2) may also be empty, in which case the type is taken to be int. The scope of external
definitions persists to the end of the file in which they are declared just as the effect of declarations per-
sists to the end of a block. The syntax of external definitions is the same as that of all declarations,
except that only at this level may the code for functions be given.

10.1 External function definitions
Function definitions have the form

Sunction-definition:
decl-specifiers,

_ opt Jfunction-declarator function-body
The only sc-specifiers allowed among the decl-specifiers are extern or static; see §11.2 for the distinc-
tion between them. A function declarator is similar to a declarator for a “‘function returning ...”" except

that it lists the formal parameters of the function being defined.

JSunction-declarator:
declarator (parameter-list,;,)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

JSunction-body:
declaration-list compound-statement

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list.
Any identifiers whose type is not given are taken to be int. The only storage class which may be
specified is register; if it is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max(a, b, ¢)
int a, b, c¢;
{

int m;

m= (a>Db) ? a: b;
return{(m > ¢) ? m : ¢);

)

Here int is the type-specifier; max(a, b, c) is the function-declarator; int a, b, c; is the
declaration-list for the formal parameters; { ...) is the block giving the code for the staternent.

C converts all £loat actual parameters to double, so formal parameters declared £loat have their
declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared “‘array of ..”" are adjusted to read ‘“‘pointer to ..’. Finally, because structures,
unions and functions cannot be passed to a function, it is useless to declare a formal parameter to be a
structure, union or function (pointers to such objects are of course permitted).

-20 -

10.2 External data definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extexn (which is the default) or static, but not auto or
register.

11. Scope rules

A C program need not all be compiled at the same time: the source text of the program may be kept
in several files, and precompiled routines may be loaded from libraries. Communication among the func-
tions of a program may be carried out both through explicit calls and through manipuiation of external
data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
*‘undefined identifier diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same object.

11.1 Lexical scope

The lexical scope of identifiers declared in external definitions persists from the definition through
the end of the source file in which they appear. The lexical scope of identifiers which are formal parame-
ters persists through the function with which they are associated. The lexical scope of identifiers declared
at the head of blocks persists until the end of the block. The lexical scope of labels is the whole of the
function in which they appear.

Because all references to the same external identifier refer to the same object (see §11.2) the com-
piler checks all declarations of the same external identifier for compatibility; in effect their scope is
increased 10 the whole file in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a block. including the block
constituting a function, any declaration of that identifier outside the block is suspended until the end of
the block.

Remember also (§8.5) that identifiers associated with ordinary variables on the one hand and those
associated with structure and union members and tags on the other form two disjoint classes which do
not conflict. Members and tags follow the same scope rules as other identifiers. typedef names are in
the same class as ordinary identifiers. They may be redeclared in inner blocks but an explicit type must
be given in the inner declaration:

typedef float distance;
{
auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with no
declarators and type distancef.

11.2 Scope of externals

If a function refers to an identifier declared to be extern, then somewhere among the files or
libraries constituting the complete program there must be an external definition for the identifier. All
functions in a given program which refer to the same external identifier refer to the same object, so care
must be taken that the type and size specified in the definition are compatible with those specified by each
function which references the data.

The appearance of the extern keyword in an external definition indicates that storage for the
identifiers being declared will be allocated in another file. Thus in a multi-file program, an external data
definition without the extern specifier must appear in exactly one of the files. Any other files which
wish to give an external definition for the identifier must inciude the extexn in the definition. The
identifier can be initialized only in the declaration where storage is aliocated.

Identifiers declared static at the top level in external definitions are not visible in other files.
Functions may be declared static.

th is agreed thai the ice is thin here.

221 -

12. Compiler control lines

The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and
inclusion of named files. Lines beginning with # communicate with this preprocessor. These lines have
syntax independent of the rest of the language; they may appear anywhere and have effect which lasts
(independent of scope) until the end of the source program file.

12.1 Token replacement
A compiler-control line of the form
#define identifier token-string

{note; no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. A line of the form

#define identifier(identifier , ... , identifier) token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Sub-
sequent instances of the first identifier followed by a (, a sequence of tokens delimited by commas, and a
y are replaced by the 1oken string in the definition. Each occurrence of an identifier mentioned in the
formal parameter list of the definition is replaced by the corresponding token string from the call. The
actual arguments in the call are token strings separated by commas; however commas in quoted strings or
protected by parentheses do not separate arguments. The number of formal and actual parameters must
be the same. Text inside a string or a character constant is not subject to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long
definition may be continued on another line by writing \ at the end of the line to be continued.

This facility is most valuable for definition of **manifest constants,”” as in

#define TABSIZE 100

int table[TABSIZE];
A control line of the form
#undef identifier
causes the identifier’s preprocessor definition to be forgotten.
12.2 File inclusion
A compiler control line of the form
#include "“filename"

causes the replacement of that line by the entire contents of the file filename. The named file is searched
for first in the directory of the original source file, and then in a sequence of standard places. Alterna-
tively, a control line of the form

#include <filename>
searches only the standard places, and not the directory of the source file.
#include’s may be nested.
12.3 Conditional compilation
A compiler control line of the form
#if constant-expression
checks whether the constant expression (see §15) evaluates to non-zero. A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; that is, whether it has been the
subject of a #define control line. A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor.
All three forms are followed by an arbitrary number of lines, possibly containing a control line

.22

f#else
and then by a control line
#endif

If the checked condition is true then any lines between #else and #endif are ignored. If the checked
condition is false then any lines between the test and an #else or, lacking an #else, the #endif, are
ignored. _

These constructions may be nested.

12.4 Line control
For the benefit of other preprocessors which generate C programs, a line of the form

#1line constant identifier

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source
line is given by the constant and the current input file is named by the identifier. If the identifier is
absent the remembered file name does not change.

13. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration.
The storage class is supplied by the context in external definitions and in declarations of formal parame-
lers and structure members. In a declaration inside a function, if a storage class but no type is given, the
identifier is assumed 10 be int; if a type but no storage class is indicated, the identifier is assumed to be
auto. An exception to the latter rule is made for functions, since auto functions are meaningless (C
being incapable of compiling code into the stack): if the type of an identifier is “*function returning ..."", it
is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to be
“function returning int”’.

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures and unions

There are only two things that can be done with a structure or union: name one of its members (by
means of the . operator); or take its address (by unary &). Other operations, such as assigning from or
to it or passing it as a parameter, draw an error message. In the future, it is expected that these opera-
tions, but not necessarily others, will be allowed.

§7.1 says that in a direct or indirect structure reference (with . or ->) the name on the right must

be a member of the structure named or pointed to by the expression on the left. To allow an escape .

from the typing rules, this restriction is not firmly enforced by the compiler. In fact, any Ivalue is allowed
before ., and that Ivalue is then assumed to have the form of the structure of which the name on the
right is a member. Also, the expression before a > is required only to be a pointer or an integer. If a
pointer, it is assumed to point to a structure of which the name on the right is a member. If an integer,
it is taken to be the absolute address, in machine storage units, of the appropriate structure.

Such constructions are non-portable.

14.2 Functions .

There are only two things that can be done with a function: call it, or take its address. If the name
of a function appears in an expression not in the function-name position of a call, a pointer to the func-
tion is generated. Thus, to pass one function to another, one might say

int £();

g(f);
Then the definition of g might read

.23 -

g (funcp)
int (=funcp) ();
{

(*funcp) () ;

)

Notice that £ must be declared explicitly in the calling routine since its appearance in g (£) was not fol-
lowed by (.

14.3 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to the
first member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript
operator [] is interpreted in such a way that E1({E2] is identical to = ((E1)+(E2)). Because of the
conversion rules which apply to +, if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th
member of E1. Therefore, despite its asymmeltric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank iXjX -+ Xk, then E appearing in an expression is converted to a pointer to an (n-1)-
dimensional array with rank jX - - Xk. If the » operator, either explicitly or implicitly as a result of
subscripting, is applied to this pointer, the result is the pointed-to (n—1)-dimensional array, which itself
is immediately converted into a pointer.

For example, consider

int x(3][5]; -

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) S-membered arrays of integers. In the expression x[i], which is equivalent to » (x+i}, x
is first converted to a pointer as described; then i is converted to the type of x, which involves multiply-
ing i by the length the object to which the pointer points, namely 5 integer objects. The resuits are
added and indirection applied to yield an array (of 5 integers) which in turn is converted to a pointer to
the first of the integers. If there is another subscript the same argument applies again; this time the
result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration heips determine the amount of storage consumed by an array but plays
no other part in subscript calculations.

14.4 Explicit pointer conversions

Certain conversions involving pointers are permitted but have implementation-dependent aspects.
They are all specified by means of an explicit type-conversion operator, §§7.2 and 8.7.

A pointer may be converted to any of the integral types large enough to hold it. Whether an int or
long is required is machine dependent. The mapping function is also machine dependent, but is
intended to be unsurprising to those who know the addressing structure of the machine. Details for
some particular machines are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an
integer converted from a pointer back to the same pointer, but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may
cause addressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in
storage. It is guaranteed that a pointer to an object of a given size may be converted to a pointer to an
object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and
return a char pointer; it might be used in this way.

extern char #alloc();

double *dp;

dp = (double *) alloc(sizeof (double));
#dp = 22.0 / 7.0;

alloc must ensure (in a machine-dependent wéy) that its return value is suitable for conversion to a
pointer to double; then the use of the function is portable.

-24 .

The pointer representation on the PDP-11 corresponds to a 16-bit integer and is measured in bytes.
chars have no alignment requirements; everything else must have an even address.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word part is in the left 18 bits,
and the two bits that select the character in a word just to their right. Thus char pointers are measured
in units of 216 bytes; everything else is measured in units of 2'® machine words. double guantities and
aggregates containing them must liec on an even word address (0 mod 219),

The 1BM 370 and the Interdata 8/32 are similar. On both, addresses are measured in bytes; elemen-
tary objects must be aligned on a boundary equal to their length, so pointers to short must be 0 mod 2,
to int and float 0 mod 4, and to double 0 mod 8. Aggregates are aligned on the strictest boundary
required by any of their constituents.

15. Constant expressions

In several places C requires expressions which evaluate to a constant: after case, as array bounds,
and in initializers. In the first two cases, the expression can involve only integer constants, character con-
stants, and sizeof expressions, possibly connected by the binary operators :

+ = * / % & | ~ << > == l= < > <= >=

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping. but not for function calls.

More latitude is permitted for initializers; besides constant expressions as discussed above, one can
also apply the unary & operator to external or static objects, and 1o external or static arrays subscripted
with a constant expression. The unary & can also be applied implicitly by appearance of unsubscripted
arrays and functions. The basic rule is that initializers must evaluate either to a constant or to the
address of a previously declared external or static object plus or minus a constant.

16. Portability considerations .

Certain parts of C are inherently machine dependent. The following list of potential trouble spots is
not meant to be all-inclusive, but 1o point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer divi-
sion have proven in practice to be not much of a problem. Other facets of the hardware are reflected in
differing implementations. Some of these. particularly sign extension (converting a negative character
into a negative integer) and the order in which bytes are placed in a word, are a nuisance that must be
carefully watched. Most of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to
machine, as does the set of valid types. Nonetheless, the compilers all do things properly for their own
machine; excess or invalid registexr declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write
programs that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. It is right to left on
the PDP-11, and VAX-11, left to right on the others. The order in which side effects take place is also
unspecified.

Since character constants are really objects of type int. multi-character character constants may be
permitied. The specific implementation is very machine dependent, however, because the order in which
characters are assigned to a word varies from one machine to another. :

Fields are assigned to words and characters to integers right-to-left on the PDP-11 and VAX-11 and
left-to-right on other machines. These differences are invisible to isolated programs which do not indulge
in type punning (for example, by converting an int pointer 10 a char pointer and inspecting the
pointed-to storage), but must be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current
PDP-11 compiler will not initialize structures containing bit-fields, and does not accept a few assignment
operators in certain contexts where the value of the assignment is used.

225 -

17. Anachronisms

Since C is an evolving language, certain obsolete constructions may be found in older programs.
Although most versions of the compiler support such anachronisms, ultimately they will disappear, leav-
ing only a portability problem behind.

Earlier versions of C used the form =op instead of op= for assignment operators. This leads to
ambiguities, typified by .

x=-1

which actually decrements x since the = and the — are adjacent, but which might easily be intended to
assign -1 to x.

The syntax of initializers has changed: previously, the equals sign that introduces an initializer was
not present, so instead of

int x = 1;

one used
int x 1;

The change was made because the initialization
int £ (1+2)

resembles a function declaration closely enough to confuse the compilers.

-26 -

18. Syntax Summary
This summary of C syntax is intended more for aiding comprehension than as an exact statement of

the language.

18.1 Expressions
The basic expressions are:

expression:
primary
* expression
& expression
- expression
! expression
< expression
++ hvalue
- Ivalue
fvalue ++
ivalue ——
sizeof expression
(type-name) expression
expression binop expression
expression ? expression : expression
Ivalue asgnop expression
expression , expression

primary:
identifier
constant
string
(expression)
primary (expression-list”,)
primary [expression]
Ivalue . identifier
" primary -> identifier

ivalue:
- identifier
. primary [expression]
lvalue . identifier
primary <> identifier
* expression
(lvalue)

The primary-expression operators
0O 1 . -
have highest priority and group left-to-right. The unary operators
* & - ! ~ 4+ —— gizeof (type-name)

have priority below the primary operators but higher than any binary operator, and group right-to-left.
Binary operators group left-to-right; they have priority decreasing as indicated below. The conditional
operator groups right to left.

.27

binop:
*
-+
>> <<
< > <= >=
o= l=
&
|
&&
11
?:

~
R

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
o b= -m k= /= %z DO= KL= &= "=

The comma operator has the lowest priority, and groups left-to-right.

18.2 Declarations

declaration:
decl-specifiers init-declarator-list,,, ;

decl-specifiers:

type-specifier decl-specifiers,,

sc-specifier decl-specifiers,,
sc-specifier:

auto

static

extern

register

typedef

type-specifier:
char
short
int
long
unsigned
float
double
struct-or-union-specifier
typedef-name

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:

declarator initializer”,
declarator:

identifier

(declarator)

% declarator

declarator ()

declarator [constant-expression,, 1

-28-

Sstruct-or-union-specifier:
struct (struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list)
union identifier (struct-decl-list)
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
Wpe-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struci-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

initializer:
= expression
= | initializer-list)
= { initializer-list ,)

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list)

ype-name:
Wype-specifier abstract-declarator

abstract-declarator:
emply
(abstraci-declarator)
* abstract-declarator
abstract-declarator ()

abstract-declarator (constant-expression,,,

]

ypedef-name:
identifier

18.3 Statements

compound-statement:
{ declaration-list,,, statement-list,,, }

declaration-list:
declaration
declaration declaration-list

‘e

f'\}

‘e

-29.

statement-list:
statement
statement statement-list

statement.
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (expression-1,, ; expression-zm ; expression-.?m) statement
switch (expression) statement
case constant-expression : statement
default : statement
break ;
continue ;
return ;
return expression ;
goto identifier ;
identifier : statement

.
r

18.4 External definitions

program:
external-definition
external-definition program

external-definition:
Junction-definition
data-definition

JSunction-definition:
wpe-spec(ﬂerop, Sfunction-declarator function-body

JSunction-declarator:

declarator (parameter-list,_,)

topl

parameter-list:
identifier
identifier , parameter-list

Junction-body:

type-decl-list function-statement

JSunction-statement:
{ declaration-listop, statement-list)

data-definition:

extern,, type-specifier,,, init-declarator-list,, ;
static,, ype-specifier,,, init-declarator-list,, ;

18.5 Preprocessor

#define identifier token-string

#define identifier(identifier , ...

$undef identifier
#include "filename"
#include <filename>
#1i£f constant-expression
#ifdesf identifier
#ifndef identifier
#else

#endif

#1ine constant identifier

«30-

, identifier) token-string

& -

i

Recent Changes to C
November 15, 1978

A few extensions have been made to the C language beyond what is described in the reference docu-
ment (*The C Programming Language,” Kernighan and Ritchie, Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a subtle defect in the PDP-11 implementation of functions that return structures: if an inter-
rupt occurs during the return sequence, and the same function is called reentrantly during the interrupt,
the value returned from the first call may be corrupted. The problem can occur only in the presence of
true interrupts, as in an operating system or a user program that makes significant use of signals; ordinary
recursive calls are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-speclﬂers in the syntax
on p. 193 of the C book add

enum-specifier
with syntax

enum-specifier:
enum { enum-list}
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag in a
struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark);

enum color *cp, col;

makes color the enumeration-tag of a type describing various colors, and then declares cp as a pointer
to an object of that type, and col as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with = appear, then the values of the constants begin at 0 and increase by 1
as the declaration is read from left to right. An enumerator with = gives the associated identifier the
value indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and, unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, and /int flags type mismatches. In the PDP-11 implementation all enumeration variables are treated
as if they were int.

