L
'

(-~

w4

@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title- Emulation of UNIX on Peripheral Date- January 9, 1975
Processors
’ T™- 75-1352-2

Other Keywords— Minicomputer Support

Multiprocessing
Author(s) Location and Room Extension Charging Case - 39394
Lycklama, H. MH 7C-211 6170
Christensen, C. MH 7C-217 4yl Filing Case~ 39394-11
ABSTRACT

The UNIX operating system has been emulated on a peripheral
PDP-~11 computer which has a communication link to a central
PDP-11/45 computer running UNIX. Emulation is achieved by
passing all traps that cannot be handled by the peripheral
processor (PP) to the central processor (CP). This technique
enables one to run object code produced by the C, LIL and
Fortran compilers, as well as the standard assembler, on the
peripheral processor, providing a powerful way of developing
software for the PP and of running programs on the PP. The
PP has complete access to the file system on the CP, yet the
PP does not require a resident UNIX operating system.

This UNIX emulation technique also provides the capability to
support a stand-alone PDP-11 minicomputer by connecting it to
a CP running UNIX. When the program for the PP is developed
and debugged, the link to the CP may be severed, producing a
stand-alone system.

Besides providing programming support for a PDP-11 minicomputer,
the emulation package also provides the ability to configure a
cost-effective multi-processor UNIX system. For example, a
minimally configured PDP-11/45 PP may be linked to a central
PDP-11/45 processor to run compute-bound programs.

The minimum configuration for any PP is a 4K PDP-11 machine
with a communication link to the CP. The entire communication
package and trap handler in the PP require only 400 words of
code.

Address Label

Pages TextL_ Other 3 Total 23

No. Figures__ O No. Tables _ O No.Refs.___ 8

.

BELL TELEPHORE LABORATORIES, INC.

COMPLETE MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR

COMPLETE MEMORARDUM TO

LUDWIG,J J
LYCKLAMA, HEINZ
LYONS,T G
+MALTHANER, W A

EACH ADDITIORNAL FILING MANCUSI,M D

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

ACKERMAN,A F
ALLES,HAROLD G
ANDERSON, ROBERT V
ANDERSON, WILLIAM A
+ARDIS,R B
BAYER, DOUGLAS L
BEYER, JEAN-DAVID
BILINSKI,D J
BOYD,GARY D
BRAINARD,RALPH C
BREECE, BARRY T III
. BREWSTER, HAROLD O
BROWN,W STANLEY
BUCHSBAUM, S J
CAMLET,J V JR
CANADAY,RUDD H
CHRISTENSEN,C
+CLOGSTON,A M
+CONDON,J H
CONNOLLY,C V
CUTLER,C CHAPIN
DOLAN, MRS MARIE T
DOLOTTA,T A
FAULKNER,R A
FISCHER,W C
. FREEMAN, K GLENN
+FREENY,S L
GELLIS,H &
+GILLETTE, DEAN
GIORDANO, PHILIP P
GLASSER,AIAN L
GOGUEN,MS NANCY
GRAVEMAN,R F
BAGELBARGER,D W
HAIGHT,R C
HAMMING,R W
+HANNAY,N B
HAUSE,A D
IVIE,EVAN L
JARVIS,JOBN F
JUDICE,CHARLES N
KAISER,J F
KAMINSKI, WILLIAM
KEEFAUVER,W L
KNUDSEN, DONALD B
KUBIR,P S
LICWINKO,J S
LIMB,J O
LOZIER,JOBN C

MARANZANO,JOSEPH F
MASHEY, JOER R

MC ILROY,M DOUGLAS
MCDONALD,E §
MENNINGER,R E
METAXIDES,A
METZLER ,MRS HELEN M
MILLER,S E
MOLLENAUER,J F
MORGAN, § P
MUENZER,T B
+NINKE,WILLIAM H
+OSSANNA,J F JR
#PATEL,C K N
PINSON, ELLIOT N
PLAUGER,P J
+PRIM, ROBERT C
ROBERTS, CHARLES S
ROCHKIND,M J
ROCHKINL,M M
RONKOVITZ,FRANK J JR
ROOME,WILLIAM D
ROSENFELD, PETER E
ROWLINSON,D E
SABSEVITZ,A L
SATZ,L R

SJURSEN,C A
+SLICHTER,W E
SMITH,D W
STEVENSON,E P
SWANSON,GEORGE K
SWARTZWELDER, JOHN €
TAGUE, BERKLEY A .
TERRY,M E
TEWKSBURY,S K
TBOMPSON, BERNARD E
TEOMPSON, JOEN S
+THOMPSON, K
TILLOTSON,L €

VAN LAAR,MRS A
WEHR,L A

WELLER, DAVID R
WILD,J CHRISTIAN
WOLONTIS,V MICHAEL
YAMIN,MRS E E
+YOUNG,JAMES A

161 NAMES

COVER SHEET ONLY TO
CORRESPONLENCE FILES

4 COPYIES PLUS ONE
COPY FOR EACH FILING

DISTRIBUTION
(REFER GEI 13.9-3)

COVER SHEET ONLY TO

ABRAHAM, STUART A
AHO,A V

AHRENRS ,RAINER B
ALBERTS,BARBARA A
ALCALAY,DAVID
ALLEN, JAMES R
ALMQUIST,R P
AMORY,R W

AMOSS, JOHN J
ANDERSON,M M
ANDERSON,MRS C M
ARNOLD, GEORGE W
ARNOLD, S L
ARTHURS , EDWARD
ATAL,B S
AVERILL,R M JR
BAKER,B S
BALDWIN,G L
BALDWIN,GARY L
BARBER,A J
BARTLETT, WADE S
BASEIL,RICHARD J
BAUER, BARBARA T
BAUGH,C R
BECKETT,J T
BENGTSON,A H

BENJAMIN,O CONNELL J

BERGLAND,G DAVID
BERNSTEIN, LAWRENCE
BERRANG,J E
BIAZZO,MARTIN R
BIGELOW,J H JR
BILOWOS, RICHARD M
BIRCHALL,R B
BIREN, MRS IRMA B
BLEICHER, EDWIN
BLINN,JAMES C
BLUM,MRS MARION
BLY,JOSEPH A
BODEN, F J
BODRAR,J J
BOBACHEVSKY,1 O
BONACHEA,R N
BOSWORTH, R H
BOWEN, EDWARD G
BOWEN, F W
BOWERS,J L
BOWYER,L RAY
BOYCE,W M
BRANDT,RICHARD B
BREITHAUPT, ALLAN R
BRITT, WARREN D
BROWN, COLIN W
BROWN, EARL F
BURROWS,T A
BUTLETT,D L
BUTZIEN, PAUL E
BYRNE, EDWARD R
BZOWY,D E

CABLE, GOKDON G JR

COVER SHEET ONLY TO

CANDY,JAMES C
CARDOZA,WAYNE M
CARRAN,J H
CASEY,JOSEPH P

CASPERS,MRS BARBARA E

CAVINESS,JOHN D
CBAFPEE,N F
CHAMBERS,J M
CHAMBERS,MRS B C
CHANG, BERBERT Y
CHANG,5-J
CHAPPELL, 5 G
CHEN, STEPHEN
CHERRY,M5 L L
CHIANG,T C
CHIN,GEN M
CHODROW,MARK M
CHRIST,C W JR
CIRILLO, CARL
CLAYTON,D P
CLIFFORD,ROBERT M
CLOUTIER,J E
COBEN, ROBERT M
COCHRON,D E
COHEN, HARVEY
COLDREN, LARRY A
COLE, LOUIS M
COLLIER, ROBERT J
COLTON,JOHN R
COOK, THOMAS J
COPP, DAVID B
COSTANTINO,B B
COSTON,WALTER P
COULTER,J REGINALD
COURTNEY PRATT,J S
CRAGUN,D W
CRUME, LARRY L

CUNNINGHAM, STEPHEN J

DAVIDSON, CHARLES L
DAVIS,R L JR

DE JAGER,D S
DETRANO,MRS M K
DEUTSCH, DAVID N

DI MARSICO,BRIAN J
DICKMAN,B N -
DICK,GEORGE W
DIMMICK,JAMES O
DIRKSEN,G E
DOMPIERRE,J A
DONOFRIO,L J
DOUGHTY, DAVID W
DOWD, PATRICK G
DREIZLER, BOWARD K
DRISCOLL, PATRICK J
DUBIS,M
EDELE,JAMES S
EDELSON, D
EDMUNDS,T W
EIGEN,D

EILENBERGER,RROBERT L

EXITELBACH, DAVID L

TM-75-1352-2

COVER SHEET ONLY TO

ELY,T C
ESSERMAN, ALAN R
FABISCH,MICHAEL P
FARGO, GEORGE A
FEDER, J

FELDMAN, STUART 1
FELS, ALLEN M
FIGLIUZZI,MISS M E
FIORE,MRS RHODA J
FISCHER,B B
FLANAGAN,J L.
FLANDRENA,R J
PLEISCHER, HERBERT 1
FLUHR, ZACHARY C
FORMICA,JOEN F

ﬂ

e’

FORTNEY, MRS VIRGINIA J

FORT,JAMES W
FOUGHT,B T
FOUNTOUKIDIS,A
POWLER, BRUCE R
FOWLER,C F
FOX,R T

POY,J C
FRANKS,RICHARD L
FRANK,H G

FRANK, MISS & J
FRANK, RUDOLPH J
FRASER,A G
FREEDMAN,M I
FREELING,M L
FREEMAN, R DON
FREIDENREICH,MRS B
FRIT2SCHE,D
FROST,H BONNELL
FUCHS, EDWARD
FULTON,ALAN W
GALLY,A T
GARCIA,R F
GATES,G W
GAY,FRANCIS A
GEER,EUGENE W JR
GEPNER, JAMES R
GERARD, ALLAN
GEYLING,F T
GIEB, KENNETH R
GILBERT,MRS HINDA S
GIMPEL, JAMES F
GITHENS,JOHN A
GLUCK, F
GOETZ,FRANK M
GOLABEK, MISS R
GOLDSMITH,L D
GOLDSTEIN,A JAY
GORDON, P L
GOSNELL, MISS J
GRAHAM,R L
GRAMPP,F T
GRANDLE,J A JR
GREENBAUM,H J
GREENE,MRS DELTA A
GREENHALGH,H WAIN

N

~

LUDERER,GOTTFRIED W R CASE CAMPBELL,J B ELLIOTT,R J GREISEN,MISS K E /A\
+ NAMED BY AUTHOR > CITEC AS REFERENCE SOURCE ees J
- 556 TOTAL o
MERCURY DISTRIBUTIONucesoscocesscteestssattossananssossonsttsotss tetesoststtosisicenesstosessesssesossstoonasnccssenssosecssssvcnsccss
COMPLETE MEMO TO:
10-EXD 13-DIR 135-DPH 127-DPH 8231-8UP 8234~-SUP 9152-NTS 1352 1353 1356
COVER SHEET TC:
135 1271 1273 8234 5222
C008 = COMPUT ING/OPERATING SYSTEMS/SURVEY PAPERS ONLY
CO0SSI = COMPUTING/OPERATING SYSTEMS/ SYSTEM INTERCONNECTION, NETWORKS
UROS = UNIX/OPERATING SYSTEM I \
UNSU = UNIX/SERVICE, UTILITY PROGRAMS . ;
A 1]
g
cenan cccocce ~
RADY,J E; MH 7B201%;
TM-75-1352-2 TOTAL PAGES 21

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
* 2. FOLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT. USE NC ENVELOPE. .

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE
NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER

SHEET TO THE COMPLETE COPY.
IF COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE FILES.

Bell Laboratories

-~8ubject: Emul ation of UNIX on Peripheral date: January 9, 1975

L~

\\‘
.

(™~

Processors
from: H. Lycklama

C. Christensen

TH-75-1352-2

Memorandum tor File

Introduction

The Peripheral Processor concept allows a UNIX system (1) in
a PDP 11/45 computer to be extended out to several peripherally
attached PDP-11 processors. Each peripheral processor (PP) exe-
cutes a regular UNIX process and has access to the central
processor’s ~(CP) file system and peripherals, yet does not con-
tain a UNIX s?stem. A process executing in a PP passes all UNIX
system calls (read, write, create, etc.) to the CP for execution.
This technique of partitioning a process at the UNIX system call
level provides a clean, well-defined communication interface
between the processors.

The hardware requirements for a PP are minimal compared to
those for the CP. Since a PP doesn’t require a resident UNIX
system, it could have as little as 4K words of memory, depending
on the size of the process to be executed. Since a PP executes

only one process, segmentation hardware is not required.

Emulation of severa; PDP-11/45 instructions such as MUL, DIV,
etc. allows the use of PDP-11/05°s /18 s and /28's as PP’s.
Applications for a PP also cover a wide range. A mini PDP-11l
might be an experiment or system gcontroller, deriving its
software support and data storage fromithe CP. A large PP could
‘execute compute-bound programs, extendfng the processing capacity
of the CP system. A variety of communication links between the
PP and CP can be wused. In the case of the large PP handling
compute-bound programs the DEC LINK (2) device is appropriate. A
PP controlling an experiment must be close to the experiment and
could be connected to a remote UNIX CP via the SPIDER (3) network
or, as in the system'we describe, a serial I/0 loop (4). A Data-
phone connection could also be considered if a low data rate |is
- satisfactory. A strong arqument for supporting mini PDP-11"s as
UNIX peripheral processors is that a PP can be programmed in one

-of the high level languages available on UNIX, C (5), FORTRAN or

LIL (6).

Configuraticn

The current configuration on which the PP concept is imple-
mented includes three small PDP-11's attached to a UNIX CP
through a serial I/0 loop. The PP's are a PDP-11/10 with 8K words
of memory used to control an exverimental telephone system, a
PDP-11/20 with 8K words of memory to be used as a front-end 1/0
processor, and a DEC GT-46 (PDP-11/065) to be used as a controller
in an.experimental digital filter system.

The CP is a DEC PDP-11/45 with 64K words of primary memory

C‘\

and 96 megabytes of secondary storage. Other peripherals include
three graphic terminals, six 113B data sets, one 201B data set
with automatic calling unit, a connection to the SPIDER communij
cation system, and a pair of Dectape drives. UNIX is supported on
the CP by the MERT (7) operating system.

The serial I/0 loop which connects all the PP's to the CP
runs at an average rate of 3400 16-bit words per second. It is a
message communication system, each message containing a iG-bit
data word and a header specifying which PP the message is for.

This I/0 loop can support up to 63 PP's or other peripherals

spaced at intervals of up to one thousand feet along the cable.

PP Communications Package

The PP.communications package is a program which executes in
the PP and handles all I/0 loop communication with the UNIX CP.
It is initially loaded from the CP by a bootstrapping procedure;
execution of this package effectively connects the PP’s local
telgtype to the UNIX CP as a terminal. This allows the PP user
to login and run UNIX processes in the CP like any other CP ter-
minal. A PP user sitting at the PP teletype can then edit, com-
pile, assemble and run programs in the CP and ask the CP to load
and run a program in the PP, Command dialog will be covered 1in
detail later. The PP communications package does the loading and
begins execution of a PP process under control of the CP. Then,
when the process is runhing in the PP and a trap occurs, the com-
munications package is called to alert the CP and handle CP re-

quests for trap arguments and the return of trap results.

The PP communications package is dependent upon the type of
PP to CP connection. In the case of the I/0 loop it occupies
about 400 octal bytes. A seven word PP bootstrap is used to load
it from the CP, using the command "bootll -h", which must be
issued from another CP terminal. "“-h" specifies the PP to be
booted. After the "bootll" command finishes and the PP communi-
cation package is started, the CP responds by typing the standard

UNIX "login: " message on the PP's teletype.

Peripheral Processor Trap Handler

A version of the PP trap handler is prepended to each pro-
gram that is to be executed in a PP. It catches all PP traps and
passes those that it cannot handle to the CP via the communica-
tion package. This is the front-end package which must be link-
edited with the object code produced by a UNIX compiler.

The trap handler includes code to determine the trap type
(and, 1in the <case of §SYS traps, to determine the type of S¥S
trap). If the trap is an illegal instruction trap, the handler
will determine if it has the capability to emulate this instruc-
tion, or whether it must be passed to the CP. If the trap is to
be passed to the CP, a five word communication area in the PP is
filled with the state of the PP at the time of the trap. The
communication package causes an interrupt to occur in the CP,
thereby alerting the CP process running on behalf of the PP. The
PP trap state is then read from the communication area and upon
processing this trap in the CP, the .CP process passes arqument(s)

back in the communication area of the PP. Control is then

)

returned to the PP.

The trap handler also monitors the PP program counter and
local teletype sixty times per second using the sixty- hertz
clock. This permits profiling of a program running in the PP and
controlling it from the local teletype. Upon detecting either a
rubout character (delete) or a control backslash chgracter (quit)
from the local teletype, a signal is passed back to the CP, éaus—
ing the PP program to abort if these "signals" are not handled by
the PP process. At the same time a check is made‘to see if there
have been any delete or quit signals from the CP process. If the
PP has no local teletype, setting a -1 in the switch registgr
will turn ' control over to the CP process. If an undebugged pro-
gram in the PP halts, restarting it at location 2 will 'force an
IOT trap.

The trap handler consists of up to four separate components

(see Appendix A for a detailed memory layout):

1. trap vectors, communication area, trap routines (460 words)
2. PDP-11/45 instruction emulation package (508 words)
3. floating point instruction emulation package (1888 words)

4. start up routine.

Of these, the first is always required. The illegal instruction

emulation packages are loaded from a library only if required.

ce Emulation of Traps

bDuring the time that the PP is executing a program, the

associated CP process is roadblocked waiting for a trap signal

from the PP. Upon receiving one, the CP process reads the PP
trap state from the communication area, decodes the trap and emu-
lates 1it, returning results and/or errors. A check is also made
to see if a "signal" (quit, delete, etc.) has been received. The
CP process keeps a list of all of the current signals which are
to be caught or ignored by the PP program, or caught by the CP
pro;éss. If the PP 1is to catch a specific signal, control is

then returned to the PP at the signal’s entry point and the CP

roadblocks waiting for another trap signal from the PP.

Of the more than 48 UNIX system (SYS) calls emulated, about
39 are handled by simply passing the appropriate arguments from
the PP to the CP process and invoking the corresponding SYS call
in the CP. The other 18/ SYS calls require more elaborate treat-

ment. Their emulation is discussed in more detail here.

The “"getcsw" call (8) returns the CP’'s switch register, not
the PP’s, which is easily read without a SYS call. To emulate
the *“signal" SYS‘call, a table of signal registers is set aside
in the CP process, one for each possible signal handled by- UNIX.
No SYS «call is made by the CP process to handle this trap code.
When a signal is received from the PP, this table is consulted to
determine the appropriate action to take for the CP process. The
PP program may itself catch the signals. If a signal is to caqﬁe
a core dump, the entire PP memory is dumped into a CP "core" fiie

with a header block suitable for the UNIX debugger.

The "stty" and “gtty" SYS calls are really not applicable to

)

g

(7

-7 -

the PP process, but if one is executed, it will be applied to the
CP process’ control channel. The "prof" EYS call is emulated by
transferring the four arguments to the profile buffer in the PP
memory. The PP, upon detecting non-zero entries here during each
clock tick (68 times per second), will collect statistics on the
PP program s program counter. Upon completion of the PP program,
this data will be written out on the “mon.out" file. The “sbrk"
SYS <call causes the CP process to write out zeroes ih the PP
mémory to expand the bss area available to the program. A SYS
"exit® changes the communication mode between the'PP and the CP
back to the original terminal operation mode. It then causes the
CP process to "exit" giving the reason for the termination of the

PP program.

The éhree most time-consuming SYS calls to emulate are
"read", "write" and "exec". The "exec" SYS call involves load-
ing the executable file into the PP memory, zeroing out the bss
area in the PP memory and setting up the arguments on the stack
in the PP. A SYS "read" involves reading from the appropriate
file and then transfering this data into the PP buffer. The SYS

"write" is just the reverse procedure.

The “fork", "wait" and "pipe" SYS call emulations have not

been written at. this time and are trapped if executed in a PP.

. One possible means of emulating the "fork" call would be to copy

an image of the parent process in one PP into another PP, permit-

ting the "pipeing" of data between two PP’s.

Forming a PP Program

The output of the C, LIL and Fortran compilers as well as of
the assembler can be run on the PP’s. The procedure is to com-
pile the appropriate object modules using one or more of the fol-

lowing commands:

l. cc -c prog.c . -> prog.o! o
, ~

2. 1lc =-c prog.l -> prog.o

3. fc -c prog.f -> prog.o

4. as - prog.s) -> a.,out

and then link-edit in the appropriate trap handler, instruction

emulators and start-up routines.

This link-editing is accomplished by means of the new

program:
1dm [-mefp] [-f] prog.o [-1m]

Here [) indicates that the enclosed parameters are optional. The

‘em’ option (default) determines which one of the eight possible

start-up routines is to be link-edited with the specified object <:>

modules to form the final ‘a.out” file. The symbol '_main’ must —

be defined in one of these modules as the program entry point.

The various start-up roﬁtines include all possible combinations

of the emulation package (e), floating-point. package (f) and the <:j,
~

profiler package (p). The default option “-m” will include none
of these packages. The ‘-f option specifies that the Fortran
start-up routine is to be loaded along with the designated object

modules. The symbol ‘main’ must be defined in the object

G

modules. In performing the ‘ldm’ command, libraries are searched

in the following order:

1. user specified libraries

2. library of special PP run-time routines
(in “/1ib/libn.a”)

3. C library routines

4. standard library routines.

If the ’'-f° option is specified the Fortran library is searched

in place of the C library.

The mini run-time library "/lib/libn.a" includes routines to
read and write the local teletype directly rather than by passing
back the ecguivalent SYS ‘“read" or SYS “write" to the CP. The
illegal inétruction emulation routines and three special start-urp
and clock routines are included in this library as well. The
three routines are ‘config()”, “sigtst() and ‘profile(sprofbuf,
pc) *. The configuration routine is used to specify the addresses
of the hardware registers (control teletype, I/0 loop, clock)
which are dependent on the machine on which the program is to be
Fun. This routine also starts the sixty Hertz clock. During the
running of a program on a PP, the clock will interrupt sixty
times per second and cause the execution of the ‘profile()”
routine, if profiling has been turned on, and of the ‘sigtst()’
routine. This latter routine checks for external signals from
the 1local teletype, the 'I/0 1loop and a (-1) in the PP switch

register. The wuser may provide his own versions of these

- 19 -

routines for different PP hardware configurations. 1In fact, he
may wish to allocate the clock to some specific real-time func-
tion. This can be done by overwriting the clock interrupt vector

with the address of the entry point of his clock routine.

Other special run-time routines exist in “/lib/libm.a’ and
may be loaded by means of the "-lm’ option in the “ldm” program.
These routines include a special ‘putchar’ routine to direct the
output from ‘printf’ statements directly to the local teletype.
The "a.out" file .generated by the "1ldm" command can be run

directly in the PP.

Loading and Running a Program on a PP

The command used to load and run a program on a PP is:
l1lr [-sij] prog [argl ... argn]

The first optional argument specifies on which PP the program
‘prog’ (typically “a.out’) is to be run. The default PP is the
one from which the command was issued. If a configuration hes a
number of identical PP’s, the usef may run his program on whi-
chever PP is available to him, i.e. he may invoke the scheduling

v

option ‘-s’. However if the user’s program can only be run on FP
‘i” or PP “j°, he may specify the “-sij” option. A check is made
to see if PP ‘i’ is available, and if not, the availability of PP
‘§° is checked for. Locks are provided to avoid conflicting

requests. Having determined on which PP the program is to be

loaded, its text and data sections are loaded starting at address

_'-/

(y

()

()

-11 -

9. The ’bss’ section is appropriately zeroed out and the argu-~
ments (argl ... argn) are put on the PP’s stack in UNIX fashion

starting at the top core address available to the user program.

The program in the PP is started off at location 8 by the CP
which then roadblocks waiting for a trap signal from the PP. 1In
the PP, the initialization program ‘config() is executed before
control is transferred to the wuser’s program starting at the

address * main’.

The wuser sitting at his terminal has complete control over
his program running in the PP. The "delete" or "quit" button on
his terminal will abort execution or abort and produce a core
dump of his program back in the CP. When running a program in a
remote PP not attached to the user’s terminal, the CP forwards
any abort commands to the PP. If the PP has a local teletype,
the abort commands can be issued from the PP local teletype or
the user’s terminal. If the PP has no local teletype, loading
the control switch register with a (-1) will produce a core dump.
For those undebugged programs which run wild or halt, restarting
the PP at location 2 produces a core dump. A breakooint trap may
be planted deliberately in the PP program, producing a core dump

upon execution.

For interactive control of a PP program, a symbolic debugqger

is available:

11d [-sij] prog [argl ... argn]

- 12 -

The PP program ‘prog’ is loaded in the specified PP and control
is returned to the CP for further directions. Symbolic dumping,
patching and planting of breakpoint traps may be done by the
user. The flow of control of the PP program may be traced by

planting multiple breakpoint traps.

Some Operational Statistics

Estimates have been made of the execution time of the vari-
ous emulation routines. The times are approximate and assume a

PDP-11/20 PP, a PDP-11/45 CP and an 1/0 loop connecting them.

The running times for the PDP-11/45 instructions emulated in

the PP are as follows:

Inst. usec.
mul 838
div 1200
ash 660
ashc 720
Xor 449
sob - 400
sxt 400

If execution time is important in a PP program, these instruc-
tions should be avoided.. In C programs.these instructions are
generated not only when explicit multiplies, divides and multiple
shifts are written, but also when referencing a structure in an
array of structures. Using a PDP-11/35 or PDP-11/40 with a fixed
poidt arithmetic unit as a PP would reduce the execution time for

these instructions.

The average times to emulate floating point instructions in

- 13 -

the PP are as follows:

Inst. usec.
add 2100
sub 23069
mul 3500
div 56090

For applications which require large guantities of CPU time run-
ning Fortran programs, it is possible to use a PDP-11/45 CPU with
a floating point unit as a PP. More will be said about this in a

later section.

Por each SYS call the emulation package on the CP must read
the communicétion area in the PP, emulate the actual SYS call and
then return the arguments back to the communication aréa in the
PP. Most. SYS call’s also require the passing up of some argu-
ments from the PP. Typical times for a few SYS call’s are listed
below along with the ratio of time taken in the PP relative to

the normal SYS call time in the CP:

SYS call msec. (PP) PP/CP
read 110 29
write 110 29
getuid 65 15
creat 1649 5
open 158 5

Another data point is provided by a test program which copies
39,000 characters from one CP file to another. Running on the
PP, the program takes 35 seconds, compared to 7 seconds on the‘

Cp. These times are strongly dependent on the data rate of the

- 14 -

communication link between the PP and CP. For the I/0 loop - used
in the present configuration, the average data rate is 6009 bytes
per second. It should be noted that most compute-bound and
real-time PP programs do not require much CP communication.
Indeed, communication is typically only required to access the

file system on the CP.

Supporting Mini PDP-l1ls

Supporting a mini PDP-11 as a PP on a UNIX CP combines all
the advantages of UNIX programming support with £he real time
response and economic advantage of a stand-alone PDP-11. Let’s
examine a typical PP programming session. A programmer sitting
at the PP local teletype logs into the CP and uses the UNIX edi-
tor to updafe a PP program source file. It could be assembl?
language or one of the higher level languages available on UNIi:(
C, LIL, FORTRAN). Aséume a C source file “prog:c". When the

edit is complete the following commands are issued:

$ cc -C prog.c
$ 1dm -me prog.o

$ llr a.out

"ee =-c" compiles the C program "prog.c" in the CP and produces
the object file "prog.o*. "ldm -me"” combines the PP trap handler
(-m) and instruction emulator (e) with the C object file
"prog.o", generating an "a.out" object file. "llr* 1oads the

“a,out" file into the PP, and starts it with the PP teletype as

N\

(,f“)

()

- 15 -

the standard input and output. The programmer then observes the
results of running the program or forces a core dump, and uses
the UNIX debugger to examine it. If any program changes are
required the preceeding steps are repeated. During this typical
PP support sequence the programmer initiates the editing, compil-
ing, loading, running, and debugging of a program on a mini
PDP-11 without leaving its control teletype. It is the speed and
convenience of this procedure along with the availability of high
level languages which makes the Peripheral Processor concept a
powerful mini PDP-11 support tool.

Some mini PP’s will be disconnécted from the CP when their
software has been developed and the final product is a “stand-
alone” system. Other mini PPs will always have a CP connection;
they supply the real time response, unavailable from the CP, com-
bined with access to the CP’s software base, file system, peri-

pherals, and connection to the computing community.

Some Possible PP configurations

Having shown the power of the emulation of UNIX on low-level
PP’s (e.g PDP-11/05 up to PDP-11/35), we will now consider the
possibilities of emulating the UNIX operating system on a more

powerful set of PP's (e.g. PDP-11/48 and PDP-11/45) with higher

bandwidth communication channels to the central CP and making use

of the scheduling algorithms developed previously. As a specific
example, consider a PDP-11/45 CP with the full complement of
memory, large secondary storage, and other peripherals. Now 1if

this CP 1is compute-bound, it is feasible to connect one or more

- 16 -

PDP-11/45°s as PP's. The appropriate communication link would be
the DEC LINK device which permits the transfer of data on a
cyéle-stealing basis without intervention by the CPU. If these
PP’'s each had 28K of memory (no segmentation unit necessary) and
a Floating Point.unit, they can be loaded with a Fortran-type or
other compute-bound jobs, leaving the CP to handle the occassion-
al file system requests. This multi-processor system would give
good interactive response and have the ability to run compute-
bound jobs without disturbing the rest of the system. It is also
cost-effective, since the additional PP adds only about $35,0090
to a total system cost of about $266,008. A 20% increase in cost
yields a possible doubling in the throughput of the system. Yet
the PP's have complete access to the CP file system. The addi-
tion of a few more PP's would increase the effective throughput
of the system correspondingly. The PP’'s need not have local con-
trol terminals, rather they may be directly controlled by the CP.
In running a con;iguration in this manner, there is no swapping
overhead, since the PP program remains 1oéded until execution of
the program is complete. This in itself can provide significant
savings. From the PP user’s point of view he has a dedicated
processor working on his problem, with minimal load on the CP.
Taking the compute-bound job off of the CP maintains the interac-

tive nature of the CP.

Carrying the above example one step further, consider the
running of a compute-bound job which requires more than 32K words

of address space.. A PDP-11/45 processor could be configured with

(

- 17 -

a segmentation unit and up to 64K words of memory as a PP on such
a system. The PP could be loaded with a program which required
the separation of I and D space, doubling the address space
available to the PP program. This increases the éost of the PP,
but it gives the user the ability to run processes which cannot

be run in the CP.

The use of a PDP-11/45 with a segmentation unit and memory
greater than 32K words opens up other possibilities as a PP. A
SYS “fork“rcould be handled within a PP by copying an image of
the process to another area of memory in the PP. All scheduling
would still by done by the CP. There would exist a heirarchy of
processes in the PP about which the CP would not need to know
many details. For efficiency reasons, the PP trap handler could

handle certain SYS call’s such as “fork", "wait" and “"break®.

However this requires parts of a UNIX operating system in the PP.

Emulation of Other Operating Systems

The concept of emulation of the UNIX operating system in a PP can
be expanded to include the emulation of other operating system
environments in a PP. This can be accomplished -easily now by
writing a new emulation package on the CP to handle traps from
the PP. The trap handler in the PP has no knowledge as to what
the operating system environment is, so that it can serve as a
rather general-purpose trap handler for many different environ-

ments.

- 18 -
Summary

We have discussed the emulation of the UNIX operatiné system
on a peripheral PDP-11 processor. This technique has facilitated
the development of programs for the peripheral processors. In
fact programs may be written in a wide choice of languages: as-
sembler, LIL, C and Fortran. The PP’s may range in complexity
from a PDP-11/685 up to a PDP-11/45. The range of applications
for the PP's covers real-time tasks, interactive tasks aﬁd
compute-bound tasks. For this whole class of problems, programs
may be developed on the CP and run on the PP under control of the
CP and have access to the CP file system. Core dumps may be
obtained to aid in debugging PP programs. UNIX software is

available both during the development and running of PP programs.

We have discussed the implementation of this system using
the I/0 loop as the communication link between PP and CP. Other

possible communication links include:

(1) data-phone
(2) DR11lC’s
(3) SPIDER system

(4) DEC LINK device (DR11B’s back-to-back)

The LINK is now being programmed as a communication channel on
the system described above. It offers a higher bandwidth commun-
ication channel than the I/0 loop and should improve response

significantly.

(=

(‘\

)

- 19 -

Acknowledgments

We are grateful to P.J. Plauger for his contributions to the
peripheral processor concept and his aid in reviewing this docu-

ment. B.C. Hoalst provided the PDP-11/45 instruction emulation

A thlr

H. Lycklama

MH-1352-HL-JER (// 2 :Z

€. Christensen

package.

Atts.
References
Appendix

1.
2.
3.

- 28 -

REFERENCES

D.M. Ritchie, "The UNIX Time-Sharing System®, MM 71-1273-4.
DEC PDPl1l Peripherals Handbook.

A.G. Fraser, “"SPIDER - A Data Communication Experiment”, TM
74-1273-6.

D.R. Weller, “A High Speed 1/0 Loop Communication System for
the DEC PDP-11 Computer”, MM 73-1356-8.

D.M. Ritchie, "C Reference Manual®", TM 74-1273-1.

P.J. Plauger, "LIL Reference Manual", TM 74-1352-8.

D.L. Bayer and H. Lycklama, "“MERT =~ A Multi-Environment
Real-Time Operating System for the PDP-11/45", memo in
preparation.

K. Thompson and D.M. Ritchie, "UNIX Programmer ‘s Manual - 5th
Edition", June,1974.

—

9-936

(fé 040-052

k) ‘
670-076
0108-0106
0110-6116
01208-0316
8320-8576
0698-037376
637408-037776

—

-

- 21 -
APPENDIX A

PP Memory Layout

trap vectors
communication area
register save area
clock interrupt vectors
profile parameters
clock routine, user interrupt vectors
trap routines '
start up routines
PDP11/45 instruction emulation routine
(optional)
Floating point instruction emulation routine
(optional)
User programs

Communication Package

