LT S | /o8y

@ Bell Laboratories ~ Cover Sheet for Technical Memorandum

\(A The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)

Title-  Agen - An Associative Memory Generator Date- September 2, 1975

, T™M- 75-1274-18
Other Keywords- Computer Languages
' .Data Management

Author . Location Extension Charging Case- 39199
M. E. Lesk MH 2C-569 6377 Filing Case- 39199-11

ABSTRACT

Agen writes programs to store and retrieve information. Each stored item
contains data and a key; to retrieve or allocate the item, just mention the key.
Possible applications include symbol tables, sparse arrays, or table lookups of
words. Two possible algorithms are built in: the user can request a binary tree
search or a hash search form of storage organization.

Agen is a program generator, which translates specifications into a high-
level programming language which can be mixed with the user’s general pur-
pose code. Each user request for a lookup procedure is translated into a
subroutine to perform the search and allocation if needed. This subroutine
may be viewed as if it addressed an array of pointers to the user’s data items.
Agen is available on GCOS and UNIX. It writes lookup subroutines in the C
language. :

-

77

Pages Text 9 Other 0 Total 9
No. Figures 1 " No. Tables 1 No. Refs. 1

E-1932-C (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST



BELL TELEPHONE LABORATORIES, IKC.

.
i
CO&PXE‘IB MEMORANDUM TO
CORRESPGNDENCE FILES

OFFICIAL FILE COPY
PLUS CNE COPY FOR
EACH ADDITIONAL FILING
CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

<AHO,A V

<BECKER,R A
<BOYCE,W M
<BROWN,# STANLEY
<CHAMBERS,J M
<COOPER,DENNIS W
<FLEISCHER, HERBERT I
<FRASER,A G
<GOLDSTEIN,A JAY
<GUTHERY,SCOTT B
<HAMILTON, PATRICIA
HAMMING,R W
+BANNAY,N B
<JOHNSON,STEPHEN C
<KEESE,W M
<KERNIGHAN,BRIAN W
<LUDERER,GOTTFRIED W R
<MARANZANO, JOSEPE F
<MC GILL,ROBERT

MC ILROY,M DOUGLAS
+MCDONALD,H S

MORGAN,S P ‘

<OSSANRA,J F JR
PINSON, ELLIOT N
+PRIM, ROBERT C
<RALEIGH,THOMAS M
<ROBERTS,CHARLES S
TERRY,M E
<THOMSON,M~L

29 NAMES

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 CQPIES PLUS ONE
COPY FOR EACH FILING
CASE

ABRAHAM,STUART A
ACKERMAN,A P
AHRENS,RAINER B
ALBERTS,BARBARA A
ALCALAY ,DAVID
ALLISON,CHARLES E
ALT,MISS DOROTHY L
AMOSS,JOHEN J
AMRON, I

+ NAMED BY AUTHOR

> CITED AS REFERENCE

COVER SHEET ONLY TO

ANDERSON,MS K J
ARMSTRONG, DOUGLAS B
ARNOLD, GEORGE W
ARROLD, S L
ATAL,B 8
BACCASH,MISS J M
BADURA,DENNIS C
BAKER, BRENDA S
BASEIL,RICEARD J
BAUBR,MS H A
BAUGE,C R

BAYER, DOUGLAS L
BERNSTEIN, LAWRENCE
BERTH,R P

BEYER, JEAN~DAVID
BICKFORD,N B
BILLINGTON,MISS M J
BILOWOS,RICHARD M
BIRCHALL,R H
BIREN,MRS IRMA B
BISHOP,MISS V L
BLINN,JRAMES C
BLUE,J L
BLUM,MRS MARION
BLY,JOSEPH A
BOCKUS,R J
BODEN,F J

BONANNI ,LORENZO E
BORKIN,S A
BOURNE, STEPHEN R
BOWERS,J L
BOWYER, L RAY
BRADLEY,R H
BRANDT, RICHAKD B
BROWN, COLIN W
BROWN,WILLIAM R
BUCHSBAUM,S J
BULLEY, RAYMOND M
BURG,F M
BURNETTE,W A
BURROWS,T A
BYRNE, EDWARD R
BZOWY,D E
CAMPBELL,J B
CAMPBELL,STEPHEN T
CANADAY,RUDD H
CARAWAY,R E
CARDOZA,WAYNE M
CARRAN,J H

CARR, DAVID C
CASPERS,MRS BARBARA E
CAVINESS,JOEN D
CHAFFEE,N F
CHAMBERS,MRS B C
CHEN, EDWARD

CHEN, STEPHEN
CHERRY,MS L L
CHIANG,T C
CHODROW,MARK M
CHRIST,C W JR
CLAYTON,D P
CLIFFORD, ROBERT M

< REQUESTED BY READER

DISTRIBUTION
(REFER GEI 13.9-3)

COVER SHEET ONLY TO

COBEN, ROBERT M
COHEN, HARVEY
COKE,MISS E U
<COLE,LQUIS M
COLE.,M O

COOK, THOMAS J
COOPER,A E
COPP,DAVID H
COREY,D A
COSTELLO,PETER E
COSTON,WALTER P
<COULTER,J REGINALD
CRAGUN,D W
CRANE,RODERICK P
CRUME, LARRY L
CUNNINGHAM, STEPHEN J
CUTLER,C CHAPIN

D ANDREA,MRS LOUISE A
D STEFAN,D J
DAVIS,D R
DAVIS,R D

DE JAGER,D §
DESENDORF, JUDITH
DEUTSCH,DAVID N
DICKMAN,B N
DIMMICK,JAMES O
DOLAN,MRS MARIE T
DOLOTTA,T A
DONOFRIO,L J
DOWD, PATRICK G
DRAKE,MRS L
DRUMMOND,R E
DUDLEY,MRS E H
DUFFY, FRANCIS P
EDELSON, D
EDMUNDS,T W
EIGEN,D
EITELBACH, DAVID L
ELLIOTT,R J

ELY,T C

ERDLE,K W
ERRICHIELLO,PHILIP M
ESSERMAN,ALAN R
ESTOCK,R G
FPABISCH,MICHAEL P

FINUCANE,JOEN J
FISCHER,H B
PLYRN,MS M L
FONG, KENNETH T
FORTNEY,V J
FPOUNTCUKRIDIS,A
FPOWLKES,E B
FOX, PBYLLIS
FoY,J C
FRANKLIN,DANIEL L
PRANK,B G
FRANK,MISS A J
FRANK,RUDOLPE J

COVER SHEET ONLY 70

FREEDMAN,M I
FREEMAN,K GLENN
FREEMAN,R DON
FREIDENREICH,MRS B
FROST,H BONNELL
PULTON,ALAN W
GAJEWSKA,M5 HANNA O
GANNON,T F
GARCIA,R F

GEPNER,JAMES R
GERGOWITZ,E B
GEYLING,F T
GIBB,KENNETH R
GIBSON,H T JR
<GILLETTE, DEAN
GIMPEL,JAMES F
GITHENS,JOHN A
GLASER,W A
GLASSER,ALAN L
GLUCK,F
<GNANADESIKAN, R
GOGUEN,MS NANCY
GOLABEK,MISS R
GOLDSMITH,L D
GORMAN,JAMES E
<GRAEAM,R L
GRAVEMAN,R F
GREENBAUM,H J
GREENSPAN,S J
GROSS,ARTHUR G
GRUCEOWSKI,M P
GUERRIERO, JOSEPH R
HAFER,E H

HAIGHT,R C

HALE,A L
HALL,ANDREW D JR
HALL,MILTON S JR
HALL,W G

HALPIN, THOMAS
HAMILTON,MRS L
HARKNESS,C J
BARRISON,NEAL T
HARRIS,CHARLES S
HARUTA, K

HAUSE,A D
<HAWKINS,DONALD T
HEATH,SIDNEY P III
HELD,RICHARD W
HERGENBAN,C B
HEROLD,JOHN W
HESS,MILTON S
BOEEN,MISS MARIE J
EOLTMAN,JAMES P
HONIG,W L

EOYT, WILLIAM F
HUDSON,E T
HUNNICUTT, CHARLES F
HUPKA,MRS FLORENCE

(NAMES WITHOUT PREFIX

WERE SELECTED USING THE AUTHOR’S SURJECT OR ORGANIZATIONAL SPECIFICATION AS GIVEN BELOW)

MERCURY SPECIFICATION e ccereeere000000000000000000000000000000000000000000000000000000000000000000e0acevecescoosasssosssccsnannsncoe

COMPLETE MEMO TO:
127-sup

COVER SHEET TO:

12-DIR 13-DIR

127

COPLGP = COMPUTING/PROGRAMMING LANGUAGES/GENERAL PURPOSE

UNPL$

2 UNIX/PROGRAMMING LANGUAGES

.~ .l

T™M-75-1274-18

COVER SHEET ONLY TO

HYMAN, B
IPFLAND, FREDERICK C
IMAGNA, CLYDE P
IPPOLITI,O D
IRVINE,M M
<IVIE,EVAN L
JACKOWSKI,D J
JACOBS,H 8
JAKUBEK, RAYMOND J ~
JAMES, DENNIS B
JAMES,J W II -
CJENSEN,PAUL D
JESSOP,WARREN H S~
JESSUP, RICHARD F
JOHNSTON, WALTER E JR
JONES,B R
<JUDICE,CHARLES N
KACHURAK,JOSEPH J
<KAISER,J F
KAMINSKY,MICHAEL L
KAPLAN,A E
KAPLAN,M M -~
KAUFMAN, LARRY S ~"
KAYEL,R G
KEANE,E R
KELLY,L J
KENNEDY, ROBERT A
KBRTZ,DENIS R
KEVORKIAN, DOUGLAS E
KILLMER,JOHN C JR
KLEIN,MISS R L
KNOWLTON, KENNETH
KNUDSEN, DONALD B
KNUDSON, DEAN O
KORNEGAY,R L
KREIDER,DANLEL M
LA CAVA,JOSEPH L
LAMBERT,MRS C A
LAYTON, RICHARD L
LEE,DENNIS F
LEGENHAUSEN, §
LESK,MICHAEL E
LESSEK, PETER V
LEVINE,P K
LICWINKO,J §
LIEBERT, TEOMAS A
LINDERMAN,J
LIST, WILLIAM H S
LIU,T K
<LOGAN,MRS V G
LOMUTO, N
LONG, DAVID W
LORENC, ANTHONY
LUTZ ,KENNETH J
KLYCKLAMA, HEINZ
LYONS,T G
MACHOL,R E JR
MACRI,PHILIP P
MADDEN, MRS D M
MAHLER,G R
MALCOLM,J A .
MALLOWS, COLIN L

454 TOTAL

~

e’

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORRECT ADDRESS 1S GIVEN ON THE OTHER SIDE.
2. POLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT.

USE NO ENRVELOPE.

LESK,M E

MH 2C569

TM-75-1274-18
TOTAL PAGES 9

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE

NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER
SHEET TO THE COMPLETE COPY.
IF COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS

REQUEST TO THE CORRESPONDENCE FILES.



Bell Laboratories

Subject: Agen - An Associative Memory date: September 2, 1975
Generator : .
Case- 39199 -~ File~ 39199-11 ~ from: M. E. Lesk

TM:  75-1274-18

MEMORANDUM FOR FILE

Agen is a program generator for table searches. It ac-
cepts descriptions of the table keys or indices and writes a
subroutine to perform the appropriate lookup. Thus the pro-
grammer wishing to store information relating to words in a
table can use a character string as a subscript, as if it
were an integer. o

Agen translates a file of descriptions of lookup
‘routines, called the source file henceforth, into a file of
programs implementing the lookups. The generated routines
are written on a file named a.tab.c which can be compiled
directly or included in a user®s C program. The operation
of Agen is shown in Figure 1. - '

Figure 1

Operation of Agen

( | | | | |
| source | -=> | Agen translator | -=> | a.tab.c |

| | | | { .
{ a.tab.c | ==> | C compiler | --> | lookup :outines t

Each routine is described by its name, the arguments it ex-
- pects, and the kind of item stored. The lookup routines re-
turn pointers to the stored items. Whenever a new key 1is
used, the storage for the new element appears automatically.
Thus a typical source line for Agen might appear: :

word (string) st1;

 indicating that the programmer wishes a table 1lookup func-
tion named "word", which has a string as its argument, and
returns a pointer to items like "st1®. The item stored is



used to declare the size of the table entries, and may be
replaced by the number of bytes to be stored. 1In the user’s
program, if *“st1* is a structure declared like

struct {int first, last, count;} st1;
then the program may contain operations like

word ("when") ->first = 3;
a = word("in®)->last;
if (word("the®)->count > 0)

"just as if there had been a declaration
struct (int first, last, count;} word [ J];

and "“when" or %“in" could be magically converted to an ap-
propriate integer subscript. '

The kinds of subscripts accepted by Agen programs are
integers, characters, and strings. Thus a function can be
declared

matrix (int, int, int) item;

to indicate three integer subscripts. Why is this better
than

matrix{a][b]{c]

or some such normal multidimensional array? The difference
is that the user need not know the values of a,b, and c; and
the amount of storage used is proportional to the amount ac-
tually stored into, not the amount declared. 1In exchange,
the fetch and store operations are much slower with Agen
than with the normal hardware subscripting operations.

The operation of the Agen lookup routines is easy to
describe. First, the argquments are converted to a single
key. The key is the linear concatenation of all the int or
char subscripts (all are received by the called program as
int because of C conventions) followed by the concatenation
of all string arguments (separated by °|° characters).
This single key, which uniquely identifies the subscripts
given, is now used in either a binary tree search or a hash
search to find the appropriate element. If no such element
exists, it is created, the storage assigned to it cleared,
and a pointer to the new element returned. In the normal
case, the lookup routine always returns a pointer to a valid
item, whether previously defined or not. There can never be
more than one item for a given key, since an element is
created only if it can not be found in the table.

Sometimes this is not adequate. Thus, in addition to

Y



subscript type arguments, an inquiry type argument may also
be used. This is specified as exist in an Agen source line.
Such an argument is zero for normal operation; if it is sup-
plied as 1 in a call, it indicates that the caller is merely
inquiring as to the existence of an item under the requested
subscripts. If the item exists, the usual pointer is re-
turned. If it does not, zero is returned. Thus a defini-
tion

word (string, exist) item;
if used with a call of the form
word ("course"; 0)

creates a new item is nothing is stored under the key
"course" but the call :

word (“ofw, 1) -

rfeturns zero if “of" is not defined. This sort of argument
has two other uses. If it is -1, it indicates deletion;
that is, ’

word ("human®, -=1);

would delete an item stored as "human®, if any existed. If
the exist argument is 2, it indicates "“find the next ele-
ment". 1In this case, an element different from the one
specified is returned, in such a way that continued requests
for the “next" element will give the contents of the table.
The pointer returned in this case is the pointer to the key,
not the pointer to the value. An ordinary search will re-
trieve the value if desired. If the argument is a simple
string or integer, and if the search is a binary tree
search, note that the definition of the key is such as to
return the table in lexicographic order. When an exist ar-
gument of 2 is given and the end of the table is reached,
zero is returned. i

Table 1 summarizes the uses of the "exist" argument.

There is one other kind of argument that can be sup-
plied to an Agen lookup routine, called “size". Normally,
all items stored by a lookup routine are the same size, and
the size is given in the declaration. Often, however, it is
degsirable to store different sized items and specify every
time, a new item is created how big it is. 1In this case,a
gjze argument ‘must be declared to the 1lookup routine and
given at the first use of each subscript. Changing the de-
claration of the “word" routine to



Table 1

The EXIST Argument

Value . Meaning
-1 " Delete this entry if it exists.
Return 0. }
0 Normal operation; create if non-existent.

Return a poiater to the data item.

1 Test existence. Do not create.
Return a pointer to the data item if
it exists, otherwise return 0.

2 Find another item. Return a pointer to
the next data item (never the one specified by
this key).. If "no more" items, return 0.

wbrd (string, exist, size);
permits calls of the form
word ("events®, 0, 20);

indicating that if an item must be created for “events", it
is to be 20 bytes long. Any existing item will be returned,
regardless of length. This requires the maximum data size
needed for a given key to be specified the first time the
key is used, unless the item is deleted and recreated.

The exist argument may be set to 2 to find the contents

of a table. Successive calls will return different keys,
which may then be used to obtain the data. With a binary
tree search, "next" really means "next greater than ...% and
thus the table can be obtaned in order of the keys. Note,
however, the description above (page 2) of the way in which
the keys are constructed from the arguments. A single in-
tegral or string key works as expected, but more complicated
keys have the order of their constituents permuted to group
integral and string subscripts. With hash searching, "next®
means "next® in hash table order. Anything missing from the
hash table returns the first item in the table as "next".
Thus, no matter what the form of a table, the entries can be
enumerated by successive probes with an exist argument of 2
as follows:

~



)

1) use the null string or zero as a key:
2) use the returned key as the next key;
3) stop when zero is returned.

There are some interactions between the exist and size
arguments if both are specified. If the exist argument is 1

-the size argument is never relevant, since nothing can be

created. If the exist argument is -1, the size argument is
essential and must give the size of the element to be delet-
ed. '

The source lines defining lookup routines also ' select
the choice of a binary or a hash search. This is specified
between the function name and its arguments. The wuser may
give the name of the search method, and/or an estimated nu-
merical length of the table. If the method specified is
vhash", the length must be given. The default methods are
binary tree search if the length is unknown and hash search
if an estimated length was given. In general, hash searches
are faster and use less storage. To define tword" as a
hash-searched function, write

word 1500 (string, exiQt, size);
or |
word hash 1500 (string, exisﬁ . Size);
The default is the same és_ -

word binary (string, exist, size);

The general syntax of Agen input is:

{source lines}
%
(extra material}

Anything after a line containing just %% is copied to the
output unchanged. So is anything contained between lines of
%{ and %} as in Yacc and Lex. The format of a source line
is

{routine name} {lookup type} (arguments} (item}

where lookup type may be missing, or may be the word
"pinary"® or the word "hash“, and may contain a length as an
integer. If the word "hash" is included, the length must be
given. The arguments are enclosed in parentheses or brack-
ets and separated by commas. Each argument is one of the
words int, char, string, exist, or gsize. The first three
indicate subscripts to be used in specifying keys. The size
and exist arguments control table handling and allocation.



Arguments may be given in any order. Only one instance of
exist or size may appear; any number of subscripts can be
used, in any order. The jtem indicates the size of the
jtems (it can be omitted if there is a size argument) and
should either be a number (taken to be in bytes) or the name
of a variable to be inserted as an argqument to the gizeof ()
function. Note that the variable has to be declared some-
where; this can either be done directly in the Agen source
by use of %{ and %} to bracket the declaration, or in the
file which contains a ' ~

# include “a.tab.c*®
statement.

As an example, consider the problem of writing a pro-
gram which reads a text and prints out a table showing the
words in the text, the number of occurrences of each word,
and the sequence number of the first occurrence. This is
very similar to what would be needed to create a symbol
table for a computer program, except that the data stored
for each symbol would be different. Two source files will
be required, one for Agen and one for Lex. Lex [1] is used
to generate the program to isolate the words in the input
stream. Also, the Lex routine name "yywrap" is used to
print the table at the end of the input.

Agen source:

% : -
struct {int first, count;} datac;

3

word (string, exist) datac;

%%



Lex source:

int kw 0; .
%% ’
[a=2zA-Z ]+ (
++kws
word (yytext, 0)->count++;
if (word(yytext, 0)->count == 1)
word (yytext, 0)->first = kw;
] .
\n :
%%
.}{erap 0
char *s;

printf ("Total First Word\n");
for (s = word("%, 2); s 1= 0; s= word (s,2))
printf ("%54 %54 %s\n",word (s,0)->count,
word (s,0) ->first, s); -
printf ("total number of words was %d\nY,kw) ;
return(1) ; .

# include "a}tab.c"

The Agen source defines a table’ subscripted by characterx
strings (words in this case) and noting for each word the
point of first occurrence  and the total number of oc-
currences. The Lex source uses a rule [a-zA-Z]+ to isolate
strings of letters; each such word is looked up and its
count incremented. If the count is one, the current word
number kw (incremented at each word) is stored in the first
field. When the end of input is reached, Lex calls yywrap;
this routine runs through the table and prints the statis-
tics for each word. Note the procedure for scanning the
table: the string g is initialized to the element found by
taking the "next" item after the null string. Then succes-
sive next" items are found until the end of the table is
reached. Since the search method is a binary tree search,
and the keys are simply single character strings, the "next"
jtems are in alphabetical order. If a hash search had been
used, the items would be in random order and would have to
be sorted on output.

The appropriate commands to compile and run this are
agen agensource
lex lexsource
cc lex.yy.c =11 -1lp
a.out <input

and if the input file is.



-8 =

o 20
when in the course of human events, it becomes
necessary for one people to dissolve the
political bands which have connected _
them with another, and to assume among the

- powers of the earth the separate and equal
station to which '

The output. is:

Total First Word
28 among
25 and
24 another
27 assume
18 bands _
9 becomes
21 connected
4 course
1S dissolve
33 earth
37 equal
7 events
11 for
20 have
6 human
2 in
i
10 necessary
5 of
12 one
13 people
17 political
30 powers
35 sgeparate
38 station
3 the
22 them
14 to
1 when
19 which
23 with
total number of words was 40

- D) md () = UY b b amd b i b N\ b md wd b od wd b b b b b b e b d D) b
[ ]

As an example of timings, the above program was run
under several options. As above, with a binary tree search
and the portable library used for input and output, it
processes the Declaration of Independence at 116 woxrds per
processor second. With the redundant searches eliminated by
remembering a pointer to the just-made search, the speed is
160 words per processor second. By using a hash search and
UNIX-tailored input and output routines, the speed can be
raised to about 350 words per processor second.




In general, the hash searches are faster and require
less memory than the binary tree searches. The main reason
for using a binary tree search is that the user may be
unwilling or unable to estimate the table size in advance.
Hash tables are not grown; the size must not exceed§§0% more
than the original estimate. A single hash searth takes
somewhat over half a millisecond; a single binary tree
search perhaps 30-50% more time. Even more unfortunate is
that the storage for each item includes: a) the memory con-
sumed by the item itself; b) the memory consumed by the key
for the item; c) four extra words of memory for the binary
tree search or two extra words for the hash search; and 4)
breakage in the allocator of two words in the case of hash
searches and three words in the case of binary searches.
when the items and keys are short, there is a lot of wasted
storage.

Agen is available on GCOS as well as on UNIX. The
speeds of GCOS programs are comparable to those of UNIX pro-
grams. To access Agen on GCOS, say

.7agen sourcefile
and the a.tab.c file is written as on UNIX.
There exist plans to improve Agen, by producing lookup

routines more carefully tailored to the user”s applications.
This should improve the speed of search routines produced by

Agen. - %é M

" M., E. Lesk
MH-1274-MEL-unix

References

(1] Lex - A Lexical Analyzer Generator, M. E. Lesk, 1975 TM
75-1274-15.

iy gt - oocrerascm e e



