N w”

O

Bell Laboratories
- /™t ‘calling UNIX System Entries ' . June 25,1975
(vj From Fortran or , e eater)
- Going to Sleep in Fortran o ‘ ' I. A. Winheim

tom: MF-75-8234-30

" ABSTRACT

A new UNIX routine has been written that provides an interface to
the UNIX timeout mechanism. With this mechanism a Fortran pro-
cess may suspend execution for a specified number of seconds by
the following sequence: _ . :

.call sleep(seconds)

This memorandum will describe how this routine works, as well as
_describing in detail how a wuser written assembly .language

subroutine interfaces to Fortran.

‘s}mt:

(

Q)

Bell Laboratories

Ccalling UNIX System Entries ' . June 25,1975

From Fortran or C " date: .
Going to sleep in Fortran) : I. A. Winhein

from: MP=-75-8234-30
- MEMORANDUM FOR FILE

I. Introduction '

A new Fortran routine has been written that provides an interface
to the UNIX timeout mechanism. With this mechanism a Fortran
process may suspend execution for a specified number of seconds
by the following sequence: : ' .

‘call sleep (seconds)

This memorandum will describe how this routine works, as well as
describing in detail how a user written assembly language

‘subroutine interfaces to Fortran.

1I. Functional Description

The interface to the UNIX timeout mechanism that puts a process
to sleep in Fortran is executed by using the call:

call sleep(seconds)

The call has essentially the same effect as the existing calls in
C and assembly language. The process calling sleep halts for a
specified number of seconds. The number of seconds must be a
single precision unsigned integer (16 bits) that may not exceed
65,535 seconds (18.2 hours).

 The similarities between the call to sleep in C, in assembly

language, and in Fortran end here. The reason for this is tnat
Fortran cannot interface directly with the operating system. A
factor in preventing a direct interface is the way storage is al-
located. The C language uses a 16 bit word as the basic preci-
sion for integer variables. Fortran uses two 16 bit words for
integer variakles and possesses a whole class of precisions which
the C language does not have. Another reason that Fortran cannot
interface directly with the operating system is that Fortran runs
interpretively and special linkage conventions are used. An as-
sembly language program is necessary to interface to the system.

-1-

O

)

The assembly language sﬁnroutine for the sieep interface is shown

" in Figure 1.

The assembly language subroutine for the sleep interface is in a
special format for an interface to Fortran (see discussion
below). The code essentially picks up the low order 16 bits of
the argument passed to it. (Fortran uses two 16 bit words for
integer values while C uses only one). This is accomplished by
placing the contents of register r3, wnich by convention points
to an Argument List, into register ri1. This address is then in-
cremented to the second entry in the Argument List (this entry
contains the address of the argument being passed to sleep).
This address is then placed in register r1 and incremented making
r1 point to the second half of the double word integer argument.
This. value is then placed in r0 where the system expects to f£ind

"it and a "sys sleep" is executed. This causes a trap to the UNIX

operating system where the trap handler provides an entry point
directly into the system through the System Entry Point Table.
The system sleep interface is the thirty-fifth (35) entry in that

. table (SYSENT) and must be defined in the subroutine..

-III. General Description of how Fortran Works

When a Fortran program is compiled and loaded the result is an
executable file, a.out, which contains the Fortran Interpreter,
an Interpretation List (list of primitive routines to interpre-
tively execute the Fortran statements), and any needed assembly
language subroutines (see Figure 2). If several Fortran frag-
ments . are compiled and 1loaded together they will each have a
separate Interpretation List. A simple Fortran program having
one call to sleep is shown in Figure 3.

The Interpretation List produced for this Fortran program is
shown _in Figure 4 and consists of a table of addresses which
specify to the Interpreter the subroutines and their arguments to

. be executed to simulate the Fortran. This set of subroutines im-

plement the primitive operatlons of addition, subtraction, as-
signment, and call. . :

The Interpretation List (called “main:" in this case because it
is created from a main program rather than subroutine) can be di-
vided into three parts. The first section is the list of primi-
tive operations to be performed to interpret the Fortran (Section
A of Figure 5). The next section contains the compile time con-
stants and variable space -(Section B of Figure 5). The last sec-
tion (not shown in this example because a "main" Interpretation
List does not return values) consists of space required within a
subroutine Interpretation List for 1linkage and for returning
values.

There are three types of éntries in the Interpretation List, two

for primitive operations (operations that do not require another

more basic operation to function) and one for a subroutine call.

-

)

S

(*f

)

- ¢

Figure 6 shows the formats of the three types of entries. There
are two types of entries for primitive operations, one for monad-
ic (single operand) and one for dyadic (double operand) opera-
tions. The first type involves fetching or storing arguments on
the stack or in memory respectively (monadic), and the second in-
volves binary (dyadic) operations. The Interpretation List for
fetching or storing primitive operations consist of the adaress
of the assembly language subroutine performing the move and ei-
ther the address of the argument if the argument. is being fetched
from memory or the destination if the argument is being stored in
memory. The Interpretation List format for a binary operation
consists of the address of the assembly language subroutine im-
plementing the operation. There are no arguments associated with
the binary operations because the stack is used as a group of ac-
cumulator registers. The operation is therefore performed on the
last two entries in the stack and the result is put back on the

The subroutine call format is more complex, and is also shown in
Figure 6. The first argument is the address of the assembly
language subroutine implementing the call primitive. The second
argument is the address of the subroutine to be called. (See
below for the format of a subroutine.) The third and fourth argu-
ments give the 1location and length respectively of an Argument
List which contains the parameters to be passed in the call. The
final argument indicates the number of bytes to be returned from
the called subroutine (a function of the type and precision of
the returned argument.) . -

The format required for all Fortran subroutines is shown in Fig-
ure 7. The entry point must be the name of the subroutine with a
period appended to the end. The first word of the subroutine is
the address of an area for returning values. The second word of
the subroutine must contain the address of the real entry point

. of the subroutine (address of the executable code). It is this

entry that enables linking to the Interpretation List. Figure 8
shows the sleep subroutine with the entries labelled. No value
is returned by sleep but a pointer to a returned value and space
for the value are reserved. :

iV. Conclusion

UNIX Fortran, because it uses an Interpretation List and must ex-
ecute assembly language subroutines for each Statement executes
slower than other freal® compilers. Interfaces to the system, or
for that matter to code written in another language, must be done
through an assembly language interface. The linkage conventions,
the Intertretation List, and the different precisions of vari-
ables are unique traits of this Fortran, and because of these
differences the libraries are not mixable.

SLEEP SUBRUOTINE

BT, Q

m | Bubeore i Sugz.
BR. Age. L1sT
o~ ' B B S - . |
- ExaMeLES: s e G|
o 14 co | IADH, | © CALLj SLEED. F1+0°5 1,50
an ' (\n'}eqe’rodd yiges) A
e L T RiMITvE QpernATion - ToRMATS
~ | - Fa b -
EVTRY POINT + | 0 1, .
o k!l nnt!
. RERLEMTRY PT:
o . | éﬁmzzﬂﬁéuz?' ,
wpE f
o |Reruey vewes s
. YoruAT oF A SuBRouTIVE
| Fa. 7
o sleep = 35. 1 - -
™ | .qlobl sleep.| GLOBAL DEFHUITIONS
(_' .globl retrn K .
leep.: - ‘ . e
222°P horse PorvTER To RETURY VALUES
Y] PoinTeER 170 RERL ENTRY PoinT
mov r3,r1 f
: tst = (x1)+
a mov (£1) 1 -
N tst 1 =
(, . mgv :§1;:ro E&ECUTREME'COD&
: tst x0
begq zero
sys sleep -
zgro: Jjmp retrn .
« DSS .
[horse: .=.+4 | RESERVED SPACE OB RETURM VRLUES

& v e e & .
. e

<"
v

main:
: rvald; co
gnv4; sec_
stsp; ft+0.
. lval; sec_
stst; ft+2, ,
call; sleep.; ft+0.; 1.; O
stop; 0
N "stop; 0
(_) oo .even
: cO:
! 0

12
.bss :
ft: .=.*u.
base: =
_ _sec_ = baset2.
L/\E . -=-"’6c
/ - .text
' _eglobl main '
i INTERPRETATION LIST
- - FIG 4

. e o S e e mese e o e e o ow e taw el ia Temniiie s cmam o -e

maing

alé4; c - : '
rvvi.. seg ISTA'TEMEW‘&" A
stsp; ft+0. _ A R
lval; sec_ _
N stst; ft+2, o FSYRTEME\\WZ
: H 02 1.2 0
—. ; stop; 0 STATEMENT 3
C stop; D - STATEMENT 4
- - - soven '

——-d----.-——.—--—-

Consthnts Rren
>] Space Tor 2 Wbs. (1 ARGUMENT)
O [sec, = Tese s § awes, v sec_. (VamnpLe heen) B

.text o ')
.globl main . : ~

INTERPRETATION LIST
FIG 5

sleep = 35,
.globl sleep.
«globl retrn

sleep.: : '
- horse / this subroutine goes through two
«t2 ~ / levels of indirection before
mov r3,r1 / the actual argument is reached"
tst (x1)+ / the argument is put into r0
/‘\ mov (r1) ,r1 / ana tested for zero (exror)
\g} tst (r1) +]
' mov (£1) ,x0 T
A tst ro = ' T
- beq zero
o - Sys © sleep S R
. 2€Xro: Jjmp retrn . LT e
«bss : : ‘ T e

- horse: .=.+4

SLEEP SUBRUOTINE

FIG 1
o SR o Fortran
Interpreter
Fortran : ' 'Executable
s Subroutines
Compiler i a.out
Interpretation
List

Result of Compile & Load
Fig 2

D)

integer sec

Famn) sec = 10
call sleep (sec)
stop

O end

FOKTRAN PROGRAM
FIG 3

(ro . ¢

For more detailed information on UNIX Fortran see “A Description
of How UNIX Fortran Works" by I. A. Winheim TM-75-8234-3..

:V. Acknowledgement

I would like to thank T. M. Raleigh for his help in unravelling

)

ST

oNl

how UNIX Eortran works.

MH-BZB“—IAW-nroff-

- atts.:
- Figures 1-9

Copy (with att.) to
MERCURY Category - UNSU

- Department 8234

G. L. Baldwin
B. A. Tague

Ud WMWW

I.

vW1nhe1m

