, @ Bell Laboratories ~ Cover Sheet for Technical Memorandum
The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)
™
(2 .
w Titlee LIL Reference Manual Date- June 19, 1974
T™™- 74-13528
Other Keywords- PDP-11
Implementation Languages
: \
\
Author Location Extension Charging Case- 39394
P.J. Plauger MH 7C-205 X3644 Filing Case- 39394
ABSTRACT

LIL is a Little Implementation Language for PDP-11 computers, suitable for writing system
level code or in any situation where assembly-language coding is traditionally called for. A LIL
compiler is available for use under the UNIX operating system. The object code produced is com-
patible with, and may be freely intermixed with, that produced by the UNIX assembler, Fortran,
or C compiler. -]

This document is a reference manual for the LIL language. A knowledge of machine level
coding on the PDP-11 is assumed, and some knowledge of UNIX operating procedures is required
to use the compiler. A tutorial introduction to programming in LiL is provided in TM 74-1352-6.

Pages Text 11 Other 0 Total: 11
No. Figures 0 No. Tables 0 No. Refs. 0

BELL TELEPHONE LABORATORIES, INC.

COMPLETZ MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLOS ONE COPY FOR

ZACH ADCITIONAL FILING

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

BOYD, GARY D
+BUCHSBAUN,S J
CHRISTERSEN,C
+CLOGSTON,A M
+CONDON,J B
CUTLER,C CHAPIN
FREENY,S L
GILLETTE, CEAN
GIORDANO, FHILIP P
*HANNAY, N B
+JENSEN,PAUL D
KEEPAUVER,W L
+XLEIN,MISS R L
+KOLETTIS,N J
LINB,J O
LYCKLAMA, HEINZ
MCDONALD, H S
+MILLER,S B
NINKE, WILLIAM H
NOOLANDX, 3
+OMOHUNDRO,HAYRE E
PATEL,C K N
PRIM,ROBERT C
*REID, ROBERT E JR
+ROBERTS,CHARLES 8
SLICHTER, % P
TEWKSBURY S K
THOMPSON, JOAN S
TILLOTSON,L C
" WOLONTIS,V MICHAEL
YAMIN,MRS £ B
+YOUNG, JANES A
32 s

.

COVER SHEET ONLY TO

CORRESPONDENCE PILES

4 COPIES PLUS ONE
COPY FOR EACH PILING
CASE

ABRAHAM, STUART A
ACKERMAN, A P
AHO,A V .
ARRENS, RAINER B
ALCALAY,DAVID
ALLES,HARQLD G
AMRON, I

+ NAMED BY AUTHOR

MERCORY DIST R BUT ION cee 000000000 000e0000000000000e0s0eoeeacesnencassessansnesoss

COMPLETE MEMO TO:
10-2xD 13-DIR

COVER SHEET TO:
127

COPLAS = COMPUTING/PROGRAMMING LANGUAGES/ASSEMBLY"

COVER SEEET ONLY TO

ANDERSON,M M
ARMBRUSTER,MISS M B
ARKOLD, GEORGE W
ARNOLD, S L

ATAL,B 8

BADURA, DENNIS ©
BALDWIN,GARY L
BARTLETT, VADE 8
BASEIL, RICHARD J
BAUZR,MISS H A
BAUGH,C R
BERGLAND, G DAVID
BERING,D 2
BERNSTEIN, LAWRENCE
BEYER, JEAN-DAVID
BILOWOS,RICHARD M
PIRER,MRS IRMA B
aISHOP, MISS V L
BLINN,JAMES C
BLUE,J L

BLY, JOSEPH A
BODEN, P J
BOHACREVSKY,I O
BOWYER, L RAY
BOYCE,W M

BRANDT, RICEARD B
BREWER, P A

BROWN, W STANLEY
BROWN, WILLIAM R
BULLEY, RAYMOND M
BURR, STEPAN A
BUTZIEN, PAUL B
CAMPBELL,STEPHEN T
CARAWAY,R E)
CASPERS,MRS BARBARA E
CAVINESS, JOHN D
CEMASHKO, FRED
CHAMBERS,J M
CHAMBERS, MRS B C
CHEN, EDWARD

CHEN, STEPHEN
CHERRY,MS L L
CHODROW, MARK M
CLAYTON,DANIEL P
CLIPFCRD, ROBERT M
COBEN, ROBERT M
COHER, HARVEY

COLE, LOUIS M
COLLIZR,ROBERT J
COOPER,A £
CORASICK,MISS M J
COULTER,J REGINALD
COURTNEY PRATT,J S
CRUME, LARRY L

D AKDREA,MRS LOUISE A
DAVIS,R L JR
DEUTSCH,DAVID N
DICKMAN,B N
DIMINO,L A
DIMMICK,JAMES O
DOLOTTA,T A
DRAKE,NRS L
DRYDEN, JOHN J

DISTRIBUTION
(REFER GEI 13.9-3)
COVER SHEET OMLY TO

GAY,PRARCIS A
GEARY,M J
GELBER,MISS CHERON L
GEPNER, JAMES R
GEYLIRG,P T

GIEB, RENNETH R
GILBERT,MRS8 RINDA 8
GIMPEL,JANES P
GITHENS,JOHN A
GLASSER,A

GLUCK, ¥

GOGUEN,M8 NARCY
GOLABEK,MISS R
GOLDSTEIN,A JAY
GORMAN, JANES B
GRAHAM,R L
GREERBPAN,S J
GROSS, ARTHUR G
GUERRIERO, JOSEPH R
AAPER,E H
HALL,AKDREW D JR
HALL,MILTON 8 JR
HALL,W G

HAMMING,R W
HANSEN,R J
HARASYMIW,J
HARKNESS, MRS CAROL J
AARRINGTON, T DORSEY
HARRISON,NEAL T
HARTTTA, K

RAUSE,A D
HEATH,SIDNEY P IIT
HEMMETER,RICHARD W
HEMMING,C JR

+HERGENHAN,C B

> CITED AS REFERENCE SOURCE

135-DPH

COVER SHEET ONLY TO

HEROLD,JCHN W
RESS,NILTON 8
HINES,NISS P B
HOLTNAN, JANES P
AONIG,¥ L
HOYT,WILLIAN P
RO,J C

RUNNICUTT ,CHARLES P

LER, WILLIAM C Y
LEGENHAUSEN, 3
LESK,MICHABL £
LESK,MS ARN B
LIEBERT, TROMAS A
LINDERMAN,J
LINNEWER,LOUIS H
LIN,SHEN
LOEGREN,K M

GONEGAL,MISS C A
ILROY,M DODGLAS
MOLLEN,® C
RAE,JEAN E
TIGUE,G E

MENIST,DAVID B

MC
MC
MC
MC
MC GILL,ROBERT
MC
MC
MC
MC
MC

TH=78=1352-8

COVER SREET ONLY TO

MENON, P R
METZ,ROBERT P
MTLLER,ALAN B
MILLS,MISS ARLINE D
MOLISELLY,JOHN J
MOLTA,J W

MORR, PATLLIP I
MURATORT , PICRARD D
MPRRLICH,W R
NELSON, N-P
NORTON, HERRERT O
NOWITEZ,D A

O CONWNELL,T P

O SHEA,W T

0 SULLIVAN, JOHN A
OLSRN, RONALD G
OFPERMAN,D €
OSSANNA,J P JR
OTr0, JORN B
OWENS,MRS G L
PALM, RICHARD C TR
PEARLMAN, B
PENNIFO,T
PERITIRY, MARTIN M
PETERSON, RALPH W
PETERSON,T G
PPISTER, RORERT G
PILLA,MICHAPL A
PINSON, PLLIOT N
PIRZ, PRANK
PITTS,CHARLES J
POLLAK, HENRY O
POPPER, €
RAACK,GERALD A
REPD,S C
REHERT,ALLEN P
RIDDLERFRGER,C O
RIDDLE,G G
RITACCO,J ¥
RITCHIE, DENNIS M
ROCBKIND,M J
RODIHAN, MRS PATRICIA A
‘RODRIGUEZ, PRNFSTO
ROSENTHAL,CHARLES W
ROSLER, LAWRENCE
ROVPGNO,MPS HELEN D
RYDER, J

SATZ,L R
SCHARYER,N L
SCHORTER, W A
SCHWENKYR, JOHN ©
SPARS,EDWARD R
STRTRO, W T
SFMMELMAN,C L
SHANK,J ¢

SHANR,R A
SHIPLRY, POWARD N
SRORTPR,J W
SIDOR,DAVID J
SINOWLTZ, NORMAN R

317 TOTAL

TO GET A COMPLETE COPY:

1. BEZ SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTRER SIDE.
2. FOLD THIS SHEET IN HALP WITH THIS SIDE OUT AKD STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT.

USE NO ENVELOPE.

RADY,J B3

MH 732013

T™~T78-1352-0

TOTAL PAGES AR

PLEASE SEND A CONPLETE COPY TO THE ADDRESS SHOWN ON THP
OTREZR SIDE
NO ENVELOPE WILL BE NFEEDED IF YOU SIMPLY STAPLE TRIS CIVEP

SHEET TO THE COMPLETE COPY.
IP COPIES ARE MO LONGER AVAITAPLE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE PILES.

(=)

Bell Laboratories
Subject- LIL Reference Manual Dae- June 19, 1974
From- P. J. Plauger

™ 7413528

MEMORANDUM FOR FILE

LIL is a Little Implementation Language for the PDP-11 family of computers. It is little in the
important sense that there are very few constructs and combining rules, and fewer exceptions. It
is an implementation language, which means that it is possible to express any of the code needed
to implement an operating system, including Lo drivers, interrupt routines, and transfer tables.
Nevertheless it remains a moderately high-level language, with' the improved readability and reli-
ability that one expects from avoiding assembly-language level coding.

This document is a reference manual for LIL. It provides a comprehenswe, and reasonably
precise, descnpuon of the languaae but makes no attempt to introduce concepts in a tutorial ord-
er.

1. Invocation
The LIL compiler is invoked by

lc args

where args are source files if they end in .1, flags if they begin with —, and object files otherwise.
If more than one source file is specified, or if the —c flag is present, object code for each file
whose name ends in .l is written on a file with a similar name, only ending in .o.

Unless —¢ (compile only) or —P (preprocess only) is present, all object files are presented to
the loader for binding, along with the standard C libraries. Profiling may be invoked with —p
(see cc (I), prof (1) Id (l) monitor (II) in the UNIX manual).

2. Preprocessor

If the first character of a LIL source file is a #, a strmg-onented preprocessor is invoked. '
This scans the source for lines beginning with a # and recognizes the following non-empty com-
mand lines:

include ‘pathname’ — The file specified by pathname is included in the source in place of the
command. Line numbering of the remainder of the source file is unaffected. For the
sake of diagnostics, all lines in the included file have the same line number.

define SYMBOL string — The string of characters on the remainder of the line is remem-
bered, along with the SYMBOL name, and the defining line is blanked out. All subse-
quent occurrences of SYMBOL are replaced by string, surrounded by blanks. SYMBOL
is a maximal string of letters, digits, dot *.’, and underline ‘_’, beginning with a non-digit.

LIL Reference -2-

The =P option on the invocation line may be used to cause preprocessor output for each
file whose name ends in .l to be written on a file with a similar name, only ending in .i. PLA
style comments are permitted on preprocessor command lines.

3. Lexical analysis

The source file is treated as a series of tokens, possibly separated by white space, which con-
sists of one or more blanks, tabs, newlines, and/or comments. Comments are arbitrary strings
beginning with a % and ending with the next newline. Except for its important function of
separating tokens, white space is ignored, and so should be used freely to emphasize the logical
structure of the code.

Tokens are one of the following strings of characters:

identifier — one or more letters, digits, ‘.’, and/or ‘_’, beginning with a non-digit. Only the first
eight characters are used to dxstmgulsh ldemlﬁers.

octal number — a 0, followed by any number of digits. Only the low order sixteen bits of the
value represented by the string are retained.

decimal number — a non-zero digit, followed by any number of digits. If the value repr&semed
by the string is greater than 32767, its value as a token is uncertain.

character string — a pair of single quotes enclosing any number of characters. Each character
may be any valid ascii code except newline or single quote. A \ is combined with the
character following to form a single character; the following mapping occurs:

\0 becomes 000 NUL .

\a 006 ACK

\e 004 EOT

\n 012 NL -

\p 033 PRE (ESC)

\r 015 CR

\t 011 TAB
All other characters following \ are mapped into themselves (including \, newline and
single quote).

operator — one or more of the characters from the set ‘m+—<>?*/&II"". The pairs i* and ™!
are each interchangeable.

punctuation — A character from the set *;,{}IlO\". The pairs {(and)} are each interchangeable,
but it is recommended that the stylistic usage foilowed in this description be retained
wherever possible. The equivalences are provided to ease typing readable LIL programs
on a 64-character terminal.

Other ascii characters not shown here will produce a diagnostic message and be skipped.

4. Keywords

Certain identifiers are predefined as keywords, i.e. tokens with special syntactic meaning.
These identifiers are:

break goto s
byte if sizeof
continue Jsr sys

do local while
else mem word
extern reg

Keywords may not be redefined in local regions, unlike other identifiers.

e

fe -

LIL Reference -3~

It is possible, however, to remove an identifier from the keyword class, once and for all, by
means of the escape \. Any occurrence of a keyword immediately preceded by a\ is treated as a
reference to a hitherto undefined identifier of that name. This feature should only be used when
absolutely necessary, as when interfacing to a foreign language routine, and then only near the-
end of a LiL source file.

With this understanding, the term idenrifier will be used hereafter to mean any non-
keyword or a keyword that has been properly escaped.

S. Locatives

Identifiers, octal numbers, decimal numbers, and character strings no longer than two char-
acters are the simplest forms of /ocatives, which are used to specify the location of operands for
generating machine instructions, or which are the actual operands of compile-time operations. A
locative has a value, which may be defined or undefined, absolute or relocatable with respect to
some bias. Each locative also has a fype, which corresponds closely to a valid PDP-11 addressing
mode or specifies a condition, a size in bytes, and the optional attributes external and byte. Octal
numbers, decimal numbers, and short character strings, for instance, are by default type immedi-
ate, and have values which are defined and absolute.

Unary operators are provided to alter type and other attributes. In addition, a number of
predefined identifiers are provided from which type can be inherited. The basic types are:

register — The value of the locative must be defined absolute between 0 and 7, inclusive. The
operand is the contents of the general register specified by the value.

memory — The value of the locative is taken as an address in memory at which the operand is
to be found. The value may be absolute, to refer to special addresses used by the
hardware, or relocatable, to refer to addresses within the user program. If the value is
undefined, it is assumed that a definition will be provided later in the program text (for-
ward reference) or at load time from another object module (undefined external).

immediate — The value of the locative itself is to be the operand. Immediates may aiso be
undefined or relocatable.

More elaborate types are built from these primitives, or from expressions whose resuitant
type is register, memory, or immediate. Square brackets are used to indicate indexing or
indirection; in conjunction with additional unary operators the remaining types are specified:

autodecrement — The notation —{rexpl, where rexp indicates a register locative or an expr&d—
sion whose resultant type is register, specifies autodecrement addressing using the regis-
ter determined by the value of the locative or expression.

autoincrement — The notation [rexpl++ specifies autoincrement addressing in an analogous
fashion. <+ is the only suffix operator defined in LIL. .

indexing — The notation xirexpl, where x is a locative of type memory or immediate, specifies
" indexing on the register determined by rexp. The value of the locative is the same as x,
while the index register used becomes part of the type information. .

indirection — The notation [locl, where loc is any locative that does not itseif involve indirect
addressing, specifies indirect addressing. By special dispensation, however, {lrexpll is
permitted; it is translated into [0frexpll. This notation results in a family of types: in-
direct on register, indirect on memory, indirect on autodecrement, etc.

The final type which locatives may assume is condition, which specifies what state of the
condition code must obtain for a given test to succeed. Such locatives are always defined abso-
lute, and have mystical values which closely resemble the appropriate op codes for conditional
branches. Conditions usually arise from relational expressions or tests and seldom need be dealt
with explicitly.

LIL Reference -4.-

6. Predefined identifiers

LIL begins each compilation with a number of predefined identifiers which are often of use
in writing code.

All eight registers may be referenced by their conventional names:

0 4
rl (r-]
r2 sp
3 - pc

The symbol dot *.’ is updated at the end of each statement to point to the next location at
which code is to be generated. Similarly, setting dot to a new value causes loading to be diverted
to the place specified. The location counters for the bss, fext, and data sections (see 1d(f) in the
UNIX manual) are named .bss, .text, and .data, respectively. In addition, the absolute location
counter .abs is provided for convenience, to remember the latest absolute value dot may have as-
sumed. All of these locatives are of type memory.

Conditions corresponding to testing just one of the condition code bits may be specified by
using the predefined: T

carry
minus
oflow
zero

These correspond to the C, N, V, and Z bits, respectively. Unconditional tests may be written
with

false

true

in an obvious fashion.

All of these predefined identifiers may be superseded by local definitions, making the origi-
nal versions unreachable but still not interfering with their maintenance by the compiler. There
is one additional predefined identifier, however, which serves as a flag; its latest edition is always
consulted by LIL. This is .temp, which is used to specify whether or not the top element of the
stack [spl is to be used to hold an argument on function calls. If the standard function call nota-
tion is used, therefore, this must be considered a reserved identifier at all times.

7. Expressions ‘

Data manipulation instructions are generated by writing expressions involving locatives and
binary infix operators:

= x; % causes r0 to be loaded from x
+1; % causes r0 to be incremented
=x+1; % load then increment r0

The interpretation of the last statement differs markedly from that used in most languages. All
infix operators are of equal precedence in LIL, evaluation proceeds strictly left to right. The left
operand is retained for use with each subsequent operator, permitting the shorthand shown in
the example. (The third line is equivalent to the first two.)

Parentheses may be used to modify this strictly left to right order of evaluation:
0 = (x + 1); % increment x, then move x into r0

The rule is: evaluate the left operand, performing any calculations inside parentheses or brackets,
then do the same for the right operand, then perform the operation specified between the two

N I

1
v

</

-

O

e

LIL Reference , -5-

operands. The leftmost locative inside parentheses becomes the locative to use as operand.

All unary operators bind tighter than binary operators, as does the specification of indexing
or indirect addressing with square brackets. Individual unary and binary operators: will be
described in a later section. :

8. Compile time

To perform arithmetic with symbols, without generating code, and to define identifiers, one
writes what look like normal expressions, surrounded by double quotes. Thus '

"x = r0"; % defines x
"0+ 1"=x; % loads x into rl

Compile-time expressions are actually evaluated in a completely different context than run-time
expressions, using the values of the locatives themselves as operands. Most operators have
compile-time definitions analogous to their meanings at run time. Unless it contains an explicit
assignment operator (= or —>), a compile-time expression is computed without changing the
value of any identifiers.

Compile-time binary operators will also be tabldated later on.

9. Statements ,

An expression, terminated by a semicolon, is one of the simplest statements permitted in
LIL. An immediate or memory locative standing alone, followed by a semicolon, is treated as a
request to generate one word of code whose value is the value of the locative. Character strings
of any length may be used in this context to generate a series of code words; the last is padded
with a null byte if the number of characters is odd. It is also permissible to write just a sem-
icolon to specify a null statement. '

The simplest conditional statement is:
if (test) statement; '

test may be any locative, or a conditional expression containing parentheses, the prefix not opera-
tor ~, the infix and operator &&, and/or the infix or operator ll. Conditional expressions are
evaluated left to right, following the same rules as for normal expressions, except that the right -
operand of && will not be evaluated when the left operand is false, and the right operand of |l
will be likewise skipped when the left operand is true. Moreover, && binds tighter than il for
the sake of determining the truth value of the entire test. If a locative is not a condition, it is re-
placed by that condition obtained by testing if the locative is nonzero.

The not operator, of course, reverses the sense of any condition. Care must be taken, how-
ever, to ensure that its operand is unmistakably a condition, for ~ applied to an immediate mere-
ly ones-complements its value.

The if causes the controlled statement to be skipped if the test is not met, otherwise the
statement is obeyed. To specify an alternate action when the test fails, write

if (test) statement; else statement;

The else part is skipped over if the first statement is executed. The first statement may be
another if, in which case there is a possibile ambiguity in pairing subsequent else clauses. This
ambiguity is arbitrarily removed by binding each else clause to the innermost ‘unelsed’ if.

Loops are specified by
while (test) statement;

if the test should occur at the top, or by

do statement; while (test) statement;

LIL Reference ' -6-

if the test should occur at the end'if the test should occur somewhere in the middle of the loop
or at the end (second statement is nuil). Both forms exit when the test fails and contain an im-
plicit branch back to the beginning from the end of the form.

10. Groups

Conditional and loop statements can be made much more powerful by having them control
groups. A group is one or more statements in succession surrounded by braces:

if (0 < 0) % if 10 is negative
{r0 == 10; % negate 10
1+1;) ' % and count

No semicolon is used after a group, nor is the semicolon left off the last statement in the group.
Now the if will skip two statements if the test fails. Groups may, of course, contain other
groups to any depth of nesting.

A second form is the /abelled group:
label{ statement;
statement;

et }

where label is an identifier. In addition to grouping statements for control purposes, this form
also delimits a local region, in which identifiers may be redefined without clashing with other
usage, and causes the label to be defined as type memory with the value of the location counter
at the start of the group (although the definition actually occurs at the close of the group).

Two control statements work in conjunction with loops or labeled groups. The forms

break;
continue;

cause control to be transferred out of the innermost containing loop or labeled group, or back to
its top, respectively. And the forms

break label;
continue label;

perform similarly, except that all containing loops or groups whose labels do not match the label
in the statement are ignored. Instead, control is transferred out of, or to the top of, the inner-
most containing labeled group whose label matches.

11. Function call and goto
A C compatible function call is provided:
funO; % no arguments
fun(arg, arg, arg, ...);

where arg is any locative or expression except a condition. Any argument expressions are
evaluated left to right, then the arguments are moved onto the stack right fo left. The function is
called with a

jsr pe,*$fun
instruction and the arguments are popped off the stack.

The latest edition of the flag variable .temp is consulted on each call with arguments to
determine whether to use the top element of the stack [spl to hold the rightmost argument. The
flag is initially zero, indicating that Ispl is not to be used.

)

1%

LIL Reference .7

Each function call becomes a locative of type register and value zero.
Control can be transferred to an arbitrary destination by

goto loc;

where loc is any locative that may be used wnth a jmp mstmctlon (a br will be generated mstead. :
- wherever possible). It should not be necessary to use goto except in unusual circumstances.

12. Declarations

Identifiers are made implicitly local to the first region in which they are referenced. If, by
the close of that region, no definition is provided, the identifier is promoted to the next contain-
ing region. Identifiers undefined at the close of the source file are published as undefined exter-
nals. To explicitly create local identifiers, use

"local ident, ident, ident, ...";
where ident is an identifier, whose size may optionally be specified by writing
ident sizeof loc

for loc defined absolute immediate. Default size is two bytes. If these idents are not defined by

the close of the current local region, a dlagnostnc is produced.

Similarly, one can declare that certain identifiers are to be made known to other compila- .

tions, if defined, or are to be obtained from other object modules, if undefined, by writing
"extern ident, ident, ident, ..."; |

An identifier explicitly declared local and not defined must also appear in an external declaration.

A useful variant of the local statement is
"loc(ident, ident, ident, ...)";

For each ident, left to right, this
1) declares ident to be local and defines it to have all the same attributes, except size, as loc.

2) increments the value of loc by the size of ident Gf loc is an identifier this constitutes a
redefinition). '

The final size of loc is the sum of the sizes of the idents.

13. Load Control
LIL begins loading in the fext section, but permits code to be generated aiso in the data sec-
tion, by redefining dot, provided no attempt is made to back up over generated code.
", = data®; % switch to data area
x{=1; }
y{0; 0; 0; } : T
", = text"; % switch back
By the rules for labeled groups, however, such a temporary diversion may aiso be written as
*, = data"(
x{=1; }
y{0; 0; t;: }

provided x and y have been previously referenced or declared.

Dot can be set to any absolute value, or to pomt anywhere in the bss section, so long as no
attempt is made to generate code there.

LIL Reference -8~

UNIX treats all undefined external references with nonzero size as labeled common blocks,
and refuses to satisfy such references with fext symbols. LIL will set the size attribute to zero on
any identifier used in a function call. Nonstandard entries wich are not defined in the current
file, however, should be declared by

"extern entry()";

to set the size attribute of entry to zero and declare it external.

a—n, N

14. Unary operators

Unary operators have the same meaning at compile-time as at run-ume. for none of them
generate code (except =). Instead, they modify references to symbols or expressions, by changing
their type, value, or other attributes. For convenience the following symbols are defined:

| = non-byte memory reference.

m, n — absolute (i.e. unrelocatable) immediate.
r — register.

v, W — any non-byte address type.

X, y — any PDP-11 address type, including byte.

The unary operators are:
x4+ — converts type register indirect to type autoincrement.
——x - converts type register indirect to type autodecrement.

=n — compiles the absolute immediate or string n into the data section, appending a zero word
if the last byte is not null. Result is type immediate; value is address of start of the allo-
cated string.

&x — converts x to type immediate, removes byte attribute.
mem X — converts x to type memory, removes byte attribute,

reg X — converts x to type register, removes byte attribute. x must be defined absolute with 0
<= yalue <= 7.

word x — removes byte attribute.

byte x — attaches byte attribute.

=n — negates absolute immediate n.

“n — complements absolute immediate n.

rts r — converts type register r to an immediate with value of rts r instruction.

jsr ¢ — converts register r to an immediate with value of }sr r,*$ instruction. (Should be fol-
lowed by address of routine.)

sys n — converts immediate n to an immediate with value of sys n instruction.

sizeof x — converts x reference to an absolute immediate with value equal to size attribute of x
reference.

il n = shifts absolute immediate n left 8.

Sy

()

i,
6"\;9

C

‘)

)

)

LIL Reference , -9a

15. Compile-time binary operators

x>my, x>y, xm=my, x<y, X<my, x'=y — result is a condition with value true if the relation
obtains, otherwise false. Both x and y must have the same relocat:on bias. Compari-
sons are all on signed quantities.

x=y, y=>X - X is defined to have the same type, value, and other attnbut&s as the y reference.
x must be previously undefined (unless it is dot or one of the four locat:on counters).

x=-n - X is defined as the negative of the absolute symbol n.
x="n — X is defined as the complement of the absolute symbol n.
The type of x is left unchanged in the following:
x+y — result is the sum of x and y. At most one of the two may be relocatable or undefined.

x—y — result is the difference of x and y. If y is relocatable or undefined, it must have the same
bias as x. '

n"m — result is n equivalence m (not exclusive or).

n~"m — result is n exciusive or m (not equivalence).

nlm — inclusive or.

n&m — and.

n& m — same as n&("m).

n**m — n is shifted left Gf m>0) or right Gf m<0) by Iml.
n*m — multiplication. e
n/m - division.

nlim — same as (n&0377) | (m**8) [packs bytesl

x sizeof n — result is x with size n.

16. Run-time binary operators

If x and y are not both byte or both word, then one of them must be a non-byte register or
immediate. The instruction generated will then be byte mode if either operand is byte. The fol-
lowing is a metalinguistic description of the decisions made by LIL in producing code for each
operator.

x> =y, x>y, xamy, x<y, X<3y, X =y |compare signed|
x> >my, x> >y, X< <y, x<<L<3ay [compare unsigned|
if (y==0 && cc set on x) do nothing
else if (ym=0) tst(b) x
else if (x==0) tst(b) y
else cmp(b) x,y
xmy,
y=>x if (ym=0) cir(b) x
else if (x—{wry oﬂow zero minus) && y--{tme false})
; setx or secx .
else if (y-'minus) sxt X
else , mov(b) y,x
xm—y if (ymm=(0) clr(b) x
else if (xm=my) " neg(b) x

x="y if (x=={carry oflow zero minus} && y=={true false})
secx or setx

LIL Reference -10 -

else if (xmmy) com(b);
xty i (y=m=1) inc(b) x

else if (ym=carry) ade(d) x

else add y.X
x=y if (ymwm]) dec(d) x

else if (y==carry) sbe(b) x

else sub y,x
le bis(b) y.X
x&n bic(b) $!n,x
x&y bic(b) y.x
xr xor r.x
r*y mul y,r
rly , div y,r
x?y if (y==0) tst(b) x

" else cmp(b) x,y

x?&y bit(b) x,y
x<>n if (n==1) rol(b) x

else if (nm== —1) ror(b) x
x<*>n if (n==§) swab x

else if (x odd reg) ashe n,x .

**n if (nmwm]) asi(b) x
else if (nmm= =1) asr(b) x
else if (x a register) ash n.,x

r***n ashe n,r

Both the sizeof and lll operators are also defined at run-time and have the same effect as at
compile-time. They do not directly cause code to be generated.

The compiler is aware of what is happening to the condition code most of the time. It
knows, for instance, that swab and function calls do not leave the code in a state implied by the
language, and so will generate a tst if the result of either is to be used in a test. The PDP-11 is
somewhat whimsical about the setting of the carry bit, however, and LIL makes no real attempt

to second guess the machine. (It makes a difference whether you add 1 or 2 to something, for

instance.) It is always a good idea to be very careful when testing for special conditions.

LIL Reference -11 -

17. Conditional Compilation

If the test in any conditional or loop statement is unconditionally true or false, no code is
compiled for the test. If the test is false, in fact, no code is compiled for the statement con-
trolled by the test (the branch back to the top of a loop is also omitted). In the if-else form, one
and only one of the two statements is compiled. Compile-time parameters, in conjunction with
compile-time relational expressions, can thus be used to cause selective generation of code.

18. Pedigree

LIL descends from an implementation language for the GTE TEMPO-I, written by P.D. Jensen
and A.G. Fraser. Compile-time notation and the rigorous left-to-right expression evaluation are
carryovers. The current syntax is heavily influenced by that of the language C, designed by D.M.
Ritchie; the preprocessor and invocation control are a direct steal.)

All compilation decisions are made in one pass of a simple syntax-directed translator, writ-
ten by the author. Control tables for the translator were produced by Steve Johnson's compiler-
compiler YACC, working from a 50-production grammar. Doug Bayer wrote the last pass, which
assembles code and tables into standard UNIX object format.

7 9 Plong—

MH-1352-PJP P.J. PLAUGER

