) CC7

The Portzble C Library

M. E. Lesk

Bell Laboratories,
Murray Hill, New Jersey 07974

1. INTRODUCTION

The C language [1] now exists on three operating systems. A set of library routines com-
mon to PDP 11 UNIX, Honeywell 6000 Gcos, and 1BM 370 os has been provided to improve pro-
gram portability. This memorandum describes the routines on the different systems. It is the
sole current reference to libraries for GCOS and 0S, and supplements the UNIX programmer’s
manual. A variety of programming aids available for C users, such as measurement and debug-
ging aids, are also described.

The programs defined here were chosen to follow the standard routines available on
UNIX, with alterations to improve transferability to other computer systems. It is expected that
future C implementations will try to support the basic library outlined in this document. It
provides character stream input and output on multiple files; simple accessing of files by name;
and some elementary formatting and translating routines. The remainder of this memorandum
lists the portable and non-portable library routines and explains some of the programming aids
available. Appendix | provides an index to the currently available routines.

We will refer to several subroutine libraries in the following sections. Each host comput-
er provides a non-portable system library, described in the appropriate system reference manuals
[2,3,4]. To simplify the task of writing portable software, the portable C library described here
permits basic input and output operations on muitiple files to be performed without using
system-dependent calls. This library will be provided, at least as an alternative, in each C run-
time environment. Additional features are offered in specific environments; when these
routines are available in several places an effort is made to define them compatibly. These sup-
plementary capabilities may be provided in future C systems, although many are only of in-
terest on a-particular operating system, and some routines may be- difficuit to implement in fu-
ture run-time environments.

In general, statements in this memo apply to all of the systems where C is implemented.
When this is not true, a three-column format is used, in which the left column is applicable to
UNIX, the middle column to GCOS and the right column to 0s/370.

UNIX GCOS _ 0s/370

Two simple subroutines will be adequate for many users. Getchar () returns a character
from the standard input, usually the teletype; and putchar (c) writes a character on the standard
output, also usuaily the teletype. Purchar returns as its value the character written. By C con-
vention, ‘\0’ indicates end of file or end of string. Thus the program

main ()

{
while (putchar(getchar()) != \0');

will echo lines typed at it.

To compile and run this program, it should.first be entered with the local editor into a file
named

prog.c prog.c prog.text
The command dialog to compile and execute would appear as follows:

% cc prog.c —lp SYSTEM ? ./cc progc h= READY
% a.out SYSTEM ? go .program ccg prog

The 1/0 routines in the C library fall into several classes. Files are addressed through in-
termediate numbers called file-descriptors which are described in section 2. Several default file-
descriptors are provided by the system: other aspects of the sysiem environment are explained
in section 3.

Basic character-stream input and output involves the reading or writing of files considered
as streams of characters. The C library includes facilities for this, discussed in section 4.
Higher-level character stream operations permit translation of internal binary representations
of numbers to and from character representations, and formatting or unpacking of character
data. These operations are performed with the subprograms in section 5. Binary input and
output routines permit dala transmission without the cost of translation to or from readable
ASCHI character representations. Such data transmission should only be directed to files or
tapes, and not to printers or terminals. As is usual with such routines, the only simple guaran-
tee that can be made to the programmer seeking portability is that data written by a particular
sequence of binary writes, if read by the exactly matching sequence of binary reads, will re-
store the previous contents of memory. Other reads or writes have system-dependent effects.
See section 6 for a discussion of binary input and output.

Section 7 describes some further routines in the portable library. These include a storage
allocator and some other control and conversion functions. Non-portable routines are
described in sections 8U, 8G and 8l. The commands to compile a C program on UNIX, GCOS
and IBM TsO are described in sections 9U, 9G and 91 respectively. Some useful utilities and
support software are described in sections 10 and 11. Finally, when you get into trouble with
all of this, the C debugging facilities are described in section 12.

2. FILE DESCRIPTORS

Except for the standard input and output files, all files must be explicitly opened before
any 1/0 is performed on them. When files are opened for writing, they are created if not al-
ready present. They must be closed when finished, although the normal cexit routine will take
care of that. When opened a disc file or device is associated with a file descriptor, an integer
between 0 and 9. This file descriptor is used for further 1/0 to the file.

Initially you are given three file descriptors by the system: 0, 1, and 2. File 0 is the stan-
dard input; it is normally the teletype in time-sharing or input data cards in batch. File 1 is
the standard output; it is normally the teletype in time-sharing or the line printer in batch.
File 2 is the error file: it is an output file, normally the same as file 1, except that when file 1 is
diverted via a command line '>’ operator, file 2 remains attached to the original destination,
usually the terminal. It is used for error message output. These popular UNIX conventions are
considered part of the C library specification. By closing 0 or 1, the default input or output
may be re-directed; this can also be done on the command line by > file for output or < file for
input. .

—— e D

-

Thus, suppose the program above to be stored in executable form on the file

prog prog.h clim.load(prog)

If it is invoked by the command line

prog <data /prog.h <data call cllm.load(prog) ‘prog

: <data’

the file dara is listed on the teletype. If invoked by

prog > newdata /prog.lt > newdata call clim.load(prog) prog
> newdata’

lines typed al the terminal are writien into the file newdara; and if invoked by

prog <old >new /prog.h <old > new call clim.load(prog) prog
<old > new’

the contents of the file o/d are copied into the file new; in the last two examples, the ﬁles new-
data and new will be created if not present.

The running program, of course, has access to the command line via the main program
arguments, except for *“‘>file” or “<file” arguments, which are handled by the start-up
routine. If you intend to provide arguments on the command line, your main program should
begin

main (arge, argv)

i‘m arge; char *argvl J:
where arge will be set to the number of command line arguments, and argv will be a vector of
pointers to the successive arguments as character strings: note that argv(0/ normally gives the
command name by which the program was invoked.

In Gcos batch the command Note that on 0s/370 the
line is read from filecode “command line” is the
CZ; it will be supplied for string normally called the
any batch job submitied by PARM string in IBM termi-
the .&h driver. This nology.

“pseudo-shell” is described

in section 10.

Associated with the portable library are two external integers, named cin and cout. These
are respectively the numbers of the standard input unit and standard output unit. Initially 0
and | are used, but you may redefine them at any time. These cells are used by the routines
getchar, purchar, gets, and puts to select their I-O-unit number.

3. THE C ENVIRONMENT

In general, C requires some modifications to the standard system runtime environment to
support recursion and call-by-value. An effort is made to minimize the effect of this on pro-
grammers accustomed to the standard system environments, as well as providing the portable
facilities needed. The language is almost exactly the same on all machines, except for essential
machine differences such as word length and number of characters per word.

ASClI character code is used.
Characters range from —128
10 +127 in numeric value,
there is sign extension
when characters are as-
signed to integers, and right
shifts are arithmetic. The
“first” character in a word is
stored in the right half
word.

Ascll code is used. Charac-
ters range from 0 to +511
in numeric value, there is
no sign extension on char-
acter to integer conversion,
and right shifts are logical.
The *first” character in a
word is stored in the left-
most quarter word.

EBCDIC character code is
used. Characters range
from O to +255, no sign ex-
tension, and logical right
shifts. The “first” character
in a word is stored in the
lefimost quarter word.
Floating point, and the
operators =*, =/, =%,
=>>, and =< < are not
yet implemented.

More serious problems of compatibility are caused by the loaders on the different operating

systems.

External names may be
upper and lower case, up (o
seven characters long.
There may be multiple
external definitions (unini-
tialized) of the same name.

External names must be
unique in the first six char-
acters of a one-case alpha-
bet. There may be only one
external definition of a
given name; all other uses
must be references.

External names are one-
case, but may be up to eight
characters long. There may
be only one external
definition of a given name;
all other uses must be refer-
ences.

The C alphabet for identifier names includes the upper and lower case letters, the digits, and
the underline. To conform with loader requirements,

underline is left alone.

underline is translated to .’
in external names.

underline is translated to '#’
in external names. .

A serious problem faced by C users in non-UNIX environments is calling non-C library
routines. In general, these are likely to conform to FORTRAN specifications. The basic incompa-
tibilities arise from the FORTRAN view that subroutines arguments are passed by address, not

value, and that passing an array name is the same as passing the first element of the array.

The operating system is
written in C, and communi-
cation with it is easy. It is
not possible 0 communi-
cale with FORTRAN, sincé
the FORTRAN compiler does
not actualty produce in-
dependent object programs.

Scalar integers and doubles
can be passed to and from
FORTRAN. Vectors can be
passed from C to FORTRAN
by passing an argument of
pl0], where p is an integer
pointer to the beginning of
the vector. Passing an array
from FORTRAN to C requires
use of the xnargs routine
described in section 8.

It is not now possible to
communicate with standard
OS programs without editing
the assembly code produced
by the compiler. The IBM
calling sequence for C
routines is being changed;
when the new sequence is
installed, the rules for
FORTRAN-C interchange will
be similar to the rules on

GCOs.

4. BASIC CHARACTER STREAM ROUTINES

These routines transfer streams of characters in and out of C programs. Interpretation of
the characters is left to the user. Facilities for interpreting numerical strings are presented in
" section 5: and routines to transfer binary data to and from files or devices are discussed in sec-
tion 6. In the following routine descriptions, the optional argument fd represents a file-
descriptor; if not present, it is taken o be O for input and 1 for output. When your program
starts, remember that these are associated with the “standard” input and output files.

COPEN (filename, type) .

Copen initiates activity on a file; if necessary it will create the file tco. Up to 10 files may be
open at one time. When called as described here, copen returns a filedescriptor for a character
stream file. Values less than zero returned by copen indicate an error trying to open the file.
Other calls o copen are described in sections 6 and 7.
Arguments :
Filename: a string representing a file name, according to the local operating system conventions.
All accept a string of letters and digits as a legal file name, although leading digits are not
recommended on GCOS.
Type: a character ‘r’, ‘W', or ‘2’ meaning read, write, or append. Note that the type is a single
character, whereas the file name must be a string.
On 0s/370 opening files
with the ‘a’ option (to ap-
pend to the end) is not yet
implemented.

CGETC (fd)

Cgerc returns the next character from the input unit associated with fd On end of file cgerc re-
turns \0". To signal end of file from the teletype, type the special symbol appropriate to the
given operating system:

EOT (controi-D) FS (control-V) *

CPUTC (ch , fd)

Cpurc writes a character onto the given output unit. Cpuic returns as its value the character
written.

Output for disk files is If you write more than 511 If you write more than 255
buffered in 512 character characters without a new- characters without a new-

units, irrespective of new-
lines; teletype output goes
character by character

line, one will silently be in-
serted. No actual writing of
characters takes place until
a newline is written.

line, one will silently be in-
serted. No actual writing of
characters takes place until
a newline is written. Two

consecutive newlines have a
blank inserted between
them.

CCLOSE (d)

Activity on file fd is terminated and any output buffers are emptied. You usually don’t have to
call eclase: cexit will do it for you on all open files. However, to write some data on a file and
then read it back in, the correct sequence is:

All Systems

fd = copen (“file”, ‘w’);
write on fd ...

cclose (fd);

fd = copen(“file”, ‘r’);
read from fd ...

" CFLUSH (fn)

To get buffer flushing, but retain the ability to write more on the file, you may call this routine.

Normally, output intended All output is buffered into All output is buffered into
for the teletype is not lines, and calling cflush lines, and calling c¢flush

buffered and this call is not causes a newline to be in- causes a newline to be in-
needed. serted. serted.
CEXIT ([errcode])

Cexil closes all files and then terminates execution. If a non-zero argument is given, this is as
sumed to be an error indication or other returned value to be signalled to the operating system.

Cexit must be called expli- An appropriate error indica- An appropriate error indica-
citly; a return from the tion is the octal value of two tion is either 4, 8, 12, or 16
main program is not ade- BCD characters marking a to suggest the usual OS lev-
quaie. ' GCos abort code. els of errors.

CEOF (fd)

Ceof returns nonzero when end of file has been reached on input unit fd.

GETCHAR ()

Gerchar is a special case of cgerc; it reads one character from the standard input unit. Gerchar ()
is defined as cgetc (cin); it should not have an argument.

PUTCHAR (ch)
Putchar (ch) is the same as cpuic (ch, cout); it writes one character on the standard output.

GETS (s)

Gers reads everything up to the next newline into the string pointed to by s. If the last charac-
ter read from this input unit was newline, then gers reads the next line, which on GCOS and IBM
corresponds exactly to a logical record. The terminating newline is replaced by \0’. The value
of gets is s, or 0 if end of file.

Gets removes trailing blanks
from the input line, to com-
pensate for their insertion
by the operating system
when it is padding records
to fixed length.

PUTS ()

Copies the string s onto the standard output unit. The terminating ‘\0’ is replaced by a newline
character. The value of puts is s.

UNGETC (ch , fd)

Ungerc pushes back its character argument to the unit fd, which must be open for input. After
ungetc (‘a’, fd); ungetc (‘b’, fd); the next two characters to be read from fd will be ‘b’ and then
‘a’. Up to 100 characters may be pushed back on each file. This subroutine permits a program
to read past the end of its input, and then restore it for the next routine to read. It is impossi-
ble 10 change an external file with ungerc; its purpose is only for internal communications, most
particularly scanf, which is described in section 5. Note that scanf actually requires only one

1

character of ‘‘unget” capability; thus it is possible that future implementors may change the
specification of the ungerc routine.

5. HIGH-LEVEL CHARACTER STREAM ROUTINES

These two routines, prinif for output and scanf for input, permit simple translation to and
from character representations of numerical quantities. They also allow generation or interpre-
tation of formatied lines.

~ PRINTF ([{d,] control-string, argl, arg2, ...)
PRINTF ([—1, output-string,] control-string, argi, arg2, ...)

Printf converts, formats, and prints its -arguments under control of the control string. The con-
trof string contains two types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which causes conversion and printing of the
next successive argument to printf.

Each conversion specification is introduced by the character ‘%’. Following the ‘%’, there may

be: - ’
— an optional minus sign ‘—' which specifies left adjustment of the converted argu-
ment in the indicated field;
— an optional digit string specifying a minimum field width; if the converted argu-
ment has fewer characters than the field width it will be padded on the left (or
right, if the left adjustment indicator has been given) to make up the field width;
the padding character is blank normally and zero if the field width was specified
with a leading zero (note that this does not imply an octal field width);

— an optional period ‘.’ which serves to separate the field width from the next digit
string;

— an optional digit string (the precision) which specifies the maximum number of
characters to be printed from a string, or the number of digits to be printed to the
right of the decimal point of a floating or double number.

— an optional length madifier ‘I’ which indicates that the corresponding data item is
a long rather than an in.

— a character which indicates the type of conversion to be applied.

The conversion characters and their meanings are:

d The argument is converted to decimal notation.

) The argument is converted to octal notation.

x The argument is converted 10 hexadecimal notation.
u

The argument is converted to unsigned decimal notation. This is only imple-
mented (or useful) on UNIX.

¢ The argument is taken to be a single character.

S The argument is taken to be a string and characters from the string are printed
until a null character is reached or until the number of characters indicated by the
precision specification is exhausted.

e The argument is taken to be a float or double and converted to decimal notation
of the form [=]m.nmnnnnE [(—]xx where the length of the string of #'s is specified by
the precision. The default precision is 6 and the maximum is 22.

f The argument is taken to be a float or double and converted to decimal notation
of the form [=/mmm.nnnnn where the length of the string of #'s is specified by the

precision. The default precision is 6 and the maximum is 22. Note that the preci-
sion does not determine the number of significant digits printed in f format.

If no recognizable conversion character appears after the ‘%’, that character is printed; thus ‘%’
may be printed by use of the string “%%”. '

As an example of printf, the following program fragment

int i, j; Hoat x; char *s;

i =33 j=2 x=1.732; s = “ritchie”;

printf (“%d %f %s\n", i, x, sk

printf (“%o, %4d or %—4d%3.55\n" i, j, j. sk

would print

35 1.732000 ritchie
043, 2 or 2 ritch

If fd is not specified, output is to unit cowr. It is possible to direct output to a string in-
stead of to a file. This is indicated by —1 as the first argument. The second argument should
be a pointer 0 the string. Prin¢f will put a terminating ‘\0’ onto the string.

SCANF ([fd,] control-string, argl, arg2,)
SCANF ({1, input-string,] control-string, argl, arg2,)

Scanf reads characters, interprets them according to a format, and stores the results in its argu-
ments. It expects as arguments: A

1. An optional file-descriptor or input-string, indicating the source of the input characters; if
omitted, file cin is used:

2. A control string, described below;

3. A set of arguments, each of which must be a pointer, indicating where the converted input
should be stored.

The control string usually contains conversion specifications, which are used to direct interpre-
1ation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which are ignored.

2. Ordinary characters (not %) which are expected to match the next non-space
character of the input stream (where space characters are defined as blank, tab or
newline). .

3. Conversion specifications, consisting of the character %, an optional assignment
suppressing character *, an optional numerical maximum field width, and a conver-
sion character.

A conversion specification is used to direct the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argument, unless assignment suppres-
sion was indicated by the * character. An input field is defined as a string of non-space charac-
ters: it extends either to the next space character or until the field width, if specified, is ex-
hausted. '

The conversion character indicates the interpretation of the input field; the correspond-
ing pointer argument must usually be of a restricted type. Pointers, rather than variable
names, are required by ‘the “call-by-value™ semantics of the C language. The following conver-
sion characters are legal:

% indicates that a single % character is expected in the input stream at this point;
no assignment is done.

d indicates that a decimal integer is expected in the input stream; the correspond-
ing argument should be an integer pointer.

0 indicates that an octal integer is expected in the input stream; the corresponding
argument should be a integer pointer.

X indicates that a hexadecimal integer is expected in the input stream: the
corresponding argument should be an inieger pointer.

S indicates that a character string is expected; the corresponding argument should
be a character pointer pointing 10 an array of characters large enough 10 accept the
string and a terminating "\0’, which will be added. The input field is terminated by
a space character or a newline.

c indicates that a single character is expected; the corresponding argument should
be a character pointer; the next input character is placed at the indicated spot. The
normal skip over space characters is suppressed in this case; to read the next non-
space character, try %/s.

e or f indicates that a floating point number is expected in the input stream: the next
field is converied accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for foars is a string of
numbers possibly containing a decimal point, followed by an optional exponent field
containing an E or e followed by a possibly signed integer.

| indicates a string not to be delimited by space characters. The left bracket is fol-
lowed by a set of characters and a right bracket; the characiers between the brack-
ets define a set of characters making up the string. If the first character is not
circumilex (7)), the input field is all characiers until the first character not in the set
between the brackets: if the first character after the left bracket is °, the input field
is all characters until the first character which is in the remaining set of characters
between the brackets. The corresponding argument must point 10 a character array.

The conversion characters «. 0 and x may be preceded by / to indicate that a pointer o
fong vather than int is expected. Similarly, the conversion characters e or JS may be preceded by
/ 10 indicate that a pointer o double rather than Hoar is in the argument list. The character /
will function similarly in the future 1o indicale shorr data items.

For example, the call
int i; floar x; char name{ 50/
scanf (“hd%fs ", &i, &x, name);
with the input line
25 54.32E—1 thompson
will assign to i the value 25, x the value 5.432, and name will contain “hompso\0)”, Or,
int i; floar x: char namef350/:
scanf (“%2d% % «d"{ 1234356 7890]", &i, &x. name):
with input
36789 0123 56a72
will assign 56 10 /, 789.0 to x. skip "0123", and place the string **56\0" in name. The next call
10 cgere will return ‘a’,

Scanf rewurns as its value the number of successfully matched and assigned input items.

This can be used to decide how many input items were found. On end of file, =1 is returned:
note that this is different from 0, which means that the next input character does not match
what you called for in the control string. Scanf, if given a first argument of —1, will scan a
string in memory given as the second argument. For example, if you want to read up to four
numbers from an input fine and find out how many there were, you could try

int al4], amax;

char line{100):

amax = scanf (—1, gets(line), “%d%d%d%d", &al0], &all], &al2]. &afl3)):

-10 -

6. BINARY STREAM ROUTINES
These routines write binary data, not translated 1o printable characters. They are normal-

Iv efficient but do not produce files that can be printed or easily interpreted. No special infor-
mation is added 1o the records and thus they can be handled by other programming systems if’
you make the departure from portability required to tell the other sysiem how big a C item (in-
leger, float, structure, etc.) really is in machine units.

All GCos records comiprising

a number of characters not

divisible by 4 are extended

to whole machine words;

but the padding is carefully

removed when the records

are read.

COPEN (name, direcrion, “i"")

When copen is called with a third argument as above, a binary stream filedescriptor is returned.
Such u file descriplor is required for the remaining subroutines in this section. and may not be
used with the routines in the preceding wo sections. The first two arguments operate exactly
as described in section 3; further details are given in section 7.

An ordinary file descriptor
may be used for binary I-O,
but binary and character [-O
may not be mixed unless
cflush is called at each
switch 1o binary [-O. The
third argument to copen is

The third argument of i is
required. Programs which
write and read mixed mode
data files will be supported
on GCoS someday, but don’t
hold your breath.

An ordinary file descriptor
may be used for binary I-Q,
bul record lengths are fimit-
ed to 255 byies. Do not
mix character and binary I-
O except at record boun-
daries.

ighored.

CWRITE (pir, sizeof(*ptr), nitems. fd)

Cwrite writes nitems of data beginning at pir on file fi. Cwrite writes blocks of binary informa-
tion, not translated to printable form, on a file. It is intended for machine-oriented bulk
storage of intermediate data. Any kind of data may be written with this command, but only
the corresponding cread should be expecied to make any sense of it on return. The first argu-
ment is a pointer 0 the beginning of a vector of any kind of data. The second argument tells
cwrite how big the items are. The third argument specifies the number of the items 10 be writ-
ten: the fourth indicales where.

On GCos, cwrite may only be

used on files opened with

the “i" option.

CREAD (pir, sizeof (spir). nitems, Jd)

Cread reads up 1o nitems of data from file fd mlo a buffer beginning at pi~. Cread returns the
number of items read.

On UNIX, where there are
no records, the returned
number of items will be
equal to the number re-
quested by nirems except for
reading certain devices (e.g.

-11 -

On GCos, this is the number
of items actually contained
in the next logical record.
Cread may only be used on
files opened with the “i”
option.

On 0s/370, this is the
number of items actually
contained in the next logical
record.

the teletype or magnelic
tape) or reading the final
byies of a disk file.

Again, the second argﬁmenl indicates the size of the data items being read.

CCLOSE (fd)

The same description applies as for character-stream files.

7. OTHER PORTABLE ROUTINES

REW (1d)

Rewinds unit /d. Buffers are emptied properly and the file is left open.

SYSTEM (string)

The given string is executed as if it were typed at the terminal.

String must be 80 characters
or less. This routine should
not be used in batch opera-
tion.

The string should be in
upper case. This routine
will not work in batch.

NARGS ()

A subroutine can call this function to try to find out how many arguments it was called with.
Normally, nargs() returns ' The form of the call is nargs

the number of arguments
plus 3 for every floar or-dou-
ble argument and plus one

(ndec!) where ndec! is the
number of declared argu-
ments.

for every long argument. If
the new UNIX feature of
separated instruction and
data space areas is used,
nargs() doesn’t work at all.

CALLOC (n, sizeof(object))

Calloc returns a pointer 10 new storage, allocated in space obtained from the operating system.
The space obtained is well enough aligned for any use, ie. for a double-precision number.
Enough space to store » objects of the size indicated by the second argument is provided. The
sizeof is executed at compile time; it is not in the library. Failure to obtain space is variously
indicated:

Returns —1. GC abort. 804 or 80A abend.

CFREE (ptr, n, sizeof(*ptr))

Cfree returns to the operating system memory starting at ptr and extending for # units of the

-12-

size given by the third argument. The space should have been obtained through calloc.

On UNIX you can only re-
turn the exact amount of
space obtained by calloc; the
second and third arguments
are ignored.

FTOA (floating-number, char-string, precision, format)

Froa (floating to ASCIl conversion) converts floating point numbers to character strings. The
formar argument should be either ‘f” or ‘e’; ‘e’ is default. See the explanation of prinif in sec-
tion 5 for a description of the resuit.

Ftoa is not available on
0s/370.

ATOF (char-string)

Returns a floating value equal to the value of the AsCll character string argument, interpreted
as a decimai floating point number.

Atof is not available on
0s/370.

TMPNAM (sir)

This routine places in the character array expected as its argument a string which is legal 1o use
as a file name and which is guaranteed to be unique among all jobs executing on the computer
at the same time. It is thus appropriate for use as a temporary file name, although the user
may wish 10 move it into an appropriate directory. The value of the function is the address of
the string.

Not yet implemented on
TSO.

ABORT (code)

Causes your program to terminate abnormally, which typically results in a dump by the operat-
ing system.

INTSS ()

This routine tells you whether you are running in foreground or background.

The definition of *“fore- The name may also be
ground” is that the standard , spelled intso ().

input is the terminal. -

WDLENG ()
This deliberately different routine distinguishes the local system.
Returns 16. Returns 36. Returns 32.

C users should be aware that the preprocessor normally provides a defined symbol suitable for
distinguishing the local system; thus on UNIX the symbol unix and on GCOS the name gcos is
defined before starting to compile your program.

-13 -

8. FEATURES RESTRICTED TO ONE OPERATING SYSTEM

You can read this section even if you intend to write portable programs, but I don’t know
why you would want to. It describes routines tied to one of the three environments where C
operates. These include both generally useful routines which we do not know how to define
elegantly and efficiently for all operating systems, and aiso routines which no one wouid want
to execute except on the specific system for which they are defined. Some of the routines in
this section are of extremely specialized interest. The procedures copen and cexit, which have
been described earlier in a restricted way, are defined fuily in this section.

8U. UNIX SPECIFIC ROUTINES

Since most of the UNIX operating system and its software are written in C, a great many
more library routines are available here for system-specific operations. Users should consult
the UNIX Programmer’s Manual for details[2].

8G. GCOS SPECIFIC ROUTINES

On Gcos, where C has been used for systems programming tasks, there is a supply of
subroutines to permit access to operating system control points. Furthermore, the variety of
file types on GCOS requires additional flexibility in the I-O routines to cater to those not
satisfied with default file handling.

COPEN (filename, 1ype, options) J

The function copen has a number of other possible option arguments to produce very specific
results in terms of the GCos file system.

In analyzing the filename, file creation and accessing use the BFOR library jfilac
subroutine; the overall operation follows the computation center’s standard conventions:

First, throw away any permissions or alternate names, (as defined by the standard GCOs con-
ventions; since the second argument specifies whether reading or writing is required, the per-
missions are redundant). Then, if filename does not contain a slash:
a. A file already accessed with this name is searched for in the AFT:
b. If this is unsuccessful, an attempt is made to access a permanent file with the
specified name in the user’s catalog.
c. If this fails and write or append operation was requested, a temporary file is creat-
ed.

If filename contains a slash:
a. An attempt is made to access a permanent file by this name.
b. If this is unsuccessful and write or append operation was requested, a permanent
file is created. : :

Files with the same name from different catalogs may be open simultaneously; this is done by
using funny AFT names (“0.” to “9.”) for permanent files. When a file is closed, cclose
deaccesses permanent files; thus the user never sees the funny aliases.

In batch, the treatment of permanent files is similar to their treatment in time-sharing.
When accessed, they are given funny filecodes rather than funny AFT names. Temporary files
in batch are created as needed for filenames not containing a */’; note that such files disappear
at the end of the batch activity and are only useful if they are written, closed, and read within
one activity. For example, the command line prog > junk in TSS writes the output onto a tem-
porary file junk which can later be picked up from the AFT and read; but in batch, if junk is not
in your catalog you have just thrown away the output. (See below to find out how to provide a
command line in baich.) Any file name beginning with ‘*’ refers to an externally defined
filecode: the second and third characters of the name define the filecode. When writing, tem-
porary files are created for non-existent filecodes. Since these do not have save disposition,

-14 -

however, multi-activity jobs should use permanent files or filecodes defined by $ FILE control
cards to pass information from one activity to the next. At the moment, parameters on S FFILE
control cards are ignored.

The options argument is a string made up of a combination of the following characters
(other characters are ignored), which usually specifies a very Gcos-specific option for file
specification: :

t: assign to teletype. In time-sharing, this file is assigned to the user’s terminal; the
filename is ignored. In batch, lines written on the file have printer slew added.

2. indicates that this is a standard system format BCD file. This option is not necessary
on a file being read, but is the only way to write a BCD file. Normally such files are
written in media code 2; if the slew option ‘s’ is present they are written with code
3. Media code 2 files are padded to 80 characters to be a card image. This can be
suppressed by using media code 0 (see below). . _

s: printer slew is present or is to be generated. This option is only relevant for mode

2 files; and it should be omitted if no slew is desired or present Unfortunately,

GEFRC will not recognize the presence of slew on an input file, so that this option is

required to read a BCD file with slew (media code 3). Note that ged writes BCD files

without slew but Fortran usually writes them with slew. '

binary stream file. This file is defined to be a stream of machine-oriented rather

than character-oriented quantities. See section 6 for discussion of binary stream

files. ,

media code 3 file, i.e. BCD with printer slew. This is equivalent to "2s".

media code 2 file, i.e. BCD, no slew, not padded to a card image.

. discuss file accessing errors at terminal, rather than just returning an error code.

This permits the user to correct file opening errors at run time.

|: leave this file in AFT after it is closed; normally permanent files not originally
present are deleted. -

f: full AFT name given; this suppresses the normal creation of C altnames for files ac-
cessed by C. If you don’t understand this, you don’t need it.

When copen returns a negative value, there has been an error trying to open the file. The
specific negative number is usually that provided by the system file-access routine. If you
specify the 4 option to copen, a message will be typed on the terminal, and you will have a
chance to adjust the open request. Note in batch that the abort code Mz (not on the green
cards) refers to an error in the Fortran file-accessing package.

There is one unusual filecode in batch operation: the command line, if required by the
program, is expected on filecode cz. This filecode is created by the ./sh program if used to
spawn batch jobs; aiternatively, you may provide a $ DATA CZ card in your deck. This permits,
for example, redirection of the standard input and output in baich.

-
..

asw

CGETI (buff, len, fd)

Cgeri places the next record from unit fd into buff; and returns the number of integers read; 0
on eof. The unit fd must have been opened with the “i” option and may not be addressed by
cgerc calls or by ungetc. The second argument indicates the length of your input buffer, which
should be large enough for the records being read.

CPUTI (buff, len, fd)

Cputi writes len words from buff onto unit fd as a single GCos record. The file fd must have
been opened with the “i” option, and cpurc must not be used on'this file.

-15 -

BACK ([1d])

The file fd is backspaced one logical record. Since copen rewinds files as they are opened, these
routines need not normally be used. The direction of the file (input or output) is retained after
reverse motion. See the GEFRC manual [3] or experts to understand such operations as back-
spacing the teletype. The default file descriptor is cin.

XNARGS (ptrs)

The addresses of the arguments to the calling program are placed in the array of pointers purs.
The function returns the number of arguments. It does not matter how many arguments are
declared; xnargs depends only on the actual invecation. This routine permits a C program be-
ing called by FORTRAN to pick up the positions of arrays being passed as arguments.

DRLDRL (number, argl, arg2, ...)

This call causes the execution of the instruction sequence

DRL number

argl

arg2
with the A and Q registers taken from the external integers .a.reg and .q.reg and restored to
these cells after the derail returns. For example, dridr/ (5) (derail return) exits without closing
files, etc. If you don’t understand this routine, you don't need it.

MMEMME (number, argl, arg2, ...)

This routine is the same as dr/dr/ except that it executes the batch system call instruction in-
stead of the time-sharing instruction.

81. IBM SPECIFIC ROUTINES

This section describes routines which only apply to the 1BM 0s/370 C system. It is likely
that as C usage on this system expands, additional routines will be added.

COPEN (name, direction, options)

The name given is only taken as a file name in TsO. In batch 0s, dynamic file accessing is im-
possible, and the name is taken as a ddname. The only legal format for a ddname (and thus
for a batch name argument to copen) is "ft??f001" where the question marks are replaced by di-
gits. This name must be defined on a DD job control language statement. Such names are
treated similarly in TsO (the data set must have been allocated to this name) but any other
name is also legal in TSO, and is allocated by the run-time library. The format of new output
files is TSO .7ext style. As on GCQS, the IBM version of copen takes an optional third argument to
specify some details of file handling. In particular it is occasionally necessary to override the
default operation of placing a blank at the head of each output line being sent to a printer.
This ‘suppresses carriage control so that C programs written without reference to it work
correctly. The possible characters (given either as a single character argument, or as a member
of a string) are

e "edit mode": on output, changes lower case to upper case and tab characters into blanks.
b Places a blank at the beginning of each output line (for carriage control on a printer).

n Does not place a blank at the beginning of each output line, even if this stream is headed
for a printer.

-16 -

GENREG (regno, ndecl)

Genreg returns the value register regno had on entry to the calling function; ndec/ is the
number of declared arguments in the calling function.

9. CC — THE C COMPILER COMMAND

This section describes the commands to compile and load C programs on the three
different operating systems. On all systems, C is designed to be used with input files of vari-
able line length and upper/lower case ASCIi character set. Files should not be line numbered.
Any standard ASCll terminal suffices to enter a C program, but a terminal restricted (0 upper
case or the PL/I character set will be almost impossible to use with C.

9U. UNIX COMPILING COMMANDS

This description of the C compiling command on UNIX is taken from the UNIX
Programmer’s Manual (© Bell Laboratories 1972, 1973, 1974, 1975). Reprinted by permission.

The format of the C compiling command on UNIX is
cc[=cl[=pl{=£]1[—=O])[=S1[—-P]file ..

The uNix C compiler accepts three types of arguments: source programs, compiler op-
tions, and other loader-directed information.

Arguments whose names end with ‘.c’ are taken to be C source programs: they are com-
piled, and each object program is left on the file whose name is that of the source with ‘.0’
substituted for *.c’. The ‘.0’ file is normally deieted, however, if a single C program is compiled
and loaded all at one go.

The following compiler option flags are interpreted by cc:

—c Suppress the loading phase of the compllauon, and force an object file to be produced
even if only one program is compiled.

—p Arrange for the compiler to produce code which counts the number of times each routine
is called; also, if loading takes place, replace the standard startup routine by one which
automatically creates the data file of profiling information during execution of the object
program. An execution profile can then be generated by use of the UNIX prof command.

—f In systems without-hardware floating-point, use a version of the C compiler which han-
dles floating-point constants and loads the object program with the ﬂoaung—pomt inter-
preter. Do not use if the hardware is present.

—0 Invoke an object-code optimizer.

—S Compile the named C programs, and leave the assembler-language output on correspond-
ing files suffixed *.s’

=P Run only the macro preprocessor on the named C programs, and leave the output on
corresponding files suffixed ‘.

Other arguments are taken 1o be either loader flag arguments or C-compatible object pro-
grams, typically produced by an earlier cc run, or perhaps libraries of C-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the ord-
er given) i0 produce an executable program with name a.our. .

-17 -

9G. THE GCOS C COMPILER COMMAND

The commmand ./cc compiles and loads C programs. To compile x.¢, y.c and z.c, placing
the result on a permanent random library c/ib, type
Jee x.c y.c z.c r=iclib
or 10 run a.c with cl/ib and put the H+ (executable version) on prog, type
Jee a.c clib x=prog

The command line arguments are separated by blanks. They are divided into three ca-
tegories. Unlike the cc command on UNIX, the syntax of a file name is never meaningful;
source programs need not end in ‘.c’, for example. The types of arguments are:

1. random libraries: saved for loading.
2. sequential files: sent to the C compiler.
3. strings with ‘=" in them: command options.
Command options are (the text in parentheses is optional):
1. r(anlib)=name: merge file for compiler output; also used as a library for loading.

2. h(star)=name or just =name: time-sharing H~ file to be created. The file can be run
directly with the system command loader or the go command. If name is omitted, the de-
fault is .program.

3. x(ecute)=name: do an /i=name and then run the program.

4. f(ortran,orty,ortrex)=name or g{map)=name: program written in Fortran or assembier to
be included in library or H= file.

5. b(aichhstar)=name: batch H* file to be created. Such a file may not be executed in
time-sharing.

o(ptions)=name: use bfor options on file name.

m(ap)=name: put assembly listings and load map on file name.
u(se)=name: program references needed for loading.
e(ntry)=name: replace normal starting point with name.

10. k(eep)=name: place the GMAP translation of the next source program being compiled
on file name, which will be made a permanent file in your catalog.

11. d(ebug)=no: suppress the compilation of symbol tables and the loading of the debugger
(see section 12).

12. 1(imits)=string: make a $ LIMITS card for bfor. String should be something like *,26k”.

If you give no options on your command line, but only filenames, the default is
r=library. Be careful with the order of libraries and options on the command line; they are
used in the sequence given, and an options file, if any, is inserted at the place requested. Note
that no default options file is used, unlike bfor. Loading invoives the library cc/e.t.lib preceded,
in batch only, by ccle.b.lib; the normal entry point is (the Gcos standard) The bfor li-
braries are also used.

o o N

91. IBM COMPILING COMMANDS

Standard TSO command lists have been defined for C compilation and loading. They are
installed in the standard system procedure library. Supposing that the program is on a file
prog.text, to compile, say

cc prog

and to compile and execute say

-l18 -

¢cg prog

The C run-time library is stored on the library sys3.c/ib for linking or loading. C requires the
FORTRAN runtime library sys/.fortlib as well. On TsO it is not now possible to compile more
than one source program at a time. The dialog to compile and run the programs pl.text,
p2.text, and p3.text would appear as follows:

READY

cc pl

READY

cc p2

READY

cc p3

READY

loadgo (pl.obj p2.obj p3.obj) lib('sys3.clib’, 'sysl.fortlib’)

To use the C compiler on TSO, the user should specify a 250K region at logon.

In batch 0s/370 it is not possible to run the C éompiler, because the preprocessor com-
mand “include” implies dynamic file attaching, which is only supported in time-sharing under
0s/370. The 1BM C compiler is still under development, and it is likely that some of the restric-
tions in this paper will be removed. In particular, floating point and the associated library
routines will be included, and the calling sequence will be altered for easier compatibility with
other programming languages. .

10. GCOS PSEUDO-SHELL

The Gcos program ./sh provides the syntax of the UNIX command language on the GCOs
operating system. [t may be used conveniently with either C or BFOR programs. To simplify
the distinction between batch and time-sharing, it handles object programs most conveniently
in the form of random libraries. It will generate, as required, batch or time-sharing versions of
such programs and execute them. '

For example, suppose that the simple file copy routine discussed in section 1 is stored on
random library prog.r by a command such as
JJec prog r=iprog.r
or equivalent. In that case, the following sequence would submit first a batch and then a
time-sharing job to perform file copies:

SYSTEM 2.sh

=prog.r <data >newdara &

= prog.r <oldlist > newlist

./sh is an imitation of the UNIX shell for GCos. For example, to release all files with

names ending in “.g"”, type ./sh rele »g To make an archive file of all files with names sl.c,
s2.c, s3.c, etc., type .Jsh .Jarch c arfile s?.c To execute commands on file junk, type ./sh <junk.
To load and run the random library prog.s, type ./sh prog.r. To spawn a batch job to execute
the same program, type ./sh prog.r &

The input line is divided by spaces, semicolons, and commas. Each piece is examined for
the characters ?, [, and »; if it contains one of them, it is replaced by the permanent quick-
access file names it matches. The UNIX rules are used: ? matches any single character; »
matches anything; [chars] matches any of the characters in chars; [a-d] matches any character
between a and d inclusive. Thus, a? is replaced by all two-letter file names beginning with a;
a*is replaced by all file names beginning with a; *.gis replaced by all file names ending in .g;
al125-8] is replaced by any of the file names-al, a2, a5, a6, a7, a8 which exist, and so on.
Backslash may be used to escape the special characters; for example,

)

-19 -

.

Jsh bfor run \ "\ * libr=mylib,use=main ‘
If all you want is a list of names, you can use ./sh ./null pattern to get a list of all file names
matching parzern.

The result is reassembled into a GCOs command line, printed and executed. You need
not worry about the details of command reassembly; the shell follows the command loader’s
requirements. These are: for the commands /ist, rele, purge or remo the first two items are
separated by blank and the rest by semicolon; for the commands bfor, edit, yrun or jrun the first
three items are separated by biank and the rest by semicolon; for the command ger the first
two items are separated by blank and the remainder by comma; for command filsys the first
three items are separated by blank and the rest by comma; otherwise all items are separated by
blanks. If the assembled line exceeds 80 characters it is not executed due to a deficiency in

the command loader.

If the first item on the line to be executed is a random library, it is loaded and then exe-
cuted. The loading is done by bfor; the libraries used are each input argument, until the first
non-library, followed by ccfc.t.lib, and bforfsyslib. Use commands are given for and main.
This suffices for most C and bfor jobs. The output is put on temporary file .pg and executed
with go. Remaining (i.e. non-library) command line arguments are fed to the resulting pro-
gram. If the first item on the command line is a random library, and the last is ‘&’ or ‘&’ fol-
lowed by a string in parentheses, a batch job is spawned to run the program. The batch job
uses cc/c.b.lib in addition to ccle.t.lib, and bforibarchlib in place of bforfsyslib, and the command
line is provided on filecode cz. If a string in parentheses followed the ‘&', it is used as an op-
tion string to jrun; thus the line :
prog.r <input >output &(s1)
runs prog.r in batch with diverted input and output and at service grade 1. For the benefit of
FORTRAN users, the shell recognizes such constructions as 5<file or 6> file and causes the file
to be accessed with altname or filecode corresponding to the given number. This permits FOR-
TRAN programs running with the shell to divert their output. Any number, of course, may be
used with the shell, but GCOs FORTRAN only recognizes filecodes from 1 to 39.

If ./sh has no arguments, it reads lines and executes each in turn. Since it is a C program,
it can thus be used to execute a file by ./sh <filename. Alternatively, it can be used in front of
the GCos command loader as a filter by just saying ./sh. In this case, you type lines which are
translated and then executed. To get out of the pseudo-shell, type a blank line.

If you have more than 150 quick-access files, only the 150 most recently created are used
with », ? and []. AFT names are not used; thus you may have trouble with temporary files or
alternate names, neither of which are known to the shell. Because of the escapes, \ must
sometimes be input as \\. The shell accepts command files with arguments as on UNIX.

-120 -

11. MEASUREMENT FACILITIES
In general, these are derived from the operating system, and thus vary from machine to

machine.

The standard UNIX profiler
can be invoked by compil-
ing your program with the
—p flag of the compiler, e.g.
"cc —p file.c”. After run-
ning the resulting program,
the prof(1) command will in-
dicate the amount of time
spent in each subroutine.

12. DEBUGGING FACILITIES

If you load the library
Jhist.r with your programs
at the end of the run a tabie
is printed showing the
number of times every C
subroutine was called. If
you want to histogram parts
of your program, you may
call the entry .phist at any
time; it will print the
current counts and reset
them to zero.

There are no specifically C-
oriented measurement facil-
ities on the OS system. The
GCos histogrammer is not
yet installed.

On GCos and UNIX there are symbolic post-mortem dump facilities for C programs. The
UNIX debugger, written by D. M. Ritchie, is only outlined below; more detail is available in the
UNIX Programmer’s Manual. Errors in a running C program cause a brief message to be typed,
followed by the option of entering the debugger.

When a C program faults,
the core image is written to
a file and the system returns
to command level. The de-
bugger can be entered by
typing cdb (with optional ar-
guments giving the names
of the load module and core
image files if non-standard).

The debugger is entered au-
tomatically after a fault; or,
by calling x_dbug() it can be
entered deliberately. In
batch, the debugger is en-
tered on fault, prints a sym-
bolic dump, and exits.

No C debugging facilities
have been implemented yet
on 0s/370.

Interactive examination of the values of variables is possible; in general, each input line
to the debugger specifies data to be printed as of the time of the fault.

The debugger is used in-
teractively. The first request
should probably be $, which
presents a list of executing
subroutines and. their argu-
ments in octal.

On entrance, the debugger
asks you to choose between
interactive examination or a
full dump typed at the ter-
minal or directed to a file.
The first step if interaction
is chosen is to present the
list of active routines.

The typical debugger command names a variable and asks for its value to be printed.

The general format is

subroutine:variable/format

where formar is one of the letters /, ¢, f, d or s to specify integer, character, floating, double, or
string printout. i

.

-21 -

If the format is omitted oc- If the format is omitted the

tal integer is assumed. type of the variable is used
to decide on the format.

A command may also be given as

number{format

to examine a particular memory location by address. If the number begins with 0 it is taken as
an octal address; otherwise it is a decimal address. .
The slash is required. The slash may be omitted.

Non-word-aligned character

data may be accessed with

addresses of the form

number.d where dis 0, 1, 2

or 3 to select the bytes of a

word.

To find out the address of a variable, the format
subroutine:variable=
may be used. Other possible inquiries are
Subroutine:variab le"
(equivalent to variable/s) and
subroutine:variable’

(which is the same as subroutine:variablelc).

An address or variable name may be followed by ,number which causes the indicated
number of memory locations, beginning with the address or variable, to be printed. A format
may follow.

Not implemented: the size
of arrays is known from the
symbol tables and when an
array is named its contents
are all printed.

On GCOs there is a concept of “current routine”. The name of the subroutine need only
be given when it changes, and the command name: is accepted to change it. The commands
#up and #down move up and down the stack of active routines (“‘up” is towards the operating
system, in the direction of returns; “down” is in the direction of calls).

Not implemented: All of the variables of a

subroutine names must be routine may be printed with

given for each.internal vari- the command #print. .
able.

To exit from the debugger, type an end-of-file at it.

On Gcos the command
#quit also exits. .

In general, the cost of the debugger is small.

Since the debugger operates
only on a post-mortem core
image, there is no cost asso-
ciated with the running pro-
gram.

-22 -

The debugging routines re-
quire about 2500 additional
words of memory, plus the
cost of the symbol tables,
which run three words per

variable. The d=no option
of ./cc will suppress the de-
bugger.

17. ACKNOWLEDGMENTS

Without the work of Dennis Ritchie, of course, this entire subject would be non-existent.
In addition, Steve Johnson and Tom Peterson have written the GCOS and IBM TSO compilers
respectively, Special thanks are due to Steve Johnson for his active interest in and contribu-
tions to the library and C run-time support on several machines. The assistance of Roger
Faulkner with GCos C is also gratefully acknowledged.

18. REFERENCES

1. D. M. Ritchie, C Reference Manual. Section 1, this report.

2. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual. Available from Bell Labora-
tories under license agreement.

3. C. S. Roberts and R. A. Faulkner, 78§ GEFRC — File and Record Control Subroutines For Use
with GECOS Time-Sharing, (private communication) and N. P. Neison, BFOR, (private communi-
cation) August 1973, describe the routines used to support the C runtime system.

4. 1. F. Gimpel, Sys2.Fortlib Newsletter, (private communication) describes subroutines used for
C run-time support.

-23-

Appendix 1
List of the C Library Routines
Name ‘ Section
ABORT (code) 7
ATOF (char-string) 7
BACK ([fd]) 8G
CALLOC (n, sizeof(object)) 7
CCLOSE (fd) 4
CCLOSE (fd) 6
CEOF (fd) 4
CEXIT (ferrcodel) 4
CFLUSH (fn) 4
CFREE (ptr, n, sizeof(*ptr)) 7
CGETC (fd) 4
CGET!I (buff, len, fd) 8G
COPEN (filename, type) 4
COPEN (filename, type, options) 8G
COPEN (name, direction, options) 81
COPEN (name, direction, “i"") 6
CPUTC (char, fd) 4
CPUTI (buff, len, fd) 8G
CREAD (ptr, ptr+1, nitems, fd) 6
CWRITE (ptr, ptr+1, nitems, fd) 6
DRLDRL (number, argl, arg2, ...) 3G
FTOA (floating-number, char-string , precision , format) . 7
GENREG (regno, ndecl) 8
GETCHAR 0 4
GETS (s)° 4
INTSS O 7
MMEMME (number, argl, arg2,) 8G
NARGS () 7
PRINTF ([fd,] control-string, argl, arg2, ...)]
PUTCHAR (ch) 4
PUTS (s) 4
REW (fd) 7
SCANF ([fd,] control-string, argl, arg2, ...) 5
SYSTEM (string) 7
TMPNAM (str) 7
UNGETC (char, fd) 4
WDLENG () 7
XNARGS (ptrs) 8G

