04 S

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

INTRODUCTION

From the user’s point of view, the UNIX
operating system is easy to learn and use, and
presents few of the usual impediments to getting
the job done. It is hard, however, for the
beginner to know where to start, and how to
make the best use of the facilities available. The
purpose of this introduction is to help new users
get used to the main ideas of the UNIX system
and start making effective use of it quickly.

You should have a couple of other docu-
ments with you for easy reference as you read
this one. The most important is The UNIX
Programmer’s Manual;, it’s often easier to tell you
to read about something in the manual than to
repeat its contents here. The other useful docu-
ment is A Turorial Introduction to the UNIX Text
Editor, which will tell you how to use the editor
to get text — programs, data, documents — into
the computer.

A word of warning: the UNIX system has
become quite popular, and there are several
major variants in widespread use. Of course
details also change with time. So although the
basic structure of UNIX and how to use it is com-
mon to all versions, there will certainly be a few
things which are different on your system from
what is described here. We have tried to minim-
ize the problem, but be aware of it. In cases of
doubt, this paper describes Version 7 UNIX.

This paper has five sections:

1. Getting Started: How to log in, how to type,
what to do about mistakes in typing, how to
log out. Some of this is dependent on which
system you log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be supplemented by
local information.

2. Day-to-day Use: Things you need every day
to use the system effectively: generally use-
ful commands; the file system.

3. Document Preparation: Preparing manu-
scripts is one of the most common uses for
UNIX systems. This section contains advice,
but not extensive instructions on any of the
formatting tools.

4. Writing Programs: UNIX is an excellent sys-
tem for developing programs. This section
talks about some of the tools, but again is
not a tutorial in any of the programming
languages provided by the system.

5. A UNIX Reading List. An annotated
bibliography of documents that new users
should be aware of.

I. GETTING STARTED

Logging In

You must have a UNIX login name, which
you can get from whoever administers your sys-
tem. You also need to know the phone number,
unless your system uses permanently connected
terminals. The UNIX system is capable of deal-
ing with a wide variety of terminals: Terminet
300's; Execuport, TI and similar portables; video

. (CRT) terminals like the HP2640, etc.; high-

priced graphics terminals like the Tektronix
4014; plotting terminals like those from GSI and
DASI; and even the venerable Teletype in its
various forms. But note: UNIX is strongly
oriented towards devices with lower case. If your
terminal produces only upper case (e.g., model
33 Teletype, some video and portable terminals),
life will be so difficult that you should look for
another terminal.

‘Be sure to set the switches appropriately on
your device. Switches that might need to be
adjusted include the speed, upper/lower case
mode, full duplex, even parity, and any others
that local wisdom advises. Establish a connec-
tion using whatever magic is needed for your ter-
minal; this may involve dialing a telephone call
or merely flipping a switch. In either case, UNIX
shouid type ‘‘login:"" at you. If it types garbage,
you may be at the wrong speed: check the
switches. If that fails, push the ‘break’ or

UNIX For Beginners — Second Edition

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on the UNIXt operating
system. [t includes:

® basics needed for day-to-day use of the system — typing commands, correct-
ing typing mistakes, logging in and out, mail, inter-terminal communication,
the file system, printing files, redirecting I/0, pipes, and the shell.

® document preparation — a brief discussion of the major formatting programs
and macro packages, hints on preparing documents, and capsule descriptions
of some supporting software.

@ UNIX programming — using the editor, programming the shell, program-
ming in C, other languages and tools.

® An annotated UNIX bibliography.

September 30, 1978

tUNIX is a. Trademark of Bell Laboratories.

/~

~

)

“interrupt’’ key a few times, slowly. If that fails
to produce a login message, consult a guru.

When you get a login: message, type your
login name in lower case. Follow it by a
RETURN; the system will not do anything until
you type a RETURN, If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it. Don’t forget
RETURN.

The cuimination of your login efforts is a
“‘prompt character,” a single character that indi-
cates that the system is ready to accept com-
mands from you. The prompt character is usu-
ally a dollar sign $ or a percent sign %. (You
may also get a message of the day just before the
prom)pt character, or a. notification that you have
mail.

Typing Commands

Once you've seen the prompt character, you
can type commands, which are requests that the
system do something. Try typing

date
followed ‘by RETURN. You should get back
something like

Mon Jan 16 14:17:10 EST 1978

Don’t forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap-
pen. RETURN won't be mentioned again, but
don’t forget it — it has to be there at the end of
each line.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like

mb tty0l Jan 16 09:11
ski tty0S Jan1l6 09:33
gam ttyll Jan 16 13:07

The time is when the user logged in; ‘“‘ttyxx’ is
the system’s idea of what terminal the user is on.

If you make a mistake typing the command
name, and refer to a non-existent command, you
will be told. For example, if you type

whom
you will be told
whom: not found

Of course, if you inadvertently type the name of
some other command, it will run, with more or
less mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed or a return to the left mar-
gin. You can often fix this by logging out and
logging back in. Or you can read the description
of the command stty in section I of the manual.
To get intelligent treatment of tab characters
(which are much used in UNIX) if your terminal
doesn’t have tabs, type the command

stty —tabs

and the system will convert each tab into the
right number of blanks for you. If your terminal
does have computer-settable tabs, the command
tabs will set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before RETURN has been typed, there are two
ways to recover. The sharp-character # erases
the last character typed; in fact successive uses of
erase characters back to the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:

dd#atte##e

is the same as date.

The at-sign @ erases ail of the characters
typed so far on the current input line, so if the
line is irretrievably fouled up, type an @ and
start the line over.

What if you must enter a sharp or at-sign as
part of the text? If you precede either # or @
by a backslash \, it loses its erase meaning. So
to enter a sharp or at-sign in something, type \#
or \@. The system will always echo a newline at
you after your at-sign, even if preceded by a
backslash. Don’t worry — the at-sign has been
recorded.

To erase a backslash, you have to type two
sharps or two at-signs, as in \##. The backslash
is used extensively in UNIX to indicate that the
following character is in some way special.

Read-ahead

UNIX has full read-ahead, which means that
you can type as fast as you want, whenever you
want, even when some command is typing at
you. If you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away and
interpreted in the correct order. So you can type
several commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “DEL™ (perhaps called ‘‘delete’” or
“rubout® on your terminal). The “‘interrupt’ or
“break’ key found on most terminals can also
be used. In a few programs, like the text editor,
DEL stops whatever the program is doing but
leaves you in that program. Hanging up the
phone will stop most programs.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type

login

and let someone else use the terminal you were
on. It is usually not sufficient just to turn off the
terminal. Most UNIX systems do not use a
time-out mechanism, so you'll be there forever
unless you hang up.

Mail
When you log in, you may sometimes get
the message

You have mail.

UNIX provides a postal system so you can com-
municate with other users of the system. To
read your mail, type the command

mail

Your mail will be printed, one message at a time,
most recent message first. After each message,
mail waits for you to say what to do with it. The
two basic responses are d, which deletes the mes-
sage, and RETURN, which does not (so it will
still be there the next time you read your mail-
box). Other responses are described in the
manual. (Earlier versions of mail do not process
one) message at a time, but are otherwise simi-
lar.

How do you send mail to someone else?
Suppose it is to go to “‘joe’’ (assuming ‘‘joe” is
someone’s login name). The easiest way is this:

mail joe

now ype in the text of the letter

on as many lines as you like ...

After the last line of the letter

type the character ‘‘control—d’’,

that is, hold down “‘control’’ and type
a letter 'd’’.

And that's it. The “‘control-d”’ sequence, often
called “EOF” for end-of-file, is used throughout
the system to mark the end of input from a ter-
minal, so you might as well get used to it.

For practice, send mail to yourself. (This
isn't as strange as it might sound — mail to one-

self is a handy reminder mechanism.)

There are other ways to send mail — you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see mail(1). (The notation mail(1)
means the command mail in section 1 of the
UNIX Programmer's Manual)

Writing to other users

At some point, out of the blue will come a
message like

Message from joe tty07...

accompanied by a startling beep. It means that
Joe wants to talk to you, but unless you take
explicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will
appear on yours and vice versa. The path is
slow, rather like talking to the moon. (If you are
in the middle of something, you have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor — read
the editor tutorial.) :

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it’s like this:

Joe types write smith and waits.

Smith types write joe and waits.

Joe now types his message (as many lines
as he likes). When he’s ready for a reply,
he signals it by typing (o), which stands
for ‘““‘over™.

Now Smith types a reply, also terminated
by (o).

This cycle repeats until someone gets
tired; he then signais his intent to quit
with (e0), for *‘over and out.

To terminate the conversation, each side
must type a ‘‘control-d” character alone
on a line. (“Delete’ also works.) When
the other person types his ‘‘control-d’’,
you will get the message EOF on your
terminal.

If you write to someone who isn't logged in,
or who doesn’t want to be disturbed, you’ll be
told. If the target is logged in but doesn’t answer
after a decent interval, simply type ‘‘control-d*".

On-line Manual

The UNIX Programmer’s Manual is typicaily
kept on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print
on your terminal some manual section that
might help. This is also useful for getting the
most up-to-date information on a command. To
print a manual section, type ‘‘man command-
name’’. Thus to read up on the who command,
type

man who
and, of course,
man man

tells all about the man command.

Computer Aided Instruction

Your UNIX system may have available a pro-
gram called learn, which provides computer
aided instruction on the file system and basic
commands, the editor, docum nt preparation,
and even C programming. Try typing the com-
mand

learn

If learn exists on your system, it will tell you
what to do from there.

II. DAY-TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a
program, how do you get the information stored
in the machine? Most of these tasks are done
with the UNIX ‘‘text editor’ ed. Since ed is
thoroughly documented in ed(l) and explained
in A Tutorial Introduction to the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file cailed junk with some text in
it, do the following:

ed junk (invokes the text editor)

a {command to *“‘ed”, to add text)
now pype in

whatever text you want ...

. (signals the end of adding text)

The *“.”* that signals the end of adding text must
be at the beginning of a line by itself. Don't for-
get it, for until it is typed, no other ed com-
mands will be recognized — everything you type
will be treated as text to be added.

At this point you can do various editing
operations on the text you typed in, such as

correcting spelling mistakes, rearranging para-
graphs and the like. Finally, you must write the
information you have typed into a file with the
editor command w:

w
ed will respond with the number of characters it
wrote into the file junk.

Until the w command, nothing is stored per-
manently, so if you hang up and go home the
information is lost.t But after w the information
is there permanently; you can re-access it any
time by typing

ed junk
Type a q command to quit the editor. (If you try

to quit without writing, ed will print a ? to rem-
ind you. A second q gets you out regardless.)

Now create a second file called temp in the
same manner. You should now have two files,
junk and temp.

What files are out there?

The 1s (for *list”’) command lists the names
(not contents) of any of the files that UNIX
knows about. If you type

Is
the response will be

junk
temp

which are indeed the two files just created. The
names are sorted into alphabetical order
automatically, but other variations are possible.
For example, the command

Is =t

causes the files to be listed in the order in which
they were last changed, most recent first. The
-1 option gives a ‘“‘long™* listing:

Is =1
will produce something like

—~rw—rw—rw— 1bwk 41 Jul 22 2:56 junk
=rw—rw—rw— 1bwk 78 Jul 22 2:57 temp

The date and time are of the last change to the
file. The 41 and 78 are the number of characters
(which should agree with the numbers you got
from ed). bwk is the owner of the file, that is,
the person who created it. The —rw—rw=—rw—
tells who has permission to read and write the
file, in this case everyone.

t This is not strictly true — if you hang up while editing,
the data you were working on is saved in a file called
ed.hap, which you can continue with at your next session.

Options can be combined: Is =1t gives the
same thing as Is —1, but sorted into time order.
You can also name the files you’re interested in,
and Is will list the information about them only.
More details can be found in 1s(1).

The use of optional arguments that begin
with a minus sign, like —t and —It, is a com-
mon convention for UNIX programs. In general,
if a program accepts such optional arguments,
they precede any filename arguments. It is also
vital that you separate the various arguments
with spaces: Is=1 is not the same as Is =—1.

Printing Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making
changes anyway. You can say

ed junk
1,8p

ed will reply with the count of the characters in
junk and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it's not feasible to use
the editor for printing. For example, there is a
limit on how big a file ed can handle (several
thousand lines). Secondly, it will only print one
file at a time, and sometimes you want 1o print
several, one after another. So here are a couple
of alternatives.

First is cat, the simplest of all the printing
programs. cat simply prints on the terminal the
contents of all the files named in a list. Thus

cat junk
prints one file, and
cat junk temp

prints two. The files are simply concatenated
(hence the name “‘cat’) onto the terminal.

pr produces formatted printouts of files. As
with cat, pr prints all the files named in a list.
The difference is that it produces headings with
date, time, page number and file name at the top
of each page, and extra lines to skip over the
fold in the paper. Thus,

pr junk temp

will print junk neatly, then skip to the top of a
new page and print temp neatly.

pr can also produce multi-column output:

pr —3 junk

prints junk in 3-column format. You can use
any reasonable number in place of 3 and pr
will do its best. pr has other capabilities as well;
see pr(1).

It should be noted that pr is nota formatting
program in the sense of shuffling lines around
and justifying margins. The true formatters are
nroff and troff, which we will get to in the sec-
tion on document preparation.

There are also programs that print files on a
high-speed printer. Look in your manual under
opr and Ipr. Which to use depends on what
equipment is attached to your machine.

Shuffling Files About

Now that you have some files in the file sys-
tem and some experience in printing them, you
can try bigger things. For example, you can
move a file from one place to another (which
amounts to giving it a new name), like this:

mv junk precious

This means that what used to be ‘‘junk’ is now
‘‘precious™. If you do an Is command now, you
will get

precious
temp

Beware that if you move a file to another one
that already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
to have two versions of something), you can use
the cp command:

cp precious templ

makes a duplicate copy of precious in templ.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system, called rm.

rm temp templ

will remove both of the files named.

You will get a warning message if one of the
named files wasn't there, but otherwise rm, like
most UNIX commands, does its work silently.
There is no prompting or chatter, and error mes-
sages are occasionally curt. This terseness is
sometimes disconcerting to newcomers, but
experienced users find it desirable.

What’s in a Filename

So far we have used filenames without ever
saying what's a legal name, so it’s time for a
couple of rules. First, fileni:mes are limited to
14 characters, which is enoug;h to be descriptive.

Second, although you can use almost any charac-
ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characters that might be used
with other meanings. We have already seen, for
example, that in the Is command, Is —t means
to list in time order. So if you had a file whose
name was —t, you would have a tough time list-
ing it by name. Besides the minus sign, there
are other characters which have special meaning.
To avoid pitfalls, you would do well to use only
letters, numbers and the period until you're fam-
iliar with the situation."

On to some more positive suggestions. Sup-
pose you're typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for ed will not handle really big
files. Thus you should type the document as a
number of files. You might have a separate file
for each chapter, called

chapl
chap2
etc...

Or, if each chapter were broken into several files,
" you might have

chapl.1
chapl.2
chapl.3

chap2.1
chap2.2

..

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.2 chapl.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The * means ‘‘anything at all,”’ so this translates
into ‘“‘print all files whose names begin with
chap’’, listed in alphabetical order.

This shorthand notation is not a property of
the pr command, by the way. It is system-wide,
a service of the program that interprets com-
mands (the *“‘shell,”” sh(1)). Using that fact,
you can see how to list the names of the files in
the book: :

Is chap*
produces
chapl.1

chapl.2
chapl.3

ooe

The * is not limited to the last position in a
filename -- it can be anywhere and can occur
several times. Thus

rm *junk* *temp*

removes all files that contain junk or temp as
any part of their name. As a special case, * by
itself matches every filename, so
pr*
prints all your files (alphabetical order), and
rm*
removes all files. (You had better be very sure
that’s what you wanted to say!)

The * is not the only pattern-matching
feature available. Suppose you want to print
only chapters 1 through 4 and 9. Then you can
say

pr chapl12349]*
The [..] means to match any of the characters
inside the brackets. A range of consecutive
letters or digits can be abbreviated, so you can
also do this with

pr chapll—49i*
Letters can also be used within brackets: [a—zl
matches any character in the range a through z.

The ? pattern matches any single character,
so

Is ?

lists all files which have single-character names,
and

ls =1 chap?.1

lists information about the first file of each
chapter (chapl.l, chap2.1, etc.).

Of these niceties, * is certainly the most use-
ful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of *, ?, etc.,, enclose the entire
argument in single quotes, as in

Is'?

We’ll see some more examples of this shortly.

What’s in a Filename, Continued

When you first made that file called junk,
how did the system know that there wasn't
another junk somewhere else, especially since
the person in the next office is also reading this
tutorial? The answer is that generally each user
has a private directory, which contains only the
files that belong to him. When you log in, you
are *‘in”" your directory. Unless you take special
action, when you create a new file, it is made in
the directory that you are currently in; this is
most often your own directory, and thus the file
is unrelated to any other file of the same name
that might exist in someone else’s directory.

The set of all files is organized into a (usu-
ally big) tree, with your files located several
branches into the tree. It is possible for you to
‘‘walk’ around this tree, and to find any file in
the system, by starting at the root of the tree and
walking along the proper set of branches. Con-
versely, you can start where you are and walk
toward the root.

Let’s try the latter first. The basic tools is
the command pwd (“‘print working directory),
which prints the name of the directory you are
currently in.

Although the details will vary according to
the system you are on, if you give the command
pwd, it will print something like

/usr/your-name

This says that you are currently in the directory
your-name, which is in turn in the directory
/usr, which is in turn in the root directory called
by convention just /. (Even if it’s not called
/usr on your system, you will get something
analogous. Make the corresponding changes and
~ read on.)

If you now type
Is /usr/your-name

you should get exactly the same list of file names
as you get from a plain Is: with no arguments, Is
lists the contents of the current directory; given
the name of a directory, it lists the contents of
that directory.

Next, try

Is /usr
This should print a long series of names, among
which is your own login name your-name. On
many systems, usr is a directory that contains

the directories of all the normal users of the sys-
tem, like you.

The next step is to try
Is /

-You should get a response something like this

(although again the details may be different):

bin
dev
etc
lib
tmp
usr

This is a collection of the basic directories of files
that the system knows about; we are at the root
of the tree.

Now try
cat /usr/your-name/junk

Gf junk is still around in your directory). The
name

/usr/your-name/junk

is called the pathname of the file that you nor-
mally think of as “‘junk™. *‘Pathname’ has an
obvious meaning: it represents the full name of
the path you have to follow from the root
through the tree of directories to get to a particu-
lar file. It is a universal rule in the UNIX system
that anywhere you can use an ordinary filename,
you can use a pathname.

Here is a picture which may make this
clearer:

(root)

/
/

il /1\/\/|\ i

adam eve mar{

junk
junk temp
Notice that Mary’s junk is unrelated to Eve’s.

This isn’t too exciting if all the files of
interest are in your own directory, but if you
work with someone else or on several projects
concurrently, it becomes handy indeed. For
example, your friends can print your book by
saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neigh-
bor has by saying

Is /usr/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be

arranged. Each file and directory has read-write-
execute permissions for the owner, a group, and
everyone else, which can be set to control access.
See 1s(1) and chmod(l) for details. As a matter
of observed fact, most users most of the time
find openness of more benefit than privacy.

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after the
prompt character, the system simply looks for a
file of that name. It normally looks first in your
directory (where it typically doesn’t find it), then
in /bin and finally in /usr/bin. There is nothing
magic about commands like cat or Is, except that
they have been collected into a couple of places
to be easy to find and administer.

What if you work regularly with someone
else on common .information in his directory?
You could just log in as your friend each time
you want to, but you can also say ‘I want to
work on his files instead of my own’. This is
done by changing the directory that you are
currently in:

cd /usr/your-friend

(On some systems, cd is spelled chdir.) Now
when you use a filename in something like cat or
pr, it refers to the file in your friend’s directory.
Changing directories doesn’t affect any permis-
sions associated with a file — if you couldn’t
access a file from your own directory, changing
to another directory won’t alter that fact. Of
course, if you forget what directory you're in,
type

pwd
to find out.

It is usually convenient to arrange your own
files so that all the files related to one thing are
in a directory separate from other projects. For
example, when you write your book, you might
want to keep all the text in a directory cailed
book. So make one with

mkdir book
then go to it with
cd book

then start typing chapters. The book is now
found in (presumably)

/usr/your-name/book
To remove the directory book, type

rm book/*
rmdir book

The first command removes all files from the
directory; the second removes the empty direc-
tory.

You can go up one level in the tree of files
by saying

cd ..
113 "
.

.’ is the name of the parent of whatever direc-
46 I

tory you are currently in. For completeness, **.
is an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX systems that the terminal
can be replaced by a file for either or both of
input and output. As one example,

Is

makes a list of files on your terminal. But if you
say

1s >filelist

a list of your files will be placed in the file filelist
(which will be created if it doesn’t already exist,
or overwritten if it does). The symbol > means
‘“‘put the output on the following file, rather than
on the terminal.’’ Nothing is produced on the
terminal. As another example, you could com-
bine several files into one by capturing the out-
put of cat in a file:

cat f1 f2 f3 >temp

The symbol > > operates very much like >
does, except that it means “‘add to the end of.”
That is,

cat f1 f2 f3 > >temp

means to concatenate f1, f2 and f3 to the end of
whatever is already in temp, instead of overwrit-
ing the existing contents. As with >, if temp
doesn’t exist, it will be created for you.

In a similar way, the symbol < means to
take the input for a program from the following
file, instead of from the terminal. Thus, you
could make up a script of commonly used editing
commands and put them into a file called script.
Then you can run the script on a file by saying

ed file <script

As another example, you can use ed to prepare a
letter in file let, then send it to several people
with

mail adam eve mary joe <let

Pipes

One of the novel contributions of the UNIX
system is the idea of a pipe. A pipe is simply a
way to connect the output of one program to the
input of another program, so the two run as a
sequence of processes — a pipeline.

For example,
prfigh

will print the files f, g, and h, beginning each on
a new page. Suppose you want them run
together instead. You could say

cat fg h >temp
pr <temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So let us use a
pipe:

catfgh | pr

The vertical bar | means to take the output from
cat, which would normally have gone to the ter-
minal, and put it into pr to be neatly formatted.

There are many other examples of pipes.
For example,

Is|pr =3

prints a list of your files in three columns. The
program wc counts the number of lines, words
and characters in its input, and as we saw earlier,
who prints a list of currently-logged on people,
one per line. Thus

who | we

tells how many people are logged on. And of
course

Is | we

counts your files.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you wish.

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines. pr is one example:

pr—3abec

prints files a, b and ¢ in order in three columns.
But in

catabefpr —3

pr prints the information coming down the pipe-
line, still in three columns.

The Shell

We have already mentioned once or twice
the mysterious *‘shell,” which is in fact sh(1).
The shell is the program that interprets what you
type as commands and arguments. It also looks
after translating *, etc., into lists of filenames,
and <, >, and | into changes of input and out-
put streams.

The shell has other capabilities too. For
example, you can run two programs with one
command line by separating the commands with
a semicolon; the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
prompt character.

You can also have more than one program
running simultaneously if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and you
don’t want to wait around for the results before
starting something else, you can say

ed file <script &

The ampersand at the end of a command line
says ‘‘start this command running, then take
further commands from the terminal immedi-
ately,”” that is, don’t wait for it to complete.
Thus the script will begin, but you can do some-
thing else at the same time. Of course, to keep
the output from interfering with what you're
doing on the terminal, it would be better to say

ed file <script >script.out &
which saves the output lines in a file called
script.out.

When you initiate a command with &, the
system replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

If you forget the process number, the command
ps will tell you about everything you have run-
ning. (If you are desperate, kill 0 will kill all
your processes.) And if you’re curious about
other people, ps a will tell you about ail pro-
grams that are currently running.

You can say
(command-1; command-2; command-3) &

‘to start three commands in the background, or
you can start a background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some simi-

lar program to take its input from a file instead
of from the terminal, you can tell the shell to
read a file to get commands. (Why not? The
shell, after all, is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary commands
(tabs, date, who) into a file, let’s call it startup,
and then run it with

sh startup

This says to run the sheil with the file startup as
input. The effect is as if you had typed the con-
tents of startup on the terminal.

If this is to be a regular thing, you can elim-
inate the need to type sh: simply type, once only,
the command

chmod +x startup
and thereafter you need only say
startup

to run the sequence of commands. The
chmod(l) command marks the file executable;
the shell recognizes this and runs it as a
sequence of commands.

If you want startup to run automaticaily
every time you log in, create a file in your login
directory called .profile, and place in it the line
startup. When the shell first gains control when
you log in, it looks for the .profile file and does
whatever commands it finds in it. We’ll get back
to the shell in the section on programming.

III. DOCUMENT PREPARATION

UNIX systems are used extensively for docu-
ment preparation. There are two major format-
ting programs, that is, programs that produce a
text with justified right margins, automatic page
numbering and titling, automatic hyphenation,
and the like. nroff is designed to produce output
on terminals and line-printers. troff (pro-
nounced ‘‘tee-roff”’) instead drives a photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was for-
matted with troff.

Formatting Packages

The basic idea of nroff and troff is that the
text to be formatted contains within it ‘‘format-
ting commands™ that indicate in detail how the
formatted text is to look. For example, there
might be commands that specify how long lines
are, whether to use single or double spacing, and
what running titles to use on each page.

-10 -

Because nroff and troff are relatively hard to
learn to use effectively, several ‘‘packages™ of
canned formatting requests are available to let
you specify paragraphs, running titles, footnotes,
multi-column output, and so on, with little effort
and without having to learn nroff and troff.
These packages take a modest effort to learn, but
the rewards for using them are so great that it is
time well spent.

In this section, we will provide a hasty look
at the ‘‘manuscript” package known as —ms.
Formatting requests typically consist of a period
and two upper-case letters, such as .TL, which is
used to introduce a title, or .PP to begin a new
paragraph.

A document is typed so it looks something
like this:

.TL

title of decument
AU

author name

SH

section heading

PP

paragraph ...

PP

another paragraph ...
SH

another section heading
PP

etc.

The lines that begin with a period are the for-
matting requests. For example, .PP calls for
starting a new paragraph. The precise meaning
of .PP depends on what output device is being
used (typesetter or terminal, for instance), and
on what publication the document will appear in.
For example, —ms normally assumes that a
paragraph is preceded by a space (one line in
nroff, '2 line in troff), and the first word is
indented. These rules can be changed if you
like, but they are changed by changing the
interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard
format using —ms, use the command
troff —ms files ...
for the typesetter, and
nroff —ms files ...

for a terminal. The —ms argument tells troff
and nroff to use the manuscript package of for-
matting requests.

There are several similar packages; check
with a local expert to determine which ones are
in common use on your machine.

Supporting Tools

In addition to the basic formatters, there is a
host of supporting programs that help with docu-
ment preparation. The list in the next few para-
graphs is far from complete, so browse through
the manual and check with people around you
for other possibilities.

egn and negn let you integrate mathematics
into the text of a document, in an easy-to-learn
language that closely resembles the way you
would speak it aloud. For example, the egn
input

sum from i=0 to n x sub i "=" pi over 2

produces the output

n
w
zx' 2

=0

The program tbl provides an analogous ser-
vice for preparing tabular material; it does all the
computations necessary to align complicated
columns with elements of varying widths.

refer prepares bibliographic citations from a
data base, in whatever style is defined by the for-
matting package. It looks after all the details of
numbering references in sequence, filling in page
and volume numbers, getting the author’s initials
and the journal name right, and so on.

spell and typo detect possible spelling mis-
takes in a document. spell works by comparing
the words in your document to a dictionary,
printing those that are not in the dictionary. It
knows enough about English spelling to detect
plurals and the like, so it does a very good job.
typo looks for words which are ‘‘unusual™, and
prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most
unusual words are printed first.

grep looks through a set of files for lines
that contain a particular text pattern (rather like
the editor’s context search does, but on a bunch
of files). For example,

grep 'ing$’ chap*

will find all lines that end with the letters ing in
the files chap*. (It is almost always a good prac-
tice to put single quotes around the pattern
you're searching for, in case it contains charac-
ters like * or $ that have a special meaning to the
shell.) grep is often useful for finding out in
which of a set of files the misspelled words
detected by spell are actually located.

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand).

211 -

wc counts the words, lines and characters in
a set of files. tr translates characters into other
characters; for example it will convert upper to

lower case and vice versa. This translates upper.

into lower: .

tr A—Z a—z <input >output

sort sorts files in a variety of ways; cref
makes cross-references; ptx makes a permuted
index (keyword-in-context listing). sed provides
many of the editing facilities of ed, but can apply
them to arbitrarily long inputs. awk provides the
ability to do both pattern matching and numeric
computations, and to conveniently process fields
within lines. These programs are for more
advanced users, and they are not limited to
document preparation. Put them on your list of
things to learn about.

Most of these programs are either indepen-
dently documented (like eqn and tbl), or are
sufficiently simple that the description in the
UNIX Programmer’s Manual is adequate explana-
tion.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do
whatever possible to make the job of changing
them easy.

First, when you do the purely mechanical
operations of typing, type so that subsequent
editing will be easy. Start each sentence on a
new line. Make lines short, and break lines at
natural places, such as after commas and semi-
colons, rather than randomly. Since most people
change documents by rewriting phrases and
adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do
later.

Keep the individual files of a document
down to modest size, perhaps ten to fifieen
thousand characters. Larger files edit more
slowly, and of course if you make a dumb mis-
take it’s better to have clobbered a small file
than a big one. Split into files at natural boun-
daries in the document, for the same reasons
that you start each sentence on a new line.

The second aspect of making change easy is
to not commit yourself to formatting details too
early. One of the advantages of formatting pack-
ages like —ms is that they permit you 1o delay
decisions to the last possible moment. Indeed,
until a document is printed, it is not even
decided whether it will be typeset or put on a line
printer.

&

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of requests like .PP, and then define
them appropriately, either by using one of the
canned packages (the better way) or by defining
your own nroff and troff commands. As long as
you have entered the text in some systematic
way, it can always be cleaned up and re-
formatted by a judicious combination of editing
commands and request definitions.

IV. PROGRAMMING

There will be no attempt made to teach any
of the programming languages available but a
few words of advice are in order. One of the
reasons why the UNIX system is a productive
programming environment is that there is
already a rich set of tools available, and facilities
like pipes, I/0 redirection, and the capabilities of
the shell often make it possible to do a job by
pasting together programs that already exist
instead of writing from scratch.

The Shell

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts that
already exist. For example, the first draft of the
spell program was (roughly)

cat ... collect the files

|tr... puteach word on a new line
|tr ... delete puncruation, etc.

| sort into dictionary order

|uniq discard duplicates

|comm print words in text

but not in dictionary

More pieces have been added subsequently, but
this goes a long way for such a small effort.

The editor can be made to do things that
would normally require special programs on
other systems. For example, to list the first and
last lines of each of a set of files, such as a book,
you could laboriously type

ed
e chapl.l

But you can do the job much more easily. One
way is to type

Is chap® > temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing

-12-

commands (using the global commands of ed),
and write it into script. Now the command

ed <script

will produce the same output as the laborious
hand typing. Alternately {(and more easily), you
can use the fact that the shell will perform loops,
repeating a set of commands over and over again
for a set of arguments:

for i in chap*
do

ed $i <script
done

This sets the shell variable i to each file name in
turn, then does the command. You can type this
command at the terminal, or put it in a file for
later execution.

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language,
with variables, control flow (if-else, while, for,
case), subroutines, and interrupt handling. Since
there are many building-block programs, you can
sometimes avoid writing a new program merely
by piecing together some of the building blocks
with shell command files.

We will not go into any details here; exam-
ples and rules can be found in An Inrroduction to
the UNIX Shell, by S. R. Bourne.

Programming in C

If you are undertaking anything substantial,
C is the only reasonable choice of programming
language: everything in the UNIX system is tuned
to it. The system itself is written in C, as are
most of the programs that run on it. It is also a
easy language to use once you get started. C is
introduced and fully described in The C Program-
ming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections
of the manual describe the system interfaces,
that is, how you do 1/O and similar functions.
Read UNIX Programming for more complicated
things.

Most input and output in C is best handled
with the standard 1/0 library, which provides a
set of I/0 functions that exist in compatible
form on most machines that have C compilers.
In general, it’s wisest to confine the system
interactions in a program to the facilities pro-
vided by this library.

C programs that don’t depend too much on
special features of UNIX (such as pipes) can be
moved to other computers that have C com-
pilers. The list of such machines grows daily; in
addition to the original PDP-11, it currently

includes at least Honeywell 6000, IBM 370,
Interdata 8/32, Data General Nova and Eclipse,
HP 2100, Harris /7, VAX 11/780, SEL 86, and
Zilog Z80. Calls to the standard 1/0 library will
work on all of these machines.

There are a number of supporting programs
that go with C. linmt checks C programs for
potential portability problems, and detects errors
such as mismatched argument types and unini-
tialized variables.

For larger programs (anything whose source
is on more than one file) make allows you to
specify the dependencies among the source files
and the processing steps needed to make a new
version; it then checks the times that the pieces
were last changed and does the minimal amount
of recompiling to create a consistent updated ver-
sion.

The debugger adb is useful for digging
through the dead bodies of C programs, but is
rather hard to learn to use effectively. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

The C compiler provides a limited instru-
mentation service, so you can find out where
programs spend their time and what parts are
worth optimizing. Compile the routines with the
—p option; after the test run, use prof to print
an execution profile. The command time will
give you the gross run-time statistics of a pro-
gram, but they are not super accurate or repro-
ducible.

Other Languages

If you have to use Fortran, there are two
possibilities. You might consider Ratfor, which
gives you the decent control structures and free-
form input that characterize C, yet lets you write
code that is still portable to other environments.
Bear in mind that UNIX Fortran tends to produce

-13-

large and relatively slow-running programs. .

Furthermore, supporting software like adb, prof,
etc., are all virtually useless with Fortran pro-
grams. There may also be a Fortran 77 compiler
on your system. If so, this is a viable alternative
to Ratfor, and has the non-trivial advantage that
it is compatible with C and related programs.
(The Ratfor processor and C tools can be used
with Fortran 77 t00.)

If your application requires you to translate a
language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yacc compiler-compiler,
which helps you develop a compiler quickly. The
lex lexical analyzer generator does the same job
for the simpler languages that can be expressed

as regular expressions. It can be used by itself,
or as a front end to recognize inputs for a
yacc-based program. Both yacc and lex require
some sophistication to use, but the initial effort
of learning them can be repaid many times over
in programs that are easy to change later on.

Most UNIX systems also make available
other languages, such as Algo! 68, APL, Basic,
Lisp, Pascal, and Snobol. Whether these are
useful depends largely on the local environment:
if someone cares about the language and has
worked on it, it may be in good shape. If not,
the odds are strong that it will be more trouble
than it’s worth.

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, The UNIX
Programmer’s Manual, Bell Laboratories, 1978.
Lists commands, system routines and interfaces,
file formats, and some of the maintenance pro-
cedures. You can’t live without this, although
you will probably only need to read section 1.

Documents for Use with the UNIX Time-sharing
System. Volume 2 of the Programmer’s Manual.
This contains more extensive descriptions of
major commands, and tutorials and reference
manuals. All of the papers listed below are in it,
as are descriptions of most of the programs men-
tioned above.

D. M. Ritchie and K. L. Thompson, *“The UNIX
Time-sharing System,’” CACM, July 1974. An
overview of the system, for people interested in
operating systems. Worth reading by anyone
who programs. Contains a remarkable number
of one-sentence observations on how to do
things right.

The Bell System Technical Journal (BSTJ) Spe-
cial Issue on UNIX, July/August, 1978, contains
many papers describing recent developments,
and some retrospective material.

The 2nd International Conference on Software
Engineering (October, 1976) contains several
papers describing the use of the Programmer’s
Workbench (PWB) version of UNIX.

Document Preparation:

B. W. Kernighan, ‘*A Tutorial Introduction to
the UNIX Text Editor’” and ‘‘Advanced Editing
on UNIX,” Bell Laboratories, 1978. Beginners
need the introduction; the advanced material will
help you get the most out of the editor.

M. E. Lesk, “Typing Documents on UNIX," Bell
Laboratories, 1978. Describes the —ms macro
package, which isolates the novice from the
vagaries of nroff and troff, and takes care of

e

)

- e

most formatting situations. If this specific pack-
age isn’t available on your system, something
similar probably is. The most likely alternative is
the PWB/UNIX macro package —mm; see your
local guru if you use PWB/UNIX.

B. W. Kernighan and L. L. Cherry, “A System
for Typesetting Mathematics,”” Bell Laboratories
Computing Science Tech. Rep. 17.

M. E. Lesk, “Tbl — A Program to Format
Tables,” Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., “NROFF/TROFF User’s
Manual,”” Bell Laboratories CSTR 54, 1976.
troff is the basic formatter used by —ms, eqn
and thL The reference manual is indispensable
if you are going to write or maintain these or
similar programs. But start with:

B. W. Kernighan, ‘A TROFF Tutorial,” Bell
Laboratories, 1976. An attempt to unravel the
intricacies of troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, 1978. Con-
tains a tutorial introduction, complete discussions
of all language features, and the reference
manual.

B. W. Kernighan and D. M. Ritchie, “UNIX Pro-
gramming,”” Bell Laboratories, 1978. Describes
how to interface with the system from C pro-
grams: 1/0 calls, signals, processes.

S. R. Bourne, “An Introduction to the UNIX
Shell,”” Bell Laboratories, 1978. An introduction
and reference manual for the Version 7 shell.
Mandatory reading if you intend to make
effective use of the programming power of this
shell.

S. C. Johnson, ‘“Yacc — Yet Another Compiler-
Compiler,”” Bell Laboratories CSTR 32, 1978.

‘M. E. Lesk, “Lex — A Lexical Analyzer Gen-

erator,” Bell Laboratories CSTR 39, 1975.

S. C. Johnson, ‘“‘Lint, a C Program Checker,”
Bell Laboratories CSTR 65, 1977.

S. 1. Feldman, “MAKE — A Program for Main-
taining Computer Programs,”” Bell Laboratories
CSTR 57, 1977.

J. F. Maranzano and S. R..Bourne, ‘‘A Tutorial
Introduction to ADB,” Bell Laboratories CSTR
62, 1977. An introduction to a powerful but
complex debugging tool.

S. I. Feldman and P. J. Weinberger, ‘A Portable

Fortran 77 Compiler,” Bell Laboratories, 1978.
A full Fortran 77 for UNIX systems. :

- 14 -

