(8 4

o ' 025

Beli Laboratories Cover Sheet for Technical MemOrandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEJ 13.9-3)

Title— Structured File Scanner Dote~ January &4, 1974

-~ T™- Th-1271-2
N

Other Keywords -~ Debugging
Structured Flles
File Maintenance

Author(s) Location ond Room Extension Charging Case—~ 39199
- L. A. Dimino MH 2C-514 2390

-..\‘ - Filing Case— 39199-11

ABSTRACT

The UNIX command SFS (Structured File Scanner) provides a versa-
tile debugging facility for those who desire to use complex data
structures on random access mass storage. '

v
some features of SFS:

1. It provides both interactive and preprogrammed operation.

2. It provides expression evaluation and branching.

3. It provides the ability to assimilate a rather arbitrary set
of hierarchical structure definitions. .

4, It provides the ability to locate, to dump, and to patch
specific instances of structure in the file. Furthermore, 1in
the dump and patch ogperations the external form of the struc-
ture is selected by the user.

5. It provides the ability to escape to the UNIX. command level

N in order to allow the use of other UNIX debugging aids.

Address Label
Pages Text 22 Other 7 Total 29

J .'W\uv".\a:r-ﬁ “uy

No. Figures—________ No. Tebles No. Refs.

peLlL TELEPHONE LAEORATORIES, INC. ’ TH-T0-1271-2
!

DISTRISUTION .
(REFER GEX 13.9-)) N

CONPLETE MEMOFANCUM TO COMPLETE MEMCRARCUM TC COVER SHEET OSLY TO COVER SHEET ONLY TO COVER SHEET CNLY TO

CORRESFCNCENCE FILES -HC MC CFACKEN,MARYLCU ABRAHAM, STUART A FOX,PHYLLIS KAISER,J F
¥C GILL,FCRERT AHRENS, RAINER B POY,J C XALRO,ASHOK L
OFFICIAL FILE CCFY MC GCNEGAL,MISS C A ALCALAY,DAVID FRANK, MISS A J KANE,J RICHARD
(FCRM £-7770) - FLUS MC ILKOY,M COUGLAS AMITAY,NOACH FREEMAN,R DON KANE, MRS ANNE B
ONE WHITE COPY FCR #MCDONALL H S AMOSS, JOHN J FROST,H BONNELL XAYEL,R G
EACH ACCITICNAL MCRGAN,S P ANSELL,H G FULTON,ALAN W KEARNEY, ROEERT
FILING CASE NIMTZ,R O ARMBRUSTER,MISS M E | GABBE,JOHN D RENNECY, RCEERT A
REFERENCEL NOCLANCI,J ARHSTRONG , DOUGLAS B GARCIA,R P KERTZ,DENIS R (s
NCSAL,FAUL C . ARNCT,DENNIS L GATES,G W KILLMER,JCHN C
CATE FILE CCPY OPITZ,R ARNOLD,GEORGE W GATES,ROBERT K KIRSCHNER,I B
(FCFH £-1328) OSSANNA,J F JR ARNOLD, THOMAS F GAY, FRANCIS A RLAPPROTH,F F
PAT10N,GARDNER C BACURA,DENNIS C GELBER,MISS CHERON L KLEINER,RICHAPC T
13 KEFERENCE COPIES PINSCN,ELLICT N BAUER, MISS H A GL2B,XKENNETH R XNOWLTON, KENNETH
#PRIM,RCEERT C BAUGH,C R GILBERT,MRS HINDA § KRUSXAL,JCSZFH B
 ROBERTS,CHARLES S BEYER,JEAN-CAVID GILLETTE, DEAN LEE,MISS 2 N
ROCIHAN,MRS EATRICIA A BILOWOS, RICHARD M GIMPEL,JAMES F LEGENHAUSEN, S
127 sup ROCRIGUEZ, ERNESTO J BIRCHALL,R H GITHENS,JOHN A LESK, MICHAEL E
ccrDCB RCSLER, LAWRENCE +BITTRICH,MRS M E GLUCK, P LESK,MS ANK 8
SATZ,L R BLINN,JAMES C GNANADESIRAN,R LIEBERT, THOMAS A
AHO,A V SCHLEGEL,C 1 BLY,JOSEPH A GOLABEX,MISS R LINDERMAN,J
ALEXANC:R,J L JF SEMMELMAN,C L BCCEN,F J GOODRICH, LEWIS M LIN,SHEN
ALMGUIST,k P SHORTER,J W BOHACHEVSKY,I O GORDON, BRIAN G ' LOMUTG,N N
ARNOLL,S L SIPES,J C BRADFORD,C & GORMAN,JAMES E LUDERER,GCTTFRIE A
BARTLETI,WACE S SMITH, X H BFANDT, RICHARD B GOTTDENKER, ROBERT G LUMMIS, RO2ERT C
EeCKETT,J 1 SMITH,LESL1E T BRISSON,R J GRACE, KENNETH JR LUTZ, XENNETH J
BERAKYRAN,F D SPANG, THCMAS C BOCHSBAUM,S J GRAFTON, V LYCKLAMA, HETNZ
EIREN,MFS LlhMA E SFPIRES,F J CAMPEELL,STEPHEN T GROSS,ARTHUR G LYONS,STEVEN H
ELUE,J L STRCHECKEF,CAFY A CANACAY, RUCD H GUERRIERO,JOSEPH R MAC WILLIAMS,
ECLSKY,MORRIS I TANIS, RS FATRICIA J CARAWAY,R E GUMMEL , HERMANN X MADDEN,MRS D M
ECWYEF,L RAY 1ESRRY,M E CARUSO,A F HALE,A L MALAVESZ,E P
EOYCE,w M THCMESCN, X CASPERS, MRS BARBARA E HALL,MILTON S JR MALCHESKI,W J JR
BOYLE,GERALL C THCNSCH, ¥-i CASTELLANO, MRS M A HALL,W G MALCOLM,J A
ERCAN,h STANLEY TRACY,MRS C E CAVINESS,JOHN D HANSEN,R J MALTHANER,W A
BROWN,RILLIAX & +TUKEY,JCHN W CHAMBERS,J M HARASYMIW,J MARSH,BRENT L
CEMASEXC, FREC VAN BAUSEN,Jd DAVID CHRIST,C W SR HARKNESS,HRS CAROL J MASHEY,JCHN R
CHEN,STEFHEN WALFCRC, SCEERT B CLAYICN, CANIZL P HARRISON, NEAL T MATHEKS, MAX V
CRERRY,¥S 1 L WALKER,MISS E A CCBEN,ROBERT M _ . HARRIS,S D MATTAVI, FQNALC A
CLIFFCARC,ROBERT M ®ARNER,JACK L CCLE,LCUIS M HARTMANN, ROBERT A MC CABE,PETER S
CCOPER,LENNIS W WASSERMAN, MRS 2 CONNERS,R R HARCTA, X MC EOWEN,JAMES &
CORASICK,MISS M J WATSCN,C S CCCPER,A E HAUSEZ,A D MC MUTLEN,E C
CRUME,LAFRY L ®AX,MRS RUTH CCPP,CAVID H HAWKINS, DONALD T MC TIGUE,G E
LAVIS, A L JK WEBEER,SUSAN A CCULTER,J REGINALD HAWKINS, RICHARD 8 MEERES,MRS EILIEN M
CENTON,R T WEXELPIAT, RICHARD L CCUTLER,C CHAPIN HEATH,SIDNEY F III MENIST,JAVIC B
SEVLIN,MRS SUSAN J WITXCRSKI,¥ISS JCAN D D ANDREA,MRS LOUISE A HELD,RICHARD W MENNINGER,R £
DI MARSICO,ZRIAN J WOLFE,FCBERT M DESMOND,J P HEMMETER, RICHARD W MENON, F R
CIZTZEL,X RCBERT YAMIN,MRS E E DEUTSCH, CAVID N HEMMING,C JR . MERCACANTE,? F
CIMINC,L A 94 BAMES DIMMICK,JAMES O HEROLD,JCHN W METAXIDES, A
ESTVANCER, RCESRT A DCLOTTA, T A HINDERKS,L W METZ,PORERT F
FLEISCHEF, HERBERT I OCMBROWSKI,F J BOCHBAUM, MISS FRANCES MILLEZR,ALAN H
FCUGHT,B T COVER SHEET ONLY TO DRAKE, MRS L HOEHN,MISS MARIE J MILLZR,G C
FRASER,A G , DRYDEN, JOHN J HONIG,W L MILLER,GZRALL L
FPEEMAN,X GLENN DUFPY, FRANCIS P HOGVER,MRS E S MILLER,S £
GEARY,» J CCRRESFCNCENCE FILES ~-EO ECELSON,D HOYT,WILLIAM F MILLS,MISS ARLINE D
GEYLING,? T ECMUNCS,T W : BO,MISS J MITCHELL,CLGA M M
GOLLSTZIN,A JAY S COPIES EIL2OTT, MRS JOAN BUDSON,E T MOLINELLI,JCHN J
GRAHAM,R L FIUS CNE CCFY ICR ELLICIT,R J HUNNICUTT,CHARLES F MOLTA,J W
GUNCEF¥AMN, F EACH ACCITICNAL ELY,T C HYMAN, B MORGAM, SENNIS J
RALL,ANCFEW O JR FILING SUBJECT ERCLE,X W 1PPOLITI,O D MORRIS, RCEERT
HAMILTCN,MISS P A ESSERMAN, ALAN R IRVINE,M X MURATORI, RICHAREC O
HAMMING,R W PABISCH, MICHAEL ? JACKOWSKI,D J MUSA,J O
HANNAY, N © 127 FAULKNER,R A JACOBS,H S NEHRLICH,® R
HESS,¥ILICH S 12 EIR FELLCMAN, STUART 1 JAKIELSKI,C E NELSON,N-F 72
IVIE,EVAN L 13 DIR FELS,ALLEN M JAMES,DENNIS 8 NEWBURGER,J A
JCHNSCN,STSFHEN C CCEDEC FIGLIUZZI,MISS M E JENSEN,P O NINKE,WILLIAM H
KEESE,w ¥ FISCHER,H 8 JORDAN,MRS E NORTCM,HERBERT ©
XERNIGHAN,BRIAN W FORT,JAMES % Joywnt, L NOWITZ.D A
MAMLEF,G R FOWLER, BRUCE R KACHURAK,JOSEPH J O BRIEN,J A
+ NAMED BY AUTHOR > CITED AS REFERENCE SOURCE
318 TOTAL
DIMINO,L A ™=70-12717
MH 2CS10 TOTAL PAGES .

N

1C GE1 A CCFFLETE COPY:
PLEASE SENC A COMPLETE COPY TO THE ADORESS SHOWN ON THE

OTHER SIDE.

1., Fk SUFt YOUR CCHFECT ACCRESS 1S GIVEN CN THE CTHER SIDE. NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS CCVER
SHEET TO THE CCMPLETE COPY.

2. FOLC ThiS ShEE1 IM HALF wITH 1h1S SIDE CUT ANC STAPLE. IF COPIES ARE NO LONGER AVALLABLE PLZASE FORWARC THIS

REQUEST TO THF CCRRESPONGENCE FILES.
J. CIRCLE ThE ACLCFESS AT RIGAT. USE NC ENVELCFE.

(3.4

| Bell Laboratories

sumect: Structured File Scanner - Case 39199-11. ae: January 4, 1974
c | wom: L. A. Dimino
| | B TM=7U-1271-2

MEMORANDUM FOR FILE

%;\ INTRODUCTION. The debugging facilities currently available to
A those who desire to use complex data structures on random access
mass storage most often either lack the generality to handle more
than a small set of predefined structures, or provide that gen-
erality at the expense of forcing the user to deal almost ex—
clusively with octal or hexadecimal data representations. The
lack of an adequate debugging facility for dealing with struc-
tured files can obviously be taken as having an inhibitory effect
on the use of structured files, and.a negative influence on pro-
grammer productivity when such files are used. v

The author has provided a UNIX command SFS (Structured File
Scanner) to f£fill this gap in the debugging facilities available
with that system., The program is written in the C language which
currently 4is available on the PDP-11 running under UNIX and the
HIS-6070 running under GCOS, However, the program could be
translated with a relatively small effort into a number of other
procedural languages which provide both recursive procedure en-
try, and pointer and character valued variables.,

Some features of SFS include.

1. It provides interactive operation, but in addition it also
provides for a preprogrammed mcde of opération,

g;\ 2. It provides for elaborate address computations by supplying

v arithmetic expression evaluation. Furthermore, the values of
addresses and of expressions have sufficient range to address
all standard mass storage devices used with the hardware.

3. It provides the ability to assimilate a rather arbitrary set
of hierarchical structure definitions. In addition, a ccn-
venient mechanism is provided for naming instances of sub-
structure in the defined structure(s) in the file.

L-\ 4, It provides the ability to locate, to dump, and to patch
o specific instances of structure in the file. The user input
and output required by these operations are in a form natural
to the structure under consideration rather than some single
form arbitrarily chosen for all structures.,
S« It provides the ability to escape to the UNIX command level
in order to allow the use of other UNIX debugging aids.

SFS

In the following description a formal syntactic description of
the SFS debugging language 1is interspersed with an English
description. The English description is essentially complete unto
itself, and the reader unfamiliar with the metalanguage of the
formal description may ignore that description, and work out any
ambiguities in the English description to his own satisfaction
through interaction with SFS. :

The formal syntax is essentially BNF with the metacharacters ::=
and newline designating definition and alternation respectively,
For those unfamiliar with BNF the following offers a simple but
detailed description of the metalanguage.

Each piece of text enclosed in angles <> is a symbol (nonter-
minal symbol) in the metalanguage, and defines a set of char-
acter strings. The text enclosed between the angles is in-

- tended. to express the meaning attached to the strings in the

set . ’

The nonterminal symkol +to the left of the defining symbol
(::=) is taken to ke defined by the text to the right. This
text takes the form of a sequence of strings of symbols of
the metalanguage separated by newlines. Each 1line of the
definition provides an alternate form for a string in the
defined set. The character strings defined by a line of the
definition are Jjust those formed by selecting a string from
each set named on the line and concatenating them together.
For example,

<abec> ::= <Ka><bk>
<c>

defines the set <akc> to consist of those character strings
formed either by selecting a string from set <a>, say "a",
and ancther from set , say "bb®" and concatenating them
together +to form a single string, "abb", or alternately by a
single string selected from <c>.

The metalanguage has some additional restrictions imposed on
the definitions. No nonterminal symbol may appear on the
left side of more than one definition; every nonterminal sym-
bol must appear on the left side of some definition. The
first restriction insures that the definitions are unique,
and the second insures that each nonterminal symbkol of a fin-
ite length text in the metalanguage is ultimately definied in
terms of a class of primitive sets of strings (terminal sym-
bols).

In addition, there must be only one nonterminal symbol which
does not appear on the right side of some definition. This
insures that the definitions ultimately form a definition of
a single set of strings.

@

@

-

T e -

N

In the

QEo

following description the terminal symbols of the

metalanguage include:

1.

2.
3.
4.
Se
6.

8.

9.

10.

11.

12.

13.

the wunitary sets containing the strings consisting of a
single printing ascii character, these are represented by
the character they contain (Ascii space is not considered
a printing character in this context.);

{newline)>, which contains the single string consisting of
an ascii newline character;

{spaces), which consists of those strings formed from cne
or more ascil space characters;

{sn*)>, which contains all the strings which can be formed
from the ascii characters space and newline; _ = =
53gtal digit)>, which contains the strings 0 1T eee

T

Sdgéimal digit)>, which contains the strings 0" "1 ...
9 .

? .
<null), which contains the null or empty string;
{name), which contains all non null strings of length
less than 64, which begin with an alphabetic character,

.and which only contain alphabetic characters and decimal

digits;

{format name), which contains only those strings in
{name> which refer to structures previously defined in
SFs; R

{comment)>, which contains all those strings which can be
formed from the ascii character set excluding <newline>,
and- which have a length less than 150 characters (vrhis
includes the null string.);

(file named>, which consists of those strings which form
UNIX filenames;

{UNIX command), which consists of those strings which
form UNIX commands; ‘

{ascii 1list), which contains arbitrary strings of ascii
characters which conform in length to a previously de-
fined, and currently referenced, ascii structure accord-
ing to the rules given in the section on ascii input
below. .

It should be noted that <{ascii list) necessarily depends
upon the structure reference with which it is associated,
if the formal syntax is to define the grammar of the
language unambigously. Similarly, to define an unambigu-
ous grammar the symbols ‘{octal 1list)>, <decimal 1list>,
{floating octal 1list)>, <floating decimal 1list)>, and
{patch valuesd> must all depend on the structure reference
with which they are associated. Consegquently, they aisc
should be terminal symbols. Nevertheless, definitions oL
these symbols are included in the syntax to elucidate
their rules of formation.

SIS

SFS COMMAND,

8fs filename [-]

provides an interactive program for scanning and patching struc-
tured files. The file is assumed to reside on a random access
device (i.e., a device for which the SEEK system call is ap~
propriate). The second (optional) argument indicates that the
file 4is on a block (512 byte) addressed device. If this argument
is omitted, the file is assumed to be byte addressed (iees, an
ordinary UNIX file). In either event, the file will always ke
read and written in units of 512 bytes, aligned at the byte ad-
dresses 0,512,1024,..., with only one block residing in core at
any one time.

The input to SFS consists of a sequence of commands, each of
which contains addressing arguments followed by a one or two
character command identifier and the particular arguments re-
wuired for the execution of that command,

{command) ::= {addressing><{command_id and arguments><{newlined

Each command is entered on a sepafaie line. Moreover, the pro-
cessing of a command may be terminated abruptly by typing an
interrupt (rubout/delete character). -

The addressing consists of Zero, one, or two arithmetic expres=
Sions separated by a comma.

{addressing), ::= <nulld
{address)
{address)>,{address)

<address) ::= .
{constant)
(<expression))

The two expression address specifies a starting and stopping
address. - While the one expression address specifies a starting
address only, the same value is used for the stopping address
when it is required. The null addressing is equivalent to taking
the current address (.) for both addresses.

Note that if either of the expressions in the addressing is more
complicated than a singlé integer value or the value of the
current address, it should be parenthesised.

Although most of the commards require a zero or one expression
address, one is allowed to to supply the additional irrelevent
information, Furthermore, although several of the commands may
read or write the file, all will restore the block containing the
current address to core upon commmand termination,

(]

[

Y

N

-

Some examples of the addressing fcrms include:

. The current address,
7492 A decimal byte address.
07740 An octal byte address.
(block.head), (block.head + block.length *2) :
A range defined by the structure of the file.

COMMANDS. This section defines the nonterminal symbol
<command_id and arguments>. However, for convenience in exposi-
tion, rather than give the formal syntax and the English explai-
nation separately, they are presented together in a tabular form.

The commahds include the following:

<null> A null command prints the value of (.), the
current address.

q | Quit. That is, exit from SFs. '

"comment> ‘This causes _ .the succeeding characters

(<comment>) up to the next newline toc be ig-
nored. This command is also useful as a no-op,

- when used in conjunction with the jump command
r Sset (.) to the starting address, and reini-

tialize the core buffer. This command offers
the only exception to the addressing interpre-
tation given above. The null address is in-
terpreted as though it was the expression
((-.+511)&037777777000). That 1is, the address
is taken to be the first byte in the next
block.

w Write the core buffer to the block containing
the starting address.

SFS has a 32 bit current address register, eight global 32 bit
registers (named $0 $1 ... $7), and eight local 32 bit registers
(named “0 *1 ... “7). The global registers are always available
to the user, like FORTRAN CCMMON variables, but a new generation
of local registers is provided at each subroutine entry, like
ordinary ALGOL variables.

The next three ccmmands provide a means to manipulate these re-
gisters through assignment, and the fourth ccmmand provides ex-
pression evaluation without assignment.

=<expression> Set (.) to the value of the arithmetic expres-
sion, and initialize the core buffer. This is
equivalent to “ (expression)r-’.

-]

SFS

${octal digitd=<{expression)
Assign the value of the arithmetic expression
to the named global register.

‘octal digitd=<{expression)
Assign the value of the arithmetic expression
to the named local register.

:{expression) Evaluate the arithmetic expression and print
the result.

The next two commands allow the user to return to the UNIX con-
mand level of control. However, the special facilities offered by
the shell (UNIX command interpreter) are not provided so that if
they are required, the shell (UMIX command sh) must ke caliea
explicitly. '

[CUNIX command)> Escape to UNIX, and wait for the UN1X commanu

to complete execution.
&KUNIX command) Initiate a UNIX process, and resume activity
immediately.

The next command provides a subroutine capabitity for srS. ‘Lnis
allows complex or repetitive interactions to be programmed, and
stored for future reference on a file. When the subroutine 1is
entered the local registezs are initialised in sequence by the
starting address, the stopping address, and the values of the
expressions ‘which follow the filename. If more than one expres-
sion is supplied, they must be separated by commas.

$<{file name)d{spaces>{list of expressions>
The command stream is to ke taken from the
named file. Every command may be executed fron
this file, including another %<{file name) com—
mand. Recursive subroutine entry is permic-
ted.

{list of expressions) ::= <nulld
{expression
.{expression),{list of expressions)

The next command permits the user variation in the sequencing of
commands when executing in the programmed mcde. This jump command
is considered an error if issued interactively.

j<jump conditiond><{expressiond
This command compares the values of the start-
ing and stopping addresses according to the
specified jump ccndition, and performs the
jump (transfer of control) only if that condi-
tion is satisfied. If the condition is omait-
ted, the jump is always executed.

6

-

- SFS

The jump conditions include =, l=, >, >=, ¢,
{=, and =), which stand for equals, not
equals, greater than, greater than or equals,
less than, less than or equals, and bitwise
logical implication. Bitwise logical implica=-
tion may also be interpreted as bit contain-
ment, (i.e., a->b is true if the ones in the
binary representation of a are also ones in
the representation of b.) '

If the jump is to be executed, the expressic:.
is evaluateds 1Its value gives the offset.
positive or negative, in 1lines from the
current command line to the next one to h¢
executed.

{jump condition) ::= <{null)

L AAVV = |l
[} i-

v

.

The next five commands are related to format (structure) defini-
tions. The form of the definitions is described in the section
FORMAT DEFINITION below,

£ format) ‘ Define a format (structure).

Wformat name) Undefine a format. The ability to undefine
and then redefine a parameterised format,
makes it feasible to work with many structures
which have a variable configuration.

1 List the names of the formats which are
presently defined.

1{format name) Print the named format definition.

l-{format name) Print the length of core storage alloted to
the format definition, and the length of the
structure defined by the format.

The o (offset) command is a convenient method for determining
those offsets into a structure which are useful for address ccm-—
putations. The form of a format reference is defined in the sec-
tion FORMAT REFERENCES below.

oc{format ref) Print the length of ‘the substructure refer
enced, the offset in the structure to th:
first 4item .referenced, the offset in the
structure to the last item referenced and the

7

S¥FS

address of the first item referenced relative
to the current address.

o+{format refd Prints the offsets like the o command above,
but it also sets the value of the current
address (.) to the address of the <first item
referenced.

The 4, p, and s (dump, patch and search) commands which follow
form the core of the debugging facility.

alformat refd Dump the referenced structure basea at twne
starting address. The data is dumped in a
format determined by the format definition
referenced.)

p{format ref><{patch values)

Pateh the referenced structure based at the
starting address. The 1list of patch values
must agree in length and form (ascii, octal,
decimal, floating point) with the format
reference. Wwithin the patch values a single
newline character serves as a signal for the
program to cue the user as to the type and
. form of the next value required, and two suc-—
- cessive newline characters (empty line) signal
: the program to leave the value in gquestion
unchanged. Note that interrupting the p com=—
mand does not restore the partially patched

structure to its original form.

‘patch values)> ::= <{list of values){sn*>{patch valuesS

{list of wvalues) s 3= <ascii listd
{octal list)
{decimal list>
(floating octal listd
{floating decimal list>

s¢format ref><{conditions>
Test the structure based at the starting ad-

dress to determine whether the value defined
by the format reference satisfies the conjunc-—
tion of the conditions specified. If the con-
ditions are all satisfied, the base address ct
the structure is printed, otherwise an error
is signaled. The command also sets the value
of global register zero. This is set to zero
{f the test (search) is successful and tc
minus cne if it fails.

The value of the format reference is restrict-
ed to an array of bytes, words, or single or
double precisicn numbers. These are interpret-
ed respectively as a byte string of wunsigned

8

@

.

SFs

values, a multi-length twos-complement integer
and a floating point number with a multi-
length mantissa.

The conditions which can be tested include
equals, not equals, less than, less than or
equals, greater than, greater than or equals
and)bit inclusion (bitwise logical implica-
tion).

The list of conditions (see the section
CONDITIONS below) must begin with either a
newline character or a (?). If the newline is
chosen, the program will cue the wuser as to
the length and form of the value to be tested.
Note that each value specified in a condition
must agree in length and form with the format
reference.

Within the value specified in a condition two
successive newline characters (empty line) are
interpreted Ly the rogram as a request to
repeat the last byte, word or £floating point
value input. . : '

‘The command normally ends with the newline
following the end of a condition. However, if
the user types a backslash (\) betore that
newline, the program will cue him with an
asterisk (#). He may then continue enteriny
conditions or initiate the test by typing a
newline character.

s=-{format rerd>{conditions)

Search the array of structure based at the
starting address and extending to the stopping
address. (See the s command atove.) The tase
of each of the instances of the structurs
which satisfy the conditions is printed.

s+{format refd>{conditions>

Search the array of structure based at the
starting address and extending to the stopping
address. (See the s ccmmand above.) The Lase
of the first instance of the structure which
satisfies the conditions is printed, and the
current address (.) is set to this value.

The syntax for the arguments to the search command is given kelow
in the CONDITIONS section, this section also contains two exam=—
ples of the use of the command.

The next commands permit the user to turn on and off the printing
of labels in the patch and dump operation, and the prompting in

9

SFS

‘the search cperations. The inhibition of this printing is ffe-
quently desirable when executing programmed input.

These commands also inhibit the printing produced by the s+ and
o+ commands when executing a program. They have no effect on
these commands when execution is interactive,

v Turn on the printing of labels, and prompting.
This is the default condition.

v+ This is identical in éction to the v command
arove.)

V- Turn off the printing of labels, and prompt-
ing.

-

The last two commands permit a SFS program to communicate with
the user, although in an admittedly restrictive manner.

< comment) This is a printing comment. That is, the com—-
ment is printed at the users teletype. Within
the comment certain character sequences fol-
lowing a backslash (\) are given a special
interpretation. :

C - \{space> is output as a literal space charac-
. ter. If this was not available, it would be
impossible to ocutput multiple spaces.
\. is replaced in the output by the value of
the current address.

\s<{octal digit) is replaced in the output by
the wvalue of the corresponding global regis-
ter.

\‘doctal digitd is replaced in the output ty
the value of the corresponding local register.

\(expression) is replaced in the output by the
value of the expression.

Lastly, if the comment ends with the backslash
character, a newline character will not te
appencded to the output line.

~——
——

i{register)>{comment> - _
This interaction coirmand will print the com-

ment with the same interpretation as given in
the ¢ command above, but then it reads an
expression from the user’s teletype, evaluates
it, and assigns the value to the named glopbal
or local register.

10

/f)f

SFS

FORMAYT DEFINITION. The format definition, as the name implies,
bears a structural and functional resemblance to the FORTRAN
FORMAT statement. The following table enumerates the analogous
structure in the two types of format.

FORTRAN SFS
parentheses used as list Braces or brackets used as list de-
delimiters. delimiters in order to prevent con-

fusion with parentheses used as
expression delimiters.

statement number and The keyword is superfluous, and the
keyviord. statement number is better rendered
as a format name. :

Primitive format item: Primitive format item:

count-type-width. storage unit—-external form-count.
The width is superfluous since the
storage unit and the external rorm
determine it uniquely. ihe count is
placed last as is the more common
practice for dimensioniny iniorma-

tion. ‘
List format -‘item. List format item.
Literal item. Skip external rform for specirication

of constant or uninteresting fields
in the structure.

‘'he SFS format has two additional list items which are crucial to
this application. There is a format name item, which allows one
to represent a complex structure within the format as a single
item. Without this feature formats would ke essentially useless
ror representing complex structures.

The cther auditional format item is a label item. This is a name
which is given to a position in the format definition. these
labels provide convenient handles for referencing (naming) a suo—
structure in the format definition. It should ke notea, however,
that although it is sometimes convenient and almost always harm-—
less to think of a label as a name for the following format item
with a storage representation, this is not the case at all. <:ne
only proper name for format item is the composite name formed bty
the format reference (see the next section) which generates the
substructure containing just that item.

Labels may be placed anywhere in a list, and they need not ke
unigque within a structure.
The SFS format has another useful feature which is not found 1in

the FOKTRANN FORMAT statment. It permits the item count to ke any

11

SFs : o

valid parenthesised expression. This enables one to wraite
parameterised format definitions thereby extending their applica-
bility to structures with a variable configuration.

To be specific, a format definition consists of a name (a charac-

ter string Pegining with an alphaketic) followed by a - list of
format 4items within braces (brackets may be substituted for
braces). This list when expanded defines the extent and torm of
a structure which may then be accessed on the file. The pase
(position of the structure within the file) is not part of the
Xormat, and the 1list when expanded from left to right provides

positive addressing offsets from the base to the individual ele— ~

ments of the structure.
{format) ::= {format ﬁame)(open)(format list><{close)

{format list) ::= <format item)
Cformat itemd>{fsep)<{format listd

{fsep)> ::= {sep>
’ L.
{sep) ::= - <nulld>
- {sn*>
{open) ::= { -
(.
{close> ::= %

A format item may te a primitive item which specifies a storage
unit (kyte, word, floating or double precision floating; dencted
respectively by B, W, F and D) and an external torm (ascii, octal
or decimal; denoted respectively bty A, O and D). The cerauit rorm
for the byte, word and floating point numters are respectively a,
O and D.

There is also a skip form (S). This form indicates that the asso-
ciated storage space has no significance to the user, and may =te
disregarded 4in the dump and patch operations. A primtive item of
the skip form is an error in the search coperation.

There is also a null primitive item denoted N which does not
define any storage space. This item is sometimes useful for £il-
ling out a format list to a desired length in order to make cer-
tain forms of format references (see the next section) easier to
Use.

A format item may consist of a 1list of format items within
Eraces. An item may also te composed from a format name by plac-
ing that name ketween two periods. In the latter case, the effect

12

S

~ 7

()

SFES

is the same as if the definition of the named format had been
copied in place of the reference to its name.

A label 1is also a format item, and a single null label may be
appended to any other item. The label item is formed by placing

a name Dbetween a period and a colon (e.g., .here:), and a null
label is just a colon.

Each format item is implicitly an array of substructure, and con-
sequently, it may have a count (dimension) appended. The default
count 1is always assumed to be one. (e.g., BD is a byte with a
decimal form, and B8 is a array of eight ascii bytes. Note that

"while B8 and {B!8 define the same storage structure, eight con-—

secutive bytes, the latter is defined as an array of eight arrays
of one byte, and consequently, the two structures are treated
differently.) ‘ .

‘“he c¢ount, ir present, may be a constant or a parenthesised ex-
pression. .

The existence o©f a reasonable interpretaticon for the count of a
rormat item which does not specify storage space is in doubt, so
a count supplied for such an item is treated as an error.

-

{format item) ::= <item)>{count>

- ¢ {itemp<{count)

{item) ::= « {labeld :

: « {format name) .
o« {lakeld<opend{format listd<{closed
{openp{format list)><{close)
{primitive item)

{latel) ::= {name)

{ecounty ::= {constant)
(<expression))
<{null)

{primitive itemd ::=n
{storage unit)
{storage unitd{formp

{storage unit) ::= b
w
£
d

{form> ::= a
o
d
s

13

SFS

The following 1is a set of format definitions which define the
structure of a UNIX load module (*.o file).
lm{ .h:.header. .t:.text. .d:.data. .r:.relocation. .s:.symtable.)f;\
The load module (lm) consists of a header, text (code), initial-
ised data, relocation information and a symbol table.

header{ ws .tiwd .d:wd .bss:wd .s:wd ws3 }
The header contains the lengths in bytes of the text, initialised 7~
data, uninitialised data and symrol table. (The zero in the fol-
lowing definitions specifies the base address of the header - see
FORMAT REFERENCES below.)

text{ w(0 header.t /2) }

data{ w(0 header.d /2) } -

relocation{ w((0 header.t + O header.d)/2) }
There is one word of relocation information for each word of text
or of initialised data.

symtacle{ .symbol.((0 header.s)/12) }
Entries in the symbol table are 12 bytes long, and consist of an

eight byte name followed by a word of flags and a value.

symbol{ .name:b8 ,flag:w .value:wd }

~

The following illustration should clarify the structure of the
load moaule.

=

14

)&

=~

=

(=

. » SFS

im «hi.header. WS

ot wd

od: wd

sb8s:wd

o83 wd

ws3
stiotext, ' w((0 header.t)/2)
.d:.data. w((0 header.d)/2)

«r:.relocation, w((0 header.t + 0 header.d)/2)

oS! .Symtable. «Symhol,.((0 header)/12) .name: kg
' v) : £lag: w
svValueiwd

FORMA'T RENFZRENCES., Wnile SKFS formats are structurally and runc-
tionally related to the PFORTRAMN FORMAT statement. The sole provi-
sion in FORIRAN for identifying an item in a format by completely
expanding the structure and counting the primitive items, is
hopelessly inadequate when dealing with. complex structures.
However, it is quite feasible to count format items within a list
sy counting.a structure item or a list item as a single unit.
Alternately, the labels that have been provided could substitute
tor such an item count.

If one locates the structure one desires to reference in its most
immediately enclosing list or format item, one can then name it
relative to that list or format item. Similarly this list or for—
mat can be named relative to its enclosing item, and the names
concatenated to form a compound name for the originaly desired
structure. Continuing in this manner until one reaches tne level
of structure definition (base level) that is convenient to ad-
dress directly, one constructs a compound name (format reference)
tor the desired structure relative to this base level structure.
A detailed description of the form used for such compourd names
is given below.

A substructure of a format may be described by selecting format
items of succesive list items to whatever level (depth) is re-
wuired. Since each level is an implied arra o substructure
including the zeroth level- (the format itself) and the last lev-
<l, which need not be a primitive list item, each level selection
may be suffixed by a bracketed ([]) index specification consist-
ing of zero, one, or two indices separated by a comma. The two
index specificaticn, identifies successive instances of the sub-
structure at that level, starting with the instance given by the
Lirst index and continuing to the instance given by the secona
index. The zero and one index specification identify a single
instance o©of the substructure. In particular, the zero index
specification identirfies the zeroth or initial instance.

15

S¥S
A period (.) is used to separate two different level specifica-
tions within the format reference.

{format ref) ::= {fname ref)
{fname refd . {level specification list)

{fname ref) ::= {format named><{indexing)

{level specirfication listd ::= <(level spec)
{level spec) . {level specification list)

{level spec) ::= {item locator><{indexing>
<{null)>

[<expression) j
[<expression> , <{expression)> |

<indexing> :

Items may be located within a list by lakel (i.e., a name), by
item (exclusive of latels) count {(i.e., an expression), ty item
count as an offset from a labtel item (i.e., a name followed by a
colon followed by an expression), or by an item count as an
offset from a label identified by a count of labels only (i.e.,
an expression followed Ly a coidon followed by another expres-

Sion) .

Hote that’' the use of an expression in the label count is res-—
tricted to those forms which do not begin with an alphaketic in
order to avoid confusion between a label and a label count. also
note that in either count, zero denotes the initial item.

{item locator) ::= {lakel)
{non lakel item locator)
{lakel locator) : <non lakel item locator)

{label) ::= {name)

{latel locator) ::= <lakeld .
{restricted expressiond

{non latel item locator) ::= {expressiony

It is important to note that a format reference, even 1if it is
valid, does not identify any storage space until a tase address
has teen supplied. In addition, it should ke noted that the pro-
gram will always use the value of the current address register as
the base address if the user did not explicitly specify one,
either through the use of explicit command addressing or as part
of a tased format reference (see ZXPRESSIONS below).

The followiny are two examples (see also the example of the pre-
vious section) of valid format rererences:

16

"‘}\"

S¥S

symbol .name (0, 4]
the first five characters of the name of some symbol table entry,
lm.5¢°[0'910n3m6[0,4]‘ |

the £first five characters of the names of the first ten symbols
in the symbol table of some load module.

The construction of the format reference in this latter example
proceeds as follows. The symbol table in the load meodule is
located by the lakel s , so that one may reference it by lm.s .
The symbol table contains an array of symbols, format item numkter
zero, so that the first ten entries in the table may be refer-
enced by lm.s,0[0,9] . Each symbol in the table has the Zformat
name symbol” and contains a name (ascii byte item) which can ke
located by the label name ,r so that the first five characters of
the desired symbols can be referenced by lm.s.0[C,9].namelC,4] .

This example illustrates the fact that a based format reference
need not reference a single contiguous segment of storaye. SKS3
will allow references which require more than thirty implied

. iterative statements (do loops) for their storage access.

- ®

.

EXPRESSIONS. An expression evaluates to a 32 bit twos complement
integer. It may utilize the contents of the file by incorporating
a based format reference. The reference is restricted in that it
mist evaluate to a single value of a primitive item. (A byte or
word will not have its sign extended, and a floating point value
will have its most significant four bytes interpreted as a twos
complement integer.) A null base for the reference is interpreted
as the current address (.).

The cperators + - * / used in expressions are self explanatory.
The other operators % | & -{ > respectively stand for
remainder from a division, bitwise or, bitwise and, bitwise addi-
tion, bitwise complement, left shift and right shiit.

All expressions are evaluated lerft to right, with four levels of
kinding. The unary cperators + - are most closely ound, rol-
lowed by the bitwise cperators | &« " and then by multiplication,
aivision and shift. Addition and subtraction are the most loosely
nound operators.

The diZIference tetween an expression and a restricted expression
is simply that the restricted expression may not begin with an
alphabetic character.

17

SFS

{expression) ::= <E1> :
{format ref)

{restricted expression) ::= <E1)

{E1> 13 <E2> '
<E1><add op><E2>

<E3>
<E2><{mult op><E3)

<E4>
<E3><bit op><E4>

n

<E2) :

{E3>

L 1]
o
1}

{E4> : {unary op><E4>

.o

{constant)
{register>
{base)>{format ref)
(<expressicn))

{base)

{constant)
{register> -

{constant) {decimal integer)
g 0 <octal integer>

{decimal integer) ::= <decimal digit)
{decimal digitd><{decimal integer)
{octal integer> ﬁ:: {cctal digit)

{octal digitd>{octal integer)

add cov) ::= +
{mult op> ::= *
/
@
<
>
<{bit opd> ::= &
A
{unary op> = +
{register) ::= ‘Coctal digitd

${octal digit)

18

C

e

SFS

CONDITIONS. The {conditions)> in a search operation consists of a
list of conditions all of which must be satisfied for the search
to succeed. Each condition in turn consists of a test specirica-

" tion followed by a list of values which agree in length and formm

with the substructure specified by the format reference supplied.

The conditions may be separated by spaces or the two character '
sequence backslash-newline (\<{newline)).

The list of conditions must begin with either a newline or a
Juestion mark. :

The test specifications include equals (= or <{nulld), not equals
(1=), greater than (D), greater than or equals (>=), less than
(<), less than or equals (<{=), and bit wise logical implication
(-=> and <-). Bitwise logical implication may also be interpreted
as bit inclusion, and both forms of the test are included since
the user does not have the ability to specify the order of the
two values to be tested. ! -

Further information on conditions and the search command can be

found above in the COMMANDS section. Also following the syntax
below are two examples of the use of the search command.

{conditicnals) ::= {newline)><{conjunction of conditions)
? {conjunction of conditions)

{conjunctidn of conditions) ::= <condition)
{condition)><{csep)><{conjunction of conditions)

{csep) ::= {spaces)
\<{newline)
. <null)
{condition) §:= {test>{sep>{multi-length value)

{test) ::=

<{multi-length value) ::= <ascii list)
{octal list)
{decimal list)

{octal list) ::= {octal value)
{octal value){sn®*>{octal list)

{decimal list) ::= {decimal value)
{decimal value)<{sn*><{decimal list)

19

Srs .t

{floating octal list) ::= <floating octal value)
{floating octal valued<{sn*>{floating octal listd

{floating decimal list) ::= <floating decimal value)
{floating decimal valued<{sn*>{floating decimal list>

Coctal value) ::= <(octal integerd . N
- {octal integer) L

{decimal value) ::= <{decimal integer)
= {decimal integer)

{floating octal valued ;::= {sign)><{fixed octal)
{sign><{fixed octal) o {sign)<{octal integer) -~
. {fixed octal) ::= <octal integer) Cfs
» {octal integer) .
{octal integer) . {octal integerd
{sign)> ::= + ‘
<{null)
{floating decimal value) ::= <sign)>{Ffixed decimal)
{signd><{fixed decimal> e {signd>{decimal integer)
{fixed decimald ::= <decimal integer)
g o {decimal integer)
{decimal integer)> . {decimal integer)
As an example of the use of conditions, consider the following
command which locates all symbcls in the ascii collating sequence
between ia... and iz.... The current address is taken to be at
the start of the symkol table.
ey (++0 header.s)s—-symbol.name[0,1] ? D=ia {=iz
For a seccnd example of the use of the search command, consider
the following short program which locates and dumps the external M
symbols in the symbol table of a load mcdule. The program saves \\
the wvalue of the current address register, so that it can ke
restored upon termination. It then initialises the current ad-
dress to the start of the symbol table, and the first local re-
gister to the end of the table. It then enters a loop which lo-
cates . and dumps a symbol table entry. The entries represent
external symbols if they have flag bit 5 (value 040) on. Final- —~
ly, the locp exits when no additional external symbols have been
found. T

This program assumes that two formats given in a previous example
have been defined, although this assumptjon could have been
dispensed with by the use of the £ and u commands.

20

. | SFS

'2=o
'.=(o header.t + 0 header.d)<1 +16
1=.+0 header.s
: «y(’1)s+ symbol.flag? <- 040
($0),0j +4
d symbol
(o+12)r
, 3 -a
o= 2

ASCII OQUTPUT. The program prints a single ascii value as a two
position character sequence. This enables all 256 byte values to
be represented. The first position is the prefix, and may contain
any combination of the three characters space, backslash (to be
read control), and underscore (to be read shift).

The control prefix indicates that the value of the character
represented is to be anded with octal 37, and the shift indicates
that octal 200 is to ke added to the character’s value. The space
used as a prefix, of course, indicates the indicated value is to
be unmodified. (e.g., ° A’ denotes the-value 101; ‘\A’ denotes
the value 1; ‘_A’ denotes the value 301, and ‘\A’ denotes the
value 201.)

4

Because the two ascii characters rubout/delete and space do not
have a convenient representation in this scheme, the compound
character \ has been adopted for rubout/delete, and the compound
character | has been adcpted for space.

ASCII INPUT. The ascii character set is not able to represent
all 256 possible byte values. Furthermore, not only is it incon-
venient to transmit some characters, but the characters space and
newline are not available in ascii input, because they serve as
separators. These problems are solved by treating the backs.iasn
(to be read as control) character specially.

In the input, the control character acts exactly as if the con-
trol key of the teletype were depressed along with the character
following the control character. That is, it ands the rollowing
character with octal 37. This is true except when the character
following control (\) is one of the following, 01234567 \ or
space. Control (\) followed by an octal number of up to tnree
digits 1length yields the value of that number, and control space
Yields space while control backslash yields backslash.

21

SFS

FOR NEW USERS. Although a conscious effort was made to keep the
SFS language simple and straightforward, it is sufficiently com-
plex that the effort required to learn its use may dismay the
casual user. He can, however, get by quite well with just tne
following twelve commands. '

<null)> _ print the current address.

q _ quit.

={expression) set the current address.
:{expressiond print the value of an expressicn.
!{UNIX command) escape to UNIX.

f{format> define a format.

1 . list formats defined.

1{format name) list a format deflnition.
d<{format ref) dump structure.

p{format ref) patch structure. -
s+{format refd search for structure and set . .
s—{format refd search for structure.

The quickest way for a new user to become acquainted with these
commands is . to copy a load module and experiment with the com-
mands using the definitions in the above examples.

The new user accustomed to FORTRAN indexing, may also have some
difficulty at first with the zero base indexing used in SiS.

While it does take some daring to program a complex function in
SFS, an example in the appendix is given as a demonstration of
its feasibility.

MH-1271-LAD .- L. A. DIMINO

Attached N N
App:rid?.x . . 9[‘4»9:.,\ &DLLL"‘"’*'\

22

APPENDIX

Four useful programs have been written in SFS to proviade a debuy-
4ing facility similiar to that provided by the Uhirx DB command.
They illustrate the feasibility of constructing fairly complex
debugging facilities upon the basic structure provided by .rS,
and they did not present any particular programming difficulty.

SESErg This examines the subject file and determines
- whether it is a load module with, or without,
relocation information, or a core image file. 1t
then defines the structures appropriate to the
file and initialises the global registers. it 1is
normally a prerequisite to the use of the other
three programse.

sfsoav This prints a 16 bit value in octal and ASCII, .t
will also print the relevent relocation data, when
this is available and requested.

srsda : This is a deassembler for the PDP11/45. It is a
fairly complex program which throughly exercises
the jump command.

SEssym . This searches the symEbl table of a load module
for the symbol of a specified type which most
- . closely approximates the given value.

Listings of sfsprg and sfssym are provided below as examples ot
the use of SrS. The other two programs are not includea cecause
their translating and formating function are less typical of the
anticipated use’ of SIS. However, all four programs are presently
availacle wunder the catalcg /usr/lad on the center 127 UNIX sys-
tem.

SFSPRG

initialise for load mcocdule or core image

(*2), 0j!=19

i‘2parameter? If you don’ t understand, type 0<nld

("2), 0ji=17

cresponse is -1 if minimum output is desired

c +1 for report of register initialization

c +2 for report of formats defined by name 6;\
c +4 for report of format definitions

cFor example,

cb requests reports for registers and format definitions

c

cthe parameter the can also be given in the call
ci/usr/lad/stsprg S

c

canother parameter (file length) can be given for core images =~

c
c%/usr/lad/sfsprg 5,5120 .
-c
i‘’2Parameter?
('2),Oj=175
r w{w}
(0 w.0),04073j1=100
$7=16
‘7= -1 .
f header{ws .t:wd .d:wd .bss:wd .s:wd ws3}
4=(Oheader.t)>1
('4),Oj=3
‘7="7+2
£ text{w(’4)}

’$=(0 header.d))>1
(5)70j=3)
‘7="7+4
f data{w(’s)}
'§=(O header.s)/12
(“e),0j=4
‘7="7+86
f symtable{.symbol.("6)}
£ symool{.name b8 .flag:w .value wd}
(14w.0),0j!=39 . (o~
3°7)
f lm{.h:.header. .t:.text. .r:.relocation. }
j10 .
f lm{.h:.header. .d:.data. .r:.relocaticn. }
je
£ lm{.h:.header. .t:.text. .d:.data. .r:.relocation. }
jé -
f lm{.h:.header. .t:.text. .r:.relocation. .s:.symtable.} N
ja ‘
f im{.h:.header. .d:.data. .r:.relocation. .s:.symtable,}
j2

L lm{.h:.header. .t:.text. .d:.data. .r:.relocation. .s:.symtable.}
f relocation{w((0 header.t+ O header.d)>1)}
$2=2
$3=16+(2 w.0)
$4=53+(4 w.0)
$5=($4-16)<1+16

A2

)

SFSPRG

$6=$5+(8 w.0)
cload module with relocation
(°2),(-1)3=136
(’ 2&1) 03=9
CGLOBAL registers
c$2=2 relocation flag
c$3=¢$3 start of data segment in file
c$4=$4 start of relocation in file
¢3$5=$5 start of symbol table
c$6=$6 length of file
cs$7=16 addressing offset for text or data

c

(‘2&2),0j=4
cFormats by name
1

c
(’2&4),0j=122
cFormat definitions
l relocation
j3s
no relocation data on the file
3(°7)
f lm{.h:.header. .t:.text. }
jio : .
f Im{.h:.header. .d:.data. }
- j8
- £ lm{.h:.header. .t:.text. .d:.data. }
- 36
£ lm{.h:.header. .t:.text. .s:.symtable. }
Jj4 '
f lm{.h:.header. .d:.data. .s:.symtable. }
z jz .
£ lm{.h:.header. .t:.text. .d:.data. .s:.symtable.}
$2=0
$4=$3+(4 w.0)
$5=34
$6=54+(8 w.0)
cload mcdule without relocation
(2),(=1)3=99
(“2&1),0j=8
cGLOBAL registers -
cs2=0 no relocation flag
cs$3=$3 start of data segment on file
CsSH=s4=%4 start of symbol table
csb=s6 length of file
cs7=10 addressing offset for text or data
c
("2&2),0j=4
crormats by name
1
c
(‘2%4),Cj=86
cformat definitions
1l 1m
1l header

SFSPRG

('4)|Oj=2
1l text
('5)9Oj=2
l data
(“6),03=78
1l symtable -
1l symbol
" j75
core image file
('3)90j>5) '
i‘3File length? type 0 <nl) if you don’t know
("3),03>3
cType !stat {file name> to get file length and try again
jey .
$6="3
$5=$6-512
s7=0

L core{ .t:.text. .s:i.stack. .c:.cntrl, }
£ cntrl{ .us:w .usp:Ww ,Sp:w .break:w w .pse:w
.core:w w(217) .Edr:w12 .fr:wi2 .r:.regs. }

£ regs{ .r3:w .r4:4 .r3:v¥w .r2:w .r1:w .r0:vw .pciwW .ps:w }
ccore . image -
j((sScntrl.pse)&017<1+1)

ctype O

j30 T

cbus err :

j29 -

cilleyal inst

j26

ctrace or kpt trap

j2a

ciot trap

j22 '

cpcower

j20

cemt trap

j19

csys call err

j17

cprogrammed interrupt

j15

ckP exception

ji12

cmemory

ji10

cquit

j9

cinterrupt

37

ckilled

3

ctype 106

j2

ctype 17

c rfault
$3=55 cntrl,break

$4=$5cntrl.sp

$2=83-%4
£ text{ w(s3>1)}
£ stack{ w((s5-$3)>1)}

(*2),(=1)3j=22

(‘2&1),0j=10
CGLOBAL registers

cs2=s2
c$3=53
csd=84

B ~

c$3=85
cs6=%5
cs$7=0

(o
(’2&2),0j=4

crormats by name

1

, c
(°284),03=7
cFormat definitions

4w

core
text

S

-
regs

stack
cntrl

SFSPRG

address correction (-offset) for stack references

address of program break

address of the end of the stack, $4+$2 is the address
of the end of the stack in the file

address in the file of the per user area

length of the file

-addressing offset for text or data

-

SFSSYM

search symbol table for entry with closest value
start,endi¥sfssym value,type

start is address in table where search begins

and end is the address where it ends

ir start is not supplied, search begins at first symbol

-~

: type =0 or <null) if any symbol will do ~
type =1 for absolute symbols, =2 for text symkols
T =3 for data symbols, =4 for bss symbols, and c¢ne adds
" +8 for external symbols only of desired type (0 1,2,3,4)
‘3="3+'348%3
((°C-$5)%12),0j!=3
ol o -\
0),(s3)j>=:
'O=$5 N ﬁ
(("1-s6)%12),0j1=3
(“1),(s8) j>=2
("1),(°0) j>=2
1=%6
'4=256000
‘5=’Osympol.value -‘2
(“3),0j=3
(“3),("0Osymbol.flag)j->2
37
(°s),0j3=9 ..
("s),03>2
“5= ='5
(75),(24) §>=3
4="95
16='O
‘0="0+12
(‘0), ("1)3< =11
j2
06=00 *
cSymool (('6-s5)/12) address (°6)
("6)d symeol
end of sIssym
~

