/O 6/

Lex - A Lexical Analyzer Generator

M. E. Lesk and E. Schmidt
Bell Laboratories
Murray Hill, New Jersey 07974

Lex helps write programs whose control flow is directed by instances of regular expressions in the in-
put stream. It is well suited for editor-script type transformations and for segmenting input in prepara-
tion for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and partitioning the
input into strings which match the given expressions. As each such string is recognized the correspond-
ing program fragment is executed. The recognition of the expressions is performed by a deterministic
finite automaton generated by Lex. The program fragments written by the user are executed in the ord-
er in which the corresponding regular expressions occur in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the longest
match possible at each input point. If necessary, substantial lookahead is performed on the input, but
the input stream will be backed up to the end of the current partition, so that the user has general free-
dom to manipulate it.

Lex can be used to generate analyzers in either C or Ratfor, a language which can be translated au-
tomatically to portable Fortran. It is available on the PDP-11 UNIX, Honeywell GCOS, and IBM OS
systems. Lex is designed to simplify interfacing with Yacc, for those with access to this compiler-
compiler system.

Table of Contents

1. Introduction.

2. Lex Source.
. Lex Regular Expressions.
. Lex Actions.
. Ambiguous Source Rules.

. Usage.

. Lex and Yacc.

. Examples.

3
4
5
6. Lex Source Definitions.
7
8
9

O 00 00 ~) Lh W

10. Left Context Sensitivity. 11

11. Character Set.

12. Summary of Source Format. 12
13. Caveats and Bugs. 13
14. Acknowledgments. 13

15: References.

1 Introduction.

Lex is a program generator designed for lexical process-
ing of character input streams. It accepts a high-level,
problem oriented specification for character string match-
ing, and produces a program in a general purpose
language which recognizes regular expressions. The regu-
lar expressions are specified by the user in the source
specifications given to Lex. The Lex written code recog-
nizes these expressions in an input stream and partitions
the input stream into strings matching the expressions.
At the boundaries between strings program sections pro-
vided by the user are executed. The Lex source file asso-

ciates the regular expressions and the program fragments.
As each expression appears in the input to the program
written by Lex, the corresponding fragment is executed.
The user supplies the additional code beyond expres-
sion matching needed to complete his tasks, possibly in-
cluding code written by other generators. The program
that recognizes the expressions is generated in the general
purpose programming language employed for the user’s
program fragments. Thus, a high level expression
language is provided to write the string expressions to be
matched while the user’s freedom to write actions is
unimpaired. This avoids forcing the user who wishes to
use a string manipulation language for input analysis to

LEX—2
Source — — yylex

Input — @ = Output

An overview of Lex

Figure 1

write processing programs in the same and often inap-
propriate string handling language.

Lex is not a complete language, but rather a generator
representing a new language feature which can be added
to different programming languages, called ‘‘host
languages.”’ Just as general purpose languages can pro-
duce code to run on different computer hardware, Lex
can write code in different host languages. The host
language is used for the output code generated by Lex
and also for the program fragments added by the user.
Compatible run-time libraries for the different host
languages are also provided. This makes Lex adaptable to
different environments and different users. Each applica-
tion may be directed to the combination of hardware and
host language appropriate to the task, the user’s back-
ground, and the properties of local implementations. At
present there are only two host languages, C[1] and For-
tran (in the form of the Ratfor language(2]). Lex itself
exists on UNIX, GCOS, and 0S/370; but the code gen-
erated by Lex may be taken anywhere the appropriate
compilers exist.

Lex turns the user’s expressions and actions (called
source in this memo) into the host general-purpose
language; the generated program is named yylex. The
yylex program will recognize expressions in a stream
(called input in this memo) and perform the specified ac-
tions for each expression as it is detected. See Figure 1.

For a trivial example, consider a program to delete
from the input all blanks or tabs at the ends of lines.

%%
(\d+8

is all that is required. The program contains a %% delim-
iter to mark the beginning of the rules, and one rule.

This rule contains a regular expression which matches
one or more instances of the characters blank or tab
(written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The
brackets indicate the character class made of blank and
tab; the + indicates “‘one or more ...”’; and the $ indi-
cates “‘end of line,” as in QED. No action is specified, so
the program generated by Lex (yylex) will ignore these
characters. Everything else will be copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\Ml+8
[\+ printf("");

The finite automaton generated for this source will scan
for both rules at once, observing at the termination of the
string of blanks or tabs whether or not there is a newline
character, and executing the desired rule action. The first
rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks
or tabs.

Lex can be used alone for simple transformations, or
for analysis and statistics gathering on & lexical level. Lex
can also be used with a parser generator to perform the
lexical analysis phase; it is particularly easy to interface
Lex and Yacc [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class
of context free grammars, but require a lower level
analyzer to recognize input tokens. Thus, a combination
of Lex and Yacc is often appropriate. When used as a
preprocessor for a later parser generator, Lex is used to
partition the input stream, and the parser generator as-
signs structure to the resulting pieces. The flow of con-
trol in such a case (which might be the first hailf of a
compiler, for example) is shown in Figure 2. Additional
programs, written by other generators or by hand, can be
added easily to programs written by Lex. Yacc users will
realize that the name yylex is what Yacc expects its lexical
analyzer to be named, so that the use of this name by
Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the
regular expressions in the source [4]. The automaton is
interpreted, rather than compiled, in order to save space.
The result is still a fast analyzer. In particular, the time

lexical grammar
rules rules
| |
[Lex | [Yacc |
] |

Input = | yylex | = | yyparse | = Parsed input

Lex with Yace

Figure 2

~~

A

taken by a Lex program to recognize and partition an in-
put stream is proportional to the length of the input. The
number of Lex rules or the complexity of the rules is not
important in determining speed, unless rules which in-
clude forward context require a significant amount of re-
scanning. What does increase with the number and com-
plexity of rules is the size of the finite automaton, and
therefore the size of the program generated by Lex.

In the program written by Lex, the user’s fragments
(representing the actions to be performed as each regular
expression is found) are gathered as cases of a switch (in
C) or branches of a computed GOTO (in Ratfor). The
automaton interpreter directs the control flow. Opportun-
ity is provided for the user to insert either declarations or
additional statements in the routine containing the ac-
tions, or to add subroutines outside this action routine.

Lex is not limited to source which can be interpreted
on the basis of one character lookahead. For example, if
there are two rules, one looking for ab and another for
abcdefz, and the input stream is abcdefh, Lex will recog-
nize ab and leave the input pointer just before cd. . .
Such backup is more costly than the processing of simpler
languages.

2 Lex Source.

The general format of Lex source is:

{definitions)

{user subroutines}

where the definitions and the user subroutines are often

- omitted. The second %% is optional, but the first is re-

quired to mark the beginning of the rules. The absolute
minimum Lex program is thus

%%

(no definitions, no rules) which translates into a program
which copies the input to the cutput unchanged.

In the outline of Lex programs shown above, the rules
represent the user’s control decisions; they are a table, in
which the left column contains regular expressions (see
section 3) and the right column contains actions, program
fragments to be executed when the expressions are recog-
nized. Thus an individual rule might appear

integer printf("found keyword INT");
to look for the string integer in the input stream and print
the message “‘found keyword INT”’ whenever it appears.
In this example the host procedural language is C and the
C library function printfis used to print the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it
can just be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in

LEX-3

braces. As a slightly more useful example, suppose it is
desired to change a number of words from British to
American spelling. Lex rules such as

colour printf ("color");
mechanise printf("mechanize");
petrol printf("gas");

would be a start. These rules are not quite enouglhi, since
the word petroleum would become gaseunr, a way of deal-
ing with this will be described later.

3 Lex Regular Expressions.

The definitions of regular expressions are very similar
to those in QED [S]. A regular expression specifies a set
of strings to be matched. It contains text characters
(which match the corresponding characters in the strings
being compared) and operator characters (which specify

repetitions, choices, and other features). The letters of -

the alphabet and the digits are always text characters; thus
the regular expression

integer

matches the string integer wherever it appears and the ex-
pression :

a57D

looks for the string a57D.
Operators. The operator characters are

N1 -2+ |OS/ % <>

and if they are to be used as text characters, an escape
should be used. The quotation mark operator (*) indi-
cates that whatever is contained between a pair of quotes
is to be taken as text characters. Thus

xyz" + +"

matches the string xyz+ <+ when it appears. Note that a
part of a string may be quoted. It is harmiless but un-
necessary to quote an ordinary text character; the expres-
sion

"xyz++"

is the same as the one above. Thus by quoting every
non-alphanumeric character being used as a text charac-
ter, the user can avoid remembering the list above of
current operator characters, and is safe should further ex-
tensions to Lex lengthen the list.

An operator character may also be turned into a text
character by preceding it with \ as in

xyz\ +\ +

which is another, less readable, equivalent of the above

expressions. Another use of the quoting mechanism is to
get a blank into an expression; normally, as explained
above, blanks or tabs end a rule. Any blank character not
contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t
is tab, and \b is backspace. To enter \ itself, use \\.
Since newline is illegal in an expression, \n must be used;
it is not required to escape tab and backspace. Every
character but blank, tab, newline and the list above is al-
ways a text character.

Character classes. Classes of characters can be
specified using the operator pair []. The construction
fab] matches a single character, which may be a, b, or ¢
Within square brackets, most operator meanings are ig-
nored. Only three characters are special: these are \ —
and . The — character indicates ranges. For example,

la-20-9<>_}

indicates the character class containing all the lower case
letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using — between
any pair of characters which are not both upper case
letters, both lower case letters, or both digits is imple-
mentation dependent and will get a warning message.
(E.g., [0-z] in ASCII is many more characters than it is in
EBCDIC). If it is desired to inciude the character — in a
character class, it should be first or last; thus

[~+0-9]

matches all the digits and the two signs.

In character classes, the “ operator must appear as the
first character after the left bracket; it indicates that the
resulting string is to be complemented with respect to the
computer character set. Thus

[“abc]

matches all characters except a, b, or ¢, including all spe-
cial or control characters; or

[‘a-zA-Z)

is any character which is not a letter. The \ character pro-
vides the usual escapes within character class brackets.

Arbitrary character. To match almost any character,
the operator character

is the class of all characters except newline. Escaping into
octal is possible although non-portable:

(\40-\176]

matches all printable characters in the ASCII character
set, from octal 40 (blank) to octal 176 (tilde).

Optional expressions. The operator ? indicates an op-
tional element of an expression. Thus

LEx—4

ab?c
matches either ac or abc.
Repeated expressions. Repetitions of classes are indicat-
ed by the operators * and +.

a*

is any number of consecutive g characters, including zero;
while -

a+t+
is one or more instances of a. For example,
la-z]+
is all strings of lower case letters. And
[A-Za-z][A—-Za—20-9]+
indicates all alphanumeric strings with a leading alphabetic

character. This is a typical expression for recognizing
identifiers in computer languages.

Alternation and Grouping. The operator | indicates -

alternation:

(abled)
matches either ab or ¢d. Note that parentheses are used
for grouping, although they are not necessary on the out-

side level;

abjed

would have sufficed. Parentheses can be used for more

complex expressions:
(abjcd+)?(ef)+

matches such strings as abefef, efefef, cdef, or cddd; but
not abe, abcd, or abcdef.

Context sensitivity. Lex will recognize a small amount
of surrounding context. The two simplest operators for
this are * and §. If the first character of an expression is
“, the expression will only be matched at the beginning of
a line (after a newline character, or at the beginning of
the input stream). This can never conflict with the other
meaning of *, complementation of character classes, since
that only applies within the [] operators. If the very last
character is §, the expression will only be matched at the
end of a line (when immediately followed by newline).
The latter operator is a special case of the /operator char-
acter, which indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by ¢d. Thus

7~

o

by

~

A~

ab$
is the same as
ab/\n

Left context is handled in Lex by start conditions as ex-
plained in section 10. If a rule is only to be executed
when the Lex automaton interpreter is in start condition
x, the rule should be prefixed by

<x>

using the angle bracket operator characters. If we con-
sidered ‘““being at the beginning of a line’’ to be start con-
dition ONE, then the " operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions. The operators {} specify ei-
ther repetitions (if they enclose numbers) or definition
expansion (if they enclose a name). For example

{digit)

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules. In con-
trast,

a{1,5}

looks for 1 to 5 eccurrences of a.
Finally, initial % is spetial, being the separator for Lex
source segments.

4 Lex Actions.

When an expression written as above is matched, Lex
executes the corresponding action. This section describes
some features of Lex which aid in writing actions. Note
that there is a default action, which consists of copying
the input to the output. This is performed on all strings
not otherwise matched. Thus the Lex user who wishes to
absorb the entire input, without producing any output,
must provide rules to match everything. When Lex is be-
ing used with Yacc, this is the normal situation. One may
consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which
merely copies can be omitted. Also, a character combina-
tion which is omitted from the rules and which appears as
input is likely to be printed on the output, thus calling at-
tention to the gap in the rules.

One of the simplest things that can be done is to ignore
the input. Specifying a C nuil statement, ; as an action
causes this result. A frequent rule is

(\t\n]

LEX-5

which causes the three spacing characters (blank, tab, and
newline) to be ignored.

Another easy way to avoid writing actions is the action
character |, which indicates that the action for this rule is
the action for the next rule. The previous example could
also have been written

“\t"
"“\n"

with the same result, although in different style. The
quotes around \n and \t are not required.

In more complex actions, the user will often want to
know the actual text that matched some expression like
fa—z]+. Lex leaves this text in an external character ar-
ray named yytext. Thus, to print the name found, a rule
like

[a-z}+ printf("%s", yytext);

will print the string in yytext. The C function printf ac-
cepts a format argument and data to be printed; in this
case, the format is ‘‘print string”” (% indicating data
conversion, and s indicating string type), and the data are
the characters in yytext. So this just places the matched
string on the output. This action is so common that it
may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just
to print the characters found, one might ask why give a
rule, like this one, which merely specifies the default ac-
tion? Such rules are often required to avoid matching
some other rule which is not desired. For example, if
there is a rule which matches read it will normally match
the instances of read contained in dread or readjust, to
avoid this, a rule of the form [e—z/+ is needed. This is
explained further below.

Sometimes it is more convenient to know the end of
what has been found; hence Lex also provides a count
wleng of the number of characters matched. To count
both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z]+ {words++; chars += yyleng;}
which accumulates in chars the number of characters in
the words recognized. The last character in the string
matched can be accessed by

yytext{yyleng-1]
inCor
yytext(yyleng)

in Ratfor.

Occasionally, a Lex action may decide that a rule has
not recognized the correct span of characters. Two rou-
tines are provided to aid with this situation. First,
yymore() can be called to indicate that the next input ex-
pression recognized is to be tacked on to the end of this
input. Normally, the next input string would overwrite
the current entry in yytext. Second, yyless (n) may be
called to indicate that not all the characters matched by
the currently successful expression are wanted right now.
The argument »n indicates the number of characters in
wtext to be retained. Further characters previously
matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a
different form.

Example: Consider a language which defines a string as
a set of characters between quotation (") marks, and pro-
vides that to include a " in a string it must be preceded by
a \. The regular expression which matches that is some-
what confusing, so that it might be preferable to write

s |
if (yytextlyyleng-1] == A\’
yymore();
else
... normal user processing

which will, when faced with a string such as "abcd\“"def"
first match the five characters "abd\; then the call to
yymore() will cause the next part of the string, "def, to be
tacked on the end. Note that the final quote terminating
the string should be picked up in the code labeled “nor-
mal processing”.

The function yyless() might be used to reprocess text in
. various circumstances. Consider the C problem of distin-
guishing the ambiguity of “=-—a’’. Suppose it is desired
to treat this as ‘=~ a” but print a message. A rule
might be

=—{a-zA-Z] |
printf ("Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for =— ...

}

which prints a message, returns the letter after the opera-
tor to the input stream, and treats the operator as *‘=-="",
Alternatively it might be desired to treat this as ‘= —a”’,
To do this, just return the minus sign as well as the letter
to the input:

=—[a-zA-Z) |
printf("Operator (=—) ambiguous\n");
yyless(yyleng-2);
... action for = ...

)

will perform the other interpretation. Note that the ex-
pressions for the two cases might more easily be written

=—/{A-Za-z]
in the first case and
=/-[A-Za-z]

in the second; no backup would be required in the rule
action. It is not necessary to recognize the whole
identifier to observe the ambiguity. The possibility of
“==—3" however, makes

=—/[" \t\n]

a still better rule.
In addition to these routines, Lex also permits access to
the 170 routines it uses. They are:

1) input() which returns the next input character;

2) output(c) which writes the character ¢ on the out-
put; and

3) unput(c) pushes the character ¢ back onto the in-
put stream to be read later by input().

By default these routines are provided as macro
definitions, but the user can override them and supply
private versions. There is another important routine in
Ratfor, named /Jexshf, which is described below under
“‘Character Set”. These routines define the relationship
between external files and internal characters, and must
all be retained or modified consistently. They may be
redefined, to cause input or output to be transmitted to or
from strange places, including other programs or internal
memory; but the character set used must be consistent in
all routines; a value of zero returned by input must mean
end of file; and the relationship between umput and input
must be retained or the Lex lookahead will not work.
Lex does not look ahead at all if it does not have to, but
every rule ending in + » ? or $ or containing /implies
lookahead. Lookahead is also necessary to match an ex-
pression that is a prefix of another expression. See below
for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on
backup.

Another Lex library routine that the user will some-
times want to redefine is yywrap() which is called when-
ever Lex reaches an end-of-file. If yywrap returns a 1,
Lex continues with the normal wrapup on.end of input.
Sometimes, however, it is convenient to arrange for more
input to arrive from a new source. In this case, the user
should provide a yywrap which arranges for new input
and returns 0. This instructs Lex to continue processing.
The default yywrap always returns 1.

This routine is also a convenient place to print tables,
summaries, etc. at the end of a program. Note that it is
not possible to write a normal rule which recognizes end-
of-file; the only access to this condition is through
yywrap. In fact, unless a private version of input() is sup-
plied a file containing nulls cannot be handled, since a
value of 0 returned by input is taken to be end-of-file.

In Ratfor all of the standard I/0 library routines, input,

I

output, unput, yywrap, and lexshf, are defined as integer
functions. This requires input and yywrap to be called
with arguments. One dummy argument is supplied and
ignored.

5 Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more
than one expression can match the current input, Lex
chooses as follows: .

1) The longest match is preferred.

2) Among rules which matched the same number of
characters, the rule given first is preferred.
Thus, suppose the rules

integer
[a-z]+

keyword action ...;
identifier action ...;

to be given in that order. If the input is integers, it is tak-
en as an identifier, because [a-z/+ matches 8 characters
while integer matches only 7. If the input is integer, both
rules match 7 characters, and the keyword rule is selected
because it was given first. Anything shorter (e.g. int) will
not match the expression integer and so the identifier in-
terpretation is used.

The principle of preferring the longest match makes
rules containing expressions like .» dangerous. For exam-
ple,

[

might seem a good way of recognizing a string in single
quotes. But it is an invitation for the progfam to read far
ahead, looking for a distant single quote. Presented with
the input

‘first’ quoted string here, ‘second’ here
the above expression will match
‘first’ quoted string here, ‘second’

which is probably not what was wanted. A better rule is
of the form

‘"\n]e’

which, on the above input, will stop after first’ The
consequences of errors like this are mitigated by the fact
that the . operator will not match newline. Thus expres-
sions like .» stop on the current line. Don’t try to defeat
this with expressions like [\n/+ or equivalents; the Lex
generated program will try to read the entire input file,
causing internal buffer overflows.

Note that Lex is normally partitioning the input stream,
not searching for all possible matches of each expression.
This means that each character is accounted for once and
only once. For example, suppose it is desired to count
occurrences of both she and ke in an input text. Some

LEX—7

Lex rules to do this might be

she s++;
he h++;

\n |
where the last two rules ignore everything besides Ae and
she. Remember that . does not include newline. Since
she includes he, Lex will normally not recognize the in-
stances of he included in she, since once it has passed a
she those characters are gone.

Sometimes the user would like to override this choice.
The action REJECT means ‘‘go do the next alternative.”
It causes whatever rule was second choice after the
current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++; REJECT;)
he {h++; REJECT;)

\n
these rules are one way of changing the previous example
to do just that. After counting each expression, it is re-
jected; whenever appropriate, the other expression will
then be counted. In this example, of course, the user
could note that she includes ke but not vice versa, and
omit the REJECT action on he, in other cases, however,
it would not be possible a priori to tell which input char-
acters were in both classes.
Consider the two rules

albbeJ+ {..; RBJEC'I‘;}
aledl+ {...; REJECT;)

If the input is ab, only the first rule matches, and on ad
only the second matches. The input string acch matches
the first rule for four characters and then the second rule
for three characters. In contrast, the input accd agrees
with the second rule for four characters and then the first
rule for three.

In general, REJECT is useful whenever the purpose of
Lex is not to partition the input stream but to detect all
examples of some items in the input, and the instances of
these items may overlap or include each other. Suppose a
digram table of the input is desired; normally the digrams
overlap, that is the word the is considered to contain both
th and he. Assuming a two-dimensional array named di-
gram to be incremented, the appropriate source is

%%
[a-zlfa-z] {digram [yytext[0]] [yytext[1]1]1+ +; REJECT:}
\n) '

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

6 Lex Source Definitions.
Remember the format of the Lex source:

{definitions}

{user routines}

So far only the rules have been described. The user
needs additional options, though, to define variables for
use in his program and for use by Lex. These can go ei-
ther in the definitions section or in the rules section.
Remember that Lex is turning the rules into a program.
Any source not intercepted by Lex is copied into the gen-
erated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action
which begins with a blank or tab is copied into the
Lex generated program. Such source input prior
to the first %% delimiter will be external to any
function in the code; if it appears immediately
after the first %%, it appears in an appropriate
place for declarations in the function written by
Lex which contains the actions. This material
must look like program fragments, and should
precede the first Lex rule.

As a side effect of the above, lines which begin
with a blank or tab, and which contain a com-
ment, are passed through to the generated pro-
gram. This can be used to include comments in
either the Lex source or the generated code. The
comments should follow the host language con-
vention.

Anything included between lines containing only
%{ and %} is copied out as above. The delimiters
are discarded. This format permits entering text
like preprocessor statements that must begin in
column 1, or copying lines that do not look like
programs.

Anything after the third %% delimiter, regardless
of formats, etc., is copied out after the Lex out-
put.

Definitions intended for Lex are given before the first
%% delimiter. Any line in this section not contained
between %| and %), and begining in column 1, is as-
sumed to define Lex substitution strings. The format of
such lines is

2)

3)

name translation

and it causes the string given as a translation to be associ-
ated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The transiation can then be called out
by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, might abbre-
viate rules to recognize numbers:

LEX—8

D [0-9]

E [TEde] [-+)?2(D} +
%%

{D}+ printf ("integer");
{D}+""{D}=({E})? |
{D}s"{D}+({ED? |

(D}+(E}

Note the first two rules for real numbers; both require a
decimal point and contain an optional exponent field, but
the first requires at least one digit before the decimal
point and the second requires at least one digit after the
decimal point. To correctly handle the problem posed by
a Fortran expression such as 35.EQ.I, which does not
contain a real number, a context-sensitive rule such as

(0-9]14+/""EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other com-
mands, including the selection of a host language, a char-
acter set table, a list of start conditions, or adjustments to
the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed below
under ‘“Summary of Source Format,” section 12.

7 Usage.

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated
program in the host general purpose language. Then this
program must be compiled and loaded, usually with a li-
brary of Lex subroutines. The generated program is on a
file named .Jex.yy.c for a C host language source and

lex.yy.r for a Ratfor host environment. There are two

1/0 libraries, one for C defined in terms of the C stan-
dard library [6], and the other defined in terms of Ratfor.
To indicate that a Lex source file is intended to be used
with the Ratfor host language, make the first line of the
file' %R.

The C programs generated by Lex are slightly different
on 08/370, because the OS compiler is less powerful than
the UNIX or GCOS compilers, and does less at compile
time. C programs generated on GCOS and UNIX are the
same. The C host language is default, but may be expli-
citly requested by making the first line of the source file
%C.

The Ratfor generated by Lex is the same on all sys-
tems, but can not be compiled directly on TSO. See
below for instructions. The Ratfor 1/0 library, however,
varies slightly because the different Fortrans disagree on
the method of indicating end-of-input and the name of
the library routine for logical AND. The Ratfor 1/0 li-
brary, dependent on Fortran character 1/0, is quite slow.
In particular it reads all input lines as 80A1 format; this
will truncate any longer line, discarding your data, and
pads any shorter line with blanks. The library version of
input removes the padding (including any trailing blanks
from the original input) before processing. Each source

file using a Ratfor host should begin with the ‘%R’ com-
mand.

UNIX. The libraries are accessed by the loader flags
-llc for C and -#ir for Ratfor; the C name may be abbrevi-
ated to -i. So an appropriate set of commands is

C Host Ratfor Host
lex source lex source
cc lex.yy.c-ll -IS rc -2 lex.yy.r -lir

The resuiting program is placed on the usual file a.out for
later execution. To use Lex with Yacc see below.
Although the default Lex 1/0 routines use the C standard
library, the Lex automata themselves do not do so; if
private versions of input, output and unput are given, the
library can be avoided. Note the ‘-2’ option in the Rat-
for compile command; this requests the larger version of
the compiler, a useful precaution.

GCOS. The Lex commands on GCOS are stored in the
¢ library. The appropriate command sequences are:

C Host Ratfor Host

Jlex source
Jrc a= lex.yy.r ./lexrlib h=

Jlex source
Jcc lex.yy.c ./lexclib h=

The resulting program is placed on the usual file .program
for later execution (as indicated by the ‘“h="" option); it
may be copied to a permanent file if desired. Note the
‘3= goption in the Ratfor compile command; this indi-
cates that the Fortran compiler is to run in ASCII mode.
TSO. Lex is just barely available on TSO. Restrictions
imposed by the compilers which must be used with its

:output make it rather inconvenient. To use the C ver-

sion, type

exec 'dot.lex.clist(lex)’ 'sourcename’
exec 'dot.lex.clist(cload)’ libraryname membername’

The first command analyzes the source file and writes a C
program on file lex.yy.text. The second command runs
this file through the C compiler and links it with the Lex
C library (stored on ’hr289.clload’) placing the object
program in your file libraryname.LOAD (membername) as
a completely linked load module. The compiling com-
mand uses a special version of the C compiler command
on TSO which provides an unusually large intermediate
assembler file to compensate for the unusual bulk of C-
compiled Lex programs on the OS system. Even so, al-
most any Lex source program is too big to compile, and
must be split.

The same Lex command will compile Ratfor Lex pro-
grams, leaving a file lex.yy.rat instead of lex.yy.text in
your directory. The Ratfor program must be edited, how-
ever, to compensate for peculiarities of IBM Ratfor. A
command sequence to do this, and then compile and
load, is available. The full commands are:

exec ‘dot.lex.clist (lex)’ 'sourcename’

LEX-9

exec ‘dot.lex.clist (rload)’ libraryname membername’

with the same overall effect as the C language commands.
However, the Ratfor commands will run in a 150K byte
partition, while the C commands require 250K bytes to
operate.

The steps involved in processing the generated Ratfor
program are:

a. Edit the Ratfor program.

1 Remove all tabs.

2. Change all lower case letters to upper case letters.
3. Convert the file to an 80-column card image file.
b

Process the Ratfor through the Ratfor preproces-
sor to get Fortran code.
¢. Compile the Fortran.
d. Load with the libraries ‘'hr289.lri.load’
‘sys1.fortlib’.
The final load module will only read input in 80-character
fixed length records. Warning: Work is in progress on
the IBM C compiler, and Lex and its availability on the
IBM 370 are subject to change without notice.

8 Lex and Yace.

and

If you want to use Lex with Yacc, note that what Lex
writes is a program named yylex(), the name required by
Yacc for its analyzer. Normally, the default main pro-
gram on the Lex library calls this routine, but if Yacc is
loaded, and its main program is used, Yacc will call
yylex(). In this case each Lex rule should end with

return (token);

where the appropriate token value is returned. An easy
way to get access to Yacc’s names for tokens is to compile
the Lex output file as part of the Yacc output file by plac-
ing the line

include "lex.yy.c”

in the last section of Yacc input. Supposing the grammar
to be named “‘good’’ and the lexical ruies to be named
“petter’’ the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -1 -IS

The Yacc library (-ly) should be loaded before the Lex li-
brary, to obtain a main program which invokes the Yacc
parser. The generations of Lex and Yacc programs can be
done in either order.

9 Examples.
As a trivial problem, consider copying an input file

while adding 3 to every positive number divisible by 7.
Here is a suitable Lex source program

LEx—10

%%
intk;
[0-91+ |
scanf(-1, yytext, "%d", &k);
if (k%7 == ()
printf("%d", k+3);
else
| printf ("%d" k);

to do just that. The rule [0-9]+ recognizes strings of di-
gits; scanf converts the digits to binary and stores the
result in k. The operator % (remainder) is used to check
whether k is divisible by 7; if it is, it is incremented by 3
as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore,
it increments the absolute value of all negative numbers
divisible by 7. To avoid this, just add a few more rules
after the active one, as here:

%%
int k;
-7[0-9] +
scanf(-1, yytext, "%d", &k);
frintf("%d", k%7 == 0 ? k+3 :k);
-210-9.} + ECHO;,

[A-Za-z][A-Za-20-9]+ ECHO;

Numerical strings containing a *.”’ or preceded by a letter
will be picked up by one of the last two rules, and not
changed. The if-else has been replaced by a C conditional
expression to save space; the form a?b:c means *“if a
then belse ¢’

For an example of statistics gathering, here is a pro-
gram which histograms the lengths of words, where a
word is defined as a string of letters. .

int lengs[100};
%%
{a-z]+ lengslyylengl + +;
. |
\n]
%%
){rywrap 0
int i;

printf("Length No. words\n");
for(i=0; i<100; i+ +)
if (lengsfi] > 0)
printf ("%5d%10d\n",i,lengs[i]);
return(1);

This program accumulates the histogram, while producing
no output. At the end of the input it prints the table.
The final statement refurn(1); indicates that Lex is to per-
form wrapup. If yywrap returns zero (false) it implies
that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that

never returns true causes an infinite loop.

As a larger example, here are some parts of a program
written by N. L. Schryer to convert double precision For-
tran to single precision Fortran. Because Fortran does
not distinguish upper and lower case letters, this routine
begins by defining a set of classes including both cases of
each letter:

a [aAl
b [bB]
¢ [cC)
: 2

An additional class recognizes white space:
W [\t

The first rule changes ‘‘double precision™ to ‘‘real”, or
“DOUBLE PRECISION” to “REAL™.

{dHo}{u}{o}{1}{e}{W}{p}{r}{e}{cHi}{s}{iHo}{n) {
1}:nntf(yytext[0] = ='d'? "real" : "REAL");

Care is taken throughout this program to preserve the
case (upper or lower) of the original program. The condi-
tional operator is used to select the proper form of the
keyword. The next rule copies continuation card indica-
tions to avoid confusing them with constants:
“ *["0] ECHO;

In the regular expression, the quotes surround the blanks.
It is interpreted as ‘‘beginning of line, then five blanks,
then anything but blank or zero.”” Note the two different

meanings of . There follow some rules to change double
precision constants to ordinary floating constants.

[0-9) +(W}{d}{W}[+-12{W}[0-9]+ |
[0-9] +{W)"."{(WHd}{W}[+-]{W}[0-9]+ |
«{w}o-91+{WHda} (W) [+-]2(W}[0-9]+ |
/+* convert constants */
for(z:wyytext; wpl=0; p++)

if (sp === 'd'llp == D)
'p=+ !el. 'd';

ECHO;

}

After the floating point constant is recognized, it is
scanned by the for loop to find the letter d or D. The
program than adds ‘e~d’, which converts it to the next
letter of the alphabet. The modified constant, now
single-precision, is written out again. There follow a
series of names which must be respelled to remove their
initial 4 By using the array jytext the same action
suffices for all the names (only a sample of a rather long
list is given here).

A

)»

LEX—11

{d}{sHi}{n} |
{d}{c}{o}{s) |
{d}{s}q}{r}{t} |
{d}{aHt}{a}(n} I
{d) (£ HoMal(t) printf("%s",yytext +1);
Another list of names must have initial 4 changed to ini-
tial a:

{dH1Hol (gl |

{d}{tHol{g}10 |

{d{m}i}{n}1 |

{d}{m}{a}{x]1 {
yytext[0] =+ a’'- d"
;ZCHO;

And one routine must have initial d changed to initial .

{d}1{mH{al{cHh} {yytext[0O] =+ 7’ -'d

To avoid such names as dsinx being detected as instances
of dsin, some final rules pick up longer words as
identifiers and copy some surviving characters:

[A-Za-z][A-Za-20-9]+ |

[0-91+ |

\n |
ECHO;

Note that this program is not complete; it does not deal

‘with the spacing problems in Fortran or with the use of

keywords as identifiers.
10 Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For ex-
ample, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordi-
nary statements. This requires sensitivity to prior con-
text, and there are several ways of handling such prob-
lems. The ° operator, for example, is a prior context
operator, recognizing immediately preceding left context
just as $ recognizes immediately following right context.
Adjacent left context could be extended, to produce a fa-
cility similar to that for adjacent right context, but it is
unlikely to be as useful, since often the relevant left con-
text appeared some time earlier, such as at the beginning
of a line.

This section describes three means of dealing with
different environments: a simple use of flags, when only a
few rules change from one environment to another, the
use of start conditions on rules, and the possibility of
making multiple lexical analyzers all run together. In
each case, there are rules which recognize the need to
change the environment in which the following input text

is analyzed, and set some parameter to reflect the change.
This may be a flag explicitly tested by the user’s action
code; such a flag is the simplest way of dealing with the
problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as
initial conditions on the rules. Any rule may be associat-
ed with a start condition. It will only be recognized when
Lex is in that start condition. The current start condition
may be changed at any time. Finally, if the sets of rules
for the different environments are very dissimilar, clarity
may be best achieved by writing several distinct lexical
analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the
output, changing the word magic to first on every line
which began with the letter a, changing magic to second
on every line which began with the letter b, and changing
magic to third on every line which began with the letter ¢.
All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

int flag;
%%
"a {flag = ‘a", ECHO;}
‘b {fiag = 'b"; ECHO;)
“c {flag = ‘c", ECHO;}
\n {flag = 0; ECHO;}
magic |{

switch (flag)
{

case ‘a"; printf("first"); break;
case 'b": printf ("second"); break;
case 'c”: printf("third"); break;
;iefault: ECHO; break;

)

should be adequate.

To handle the same problem with start conditions, each
start condition must be introduced to Lex in the
definitions section with a line reading

%Start namel name2 ...
where the conditions may be named in any order. The
word Start may be abbreviated to s or S. The conditions

may be referenced at the head of a rule with the <>
brackets:

< namel >expression
is a rule which is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume
the normal state,

LEX-12

BEGIN 0,

resets the initial condition of the Lex automaton inter-
preter. A rule may be active in several start conditions:

<namel,name2,name3>
is a legal prefix. Any rule not beginning with the <>

prefix operator is always active.
The same example as before can be written:

%START AA BB CC

%%

"a {ECHO; BEGIN AA;}
b (ECHO; BEGIN BB;}
“c {ECHO; BEGIN CC;)
\n {ECHO; BEGIN 0;)
< AA>magic printf ("first"};
<BB>magic printf ("second");

< CC>magic printf ("third");

where the logic is exactly the same as in the previous
method of handling the problem, but Lex does the work
rather than the user’s code.

11 Character Set.

The programs generated by Lex handle character 1/0
only through the routines input, output, and unput. Thus
the character representation provided in these routines is
accepted by Lex and employed to return values in yyrext.
For internal use a character is represented as a small in-
teger which, if the standard library is used, has a value
equal to the integer value of the bit pattern representing
the character on the host computer. In C, the I/0 rou-
tines are assumed to deal directly in this representation.
In Ratfor, it is anticipated that many users will prefer
left-adjusted rather than right-adjusted characters; thus
the routine lexshf is called to change the representation
delivered by input into a right-adjusted integer. If the
user changes the 1/0 library, the routine lexshf should
also be changed to a compatible version. The Ratfor li-
brary 1/0 system is arranged to represent the letter & as
in the Fortran value IHa while in C the letter a is
represented as the character constant ‘@’ If this interpre-
tation is changed, by providing 1I/0 routines which
translate the characters, Lex must be told about it, by giv-
ing a translation table. This table must be in the
definitions section, and must be bracketed by lines con-
taining only “%T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character.
Thus the next example maps the lower and upper case
letters together into the integers 1 through 26, newline
into 27, + and - into 28 and 29, and the digits into 30
through 39. Note the escape for newline. If a table is
supplied, every character that is to appear either in the

%T

1 Aa

2 Bb
% Zz
27
28 +
29 -
30 0
3 1
9 9
%T

Sample character table.

rules or in any valid input must be included in the table.
No character may be assigned the number 0, and no char-
acter may be assigned a bigger number than the size of
the hardware character set.

It is not likely that C users will wish to use the charac-
ter table feature; but for Fortran portability it may be
essential.

Although the contents of the Lex Ratfor library rou-
tines for input and output run almost unmodified on
UNIX, GCOS, and 0S/370, they are not really machine
independent, and would not work with CDC or Bur-
roughs Fortran compilers. The user is of course welcome
to replace input, output, unput and lexshf but to replace
them by completely portable Fortran routines. is likely to
cause a substantial decrease in the speed of Lex Ratfor
programs. A simple way to produce portable routines
would be to leave input and output as routines that read
with 80A1 format, but replace lexshf by a table lookup
routine.

12 Summary of Source Format.
The general form of a Lex source file is:

{definitions)

{user subroutines)}

The definitions section contains a combination of
1) Definitions, in the form ‘“name space transla-
tion”.
2) Included code, in the form *‘space code™.
3) Included code, in the form

%(
code
%}

~—

~

LEX-13

4) Start conditions, given in the form
%S namel name2 ...
5) Character set tables, in the form

%T
number space character-string

%T
6) A language specifier, which must also precede any

rules or included code, in the form *“%C” for C
or “%R” for Ratfor.

7) Changes to internal array sizes, in the form
%x nnn

where nnn is a decimal integer representing an ar-
ray size and x selects the parameter as follows:

Parameter
positions
states
tree nodes
transitions’
packed character classes
output array size

Letter

oOxXere o BT

Lines in the rules section have the form ‘‘expression ac-
tion”® where the action may be continued on succeeding
lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X the character "x"
S o an "x", even if x is an operator.
\x an "x", even if x is an operator.
[xy] the character x or y.
[x-z] the characters x, y or z.
["x] any character but x.
. any character but newline.
“x an x at the beginning of a line.
<y>x an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
X* 0,1,2, ... instances of x.
X+ 1,2,3, ... instances of x.
Xy anxoray.
x) an x.
x/y an x but only if followed by y.
{xx] the translation of xx from the definitions section.
x{m,n} m through a occurrences of x

13 Caveats and Bugs.

There are pathological expressions which produce ex-
ponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it
remembers the results of the previous scan. This means
that if a rule with trailing context is found, and REJECT
executed, the user must not have used umput to change
the characters forthcoming from the input stream. This is
the only restriction on the user’s ability to manipulate the
not-yet-processed input.

TSO Lex is an older version. Among the non-
supported features are REJECT, start conditions, or vari-
able length trailing context, And any significant Lex
source is too big for the IBM C compiler when translated.

14 Acknowledgments.

As should be obvious from the above, the outside of
Lex is patterned on Yacc and the inside on Aho’s string
matching routines. Therefore, both S. C. Johnson and A.
V. Aho are really originators of much of Lex, as well as
debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed,
written, and debugged by Eric Schmidt.

15 References.

1. B. W. Kernighan and D. M. Ritchie, The C Pro-
gramming Language, Prentice-Hall, N. J. (1978). °

2. B. W. Kernighan, Ratfor: A Preprocessor for a
Rational Fortran, Software — Practice and Experi-
ence, 5, pp. 395-496 (1975).

3. S. C. Johnson, Yacc: Yet Another Compiler Com-
piler, Computing Science Technical Report No.
32, 1975, Bell Laboratories, Murray Hill, NJ
07974.

4. A. V. Aho and M. J. Corasick, Efficient String
Matching: An Aid to Bibliographic Search, Comm.
ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L.
Thompson, QED Text Editor, Computing Science
Technical Report No. 5, 1972, Bell Laboratories,
Murray Hill, NJ 07974.

6. D. M. Ritchie, private communication. See also
M. E. Lesk, The Portable C Library, Computing
Science Technical Report No. 31, Bell Labora-
tories, Murray Hill, NJ 07974.

