-~

x «.--ff
Bell Laboratories -
subject: Explanation of Abnormal date: March 17, 1975
Conditions within the
UNIX Operating System wom: T. M. Raleigh

MF-75-8234-28

ABSTRACT

- Brror messages printed by the UNIX operating system on

the system console are discussed with their causes,
implications and remedies. The messages are divided
into categories according to. their seriousness and
their source from within the associated operating sys-
tem source modules is catalogued. An indication of the
relationship of various system parameters is given for
several of the remedies as a guide to the dangers of
haphazardly changing system parameters. A brief sum-
mary of user and system virtual address layout is given
and trap handling is discussed as required to interpret
UNIX PANIC TRAPS. An example of a PANIC TRAP is given
and device errors printed by the recent implementation
of error logging are also described. .

= s,

Bell Laboratories

swiject: Explanation of Abnormal ate March 17, 1975

Conditions within the
UNIX Operating System " tom: T. M. Raleigh

MF-75-8234~28

MEMORANDUM FOR FILE

. . cam -

I. Introduction

Error messages printed by the UNIX operating system on the system
console are discussed with their causes, implications and
remedies. :

Messages from the‘UNIx operating system are roughly broken down
into two categories, PANIC messages (which are followed by the
machine halting) and WARNING messages from the system.

The two categories of messages printed by UNIX roughly correspond
to situations where the system can continue running (WARNINGS) and
where further operation could result in extensive file system
damage (PANIC). For a number of PANIC situations there exist
recovery strategies that would allow the system to continue
operation at a degraded level, however, because there has as yet
been no great demand for this kind of recovery on UNIX, because
PANIC conditions do not occur frequently and do not usually
violate the integrity of the system, and because of size limita-
tions -on UNIX(24K word virtual address space for the system)
these strategies have not been implemented.

The two major categories are, for the purpose of this discussion,
broken down into several subcategories for convenience.

N

II. PANIC Messages

A PANIC refers to the occurrence of a significant error within
the system for which self diagnosis and healing are too involved
and/or risky Messages printed when these situations occur are
called appropriately PANIC messages and are followed by the pro-
cessor going into an idle state. Messages in this category are
loosely divided into three subcategories. The first group can be
expected in the normal operation of the system and will be desig-
nated as NORMAL PANICS. They are commonly seen at system startup
time and are usually the result of improper specifications of the
swap’ and root device and devices offline ,however, they also
appear when file systems or swap area is filled. The second sub-
category of PANICS should never be seen on a system. They are
the result of the failure of some consistency check made by the
system on essential table 1linkages. We will designate these
PANIC situations as ABNORMAL PANICS for lack of a better name.
They are usually the result of some improper modification to the

system software, a wild store by new system software or possibly _

a bad core 1location. A third subcategory of PANICS are the
result of traps occurring while executing in Kernel mode, that is
while executlng operating system code. The type of trap produc-
ing this PANIC is determined by using the console switches and
requires some knowledge of how the operating system’s Virtual
Address space is laid out and how the Memory Management Unit
operates. The method for making this determination is ocutlined
below and explained in more detail in a succeeding memo.l

IIT. WARNING Messages

Warning messages constitute the second major category of messages
printed by the operating system. 1In general, they are errors
that fall into one of the followzng three categories,

l. Self healing in the. sense that the system usually
ignores them or discards the bad information and contin-
ues. This class consists of most device errors and er-
rors in handling refreshed data(see BUSY I).

2. Errors that can be repaired by software without haklng
the machine down. This typically refers to problems in
file systems that are not essential to the system (any
file system except the root) and which may be logically
dismounted and repaired.

3. Brrors for which removal of the offending device only
degrades the size of the system. 1In cases where devices
or logical file systems are not essential to the opera-
tion of the system, they may be removed from the system
without the need of halting the system. While the device
cannot be taken off line and hardware serviced by repalr
personnel, their loss only entails some degradation in
performance and/or size. :

-3-

£

()

)

(™

-

In the following descriptions, a particular format is followed.
First, each description gives an ‘indication of the function
within the system that records the error and the source file in
directory /usr/sys of the standard UNIX system where it may be
found. An indication of the possible cause of the error is also
given. (In the case of ABNORMAL PANICS the message should be
~taken as only a general indication of where the problem 1lies as
bad software is probably involved and the trouble may not be
localized.) Finally, the corrective action or a solution is out-
lined if the problem is easily solved. As a general rule, for
most PANICS, a Post Mortem Dump should be taken(by starting the
machine at the address of the dump routine - 44 (octal) - see
system namelist), the system should be rebooted single user and
all file systems previously mounted should be checked for damage.

- Caution: The dump routine is not very intelligent. It should
write a copy of all of core on a pre-mounted magnetic tape with
an EOF mark, however, any error is taken to mean that the end of
core has been reached. This means that you must be sure the ring
is in, the tape is ready, and the tape is clean and new. If the
dump fails, you can try again, but some of the registers will be
lost.

IV. NORMAL PANIC MESSAGES

The following list of panic messages c¢an occur in the normal
operation of UNIX. They occur on an infrequent basis, mostly at
startup time, however, some appear when the load on the system or
space available on the file systemss are not properly balanced.

4.1 PANIC IINIT

source - f;le.ken/alloc.c,.function - iinit ()

This message is printed during the UNIX startup procedure if the
root file system cannot be mounted. It is the result of a bad
read on the superblock of the root file system. It can be caused
by the root device being offline, by an unrecoverable read error
of the superblock on the root device or by an improper specifi-
cation of the major and minor device for the root device in file
conf.c.

Soiution - Correct file conf.c; turn root device on. Reboot.

4.2 PANIC OUT OF INODES

source - file ken/alloc.c, function - ialloec{()

~ Attempting to allocate an inode on a file system for which there
are no free inodes results in a "PANIC OUT OF INODES". This pan-
ic occurs whether the file system is the root file system or a
mounted file system.

/.A\

-

Solution - The remedy is to do housekeeping on the file system.
This can be done by removing unneeded files on the file systems
or by creating a larger file system with more inodes. To do
this, dump the file system on tape, create a larger file system
using /etc/mkfs and then restore the file system from tape. (see
Section VIII of the.UNIX Programmers Manual) .

4.3 PANIC NO INODES

source - file ken/iget.s, function - iget()

Phis PANIC occurs when too many different files are open in the
system resulting - in the filling of the in-core 1inode
table (INODE). : .

Solution - Post Mortem Dump. Either ignore it as a freak oc-

currence of an overloaded system or reboot and determine which
processes were running and which inodes were open at the time of
the crash. Files (inodes) are not closed or removed from the

in-core inode table when a process is swapped so that inodes used

by swapped processes are also in the process table. Determining
which processes were running or swapped and which files were open
requires use of the debugger on the dump and extensive knowledge
of the system tables. If it 1is found that several processes
(which probably run together as part of an application) are £il-
ling the in-core inode table then it should be determined whether
they require all of the files be open at once. It should be
remembered that files remain open across the creation of children
so that unneeded files may remain open in the system long after
the death of a parent process. Files can be closed by the parent
before calling the child and the child may reopen them as needed.
Also, mounted file systems reguire two entries in the in-core
inode table.(see Fig.l) These entries are present as long as the
file system is mounted. One inode table entry is £for the root
inode of the mounted file system and the other is for the inode
on which the file system' is mounted. Thus, the size of the in-
core inode table is effectively decreased for each mounted- file
system(including the root). If it is determined that a larger
number of open files is required, the size of the in-core inode
table may be increased by changing the parameter NINCDE in
param.h. The size of the file table (FILE - the number of in-
stances of an open file) should also be increased proportionately
by changing NFILE in param.h The variable MAXIP holds the high
water mark of the highest inode in the INODE table. It can be
examined while the system is running to determine how close the
system is to this condition.

4.4 NO CLOCK .
source - file ken/main.c, function = main{()

Printed at system startup time if neither the KW1l-L or KW1ll-P
clock is present on the machine.

-5

€

Solqtion - Run DEC diagnostics. Reboot.

4.5 OUT OF SWAP SPACE

source - file ken/text.c, function - xswap ()

When UNIX attempts to swap a process, and there is no space 1left
in the swap area or the swap area is fragmented so badly that
there isn’t a space large enough to fit the process, this message
is printed.

Solution - The solution in all cases is to increase the size of
the swap area. This is done by changing the parameter NSWAP
(number -of blocks in the. swasp area) in file conf.c. Conceivably,
if the number of processes allowed in the system (NPROC - see
param.h) is also increased significantly, increasing the size of
the swap area might require an increase in the size(SMAPSIZE -
see param.h) of the table managing the 'allocation of the swap
- area (swapmap) .

4.6 PANIC SWAP ERROR

This message can be printed by two functions in the system.
1. source - file ken/slp.c, function -~ sched()

If an unrecoverable error occurs when attempting to read or write
from the swap device, this message is printed.

2. source - file ken/text.c, function -~ xswap({()

If an unrecoverable device error occurs on the swap device while
attempting to ‘write the original copy of the text of a shared
program on the swap device, "PANIC SWAP ERROR" is also printed. .
Only if the error recovery procedure (on most devices retry 18
times) for the respective block device driver fails will this
message appear. The message does however, appear frequently at
startup time if either the swap device is offline or it has been
specified improperly in conf.c.

Solution - If the swap device is offline, turn power on or dis-
able write protect on the drive. The entries in the file conf.c
should be checked <carefully, particularly SWAPDEV, NSWAP and
SWAPLO if the problem occurs at startup. SWAPDEV specifies the
major and minor device number of the swap device. NSWAP speci-
fies the number of blocks (512 byte) in the swap area and SWAPLO
specifies the offset in blocks into the logical device area that
the swap space begins. A peculiarity of the offset SWAPLO is
that UNIX has built into it the notion that. block 8 of any 1logi-
cal device cannot be allocated. It is used for a boot program.
Therefore, offsets of zero for SWAPLO promptly produce “PANIC
SWAP ERROR" at startup. Reboot.

-6~

4.7 PANIC QUT OF TEXT

source - file ken/text.c, function - xalloc()

Under UNIX, pure procedures have the text (instructions) and data
loaded and managed separately (they are however in the same user
virtual space - see Fig. 2). The data segment is managed by the
process ‘table entry(PROC) and the text segment is managed by a
text (TEXT) table entry. When there are no more TEXT table en-
tries available at the time of creation of a shareable process,
"PANIC OUT OF TEXT" is printed. For non-shareable processes, the
Process table manages both the text and data (as one unit) so
there is no associated text table entry, but for shareable
processes, it manages only the data segment. A pointer in the
process table entry to a text entry is kept, therefore, when this
PANIC message occurs, the shareable processes (running or
swapped) should be examined (those for which p_ptext in the PROC
table entry is nonzero). -

Solution - Post Mortem Dump. The options. are essentially the
same as those of "PANIC NO INODES". The occurrence can be ig-
nored or an analysis of how many text segments were in core could
be made and it can be determined whether the number of text table
entries (NTEXT - see param.h) should be increased. Reboot.

V. ABNORMAL PANIC MESSAGES

The following messages should never occur on a system. They are
printed as the result of the failure of some basic consistency
check and are the result of a serious bug or wild store in the
operating system. UNIX is protected from user processes by the
Memory Management Unit so that only operating system c¢ode can
produce a wild store.

source - file ken/alloc.c, function - getfs()

Occurs when the system cannot £ind the in-core superblock for a
particular device by searching the systems MOUNT table. There is
one MOUNT table entry for each logical file system that is mount-
ed. When a file system is mounted, one of the system
buffers(BUF) is withdrawn from the pool of system buffers and 1is
allocated to hold the superblock for that logical file system.
The buffer remains allocated to that file system for the duration
of time that it is mounted. The MOUNT table entry contains a
pointer to this buffer (see Fig.l)

soluticn - Post Mortem Dump. Software analysis using the de-
bugger. Reboot.

(5

5.2 PANIC NO IMT(No. Mount Table Entry For Inode)

source - ken/iget.c, function - iget()

When a logical file system is mounted on a file(inode), both the
inode for the file and the root inode of the logical file system
(see Fig:1l) are kept in the in-core inode table (INODE). The con-
nection between the two is made by a bit (IMOUNT) set in the in-
core inode table entry for the £file, indicating that the MOUNT
table should be consulted for the root inode mounted on this file
(see Fig.l). When the system cannot find the mount table entry
to make this connection, "PANIC NO IMT" is printed.

Solution - .Post Mortem Dump. Software Analysis' using debugger.
Reboot.

5.3 NO PROCS(No Process Table Entries)

source - file ken/slp.c,‘function - newproc ()

This message may be printed under two circumstances both involv-
ing the creation of a new process. First, if at startup time,
the system cannot create the INIT process which spawns processes
for each teletype, this message is printed. Second, if during
the spawning of a new process (FORK) the system finds that it is
out of room in the Process Table when it knows that there is room
in the table this message is printed.

Solution - Post Mortem Dump. Software analysis using debugger.
Reboot.

Note: This PANIC does not mean that there was an insufficient
number of processes SYSGENED into a system.

The FORK system call limits the maximum number of processes in a
system to the size of the Process Table (NPROC - see param.h).
The FORK system call returns an error to the user process if the
system is out of Process Table entries. If an installation re-
quires the simultaneous existence of a large number of processes,
NPROC may be changed. The number of shareable text segments
allowed should probably also be increased proportionately. To
complicate things, a 1larger number of processes may reguire an
increase in the size of the swap area(NSWAP - see conf.c) and an
increase in the number of open files(NFILE - see param.h). The
increase in swap area size and number of processes may lead to

greater fragmentation of the swap area which in turn may require’

an increase in the size of the swap map (SMAPSIZE in param.h) .
In general, the increase in the number of processes requires
more adjustment and tuning than for increasing the number of
open files in the system (see PANIC NO INODES) .

o’

Y]

-~

5.4 PANIC UNLINK ---IGET

source - file ken/sys4.c, function - unlink()

If a system call to unlink a file is issued, UNIX must bring the
inode for that file into core in order to remove it from the file
system. ‘If a directory entry exists for the file but the inode
cannot be brought into core this message is printed. This should
never occur. ‘

solution - Post Mortem Dump. Software Analysis using debugger.
Reboot.

5.5 PANIC BLKDEV

source - dmr/bio.c, function - getblk()

This message is printed when a request is made for one of the
system buffers to do I/ O to a bad logical device (bad major dev-
ice number specificaticn). Bad 1logical device numbers should
have been rejected at higher levels of system software before
reaching -the I/O subsystem.

Solution - Post Mortem Dump. Software Analysis using debugger.

Reboot.

VI. SYSTEM TRAP PANIC

The third class of PANIC messages are PANICS resulting from a
trap occurring while the processor is in Kernel mode. UNIX is
presently not equipped to recover from these situations so the
processor halts after printing the following cryptic message,

KA6 = N1
APS = N2

The significance of these numbers is explained below, however,
for a detailed description of interrupt and trap handling under
UNIX see the succeeding memo. 1

6.1 PANIC TRAP

source - file ken/trap.c, function - trap()

When a "PANIC TRAP" occurs, the messages shown above are printed
and the processor goes into a wait state. If the continue switch
is pressed on the processor console and the processor is not
hung, the message "PANIC TRAP" is printed. As mentioned previ-
ously, the PANIC TRAP occurs while the ©processor is executing
UNIX(Kernel mode). The trap c¢an result from an illegal memory
reference by the operating system , the execution of an illegal
instruction by the operating system ,etc. More likely, it can
indicate hardware problems. The traps caught by UNIX and handled

-9-

for user processes are the following.

Bus Error

Illegal Instruction
Breakpoint Trace

I/0 Timeout

Power Fail

Emulator Trap

System Entry
Programmed Interrupt
Floating Point
Segmentation Violation

Voot WwiH-D

If any of these traps occur while executing operating system
- code, a PANIC TRAP occurs.

The PANIC TRAP message does not print the type of trap producing
the PANIC. It. is necessary for the operator to determine this
from the processor console. Before detailing the algorithm for
determining the type of trap, some background information on trap
and interrupt handling and on UNIX processes will be summarized

1. Referring to Fig.3, the Kernel’s Memory management
Registers are shown. Kernel Instruction Space Address
Register 6 (KISA6) is shown managing the U block area.
Instruction Space Address Register 7 manages the high
core device address area.

2. Context switching is accompanied by a change of KISA6
to point to the current process’ U block(Fig.3). The
scheduler is considered to be a process, albeit a 1locked
in core process.

3. The U block is a 1924 byte area and contains per pro-
cess information (context switching, open files, current
directory, id, etc.) in its lower core portion and c¢on-
tains the system stack growing downward from the high
core area of the U block. The per process information is
loaded at location 1490068 (octal) in Kernel Virtual ad-
dress space. There is no protection at present to
prevent overwriting of the per process information by the
stack (although the 11/45 contains a stack 1limit regis-
ter).

4. The system stack resides in the U block of the curent-
ly running process. This means that i1f a user process
(or the Scheduler) is interrupted to service a device,
all stack usage (temporary variables, subroutine save
area, etc.) to fulfill that request, occurs within the U
block of the currently running process.

5. Devices send interrupts to the processor by raising
their bus request 1line and the interrupt line on the

-10-

UNIBUS.- When the processor. grants the interrupt, the
device sends the address of a new Processor Status Word
(PSW) in the low core area of UNIX across the data lines.
For traps, the mechanism is essentially the same except
that traps are initiated by the processor and do not
involve the UNIBUS. The software path that interrupt and
traps take to get to their respective trap and interrupt
handling routines is slightly different (Fig. 4). They
both, however, have a stack frame of arguments construct-
ed by the function CALL (in mch.s) so that entry into the
trap and interrupt handling routines looks like a C func-
tion call.

6. The. stack frame is built as shown in Fig.S5. The steps
.in the process of building the stack frame are as fol-
lows,

a. At the time of the trap, the current Processor
Status and Program Counter are pushed onto the
stack in the order shown in Fig.5b and the new PS
and PC are loaded from the proper low core vec-
tor.

b. A stack frame of arguments is built as .shown in

" Fig.5¢. The entries labeled R4 and Rl are regis-
ters rd and rl (the remaining registers r2-r$5 are
saved upon entry to the trap or interrupt han-
dling routine by the function rsave). The PS
entry is the current PS which was loaded from the
low core vector for the trap. ThHe Previous Mode
field of the PS which was not set in the low core
vector is set at the time the new PS is 1loaded
and 1indicates the mode of the processor when the
trap occurred. The SP entry is the value of the
stack pointer from the previous mode of the pro-
cessor. The DEV entry is the minor device number
(or trap type) from the low core vector.

The information printed during a PANIC TRAP (i.e., KA6 = -

Nl, APS = N2) relates directly to the location of the
stack frame described above. The number N1 is the con-
tents of Kernel Instruction Address Register 6(KISAS).
This register is kept in 64 byte granularity so that the
actual address is this address(N1l) left shifted 6 bits (64
bytes). The number N2 is the address in virtual address
space of the OLD PS entry on the stack frame. It must be
remembered that this is a virtual address and only by
following the address mapping algorithm of the Memory
Management Unit can the physical address be determined.
With the knowledge that KISA6 manages the addresssing of

“the U block and that the U block is loaded at vwirtual

address 140000 (octal), the physical address may be found
by taking the difference of the APS value and
1460098 (octal) and adding it to the physical address that
K1Isaé points to, .

-11-

[Y

o

M

A

ADDR OLD_PS = N1 x 2%**6 + (N2 - 140088) (all octal)

If this address is examined on the console (on 11/45°s
when the display switches are set to CONSOLE PHYSICAL
and DATA PATHS) the OLD PS may be displayed. The DEV
entry may be found by examining the 1location 14
bytes(octal) lower in physical address space.

ADDR DEV = Nl x 2**6 + (N2 - 14086806) - 14

The DEV entry will indicate what type of trap occurred to
cause the PANIC(the minor device numbers. of traps are
assigned as indicated at the beginning of this section).
In addition, since PANIC traps occur only while executing
operating system code, the OLD PC entry will indicate
what section of c¢ode was being executed when the trap
occurred.

For the example shown in Fig.6, the foilowing information
would be printed on the system console,

APS
KAG

140642
3402

From the KA6 message we know that the U block is in the
area of 1location 340208. From the APS message we know
that the OLD PS is at virtual address,

ADDR_OLD_PS =+3482 x 2**6 + (1408642 = l4ﬂl00)
= 340200 + 642
= 341842

The DEV entry is at location,

ADDR DEV = 3482 x 2**6 + (148642 - 148000) - 14
= 340200 + 642 - 14
= 341026

The contents of this location is a one (1) and if we con-
sult the 1list of traps at the beginning of this section
we see that this PANIC was caused by the execution of an
Illegal 1Instruction by the operating system. Consulting
the NEW PS entry we see that the current and previous
processor modes are Kernel. This verifies that the trap
occurred while executing operating system code. If we
examine the OLD PC entry and consult a namelist for the
running system, we can find what function was being exe-
cuted in the operating systen when the trap occurred (in .
most cases). Note that the value of the Previous Modes
SP 1is equal to the address of the location preceding it
(higher on the stack) in virtual space. This is a conse-
guence of the fact that the previous and current mode are
the same for PANIC TRAPS.

-12-

(-~

-

On 11/45°s it is possible to work in virtual space from
the procéssor console instead of in physical space. This
is done by switching from CONSOLE PHYSICAL to KERNEL I
space on the console switches. Addresses placed on the
console switches for display are then mapped through the
Kernel ‘s Memory Management Unit.)

VII. WARNING Messages

The following messages are printed on the system console
as warnings. They constitute a class of errors which do
not warrant halting the system, however, their meaning
should be clearly understood as they indicate possible
sources of trouble.

7.1 UNIX RELEASE N

When UNIX is booted into core, it prints the following
message on the console teletype.

'UNIX RELEASE 2

MEM = NNNNN

The release is the current major revision of UNIX. The
number (NNNNN) printed after MEM is the size of user
memory in hundreds of words (i.e. lsb = 1886 words).

7.2 NO SPACE MAJOR MINOR

source - file ken/- alloc.c, function alloc()

Indicates that there are no more freeblocks on the 1logi-
cal device specified by MAJOR and MINOR (the major and
minor device number).

Solution - Do housekeeping on the £filesystem. Remove
unnecessary files or expand the filesystem (see PANIC NO
INODES) .

7.3 BAD BLOCK MAJOR MINOR

source - ken/alloc.c, function - badblock()

Printed if during the deallocation of blocks constituting
a file, a block number outside the range (within the
ILIST area or beyond the end of the file system) of the
file system is encountered.

Solution - The file containing the bad block number
should be found and fixed. The CHECK command should shed
some light on the identity of the £file (inode) causing
the problem. (File system problems, their variations and
remedies are too involved to cover here. Consult section

-13-

£

VIII of the UNIX PROGRAMMERS MANUAL.) The gravity of the

problem is dictated by the kind of file involved. TIf the
file is a directory, the remedy is not as simple as if
the file were a small file and may even require surgery
on the inode itself (consult a guru). Needless to say,
the healing process is more complicated if the file is on
the root filesystem. Any missing blocks may be restored
by using the CHECK =S option (salvage).

7.4 BUSY I
source - ken/alloc.c, function - ialloc()

The superblock for each mounted file system contains a
list of free inodes(S_INODE). 1If a file is to be creat-
ed, an inode number is chosen from this 1list.. If this
inode number corresponds to a file(inode) that is already
allocated, "BUSY I" is printed. This message is only a
warning from the system . A self healing process occurs
whereby inodes are selected from the free inode list
until a genuinely free inode is found. The BUSY I mes-
sage will be printed for each inode that is not really
free until a truly free inode is found, or until S_INODE
is empty at which time the system will refill §S_INODE
with 188 free inode numbers. The message may be printed
several times at startup if proper and liberal use of the
SYNC command has. not been made while running single
user (i.e., when running single user the superblock, con-
taining the ILIST for the file system, resides in core
and is not rewritten onto the disk unless the SYNC com-
mand is invoked or the SYNC daemon (/etc/update) is run-
ning).

Solution - Be more liberal with SYNC. The mounted
filesystems should be checked for integrity as a precau-
tion. The ILIST is locked when an inode 1is allocated
from the ILIST to prevent multiple use of the same inode
so this message could indicate problems with the conven-
tions used to lock the list (s_ilock) if system modifica-
tions have been made. :

7.5 NO FILE
source =- kén/fio.c, function falloc()

UNIX maintains a file table(u_ofile in the U block) for
each process which contains one entry for each instance
of £ile in use (open) by themprocess. At present, there
is a limit of 15 open files per process in an attempt to
keep down the total number of files (NINODE for INODE
_table) open and the total number of instances of files
(NFILE for FILE table) open. When a process attempts to
open a file and the FILE table is filled this message is

-l4-

el

)

printed. The user process requesting the opening of the
file is returned an error.

Solution - If an application must have a process with
more than 15 files open at once and cannot manage by
closing unneeded files (like the standard input, standard
ocutput, controlling teletype, or other files) and reopen-
ing them as needed, ‘then NOFILE (the total number of
files allowed to be open by a process) can be increased.
. As with other changes in table sizes, this may have ram-
.ifications in othe parts of the system. For example, the
in-corée inode table (INODE) and file(FILE) table may need
to have their sizes increased. Also, the increased size
of the open file table (u_ofile[NOFILE] in the U block)
decreases the space for the system stack and increases
the probability of the system stack overwriting the per
process information (U area). This problem occurred in
an earlier release of UNIX and resulted in the increase
in the size of the U block from 512 bytes to lts current
1924 bytes.

7.6 DEVERR ON MAJOR/MINOR BN=BBB EO=EEEEEE

Error logging has recently been implemented for some * of
the block devices. Error information is prlnted in the
above format with MAJOR and MINOR being the major -and
minor device number (in decimal) of the faulting device.
BBB is the logical block number (in decimal) that the
data is being transferred to or from on the device.
Remember that the large block devices are segmented into
logical areas by minor device and this block number can
be considered to be an offset into that area. ~The six
digit octal number EEEEEE is a printout of one of the
error registers from the device. The significance of the
code for each of the devices is as follows.

g/n - RK1l

190909 - drive error - composite
940608 - overrun

9206899 - write lock out v1olatlon
§19609 - seek error

994069 - programming error
§82908 - non-existent memory
961009 - data late

0088406 - timing error

998299 - non-existent disk
PPB109 - non-existent cylinder
760048 - non-existent sector
990928 -~ unused

P9AA18 - unused

9609084 - unused

gg998@62 -

checksum error

-15-~

6ooeel ~

1/n RPG3
100008 -
p40000 -
928000
plo6op
pg4oeo
902000
0319090
000400
000200
000100
0o0G40.
p00029
00010
pooen4
pepoo2
p009061 -

2/n RF1ll
100000
040000
620060
610009
p04000
8820080
PO1900
P00400
002990
096100
pooo40
000020
000010
p00@04
0000082
p0000a1

3/n TM11

4/n TCll
- 100060 -
940000
0200080
2128090
804009
032000
601008
g00400
906260
6polo0
pB80B40
008029

write check error

write protect violation
file unsafe violation
non-existent cylinder
non-existent track
non-existent sector
program error

format error

mode error

longitudinal parity error
word parity error
checksum error

timing error

write check error
non-existent memory

end of pack

disk error

drive error - composite
freeze

write check error
data parity error
non-existent disk
write lock out
missed transfer
disk clear
control ready
interrupt enable
extend memory
extend memory
maintenance
function .
function

go

- nOo messages

end zone

parity error

mark track error
illegal operation
selection error

block missed

data missed
non-existent memory
tape is up to speed
clock simulates timing
maintenance mark track
data track

=16~

e

800019 - data track

goP904 - data track

p98080662 - extended data

898881 - extended data

5/n RP@g4 ‘
100008 - data check error i
p49908 - drive unsafe:

290000 -~ operation incomplete

gl18008 - drive timing error

‘984000 -~ write lock error

862000 ~ invalid address error

881080 - address overflow error
9864098 ~- header CRC ‘error

p808290 - header compare error

900198 - burst error (hard)

pPP049 - write clock failed

p0d828 -~ pack format error

990018 - control bus (Massbus) parity error
p0BB804 - register modification refused
9900682 - illegal register

990881 - illegal function

6/n RJSB4/83
109880 - data check
$4900808 - drive unsafe

920009 - operation incomplete
0196868 - drive timing error
BP4908 - write lock error
p@2008 - invalid address error
P01908 -~ address overflow error
pg9408 - unused

P98288 - unused

g98199 - unused

80080648 - unused

g9B8028 - unusad

pg0910 - massbus parity error
@00094 - register modify refused
980002 - illegal register
089881 - illegal function

7/n TUl6 - no messages

VIII. CONCLUSION

BError messages from the UNIX operating system have been
briefly outlined along with their possible causes and
remedies. For the majority of cases, UNIX installations
need not worry about readjusting system parameters in the
header file param.h to correct the occurrence of a PANIC
or WARNING. Modification of parameters in param.f has
only been indicated as a guide to those iastallations

-17-

(M

(M

requiring it and to indicate how system parameters are
interrelated. These parameters have been tuned for the

Presently distributed UNIX and should not be modified
haphazardly without considerations of the implications of
a change. 1In short, their modification is a last resort.
It remains for the current measurement effort on UNIX to
shed some light on the bottlenecks in UNIX and where
changes will be most effective.

I would like to thank Ken Thompson for several discus-
_sions to «clarify the meaning of some of the errors and
Dennis Ritchie for his comments on the draft.

: . /.. _
MH-8234-TMR .T. M. Raleigh
Attachments ' |
Copy to
G. L. Baldwin
B. A. Tague

Mercury Category UNSD

-18-

)

REFERENCES

1. T. M. Raleigh, "Trap and Interrupt Handling under
UNIX", MF-75-8234-29, to be published.

ey o

INCORE

INODE
TABLE
ROOT
FILE
SYSTEM .
INODE 1 L
0
| SUPER
ROOT ~___/// BLOCK
 FILE FOR ROOT
SYSTEM FILE
SYSTEM
ROOT 4
INODE OF [~ MOUNTED
_MOUN TED FILE
) FILE ~—] sYsTEM"A"
SYSTEM ;;%
s 2 SUPER
BLOCK
FOR
MOUNTED.
FILE
SYSTEM
‘TNODE
gHERE P 7/
IMOUNT —.| MOUNTED
BiTser | FILE, ¥
SYSTEM"A .
IS MOUNTED NOTE THAT THE ROOT FILE SYSTEM IS THE

f

ONLY FILE SYSTEM FOR WHICH THERE ARE
NOT AT LEAST TWO INODE ENTRIES IN THE

INODE TABLE.

NOTE ALSO THAT THE IMOUNT BIT PREVENTS
ALL ACCESSES AND MODIFICATIONS IN THE
FILE (OR DIRECTORY) ON WHICH A FILE
SYSTEM IS MOUNTED. THIS APPLIES TO ALL

POSSIBLE SUBDIRECTORIES.

FIG.1 MOUNTING A FILE SYSTEM

" PROCESS
TABLE

TEXT
TABLE

PROCESS
A

PROCESS
B

P

sy

PHYSICAL
MEMORY

BLOCK

PROCESS
A

s BLOCK

PROCESS
8

FIG. 2 PROCESS TABLE FOR SHARED PROCESSES

€M

VIRTUAL
ADDESS KERNEL MMU

0 KISA O
4

|

8 |
12 l
!

:

I

46

20)

24 |

28 KISA
32 KWDS -

VIRTUAL
ADDESS USER MMU

o} * UISA O
4 1
8
12

P
18 L
20
24

28 UISA
32 KWDS

2
3
4
]
)
7

NOTE

THE » BLOCK CONTAINS BOTH A PROCESSES SYSTEM
STACK AREA AND PROCESS STATE SAVING AREA.
THE STACK AREA IS ADDRESSED BY THE KERNEL SP
AND THE ., BLOCK IS AVAILABLE AT LOCATION 24K.

N

PHYSICAL
MEMORY'

LOW
CORE
VECTOR

UNIX

and

SCHEDUL.ER
BLOCK

USER
TEXT

SEGMENT

USER
g BLOCK

USER
DATA
SEGMENT

ESE R STACK

CEVICE
AND
REGISTER
ADDRESS

FIG. 3 SYSTEM AND USER VIRTUAL ADDRESS SPACE

ED

4K

TRAP PATH

PROCESSOR
" INITIATED

INTERRUPT
PATH
DEVICE
FIXED VECTOR INITIATED
AREA ON UNIBUS

FLOATING VECTOR
AREA '

INTERFACE TO
C AREA

BB

MACHINE

DEPENDENT
CODE (MCH.S)

TRAP INTERFACE

CALL INTERFACE

DEVICE.DRIVERS
(INTERRUPT™
HANOLERS) ..

e —

—
‘e

o

TRAPR,C
(TRAP HANDLER)

FIG. 4 TRAP AND INTERRUPT PATHWAY

A o e wr—

)
4
L

ASSEMBLY
LANGUAGE

. - B C;‘
 LANGUAGE

("

KSRNEL SP

p-

STACK

. KERNEL SP

AU Ll T TE—

STACK
GROWTH

(A) KERNEL STACK BEFORE TRAP OR INTERRUPT

HIGH VIRTUAL
(PHYSICAL)

LOW VIRTUAL
{PHYSICAL) -~

OLD PS

OLD PC

—~ .. (B) KERNEL STACK AFTER TRAP OR INTERRUPT

cComes ez

KERNEL SP- - -

oA

1
]
\

OLD PS

OLD PC

RO

PS (NEW)

R4

sP

(FROM PREVIOUS SPACE)

FIG. 5

HIGH VIRTUAL
(PHYSICAL) ~~

THESE STACK
FRAME ENTRIES
ARE BUILT IN
SUCH A MANNER
THAT THEY
APPEAR AS
ARGUMENTS IN
A SUBROUTINE
CALL TO THE
INTERRUPT OF,
TRAP HANDLE,

DEV | LOW VIRTUAL
J (PHYSICAL)
~
(C) STACK FRAME BUILT FOR TRAP AND INTERRUPT ~
HANDLING

KERNEL SP

!

VIRTUAL PHYSICAL
140642 030040 - ' $4ig4z o
140640 3476 341040
140636 1277 341036

140834 | 00007 341034

140634 |

1083 | 13464 341032

- 140630~ | - 140632, . . e | 341030

1aceze | 1 ~Farove
130623 - = 31024

A e

FIG. 6 A TRAP FROM WITHIN.THE OPERETING

AN TLLEGAL INSTRUCTION.

o -

SYSTEM FOR

C

