P

"Binary Deck Source Deck) Other

03/
PROGRAM SUBMITTAL FORM

Complete this form using black ink or type (for duplicating

purposes), and send with your program to the Computer Documents

Library at your location or nearest you.

REQUIRED INFORMATION ' Date s'/ 9‘/ 2

Program Name BE ym'p)=
Author(s) R.u. .- L)

Dept. P15~ 2 Ext. 7E&Loc. & Room PR go-#2d

Purpose of Program___fég@ﬁ_&a&gﬁ Lo coon .

~4022Z1;iﬂgéZ;k_iﬁé___ji_Q Hrrreiral itndey oo

Program Language a Machine L p sy

New Program Modification of Existing Program

Documentation being Submitted Includes: MM iﬁz @, Ze

Compilation and/or Listing

Main Program Subroutine Function

COMPLETE IF APPLICABLE

Usage, Including Calling Sequence and Description of Variac

Bell Laboratories :

subject: yapp (yet another . date: May 10, 1974
plotting package) from: R. . Bradley
rase 39373-98 -~ B. N. Dickman

MEMORANDUM FOR FILE

1. Introduction ‘ : 5

A plotting package 1s now available for use with the GSI-300 ter-
minal under UNIX. As an example of its use, the following C pro-
gram draws a square one inch on a side.

maing)
openplot(); /% Default starting point is (0.0,0.0) in inches. #*/
1ine(1.0,0.0); : o o '
line(1.0,-1.0); ~

1ine(0.0,-1.0);

line(0.0,0.0);

?loseplot();

The square that is drawn looks like the following:

2. The Plotting Functions

The plotting functions are listed below in the following sections
in alphabetic order with brief descriptions of their use. Appen-
dix I is a listing of the plotting functions.

cctrans(xfn,yfn)
am double(*xfn)(),(*yfn)();

-

may be used to compose coordinate transformation functions. Each
of the coordinate transformation functions is passed two double
precision arguments, x and y coordinates. Functions are composed
in a "last specified first evaluatecd" order. A function may be
deleted (last composed first deleted) by specifying

cctrans (DELETE);

The following examples illustrate the use of cctrans.

#include “common"
~ double xtr(), ytr();
double atr(), btr();
double sin(),cos();
/* a “generic" circle drawing program. %/
circ%e() ,
cctrans(xtr, ytr),
. plotpen(UP), ,
- line(1.0,0.0);
- plotpen(DOWN);
/% draw a line 2pi radians long. ¥/
line(1.0,6.283);......,

} .
double xtr(r;theta) ",
double r,theta; ..
AL "
?qturn(r*cos(thgta)); .
double ytr(r,theta) .
.double r,theta; y
:{) .
- return(r#*sin(theta)); "

}

v/*-u31ng cirecle() to draw a circle of radlus 2 about (3.,0.):
(The origin is at the left margin, so that a circle cannot

- be drawn about it.) ¥/ :
main() . y

openplot(); .
precision(1); | : .
granularity(10); .
cctrans(atr,btr); .
~ circle(.); ..
?loseplot(L, .
double atr(x,y)
double x,y;
{return(2.%x+3.);}
double btr(x,y) :
double x,y;
{return(2.%y);}

ctrans(xfn,yfn)
- double(¥*xfn) (), (¥*yfn)();

may be used to change the coordinate transformation

function.

(~

N

S

-3 -

etrans may also have SAVE or RESTORE as argument. (See section
3.) ctrans is the same as cctrans, except that ctrans is used to
change a whole chain of compositions of coordinate transforma-
tions, while cctrans is used to add to or delete from the chain
~f coordinate transfornations. :

N

closeplot()

restores the terminal to its state before openplot().

dline(dx,dy)
* double dx,dy;

-4y be used to draw a liné or move the plot pen. The parameters
are in inches, and coordinate transformations which may be in
effect are not applied. The pen stops dx inches to the right and
dy inches above the current element position. The plotpen func-
tion determines whether the line is actually drawn. (If plot pen
is UP, the primitive speeds up motion by using normal spa01ng
1nstead of plot-mode spacing)

granularity(action)
- int action;

where action is a positive integer, SAVE, or RESTORE, breaks a
plot into isolated points such that no point is within action
hundredths of an inch of the immediately preceding point. De-
fault granularity is 0., although the GSI terminal will not pro-
duce points separated by less than 1/60 inch. SAVE and RESTORE
are described in section 3. ’

double x,y; o ’

is used to draw lines or move the plot pen. The pen stops at the

int corresponding to the x-y coordinates specified in the
purameters. Any coordinate transformations in effect are ap-
plied, and the result in inches is the actual end point. See also
preczslon()

openplot ()

-+ts the terminal into plot mode. It also initializes the state
. the plot as follows: ’
granularity(0); .
plotpen(DOWN);
plotchars(".");
pointsize(1); .
preclsion(9999),

plotpen(action)
int action;

where action is UP, DOWH, SAVE, or RESTORE, may be used to con-

ol whether the line specified in line() or dline() is actually
“wrawn (plotpen(DOWN)), or the plot pen is just positioned at the
end point of the llne specified (plotpen(UP)) SAVE and RESTORE
are described in section 3.

plotstate(action)
int action;

_.ere action 1is SAVE or RESTORE, may be used to save (action is
SAVE) or restore (action is RESTORE) the state of the plot. (See
also section 3.) The state of the plot is defined as the states
produced by the plotpen, plotchars, pointsize, cctrans, granular-
ity, precision, and ctrans functions.

pointsize(n)
int n;

where n is a positive integer, SAVE, or RESTORE, may be used to
set the size of the point used for plotting (and therefore the
size of the line drawn). n is an integer from 1 to 1. 1 {is the
default. - SAVE and HKESTORE are described in section 3. (This
‘function will be implemented for other values of n upon demand.)

plotchars(chars)
char ¥*chars;

where chars is a pointer to a character string, SAVE, or RESTORE,
may be used to specify the character(s) to be used -for each
point. n.v is the default. There is no limit on the number of
characters that can be specified. The character string must,
' wever, result in no net movement of the plot pen. SAVE and
...3TORE are described in section 3.

precision(action)
int action;

where action is a positive integer, SAVE, or RESTORE, generally
rist be used with non-linear coordinate transformations. It

zaks each 1line into segments so that the interior.of the line
is also transformed. Therefore a single call to 1line() can
result in a curve. The default 1is large segments, to avoid
breaking up lines. The parameter is in hundredths of an inch and
refers to the untransformed coordinates. For example,
precision(50) breaks the line into half-inch segments. SAVE and
RESTURE are described in section 3.

,-/“ B

3. SAVE and RESTORE

granularity, plotpen, plotchars, pointsize, precision and ctrans
may have as argument SAVE or RESTORE. SAVE pushes onto stacks
*he plot characters, the point size, the granularity, the preci-

on, the coordinate transformation functions being used, or the

State of the plot pen and sets the new state initially to be the

sarie as the old. RESTORE pops the appropriate stack and restores
the previous state of the plot for the appropriate function. The
functions will return -1 on stack overflow or an attempt to re-
store past the end of the stack zero otherwise. :

4. Using the Plotting Functlons

—1e plotting functions. reside in library /usr/bnd/plot/p. The
user must specify : ' ‘

#include "usr/bnd/plot/common"

in order to get certain "define" constants initialized correctly.

- To use the output of the plotting functions with nroff, see R. H.

Bradley.
ot /
fﬂ‘
R. H. Bpadley

f’E3f'h3:tbcﬁxﬂkﬁkCP»n;

B. N. Dickman

Distribution:
Messrs. J. F. Maranzano .
9152 Members : ’

-6 -

APPENDIX I: LISTING OF THE PLOTTING FUNCTIONS

#idef'ine STACKSIZE 15
#define PTR -1
‘#tdefine SAVE -2 ‘
#define RESTGRE =3
fidefine UP -4
#¢define DOWN =5
#define ON =6
#define OFF -7
#define LEFT -8
#define RIGHT -9
#define DELETE =10

#define COMPOSEMAX 5 /# Maximum number of compositions allowed. ¥/

stru?t xytrans /%used by ctrans() and cctrans()%/
int composenum; v
double (¥*xtrans[COMPOSEMAX])(
?ouble (*ytrans[COMPOSEHAX]) (

]

int xplot,yplot;

double xcurrent,ycurrent;

int xlastg,ylastg; C

double *ptrprec151on,*ptrgranularlty,

#include "common"

int otty[3], mttyl3];

.
’
.
?

)
)

clos?plot()

/% Restore CR generated by LF. */
stty(1,o0tty);

plotmoce(OFF);

return(0);

}

cctrans(xfn,yfn)
?ouble (¥*xfn)(),(¥yfn)();

struct xytrans #ptr;

int x; :

struct xytrans ¥ctrans();

ptr = ctrans(PTR);

x = xfn /%*so that compares work correctly#/;

if(x == DELETE)
{
if(ptr -> composenum == 0) return(-1) /¥ nothing to delete¥*/;
(ptr =-> composenum)-- ; : ' :
return(0);

} .
if(ptr -> composenum == COMPOSEMAX) return(-1) /#*can’t add any more#*/;
ptr => xtrans[(ptr -> composenum)] = xfn;

ptr => ytrans[(ptr => composenum)++] = yfn;

return(0); .

(~

N
\.

(T‘\

Wamn
{
\

~

}

cleanup()

closeplot();
exit(2);
}

struct xytrans 5ctrans(xfn,yfn)
double (*¥xfn)(),(*yfn)();

{
static struct xytrans transtack[STACKSIZE];

static int stackindex;

int x;

int ij;. , S
x = xfn /%so that comparisons work correctly*/;
if(x{:: RESTORE)

/* Set number of compositions to zero. ¥/
if(stackindex == 0) return(-1) /¥error: nothing to restore#*/;
stackindex--; : - '

return(0);

}

if(x == SAVE)
{ : : .
if(stackindex == STACKSIZE) return(-1) /%* stack overflouw*/;

while(i-=)

transtack[stackindex+1].xtrans[i]:transtack[stackindex].xtrans[ij
transtack[stackindex+1].ytrans[i)=transtack(stackindex].ytrans[i.

}

stackindex++;
return(0);

}
if(x == PTR)
return(&(transtack[stackindex]));
/¥ Set new coord. transformation. ¥/
transtack[stackindex].xtrans(0] = xfn;
transtack[stackindex).ytrans[0] = yfn;
transtack[stackindex]. composenum = 13
return(0); :

}
genpg()

/% Vorry about point size later. ¥/
?rintf("%s",plotchars(PTR));

int *granularity(action)
int action;

{

static int stackindex;

i = transtack[stackindex+1].composenum = transtack[stackindex].compo:

-8 -

static double agranularity[STACKSIZE];
double deltaxy;
if (action == SAVE)

if (stackindex == STACKSIZE) return(-1);
agranularity[stackindex + 1] = agranularlty{stack1ndex++],
ptrgranularity = &(agranularity[stackindex]);
?eturn (0); :
if (?ction == RESTORE)
if (stackindex == 0) return (-1);
v stackindex--; v]
ptrgranularity = &(agranularity[stackindex]);
return (0); . ,
3 .
if (action == PTR) return (0);
deltaxy = action; o
if (deltaxy <= 0.) agranularity[stackindex] = 0.;
else ‘
{
deltaxy =/100.;
?granularity[stackindex] = deltaxy ¥ deltaxy;
ptrgranularity = &(agranularity{stackindex]);
return (0); : _ :

} .
_ openplot()
{

/* Call cleanup in case of abort */
signal(2,cleanup);
/% Turn off CR generated by LF. %/
gtty(1,o0tty); : i
ntty[0] = otty[O], A ' y
/% Also, turn off line feed delay. ¥/

. mttyl[2]) = otty[Z] & 077757 b1
stty(1,mtty);
plotnode(ON), _
precision(9999); .
granularity(0);
xlastg = -500;
ylastg = 49;
/¥ Keset pen to origin. %/
plotpen(UP);
l1ine(0.0,0.0);
plotchars("."); .
pointsize(1);
plotpen(DOWN);
return(0);

}

char ¥#plotchars(chars)
char ¥chars;

int

-9 -

{ ‘ .
static char *aplotchars[STACKSIZE];
static int stackindex;

it (chars == KESTORE)

if(stackindex == 0) return(-1);
stackindex=-;
return(0);

if(chars == SAVE)
{
if(stackindex == STACKSIZE) return(-1); :
aplotchars[stackindex+1] = aplotchars[stackindex++],

return(0);

} .
if(chars == PTR) '

return(aplotchars[stackindex]);
aplotchars[stackindex] = chars;
return(0); .

}

#plotmode(sw)

static int pmode;

if (pmode == sw) return(-i);

if(sw == PTR) return(&pmode);

pmode = sSW;

/* Control F changes plot mode but does not print. */
if(sw == ON) putchar(06);

/* Control G exits plot mode but does not prlnt. %/
if(sw == OFF) putchar(’),

return(0);

}

plot?en(action) A .

static int aplotpen{STACKSIZE];
static int stackindex;
if(action == RESTORE)
{
if(stackindex == 0) return(-1);
stackindex-~; :
return(0);

}
if(action == SAVE)
{ .
if(stackindex == STACKSIZE) return(-1);
aplotpen[stackindex+1] = aplotpen[stackindex++];
return(0);

)
if(action == PTR) return(&(aplotpen[stackindex])),

aplotpen[stackindex] = action;
return(0);

plotstate(action)
int action;
return(plotpen(action) |
plotchars(action) |
pointsize(action) |
precision(action) |
granularity(action) |

ctrans(action));

}
pointsize(n)

static int apointsize[STACKSIZE],stackindex;
if(n{== RESTORE)

if(stackindex == 0) return(-1);
stackindex=-~;
return(0);

}
if(n == SAVE)

{
if(stackindex*== STACKSIZE) return(-1); .
ap01nt31ze[stack1ndex+1] = apointsize[stackindex++];
return(0); : :
}
if(n == PTR) return(&(apointsize[stackindex]));
apointsize[stackindex] = n;
return(0); '

}

int ¥precision(action)
?nt action;

static int stackindex; .

static double aprecision[STACKSIAE],

double deltaxy;

if (action == SAVE)

{
if (stackindex == STACKSIZE) return(-1);

aprecision[stackindex + 1] = aprecision[stackindex++];
ptrprecision = &(aprec131on[stack1ndex]),
return (0);

}
if (action == RESTORE)
{ ‘
if (stackindex == 0) . return (-1); .
stackindex-~;
ptrprecision = &(aprecision[stackindex]);
return (0);

if (action == PTR) return (0);

deltaxy = action;
if (deltaxy <= 0.) aprecision[stackindex] = 9999.;

"

- 11 -

else aprecision[stackindex] = deltaxy / 100.;
ptrprecision = &(aprecision{stackindex]); '
return (0);

- #include "comman"
(~~ double pldist();
line(x,y)

?ouble X,Y;
double ax,ay,dx,dy,delx,dely;
double deltaxy;
int *plotpen();
deltaxy = ¥ptrprecision;

- if (#(plotpen(PTR)) == DOWN)
{ _
ax = xcurrent;
ay = yecurrent;

dx = X = ax;
dy = y - ay;
if (?x < 0)

?elx = ~deltaxy;

else delx = deltaxy;

if (dy < 0) dely = -deltaxy;

else dely = deltaxy;

if (dy ¥ dely <= dx * delx) /% then let x determine increment#¥/

if‘(?x.!= 0.)

dely = delx * dy / dx;
if (dx >= 0)

{ .
while ((ax =+ delx) <= x)
{
> ay =+ dely; : : .
o ¥line(ax,ay);
- -~ }

else /* negative motion ¥/

while ((ax =+ delx) >= x)
{
ay =+ dely;
xline(ax,ay);

'/._ ‘ } M

else /* let y determine the increment */

delx = dely ¥ dx / dy;
ir (?y >= 0)

whil? ((ay =+ dely) <= y)

ax =+ delx;
xline(ax,ay);

}

else /% negative y motion #/
‘whil? ({ay =+ dely) >= y)

ax =+ delx;
xline(ax,ay);

}

| }
xline(x,y); /% finish the line #/

xline(x,y)
?ouble X,¥;
"struct xytrans #lptr;
double dx,dy,clurrx,curry;
double transx,transy,savetx;
int tindex;
struct xytrans ¥ctrans();
lptr = ctrans(PTR);
currx = (xplot) / 60.;
curry = (yplot) / U8.;

tindex = lptr -> composenum;

transx = x; '

transy = y;

whll? (==tindex >= 0)
savetx = transx,
transx = (¥(lptr -> xtrans[tindex])) (transx,transy); -
transy = (¥(lptr => ytrans[tlndex])) (savetx,transy);

dline(transx - currx, transy - curry);
xeurrent = x; : : .
ycurrent = y;

}

dllne(dx dy)
double dx,dy;
{
int px,py;
if (dx > 0.) px = 60. ¥ dx + .5;

else px = 60. ¥ dx - .5; .
~if (dy > 0.) py = U48. % dy + .5;
else py = 48. ¥ dy - .5;

movepen(px,py);

;

-

char plotmovel[4]) {10,11,8,

#def'ine YES 1

fidefine NO O

int pointmoved YES;

rniovepen(pdx,pdy)
%nt pdx,pdy;

int state;
double gran;
int hor;

int vert;

- 13 =

RS

double exact,tan,nore,less;

int dx,dy,md,1ld;
int moreinc;
int lessinc;
int mbiginc;
int lbiginc;
int ‘*plotpen();
gran =

*ptrgranularity;

state = ¥(plotpen(PTR)):

if ((state) == DOWN && jpointmoved

{
if (%ran > 0)

if (gran <= p
{

genpt();

xlastg
ylastg
} .

}
?lse genpt();

dx = pdx;
dy = pdy;
roreinc = 0;
lessinc = 0;

if (dx > 0) hor =
else {
hor = LEFT;
} dx = «dx;
if (dy > 0) vert
else f{
vert = DOWN;
dy = -dy;
if (dx < dy) {
more = dy;
less = dx;
nd = vert;
ld = hor;

mbigine =

== YES)

idist())

xplot;
yplot;

RIGHT;

UP;

/*down,up,left;right*/

-1y -

Ibiginc = 63

else {
more = dx;
less = dy;
md = hor;
1d = vert;
mbigince
lbiginc

6
8

}
if (more > 0) {
pointmoved = YES;
tan = (10 *# less) / more;
if ((state) == UP) {
plotmode(OFF); ‘
while (moreinc <= (more - mbiginec)) {
genmove(md);
moreinc =+ mbigine;
while (lessinc <= (less - lbigine)) {
genmove(ld);
lessinc =+ lbiginc;

}
plotmode(ON);
while (moreinc++ < more) genmove(md);
| while (lessinc++ < less) genmove(ld);
plotmode(ON);
while (moreinc++ < more) {
genmove(md);
exact = moreinc * tan;
if (exact >= (lessinc + 5)) {
genmove(1ld);
lessinec =+ 10;
. } - ‘ .
‘if (§State) == DOWN)
A if (gran > 0)
{

— ' if (%ran <= pldist())

genpt();
xlastg = xplot;
¥1astg = yplot;

}
?lse genpt();

}

else pointmoved = NO;

genmove(i)

- i else yplot

7 putchar(’ “); /¥ spa-.

[\ e———

-

int %plotmode();
int pmstate;

15 -

~as®’
’ <

k1

pmstate = *(plotmode(PTR));

- swit?h(i)

case UP: i=1;

.
D 4

if (pmstate == ON%@@hlot

else yplot =+ 8;
break;

case DOWN: i=0;
if (pmstate

break;

case LEFT: i=2;
if (pmstate
else xplot
break;

case RIGHT: i=3;
if (pmstate
else xplot
break;

+

ON) jPlot

e a

4

2.

s A L.

ON) xplot

’
e

P ol

ON) splot

/*error default to be supplied#*/

default:

{
plotmode(OFF);

-
« -

printf("GENMOVE system error");

3 } |
putchar(plotmove(i])
}

plprint(chars)
char *chars;
{
char ¥%px;
px = chars;
plotmode(OFF);

while(¥chars != “07)
{

putchar(#*(chars++));

while(chars=- > px)

-~

[§ 1A

-
’ —
- e e

F'9

L3

.

* ; : "wa"

3 -

e e -

P

v gty taiRa
P P T

putchar(’); /% backspace ¥/
putchar(”");/*two backspaces*/

N\ }

doub%e pldist()

double xdistp,ydistp;
xdistp = xlastg - xplot;
xdistp =/ 60.;
ydistp = ylastg - yplot;
ydistp =/ 486.; ’

-

B

216 -

returh(idistp*xdistp + ydiStp*ydistp);. f“ L -:

