- - . »

| 1033

I @ Bell Laboratories =~ Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Beil Laboratories and is not for publication. (See GEI 13.9-3)

(T Tite Programming in LIL: A Tutorial . Date- June 17, 1974
o T™- 74-1352-6
Other Keywords- PDP-11
Implementation Languages Nt .
| Author Location Extension Charging Case- 39394
P.J. Plauger MH 7C-205 X364 Filing Case- 39394
ABSTRACT

LIL is a Little Implementation Language for PDP-11 computers, suitable for writing system level
code or in any situation where assembly-language coding is traditionally called for. A LIL com-
piler is available for use under the UNIX operating system. The object code produced is compati-
ble with, and may be freely intermixed with, that produced by the UNIX assembler, Fortran, or C
compiler. A

! This document provides a tutorial introduction to programming in LIL. A knowledge of
machine level coding on the PDP-11 is assumed, and some knowledge of UNIX operating pro-
cedures is required to use the compiler. More complete information on LIL is provided in the

reference manual, TM 74-1352-8.
~
(L
N
.
\b’_‘
N\
Pages Text 18 Other 0 Total 18
No. Figures 0 No. Tables 0 No. Refs. 0

E-1932-C (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

RRLL TELEPHONE LABORATORIES, INC.

COMPLETE MEMORARDUM TO

COVER SHEET ONLY TO

DISTRIBUTION
(REFER GEI 13.9-3)

COVER SHEET ONLY TO

COVER SHEET ONLY TO

™eT8-1352-6

COVPR SRE®P NNLY ™

CORRESPONDENCE PILES ANDERSON, M M EDMUNDS, T W RERGENHAN,C B MILLER,ALAN R
ARMBRUSTER,MISS M E EIGEN,D HEROLD ,JOHN W MILLS,MISS ARLINE D
OPPICIAL FILE COPY ARNOLD, GEORGE W ZLLIOTT,R J RESS,MILTOR S MOLINFLLYT, TNRR J
PLUS ONE COPY POR ARNOLD,S L ELY,T C HINES,MISS P E MOLTA,J W
EACH ADDITIONAL PILING ATAL,B S EPOLE, K W HOLTMAN,JAMES P MORGAN, DENNIS T

CASE REFERENCED BADURA, DENNIS C ESSERMAN,ALAN R HONIG,W L MORZAN,9 P P
’ BALDWIN,GARY L FARISCR, MICHAEL P HOYT,WILLIAM P YORRT S, RORPRT IA\;
DATE FILE COPY BARTLETT,VWADE S FARGO,GEDRGE A RUNNICUTT,CHARLFS P MORR,PHILLI? L
(FORM P-1328) BASEIL, RICERARD J FELDMAN, STUART I IFPLAND, FREDERICK O MORATORT , PICHARD D N’
BAUER,MISS H A FRIS,ALLEN M IPPOLITY,O0 D NERRLICHR,W R
10 REFERERCE COPIES BAUGH,C R PIGLIUZZI,NMISS M © IRVINP M M NPI.SON,N=-0 .
RERGLAND,G DAVID FISCHER,H B IVIE,PVAN L NORTON, APRRERT O
+BOYD,GARY D BERING,D E PLANAGAN,J L JACKOWSKT,D J NOWTTZ,D A
+ BUCHSPAUM,S J BERNSTEIN, LAWRENCE PLEISCHER, HERBERT I JACOBS,A 8 O CONNELL,T ¥
CHRISTENSEN,C REYER, JEAN-DAVID FONG, KENNETH T JARIELSKI,C B O SAPA,W T
+CLOGSTON,A M BTILOWOS, RICHARD M PORT, JANES, W JAMES, DENNTS R 7 SHLL.TVAN,TORN A
$CONDON,J H BTREN,MRS TRMA B POX, PHYLLIS JESSOP, WARREN H OLSFN, RONALD G oo
CTITLER,C CHAPIN BISHOP,MISS V L POX,R T JOHANSON, STEPHEN © NPFEPMAN,D C
FREENY,S L NLINN,JAMES C moY,J € JOHNSTON, W DEXTFR IR OSSANNA,J P TR e
GILLETTE, DEAN RLUE,J L PPANK,MISS A JOYRT, L OTTO, TORN 8 m\v
GIORDANO, PHILIP P BLY,JOSEPH A PRANK, RUDOLPH J JIDICE, CAARLES W AIFNS, MRS G L '\
+HANNAY,N B BODEN,F J PRASER,A G KAPLAN,M M PAIM,RICHAPN C TR . ’
*JENSEN,PAUL D BOHACHEVSKY,I O FREEMAN, K GLENN KAPLAN, ROREPT DPRARILMAN,R ~
VEEZPAUVER W L POWYER,L RAY PRETWELL,LYMAN J KAYEL,R G PFNNTNO, T
+KLEIN,MISS R L BOYCE,W M FROST, H BONNELL KPARNEY, RORERT DERTTSKY, VAPTIN M
+ROLETTIS, N T BRARDT, RICHARD B PULTON,ALAN W KFLLY,L J PETRPSON,PALPH #
LIMB,J O BREWER,F A GARCIA,R P K2NNEDY, ROBEZRT A PETFRSON,T™ =5
LYCKLAMA, HETNZ BROWN, W STANLEY GATES,G W RPRPHTGAAN,QRIAN W PFISTFR, RORPOT 5
MCDONALD, H S RROWN,WILLIAM R GAY, FRANCIS A KERTZ,NENIS P PTITLE,MTCHASL A
MILLER,S B RULLEY, RAYMOND M GEARY,M J KILLMER,JOAN C TR PINSON, PLI.TOT 8
¢NINRE,WILLIAM H BURR,STEFAN A GELBER,MISS CHERON L KNOWLTON, FENNETH PIR?, FRANT '
NOOLANDI, J RUTZIEN,PAUL E GEPNFR,JAMES R RNIIDSPN, DOWALD R PTTTS, CHARLPR T
+OMORUNDRO ,WAYNE. E CAMPRELL, STEPHEN T GEYLING,P T XOPNPGAY,R L POLI AR, APNRY O
+PATEL,C K N CARAWAY,R E GTIAR, RFNNETH R RREIDER, DARTEL % POPPER, C
PRIM,ROBEPT C CASPERS,MRS BARBARA E GTLRERT,MRS HINDA 3 KRUSFEAL,JOSPPY 2 RAACK,GERALD 8
+REID,ROBERT T JR CAVINESS,.JOHN D GIMPEL,JAMES P LEE,WILLIAM C ¥ eren,s €
ROBERTS,CHAPLES S CEMA SHKO, FRED GITHENS,JORN A LFGFNHAUSEN, S RFHZOT,ALLMN #
*SLICHTER,W P CHAMBERS,J M GLAGSER,A LERY,MICHAEL B RIDOLERPRGER,C O
TEWKSBURY ,S X CHAMBERS,“R8 B C GLOCK, P LFSK,MS ANN B PITACTD, T P
THOMPSON, JOAN S CHEN, EDWARD GOGUEN, M8 NANCY LIFBERT, THOMAS A RITTHTZ, DPNNTS ¥
TILLOTSON,L C CHEN, STEPRERN GOLABEX,NISS R LINDERMAN, T AOCAKTNN, Y T
+WOLONTIS, V MICHAEL CRERRY,MS L L GOLDSTEIN,A JAY LINNEWER, LOUIS H RNDTHAN, MRS PATRTICTA 2
, YAMIR,MRS E E CEODROW, MARK M GORMAN, JAMES £ LIN,SHEN IDDRIRUPYZ, FRNPSTA T
+YOUNG,JAMES A CLAYTON,DANIEL P GRARAM,R L LIMMIS, ROBERT C ROSTNTHAL, CAAPLRS W
32 NAMES CLIPFORD, ROBERT M GREENSPAN,S J LUTZ,XKENNETH J ROSL.PR, LAWRPNCE
COPEN, ROBERT M GROSS, ARTHOR G MADDEN,MRS O M DOVPINN,MPQ HFLEM N
COHEN, HARVEY GUERRTIERO, .JOSEPR P MAHLEP,G R PYNFR,.T
COVER SHEET ONLY TO COLE,LOUIS M HAPFR,E H MALCOLM,J A SAT?7,T R
COLLIER,RORERT J HALL,ARDREW D JR MALLOWS,COLIN L SCHRYPR,N L
COOPER,A F HAT.L,MILTON S JR MAPNSELL,HENPY T < SCHTRPTER, ¥ i
CORRESPONDENCE PILES CORASICK,MISS M J HALL,W G MC CABE,PETER 3 SCHWEWKYR , JOHR ¢
COULTER,J REGINALD YAMYLTON, PATRICTA MC CRACKEN, MARYT.ON STARS,FDWARD P
3 COPIES PLUS ONE COURTNEY PPATT,J S AAMMING,R W MC CUNE,R F STEINO,W T
COPY FOR EACH FILING CRUME, LARRY L HANSEN,R J M BOWEN, JAMES R SFMMTIMAN,C T,
CASE D ANDREA,MRS LODISE A HARASYMIW, J “C GILL,ROBERT SRANK,T ©
DAVIS,R L JR AARKNESS, MRS CAROL J MZ GORBGAL,MISS C A SHANK,R A
ABRAHAM, STUART A DEUTSCH,DAVID N HARPINGTON, T DORSEY MC ILROY,M DONGLAS SHIPLEY,®"NWARD ¥
ACKERMAN, A P DTCKMAN,B N HAPRISON,NEBAL T Mt MOLLEN,E C SHNORTYR,.J W
AHO,A V DIMINO,L A HARITTA, X MC RAFE,JEAN ¥ STMP,DAVTID T
AHRENS ,RAINER B DIMMICK,JAMES O HAISE,A D MC TIGUR,G B STROWTTY, *NRMAN P
ALCALAY, DAVID NOLOTTA,T A HEATH,SIDNEY P ITI MENIST,DAVID R SLANGH, T H
ALLES, HARCLD G DRAKE, MRS L REMMETER, RICHARD W MPNON, P R SMITE,N W f N
AMROR, T DRYDEN, .JOHN J HEMMING,C JR MFET?Z,ROBERT F SNARP,R © \
¢ NAMED BY AUTHOR > CITED AS REPERENCE SOURCE Xy N
148 TOTAT,
MERCURY DISTRIBUTION e e scsccverocosnosesseststossossesessosrssecaressvestetsiosss sotatsnsteterrsstorsceansnesesstossessssosssvsscacsce
COMPLETE MEMO TO:
10-EXD 13-pI® 115-DPH
COVER SHEET TO:
127 .
COPLAS = COMPUTING/PROGRAMMING LANGUAGES/ASSEMBLY
PADY,J E: MH 7R201;
T™=T74~11352-6 TATAL PAGES 2n

PLEASE SEND A COMPLET® COPY TO THRE ANIPFSS SHAWN nv o
NTHFR STDE

NN ENVELOPE WILL AR NFEEDPD I[P YOI STMOPLY STAPLF THI® ~~yeo
SAEET TN THE COMPLETE COPY.

IF COPIES ARE NO LONG®R AVAILAGLE PLFASE FNRWADN THIS *
REQUEST TO THE CORRESPONDENCTE PILFS,

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTRER SIDE.
2., FOLD THIS SHEFT IN HALP WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT. UME NO ENVELOPE.

(¢

)

()

¢)

Bell Laboratories
Subject- Programming in LIL: A Tutorial Date- June 17, 1974
Frome P.J. Plainger

™- 74-1352-6

MEMORANDUM FOR FILE

LIL (a Little Implementation Language) is designed to help you write machine level code for
the PDP-11. It looks like a high level language, because it is one (very much like C in fact); but it
deals directly with registers, indexing, and all the other things you must keep in mind while writ-
ing assembly code. The major advantages it offers over assembly language are that you are en-
couraged to do some things in ways that have proved to be more reliable, and that the final pro-
gram is very readable. : '

1. Expressions
We begin with simple expressions, which form the meat of a program. The PDP-11 code to
form the sum of x, y, and z in register 0, and the sum of x and y in w is:

mov x,r0
add y,r0
mov r0,w
add z,r0
In LIL you could write
= x;
0+y;
w = rf);
0z
but you are also allowed to say
=x+y—=>w+z
or even ‘
wm()=x<+y);r0+z
to get the same effect. '
The idea is that expressions are evaluated left to right. Everytime you see the sequence

operand operator operand

the appropriate PDP-11 instruction is generated and operator operand is discarded, leaving just the
left operand for further use. All operators are of equal binding strength in LIL — assignments
(moves), adds and multiplies are produced in the order you specify. Only the use of parentheses
will modify this strict left-to-right evaluation, as in the last example. There the rule is — evalu-
ate any expressions inside parentheses, first for the left operand, then for the right, and take as

LIL Tutorial -2-

the operand the leftmost thing inside the parentheses. This rule can be applied to any depth of
nesting.

There are a number of different operators defined in LIL, enough to let you specify any data
manipulation instruction in the PDP-11. All of the operators are tabulated toward the end of this
memo. Meanwhile, we will just explain any new ones as we happen across them.

2. Conditions
To get a little fancier, let us compute the maximum of xand y in r0:

® 0 mre

mov x,r0

cmp 10,y

bge 1f

mov y,r0
1:

This is written:
f=x<yrd=y;

The relational operator < specifies what condition you wish to test for. The compiler will gen-
erate a cmp or tst instruction, if necessary, and figure out the best way of branching to achieve
the desired flow of control. If you want to compare 16-bit unsigned addresses for ‘lower’ or
‘higher,’ use << or > >, respectively, instead of < or >. Equality testing is specified by ==,
and inequality by "=. :

If you have reason to believe that the condition code is already properly set, you can just
write >=, for example, to specify the condition ‘greater than or equal to." There are also key-
words for each of the four condition code bits — minus, zero, ofiow, and carry. In conjunction
with the not operator ~ it is possible to specify any machine defined condition:

0= x+y;

if (<) 10 == r0;
if Coflow) z = r0;
else z = 32767;

The = operator puts the negative of r0 in r0, i.e. neg r0.

3. Boolean Connectives

Tests are often much more complicated. An alphabetic symbol in LIL, for instance, is any
upper or lower case letter, dot, or underscore. To set r0 to 1 if it contains an alphabetic charac-
ter, and 0 otherwise:

cmp 10,'a / s it between ‘@’
bit 1If
cmp 10,z / and '?
ble 2f ’
1: cmp r0,'A / or between ‘A’
ble 1f
cmp r0,'2 / and ‘7
ble 2f
1: cmp r0,’. lorisit’
beq 2f
cmp 10, lor'.
bne 1f

2: mov 31,10 /1 to r0 if so
br 2f

LAY

O

LIL Tutorial -3-

1: cir 10 / 0 otherwise
2

In LIL this becomes

if(a <=0 && 10 <=7
A <= 10 && 10 <=7/
Il rQ === "'
N)==') r0=1;
else 10 = 0;

The operators && and |l let you combine conditionals in a fairly obvious fashion. If the left con-
dition before a && is false, the combination must be false, so the right condition is skipped.
Similarly, a true condition before |l lets you skip evaluation of the following condition. If the
right condition must be evaluated, then it determines the truth of the combination. && binds
tighter than |l, the way we are accustomed to reading logical statements. Again the tests are per-
formed, as needed, strictly left to right.

You can also use parentheses and the ~ operator to alter the normal binding order or invert
the meaning of any part of a test.

Remember that two equal signs in a row are used to specify that you are testing for equali-
ty, because one equal sign alone always means ‘assign.’ Had the test ended as

W0 ="") % WRONG!!

it would have meant, ‘or, copy the character _ into r0 and if r0 is subsequently nonzero, the test
is true.’ This clobbers r0 and makes the test always come out true — SO watch out. (That %
marks a comment, by the way. Everything from the % through the end of the line is ignored by
the compiler.)

You might also observe that we wrote
0 =0;

where we wanted a clr r0 instruction. You can trust the compiler to nearly always generate the
best instruction for the job, so there is no special notation for clr. Thus, should you change
some parameter to zero and recompile, clrs will appear wherever possible. Similarly inc, dec,
and quite a few other special purpose instructions are generated automatically. The tabulation of
operators shows when they are used.

4. Else .

As the last example showed, you can always follow an if by an else, which specifies what
action to take if the test is false. The else part is skipped over when the test is true.

An important use of the else clause is to string together a series of tests to make what is
known as a ‘case switch’ in some languages. This is a multi-way if that does at most one of
several different cases. LIL permits you to write certain character constants (between single
quotes), for instance, using ‘escape’ sequences to make invisible characters apparent. \t becomes
a tab character, \n a newline. The code to perform this conversion looks something like:

if (r0 == '0’) r0 = 000;
else if (10 == 'g) 10 = 006;
else if (r0 == ‘¢") r0 = 004;
else if (10 == 'n’) r0 = 012;
else if (r0 === 'p’) r0 = 033;
else if (10 == 'r) 0 = 015;
else if (10 === 't) 0 == 011;
else ; % default is \x *= x; or 10 = r0;

LIL Tutorial -4-

The first test that succeeds, reading down from the top, causes the corresponding action to
be performed; execution then resumes following the last else. In this case, the last else has no
test and so becomes the default action — what to do if nane of the tests succeeds. Since the de-
fault action here is the null statement *;’ the else could have been left off. It was written as a
reminder, however, which is often a good idea. No harm is done because the compiler is smart
enough not to generate extraneous code.

Those numbers that begin with 0 in the example above are octal.

Since the statement controlled by the if can be anything, including another if, a natural am-
biguity arises when the else option is used. When you say

if (@ if () ...;
else ...;

to which if does the else belong? The compiler arbitrarily resolves the matter by matching the
else to the second if. This is not what the indentation implies! To get the flow of control
correct, you would have to add a null else:

if@ ifd ..
else ;
else ...;

There is no need for this rather ugly form, however, since you can more easily write.

if (a && b) ...;
else ...;

and get the desired effect. If you really want the other. binding of the eise (which is also an ugly
way of coding), at least make the if-else into a group.

S. Groups

Just as you can group parts of an expression with parentheses, so t00 can you group state-
ments together. Use braces:

if(x<y)

{r0 = x; % exchange x and y

X =y

y = 10; }
Now the if controls the entire group instead of just one of the statements. Groups may appear
anywhere you see an expression ending in a semicolon (which is one of the simplest statements
allowed), including inside other groups. Note that the closing brace occurs gffer the last sem-
icolon (and no semicolon is written after the braces). Semicolons end things, they don’t separate
them.

6. Loops
Loops are another important type of control structure. They often control a group of
statements:

0 =0;

while (r0 < nitems)
{alr0] = bir0l = clr0] + 1;
0+ 2;)

The square brackets indicate indexing, with respect to 10. In this form of the loop statement, the
test is made at the top. That way, if nitems happens to be zero, the body of the loop is safely
skipped, which is usually what we want to happen. If the test is met, the statement following
the test, which happens to be a group, is executed and control returns to the test. The test will

[

LIL Tutorial -5-

eventually fail, in this case, and execution will continue with the statement following the loop.
Loops can also take another form:

0 = 0;
do { areallr0] = 0;
area2{r0] = 0;
} while (r0 + 2 < 500);

This clears 250 elements of the arrays areal and area2. Since we know that the loop will be
obeyed at least once, we can put the test at the end and get a tiny reduction in the number of
branches required. More important, we can state the increment and test a little more compactly.

The do-while form can aiso be followed by a non-null statement (or group, of course) in-
stead of just a semicolon:

r0 = listhead;
1= 0;
do n+1;
while (next{r0])
r0 = nextrol; .
% r0 points at last element

It is rare that you need a loop with the test somewhere in the middle — in fact you should make
sure you really do before writing it that way — but the facility is there if you need it.

7. Break, continue, and goto
The break statment lets you exit from a loop at other places besides the test:

=0
do- if (alr0] “= b{r0]) break;
while (r0 + 2 < 500);

As soon as corresponding elements of the arrays a and b are found that do not match, the loop
is exited. A loop may contain any number of breaks.

Sometimes you want to go back to the top of a loop from several places. Use continue:

while (true)
{_getchar(;
if (r0 ==’ ' || 0 w=xs \t' || () === "\n')
continue;

.
eceey

The keyword true specifies a condition that is always met. It is used in this case to form an
‘infinite’ loop with no tests. _getchar() is a subroutine call — more on subroutines later (and the
reason for that silly) — to a routine that returns an input character in r0. Thus this loop
header skips all blanks, tabs, and newlines on input.

You should be able to specify nearly all your control flow with if, else, do, while, break,
and continue. If you make a habit of doing so, in fact, you will find your code much easier to
read, and less likely to contain bugs. Occasionally, however, you may find a need for more direct
control. The goto statement lets you specify an arbitrary br or jmp instruction:

goto jail;
goto brtable{r0l; % table of branches
goto [atablelr0ll; % table of branch addresses

As the last form shows, indirection is specified by square brackets in a way analogous to index-
ing. '

LIL Tutorial -6~

8. Addressing
We have seen a number of different kinds of operands, implying different modes of ad-
dressing. Now is a good time to complete the list.

Every operand (symbol, literal, expression) in LIL has a number of attributes besides value.
One of the most important is its fype, which corresponds very closely to legitimate addressing
modes on the PDP-11. A constant such as 3, for instance is assumed to be an immediate reference
to a literal 3. If you have to refer to absolute memory location 3, write mem 3. Similarly, reg 3 is
equivalent to the predefined symbol r3, or register 3.

On the other hand, you sometimes want to get hold of the address of a memory reference,
instead of its contents. &x has the same value as x, but is of type immediate:

0=&x;rl =0;

_ while (rol+4+) r1 + 1;
This counts the number of non-zero entries in the array X, up to but not including the first zero.
The notation [r04—+ specifies autoincrement addressing; The ++ comes after the brackets to re-
mind you that incrementing occurs after the reference is used. It is the only operator that fol-
lows operands.

To put r0-r5 on the stack:
—{sp] = 1) = rl = 12 = 3 = r4d = 15}
Since the first operand remains unchanged, autodecrement occurs on every assignment.

As we saw earlier, square brackets indicate indexing, as in «r0l, indirection, Ixl, or both,
(xir0ll. Any valid PDP-11 addressing mode is acceptable, even {ir0l] (which becomes [0{r0lD. And,
of course, expressions are allowed inside brackets:

alr0 = il = birl = j + 21;

9. Compile-time expressions :
Most assemblers allow you to do a limited amount of arithmetic with symbols. To move
the contents of location b+2 into 10, for instance, you just write
’ mov b+2,r0
LIL uses operators like 4+ and —, however, 10 specify machine instructions. So a special notation
is used to show which computations are to be done at compile-time:

r0 = "b + 2%

Expressions inside double quotes generate no machine instructions, but are computed
directly from the values of symbols and literals. You can look on compile-time expressions as
instructions to a special machine whose storage locations are the symbol table entries. Most of
the run-time operators have analogous compile-time meanings.

Compile-time expressions have a slightly different interpretation than the run-time expres-

sions used to specify PDP-11 code. We want
b+2-—>10;

10 add 2 to location b, then move the contents of b into r0. But
"+ 2" => 10;

does not redefine the symbol b as having a value bigger by 2 than before — the expression sim-
ply refers 1o the value of b and leaves the symbol alone, which is what we usually want. So this
form, as before, moves the contents of location b+2 into ro.

o

),

C)

)

(J

LIL Tutorial ‘ -

To define a symbol, i.e. actually set its value, use the compile-time assignment:
*x = b + 2
This defines x initially as having the value (and other attributes of) b, adds 2 to that, then closes
x for any further redefinition, with the end of the compile-time expression. Hereafter we can
write
0 = x;
to move the contents of b+2 into 0.
Type and other attributes are also set in compile-time assignments:

"isp = [spl"; "sink = ——isp";
sink =0 = rl =12 =] = 4 = r5;

As you can see, addressing modes can be built up in stages.

10. Labeled Groups
The usual way to define a symbol is with a /abeled group:

x{ o3)

This notation causes several things to happen:

1) The code between braces is a local region — symbols may be defined inside it with the |

same names as those in other regions, or even in containing regions, without conflict. Lo-
cal definitions disappear after the close of the group.

2) break and continue statements may be used to skip to the bottom or top, respectively, of
the group, just as with a loop. If the statement has a label, as in break x, the break (or
continue) ignores all containing loops and labeled groups whose labels do not match the la-
bel in the statement, and instead applies to the innermost containing group whose label
matches.

3) The label x is defined (in the containing region, not just local to the group) as being a
memory reference whose value is the location counter at the start of the group, and whose
size is the number of bytes of code inside the group (more on both the location counter and
the size attribute later).

Labeled groups are used as the badies of subroutines, or of important subunits of routines,
or just to define data:
array{l; 1; 2; 5; 8; 11; }
scalar{—1; }
label{; } % just define label
Note that you can generate constants in line simply by writing them. (This is how you sneak in
special instructions like wait and iot.)
When used as a local region, it is best to head the group with a lecal statement:
x{ “local a, b, ¢";

This declares a, b, and ¢ to be symbois that will be defined inside the group, and that should be
forgotten on exit from the group.

If not explicitly declared, a symbol is made local to the first group in which it is referenced.
Should the group end before it is defined, the symbol is promoted into the next outer containing
group. Any symbols undefined at the end of a program file are published as undefined externals.

ot

LIL Tutorial ’ -8-

11. Subroutlnes

No special code is generated at either the start or the end of a labeled group, even one used
as a subroutine body. Thus there are no preconceived notions about how you must build
subroutines, which is by way of saying that you are obliged to write entry and exit sequences ex-
plicitly. ' '

For convenience, however, there is a presumptuous mechanism for calling routines.
Designed to be compatible with code produced by and for the language C, the two ways of calling
a routine are:

fun(); % no arguments

fun2(argl, arg2, r0 = arg3, argd + 1);
The code generated is

jsr pe,fun / first call

mov arg3,r0 / arg expressions

inc argd / left=to~right

mov argd,—(sp) / args moved

mov 10,~(sp) / onto stack

mov arg2,—(sp) / right—to—left

mov argl,—(sp)

jsr, pc,fun2 / second call

add $8,sp / args popped

The arguments are moved onto the stack in reverse order so that 2spl always refers to the first
argument, 4lspl the second, and so forth. That way, if the wrong number of arguments are
passed, the first ones still match up properly and no major harm is done.

To receive this sequence takes no special effort, although you might wish to use the C li-
brary routine :

jsr r5; rsave; n;

to save nonvolatile r2-r5, reserve n bytes on the stack, and leave r5 pointing at the argument list
(so argl is at 4ir5l, arg2 at 6(rS], etc). You would then leave, after putting any integer result in
0, by

goto rretrn;
That jsr rS is no mistake — LIL treats jsr as a unary operator, similar to - or ~, which
changes a register into an immediate that looks like the first word of a
jsr r5,*Ssubr '
instruction. To return from a subroutine, write (you guessed it)
rts pc;
And, to complete the record, you can make system calls with a
' sys n;
where n is an immediate. ,
For added convenience, LIL treats C compatible function calls as references to register 0:

if (alf{c)) x = ¢;
becomes

mov ¢,~(sp)
jsr pe,alf .
tst (spH % sneaky form of sp+2

J

2

(

C)

¢ O

LIL Tutorial -9

tst r0

be 1f

mov ¢,X
1:

And if you plan to use a large number of these function calls, you may wish to do as theC
compiler does — reserve a temporary location of top of the stack, Ispl, to hold the last argument
on all calls. Thus

fun(c)
becomes

mov ¢,*sp
jsr pc,fun

in general saving an autodecrement and an add on each call with arguments. To turn on this
feature, declare a local version of the flag symbol .temp and set it nonzero.

12. More declarations
If you want your function names, or any others, to be used to satisfy references in other
compilations, use
"extern a, b, c";
extern is an additive attribute — it can apply to symbols.also declared local. In fact, if you wish

to refer only in some sub-region to an undefined external, you must declare it in both local and
extern statements inside that region. " :

In case you have to use any of the LIL keywords to communicate with, say, assembier
routines, you can turn off their special meaning, once and for all, with an escape:
"extern \if";
"xif = if";
This is best done, as shown, at the end of a program file, to define the alias used in the body of
the code. ,
A useful variant of the local statement looks like a compile-time function call:

~ "olspl(a, b, c sizeof 4, d, e)";
The effect of this statement, for each argument from left to right, is to
1) declare the argument to be local and define it to be equal to the label (originally OispD).

2) increment the value of the label by the size of the argument (e.g. Olspl becomes 2{spl). De-
fault size for all symbols is 2, but the sizeof operator can be used to specify another size.

If used as an operand, this form thus has a value equal to its original value plus the size of
everything declared, in this case 12 (since the sizeof operator explicitly declared ¢ to be of size 4).

This form is most useful in defining names for automatic variables (reserved on the stack
every time a routine is entered), in conjunction with the C entry sequence

subr{ jsr 15; rsave; sizeof "Oispl(a, b, ¢ sizeof 4, d, €);

As a unary operator, sizeof changes its operand into an immediate reference whose value‘ is the
size of the operand, so the proper number of bytes to be reserved will be generated in line.

Another convenient notation resembles indexing:
af2] = r0; % is the same as
*a + (2 * sizeof a)" = r0;
where the * specifies compile-time mulitiplication.

- LIL Tutorial -10-

13. Load control

Sizes are not used by LIL to generate code — mostly the compiler keeps track of them for
handy reference, as above. If a symbol remains undefined, however, its size is published along
with its name as an undefined external. The UNIX loader treats such a reference with a non-zero
size as a labeled common block. All references with the same name are collected by the loader
(keeping track of the maximum size requested), so that sufficient space can be allocated in the bss
section.

Generally, you compile code into the fext section, compile initialized data into the data sec-
tion, and just layout data areas in the bss section (bss is a fossil meaning ‘block started by sym-
bol’ in middle low Phoenecian). UNIX promises to zero everything in the bss area, but won't let
you help. LIL therefore will smack your fingers if you try to generate code except into the text or
data areas.

How do you switch loading among areas? There is a special symbol called dot *.” which is
set to the current value of the location counter at the beginning of every statement. You may
redefine dot yourself, so long as you don’t try to back up over code already generated. It is gen-
erally meaningful to set dot only to one of the other redefinable symbols: .abs, .text, .data, or
bss. These are the location counters for absolute (unrelocated) loading, or for one of the relocat-
able sections already discussed. Thus:

*, = data"{ % switch to data area
array(l; 15 2; 5; 8; 11; }
scalar{-1; } '
label(; } % all defined in data area
} % switch back

Using dot to label a group as shown provides for a temporary diversion of loading, since the la-
bel is defined at the close of the group as having the value of the location counter at the start of
the group. If you want to generate a lot of code into, say, the data area, use the simple switch:

* =, data";

It is not necessary to switch dot unless you plan to generate code (although dot can be
made to point in many interesting directions). You can use the shorthand

* bss(a, b, c sizeof 4, d, e)';

as before, only this time the location counter for the bss area is updated to make room for the
variables. Code before and after this statement will go into the rext section, as usual, unless oth-
erwise specified.

It is good practice to keep data that must be altered out of the text section, by the way.
That way, you can often write-protect the code (hardware permitting) and make your debugging
job much easier.

14. Bytes and strings
We have come a long way without mentioning byte addressing. There is nothing terribly
magic about it — just use the byte modifier before any operand you wish to be used as a byte
reference.
10 = byte s;
byte d = byte s;
byte d = "\0';

The rule is — if either operand is of type byte, the other must also be of type byte, unless it is
an immediate or a register.

.....

LIL Tutorial -11-

If you get tired of writing byte, make it part of the symbol definition:

".bss(byte name sizeof 8)";
r0 = 4{r5];
rl = {;
do name{rl] = byte [r0]-++;
while (rl 4+ 1 < sizeof name);
name{rl] = \0’;
And if you must ‘undo’ the byte attribute, use word.

Single quotes are used in LIL to denote character strings of any length. Odd length strings
are padded to even length by adding a null byte, but otherwise no effort is made to ensure a null
terminator. Strings up to length two fit in one word and may be used wherever an immediate is .
allowed. Longer strings may be used only to generate ascii text in line:

table{ 0; ‘zero’;
1; ‘one '3
2; ‘two '; }
or as a literal reference: ‘
if (debug) _printf(=’'error message\n’);

The unary operator = compiles the operand string (or any immediate) into the data section.
If the odd byte of the last word is not zero, a zero word is appended. The operand becomes an
immediate whose value is the address of the first word allocated. Thus, the literal notation above
is equivalent to the C string reference "error message\n". . '

15. C compatibility

Most of the job of interfacing to the C world is handled in the subroutine call/return
machanism already described. You should be familiar with C and its call by value convention to
intermix code safely. C insists on prepending a _ to all symbols referenced in that language.
This avoids conflicts with assembly language support routines, but makes for generally unpretty
names in LIL.

If you run under the aegis of the C support library, you must provide a main routine, called
-main, and should leave gracefully by returning from _main or by calling _exit.

Be warned that
fun(byte a);
will move only one byte onto the stack, leaving garbage in the high-order byte. C expects a prop-
erly sign-extended integer.

Also, thanks to the curious way that things are declared, you must be careful with
undefined external function names. If the size of such a reference is non-zero (and the default is
2), the UNIX loader will not match the reference up to a text symbol. LIL sets the size attribute to
zero on any symbol used as the entry name on a C compatible cail. But for nonstandard usage,
you must say

"extern rsave(), rretrn()";
to set entry name sizes to zero.
Most of all, if you mix languages, watch out for the differences.

LIL Tutorial ' -12-

16. Preprocessor

LIL uses a preprocessor essentially identical to the one provided with C. If the ﬁrst' charac-
ter of a program file is #, the file is scanned for lines that look like

#include ‘pathname’ /* the specified file is included */

#define SYMBOL string /* all subsequent occurrences of
SYMBOL are replaced by the
defining string, surrounded by

blanks */
PLA style comments are used only in conjunction with preprocessor statements. .
Some useful things to define are: ' AN
#define ENTER jsr r5; rsave; ~
#define LEAVE goto rretrn
#define RETURN rts pc
#define AUTO 0Oispl

#define ARGS dir5) ' :

If you have more than one case at your disposal, it is a good idea to write defined symbols in all
caps to distinguish them from other symbols.

17. Conditional compilation

LIL also provides for conditional compilation, with the aid of compile-time conditions and the
ordinary conditional statements of the language. Compile-time conditions. must evaluate to
strictly true or false, and may be combined with those keywords to determine whether a piece of
code should be omitted: -

if ("recsize == 512") getblockO;
else read(fch, &buffer, recsize);
Depending on the value of the symbol recsize (which must be known), only one of the two
function calls will be compiled into the final program. The else is, of course, optional:

if (debug)
(dcount + 1;
_printf(='got this far %d\n', dcount); }

This can be turned on or off simply by writing

s onore e ~;
ug = : -
or ~
"debug = false";
or it can be made a runtime switch by writing
*.bss(debug)”;
and setting it on the basis of some input character at run-time. M>
Loops can also be turned on or off, from the test onward: J

do eed % this is compiled
while (false)
{oees % this is skipped

% no jump back
for what it may be worth. A useful form, however, is the ‘infinite’ loop we saw earlier.

S

LIL Tutorial . =13

18. Syntax, character set

By now you probably have a pretty good feel for the syntax of the language, without even
being told the nuts and bolts rules. Blanks, tabs, and newlines are largely ignored (but a string
may not contain a newline — you must use the escape sequence \n). It helps if you are careful
to indent to show nesting depth, as the examples have showed. And you may write names of
any length, for clarity, but only the first eight characters are meaningful.

Operators may not be run together as in most languages:

x =>—=={spl; % is illegal
x —> —{spl; % is required

It is possible to type LIL programs quite readably using just the basic ascii 64-character set.
Braces can be replaced with ordinary parentheses (since LIL doesn't distinguish them anyway),
for |, and ! for ~. The compiler does distinguish between upper and lower case letters, so beware
of trying to alter a mixed-case program from a one-case terminal. That way madness lies.

19. Compiling
To use the LIL compiler, type the UNIX command line

Ic args

where args are source files if they end in .1, flags if they begin with —, and object files otherwise.
Flags and loading conventions are just like those for the C compiler (where appropriate see cc(l)
in the UNIX manual). Some important flags are:

-p Include ‘profile’ library, which will automatically produce a histogram of code usage
when program is run (see prof{I) in UNIX manual).

-p Preprocess only, writing expanded source on file with .l changed to .i.
-e Compile only, writing standard UNIX object code on file with .1 changed to .o.

Much of this baggage is for use with ¢ world programs. If you are coding entirely in LIL,
say for another PDP-11, you will probably just use

/ust/pjp/pdp/lc —c files

where each of the files is a source file whose name ends in .l. In this case, each file is compiled
in turn and its object code written on a file with the same name, only ending in .0. You can
then bind object decks together with the loader (see 1d(I)), to make a standard UNIX executable
file. This is certainly the best format to work from, since it lets you mix in existing assembly
language code, and anything else that UNIX provides (even Fortran).

20. Unary operators

As promised, we now present a complete list of all the operators that LIL recognizes, start-
ing with the unary (one argument) operators. These have the same meaning at compile-time as
at run-time, for none of them generate code. Instead, they modify references to symbols or ex-
pressions, by changing their type, value, or other attributes. For convenience, we define the fol-
lowing symbols:

| non-byte memory reference.
m, n absolute (i.e. unrelocatable) immediate.
r register.

v, W any non-byte addrws type.

X,y any PDP-11 address type.
The unary operators are:
x++ converts type register indirect to type autoincrement.
——x converts type register indirect to type autodecrement.
=n compiles the absolute immediate or string n into the data section, appending a zero word

if the last byte is not null. Result is type immediate, value is address of start of the allo- .

cated string.
&x converts x to type immediate, removes byte attribute.
mem X converts x to type memory, removes byte attribute.

reg x converts X to type register, removes byte attribute. x must be defined absolute with 0
<= value <= 7.

word x removes byte attribute.

byte x attaches byte attribute.

-n negates absolute immediate n.

“n complements absolute immediate n.

st converts type register r to an immediate with value of rts r instruction.

jStr converts register r to an immediate with value of jsr r,*$ instruction. (Should be fol-
lowed by address of routine.) :

sys n converts immediate n to an immediate with value of sys n instruction.

sizeof x converts x reference to an absolute immediate with value equal to size attribute of x
reference.

ln shifts absolute immediate n left 8.

21. Compile-time binary operators

x>=my, x>y, x=my, x<y, x<=y, x"=y result is a condition with vaiue true if the relation ob-
tains, otherwise false. Both x and y must have the same relocation bias. Comparisons
are all on signed quantities.

x=y, y=>x X is defined to have the same type, value, and other attributes as the y reference. x
must be previously undefined (unless it is dot or one of.the four location counters)..

x=—n x is defined as the negative of the absolute symbol n.
x="n x is defined as the complement of the absolute symbol n.
The type of x is left unchanged in the following:
x+y result is the sum of x and y. At most one of the two may be relocatable or undefined.
x—y result is the difference of x and y. If y is relocatable or undefined, it must have the same
bias as x.
n"m result is n equivalence m (not exclusive or).
n—m result is n exclusive or m (not equivalence).
nim inclusive or.
n&m and.
n&'m same as n&("'m). '
n**m n is shifted left (if m>0) or right (if m<0) by Imi.

C)

))

)

)

LIL Tutorial -15-

n*m multiplication.

n/m division.

nllm same as (n&0377) | (m**8) [packs bytes].
x sizeof n result is x with size n.

22. Run-time binary operators :

These are the creatures that actually generate code. If x and y are not both byte or both
word, then one of them mustbe-a righ-bjle register or immediate: The instruction generated
will then be byte mode if either operand is byte. The following is a metalinguistic description of
the decisions made by LIL in producing code for each operator.

x>my, x>y, x=my, x<y, Xx<=y, X' =y ch;ﬁpa:e signed]
x> >my, ¥ >y, x< <y, X< <my [compare unsignedi
if (y==0 && cc set on x) do nothing
else if (ym=0) tst(b) x
else if (xm=0) tst(b) y
else - cmp(b) x,y
x=y,) |
y=>x if (ym=0) cir(b) x) _
else if (xm={carry oflow zero minus) && y=={true faise})
setx or secx
else if (y==minus) sxt x
else mov(b) y,x
xm—y if (y==0) clr(b) x
else if (xm=y) neg(b) x
x="y if (x=m{carry oflow zero minus} && y=={true false})
secx or setx
else if (xmmy) com(b) x
xty if (y==l) inc(b) x
else if (y==carry) ade(b) x
else add y,x
x=y if (y==1) dec(b) x
else if (ys=carry) sbe(b) x
else sub y,x
xly ’ bis(b) y,x
x&n bic(b) $!n,x
xr XOr r,X
r*y mul y,r

r/y dﬁr A4
3

!

LIL Tutorial -16 -

x?y it (ym=0) tst(b) x
else CMﬁb) Xy

x?&y bit(h) x,y

x<>n if (n===l) rol(b) x

else if (== =1) ~ ror(b) x

x<*>n |if (n==8) - swab x
else if (x odd reg) ashe n,x

x**n if (n==}) asi(b) x
else if (== ~]) asr(b) x
else if (x a register) ash n,x

r***n ashen,r

Both the sizeof and !ll operators are also defined at run-time and have the same effect as at-

compile-time. They do not directly cause code to be generated.

The compiler is aware of what is happening to the condition code most of the time. It
knows, for instance, that swab and function cails do not leave the code in a state implied by the
language, and so will generate a tst if the result of either is to be used in a test. The PDP-11 is
somewhat whimsical about the setting of the carry bit, however, and LIL makes no real attempt
to second guess the machine. (It makes a difference whether you add 1 or 2 to something, for
instance.) It is always a good idea to be very careful when testing for special conditions.

23. Machine instructions .

It is best to learn to think in terms of LIL statements, instead of individual machine instruc-
tions. But to help you make the conversion, here is a list of the PDP-11 orders and how to gen-
erate them one at a time. Symbols are the same as in the previous sections.

ade(b) x X + carry;

add v,w w+ v

ash r,n r**n; % Inl "= 1
ashe r,n r *** n;

asl(b) x x**1; -
asr(b) x . x ** —1;

bee | if Ccarry) goto |;
bes | if (carry) goto I;
beq | . if (==) goto |;
bge | if (>=) goto 1;
bgt 1 if (>)goto l;

bhi | if(>>)goto I;
bhis | if(>>m=) goto I3
bic(b) x,y y & x;

bis() x,y ’ ylx;

bitd) x,y y 2& x;

ble | if (<=) goto ;
blo 1 if(<<)gotol;
blos 1 if (<<=)goto |;
bit | if (<)goto 15
bmi | if (minus) goto 1;

bne 1 if ("=) goto I;

C \)

(J

C O

LIL Tutorial

bpl |
bpt
bri
bve |
bvs |
cce -
cle
cin
clr®) x
clv
clz
cmp(b) x,y
com(b) x
dec(b) x
div w,r
emt n
halt
inc(b) x
iot
jmpw
jsr pe,w
jsr ,*$1
jsr r,w
mark n
mfpl w
mov(b) x,y
mtpi w
mul w,r
" neg(b) x
reset
rok(b) x
ror(b) x
rti
rmsr
rtt
sbe(b) x
sce
sec
sen
sev
sez
sob |
sub v,w
swab w
sxtw
trap n
tst(b) x
wait
xor r,w

-17 -

if Cminus) goto 1;
3

goto 1;

if Coflow) goto &
if (oflow) goto 1;
0257;

carry = false;
minus = false;

s Xn2t 0

oflow = false;
zero = false;
x?y;

x =% x;
x—-1;

w/r
"014000 + n";
0;

x+1;

goto w3
w(;

jsens s
"06400 + n";
y=x

r*w

X - X3

S;

x <> 1

X <> -1;
2;

rts r;

6;

X = carry;
0277;

carry = true;
minus = true;

- oflow = true;

zero = true;

w—v;
w<*> §;
w = minus;
sys m3
x?0;

1;

worn

% note inversion

% not provided
% not provided

% not provided

% not provided

LIL Tutorial -18-

24. Keywords and predefined variables

Keywords are reserved words in LIL, which means you cannot have local variables with the
same names as keywords (unless you turn off their special meaning with the escape \, as we ex-
plained earlier). Here is a complete list of the keywords:

break goto rts
byte if sizeof
continue isr Sys
do local while
else mem word
extern reg

Predefined variables, on the other hand, may be superseded by new local definitions. They
are merely provided for convenience or to make available special services which you may not
need:

. false r3
.abs minus 4
.bss . oflow 5
.data pe sp
.temp 0 true
.text rl zero
carry 2

25. A final note

Performing compile-time arithmetic with the current location counter, dot or *.", is generally
unsafe, since it is difficult to anticipate-how many words will be needed to represent a given se-
quence of instructions. LIL may actually evaluate the same expression differently in different
places as the compiler learns more about what instructions may be made shorter. Since dot is
known to be set at the beginning of each statement, there are occasions when it is both safe and
useful to write compile-time expressions involving dot. One important situation is the indexed
branch used to implement an efficient ‘case switch*

if (MIN <= 1) && 0 <= MAX)
switch {
goto ". + 4 — MIN"I10l;
"local case0, casel, case2, ...";
casel; casel; case2; ...;

cased{ ...:;}
casel{ ...;}
case2{ ...;}
B % end of switch
else ...; % default action

Here MIN and MAX are manifest constants specifying the valid limits of the branch index
(which of course must be even). The group labelled switch permits the case labels to be kept lo-
cal to this particular switch, so they can be used repeatedly. Default actions, if any, are provided

by the else clause.
fj Ma«/

MH-1382-PJP P.J. PLAUGER

