SODS

g Bell Laboratories
p~, Suect A Description of the sate September 16, 1975
{ "UNIX File System
) from: J, F. Maranzano
. MF-75-8234-32
ABSTRACT
~
The UNIX File System is a hierarchical, tree structured file
system that is one of the major components of the UNIX Time-
sharing System.
This memorandum describes the structure of the file system as
well as the applicable control blocks. It explains how block and
- '
‘file allocation work and the steps involved in handling file
I/0. The implementation of device access as part of the file
system is explained.
Finally, this document describes the operation of the unique
features of the UNiX file system such as shared files, pipes,
- mountable file systems, and "raw", non-UNIX, I/0.

U

CONTENTS

1. Structure teeeiacsascacsassaan ceesees ceanes
2. File-System Device Formatsv cessscasase .o

3. Block Allocation - The Super BlocK .ceaaeos cesescan
4. File I/0 .iieeerscaccccacesans ceesaesana cesecasenne
5. Shared Filescce.cn Ciesecesassseacesaann cees
6. Pipes cecesaces Cescessasasesesansn cicesaes ceas
7. Devices - Special Files ciaaas seasecssans
8. Mounted File-Systems Cecsaecscesassaacanan
9. Raw I/0-Non UNIX File I/0 .eceanvnn teccsessssasannaas

(1)

........

2

5

Bell Laboratories

subec: A Description of the date: September 16, 1975
UNIX File System
from: J. F. Maranzano
MF-75-8234-32

MEMORANDUM FOR FILE

I. Structure

This memorandum describes the organization and operation
of the UNIX File System. .Reference [1] gives a description
of the UNIX file system structure. This document assumes
the reader has an understanding of the descriptions in [1].

Figure 1 is a pictorial representation of a UNIX file
system where circles .represent directories and squares
represent files. Notice that the file system is tree struc-
tured with files and/or directories as the leaves of the
tree. A UNIX file is a collection of bytes written on por-
tions of disk devices. UNIX file names consist of any one
to fourteen ASCII characters. Files are accessed using a
"path name" in the file system tree. A path name is a col-
lection of directory names followed by a directory or file
name each separated with the character "/". Normally a file
search begins at a default "current" directory but if the
first character of a path name is a "/", then the search al-
gorithm starts in the root directory. For example in Figure
1, file F3 can be accessed with the name /D1/D3/F3, and file
F9 in the mounted file system can be referenced by
/D7/D5/F9.

Each file in a file system is known internally by a
unique number, the inumber, and has an associated control
block, the inode, that fully describes the attributes of the
file. The inumber for the root directory of each file sys-
tem is one. In this way any tree search of a file system
can always start in the directory associated with inumber 1.

A "directory" is nothing more than a file containing a
group of 14 character names and related inumbers, and whose
inode has a flag indicating it is a directory. Two special
file names are used in directories: dot (°) that "points" to
the directory itself and dot-dot (°°*) that points to the
parent directory. That is, the directory entry for dot con-
tains the inumber of the directory itself, and the entry for

-l=

dot-dot contains the inumber of the parent directory. Fig-
ure 2 shows a directory (D! from Figure 1) with inumbers
versus names. Whenever a file is removed from a directory,
the 1inumber portion of its directory entry is zeroed. 1In
Figure 2 for example, files XYZ and WWWW existed under this
directory but have since been removed. The next file to be
created in this directory will use the first entry with a
zeroed inumber. Dot and dot-dot are not used by the operat-
ing system itself, but are purely conventions enforced by
the software that creates directories.

Figure 3 shows a representation of a file system with
the dot and dot-dot notation. With this scheme a program
associated with some directory can traverse the file system
tree using the dot notation. For example in Figure 3, a
program which is currently residing in directory P can ac-
cess FILE2 by the notation ../FILE2.

Some of the naming conventions of directories in the
current UNIX file system are listed in Figure U4 along with a
explanation of the contents of these directories.

One important aspect of the UNIX file system is that
physical devices are accessed through normal filenames. The
directory /dev has been reserved for these "special files".
See Section VII for more detail.

II. File-System Device Formats

File system devices in UNIX are broken into 512 byte
blocks. Some file systems are generated so as to reside on
a single physical device, others are generated to have many
file systems on the same device, and some file systems are
setup to even extend across physical devices. Each file
system, whether it occupies a physical device like a single
platter disk pack of 4000 blocks, or a portion of a 1large
disk pack of 65000 blocks has the format shown in Figure 5.

Block 0 of the file system is reserved for the boot pro-
gram (See [2] Section VIII) and is otherwise unused by the
file system.

Block 1 is called the "superblock". The next M-2 blocks
are called the "ilist" and contain inodes, the control
blocks for all the files in the file system. The size of
each 1inode is 32 bytes, therefore 16 inodes are in each il-
ist block. The maximum number of files in a file system is
6 times the ilist size in blocks. The remainder of the
blocks in a file system are used for data files, direc-
tories, and the free list (see Section III). File systems
are created with the make-file-system, MKFS (2], command in
which the maximum number of blocks (N in Figure 5) can be
specified. The size of the ilist can either be specified

-2-

explicitly or calculated by the MKFS command.
ITI. Block Allocation - The Super Block

A pictorial representation of the superblock is shown in
Figure 6. Whenever a file system is mounted, the superblock
of that file system is read into memory. The superblock
contains the size of the ilist in blocks, the size of the
file system in blocks, a table of up to 100 free blocks, and
a table of up to 100 free inumbers. Block allocation occurs
from a "free list" of blocks. The superblock contains a
pointer to a 1linked 1list of blocks, the free list. Each
block in the free list contains 99 free block numbers as
pictured 1in Figure 7. The last block in the free list con-
tains a zero pointer indicating the end of the 1list. Be-
cause the UNIX file system is block oriented, a block number
is synonymous to a pointer to that block.

Individual blocks are allocated from the free list using
the following algorithm. The allocation scheme is to reduce
NFREE by one and use the block number pointed to by NFREE.
The deallocation scheme is to place the number of the block
just freed at the entry pointed to by NFREE and increment
NFREE by one. In the example of Figure 8, NFREE is equal to
90 and the next block to be allocated is 176. From Figure 8
to Figure 9, block 176 was allocated and block 25 was freed.
Notice in Figure 9, that all entries FREE9 to FREE1 are
obsolete and should be ignored. (In fact gome block Rgmbers
of free blocks may appear there, like 25). The free list is
only used to keep track of free blocks.

When NFREE equals 1 the table is replenished from anoth-
er set of 100 block numbers that are contained in the block
in the FREE, entry. So in Figure 9 after 89 blocks have
been allocgted, block 55 contains another set of 100 block
numbers. This algorithm continues until FREEO contains a
zero indicating the end of the chain.

Block deallocation works in reverse. Blocks that are
freed are added at the NFREE entry until the table is full.
At that point, (NFREE=100) the next deallocated block is
used to write the full table, FREEO is set to that block
number, and NFREE is set to one.

Inumber allocation works similarly to block allocation.
Remember each file in a file system is internally known by
an inumber, therefore inumber allocation takes place only
when a file is being created whereas block allocation takes
place as a new or existing file is written. A pointer, NI-
NODE, 1is used as a displacement into a list of 100 inumbers
(See Figure 6). To allocate an inumber, NINODE is decre-
mented by one and the inumber at that position is used. To
deallocate an inumber, place its value at NINODE and incre-

-3-

ment by one. If the table becomes depleted of free inumbers
(NINODE = 0), then a sequential search is made of the ilist
looking for another 100 unallocated inodes; their associat-
ed inumbers are placed into the in-core superblock. If all
the inodes in the ilist are allocated, no more files can be
created in the file system and an error condition exists

[4].

Inumber deallocation puts entries into the list of free
inumbers. If inumber deallocation overflows the table of
100, any new deallocated inumbers are ignored because their
inode was already marked as unallocated and written back
into the ilist where it can be picked up in any subsequent
search for unallocated inumbers (as described in the preced-
ing paragraph).

Execution of the MKFS (make file system) command to
build an empty file system works as follows. Block numbers
from the end of the file system are collected together 100
at a time. The next block is then used to store these 100
numbers. This is repeated until all the free blocks have
been put into the linked list on the disk with the super-
block pointing to it. This implies that file allocation in-
itially will result in nearly contiguous blocks. After some
period of time, block allocation and deallocation will tend
to fragment the free 1list. At present no programs are
available to restore the sequential ordering. A DUMP of the
file system, followed by a new MKFS, and a RESTOR will cause
re-ordering and will reduce the fragmentation [2]. (This is
true because DUMP/RESTOR retains only the data of a file not
its place on the disk).

Several routines exist within UNIX to maintain file sys-
tem integrity. The command SYNC [2] is used to force the
in-core superblocks of file systems to be written to the
disk. The program UPDATE can be invoked to write the super-
blocks to the disk every 30 seconds.

Still it is possible for the system to crash and the
disk copy of the superblock to be incorrect. The program
CHECK can be used to search through the file system tree and
match inumbers against allocated inodes, make sure blocks do
not appear in both the free list and an inode, and other in-
tegrity tests on the file system. (See Reference [2]).

IV. File 1/0

I/0 in the UNIX file system is done through read and
write system calls [1,2,3]. 1In order to do I/0O a file must
be OPENed or CREATed. These two system calls return a "file
descriptor", an integer number from 0 to 14. File descrip-
tor 0 is called the standard input file and file descriptor
1 is the standard output. File descriptor 2 is generally

.

used for diagnostic output. File descriptor 0, 1 and 2 are
opened during initialization and are pointing to the user’s
terminal. They can be closed and reopened to point to any
file (re-directed 1/0) (see Reference [3] for more detail).

Read and Write system calls have a file descriptor,
buffer address, and the number of bytes to be read/written
as arguments. The return from these <calls is the actual
number of bytes read or written.

Each process has associated with it a Process File Table
(u_ofile) which contains up to 15 pointers to the System
File Table (see Figure 10). This Process File Table resides
in the per process control block (user.h) which is swapped
when the process is swapped.

At open time if the file exists its name appears in a
directory with an associated inumber. The open processing
uses this inumber as a index into the ilist to get its inode
(the inode 1is the control block that fully defines the
file). The inode is put in an entry in the System INODE
Table (inode.h). Open processing also creates an entry in
the System File Table (file.h) and finally fills in. the ad-
dress of this entry in the Process File Table (see Figure
10). .

If the file is being created, then an inumber is allo-
cated from the in-core copy of the super-block table of free
inumbers, and an entry is made in the System INODE Table and
System File Table.

The System File Table and System INODE Table both reside
within the resident control program so neither is swappable.
Moreover, in the current implementation both are limited to
100 entries which means that the total number of open files
in the system (open by all processes) is 100.

Reads and Writes of the file take place at the byte po-
sition equal to the "offset" value in the System File Table.
This value is initially set to zero by open. The offset can
be changed using the Seek system call. When this offset is
greater than or equal to the size of the file ("size" value
in the 1inode) then the read/write processing assumes it is
at the "end of file"™. The flags in the inode describe the
kind of file: directory, small file, large file, special
file, etec. The number of 1links indicate the number of
directory pointers to the file; the file cannot be physical-
ly removed until this number goes to zero. The wuid, and
group-id contain the id of the owner of the file, and the id
of the project associated with the file. The 8 addresses in
the inode are block numbers of data if the file is small
(less than 4096 bytes), or are block numbers of indirect
blocks of addresses that in turn point to data if the file

-5-

is large. To read byte N for example (offset = N), divide N
by 512 bytes/block to get block number B and remainder R.
If the file is small, then B is less than 8, and is used as
a displacement into the list of eight addresses to fetch the
block address of the data, ADDRB. The value R is then used
to fetch the correct byte within ADDRB.

If the file is large, then B is divided by 256 (256
words/indirect block) to get I, which is less than 8, and is
used as a displacement to get ADDRI that points to a block
of 256 addresses. The remaindér of this division, K, is
used to locate the correct address within indirect block.
The value R 1is still used to get the byte within the data
block (see Figure 13).

With this algoritgg, the maximum size file is 8#256#512
bytes or 1M Byte (2 Bytes). This is smaller than can be
specified in the size field (24 bits) of the inode.

A variation of this algorithm has been implemented on
some UNIX systems to allow "huge" files. The large file has
been redefined so that the last address in the inode, ADDR,,
points to an indirect block, which in turn has pointers Zo
256 double indirect blocks. In this implementation,
T#256%512 4+ 1%¥256%256%¥512 bytes coulg be addressed (a little
more than 32M bytes). However the 2 4 size limitation makes
the largest file 16M bytes.

When a file is closed, either explicitly or when a pro-
gram terminates, the entry in the System File Table is found
and the "number of processes" value is decremented by one.
When that value is zero then the inode to which it points is
written back to the ILIST in the appropriate file system and
the System File Table entry is cleared.

Several important characteristies can be noted.

(1) A small rile is automatically (without user in-
tervention) converted to a large file when the offset
becomes greater than 4096. This is done simply by
writing the eight addresses from the inode into a block
(which becomes the first indirect block), placing that
block number into ADDRO, and changing the inode flag to
indicate a large file.

(ii) A file can have holes in it since there are no
resbrictions about missing addresses (zero values) in
the inode or indirect block.

(iii) The offset is changed by using the seek system

call. It can be moved by bytes, or blocks absolutely
or relative to its original value.

-6-

(iv) Two or more processes can share the same file.
The System File Table contains a slot for the number of
processes sharing that entry. This number of processes
is decreased by one for each close of that file and the
entry is not purged until the number goes to zero.
More about this in the next section.

(v) By implementation convention all directories
are restricted to small files to prevent exhaustive
search time.

As an example of how this all works together consider
the access of file /D1/F1 of Figure 1. Because the pathname
begins with / the access starts in the root directory. As
you recall the inumber of the root directory is 1!, so the
system reads the first inode from the ilist into the INODE
Table. This inode contains block numbers of data blocks.
The data blocks are read into memory and searched for a
match on the name D1. When the name is found it will have
an associated inumber that is used as a displacement into
the ilist to fetech the appropriate inode. That inode is
brought into memory and it points to data blocks which are
searched for the name F1. Again that name has an associated
inumber that is used as a displacement into the ilist to
fetch another inode. At last you are ready to read or write
the file.

As the pathname gets more complex, more accesses to the
file system are made during open time to bring the inode of
the file into the INODE Table. Once there however, that
inode remains until the file is closed, so that the search
overhead is only done once.

V. Shared Files

In UNIX, a process has the facility to spawn a child
process [1] which inherits all of the open files of its
parent. Figure 11 shows an example where process A is a
child of process A. Process A° inherits the open files of
its parent because it inherits its Process File Table. No-
tice file-descriptor 2 contains the address of the same en-
try in the System File Table for both processes. However,
because a parent and child process share the same entry,
they also share the same offset into the file; if one pro-
cess moves the offset, the new offset also applies to the
other. This is done because these are assumed to be
cooperating processes. If some other process, process B in
Figure 11, wanted to read or write the same file, a separate
entry in the System File Table is generated for it (with a
unique offset) that points to the same inode entry in the
INODE Table (file descriptor B1 points to the same file as
A2). Writing to this file by B will not change the offset
for process A, but will certainly change the data in the

v gl

file.

VI. Pipes

A pipe is an 1I/0 connection between two cooperating
processes that allow the processes to transmit data to each
other in both directions. Figure 12 illustrates the concept
where process A is writing data to process B and receiving
data from process B. Each process in the mechanism has an
input side of the pipe on which it reads, and an output side
on which it writes. The I/0 is done by a special system
routine that maintains the data in a FIFO organization.

A user process initiates a system call for a pipe. The
system returns two file descriptors: one for reading and one
for writing. When a child process is spawned it will inher-
it all file descriptors including these two file descriptors
for the pipe. The child process can cooperate with its
parent or other descendants of its parent by reading on the
output side of its parent’s pipe and writing on the input
side.

The implementation is to set up two entries in the Sys-
tem File Table pointing to the same INODE Table entry. The
pipe is a real file in all respects, except that it appears
in no directory (unnamed file). This fact is reflected by
the link count set to zero. This automatically allows the
inode to be deallocated with 'the last close of the pipe
ends. A special system routine maintains the offset and
filesize 1in such a way that the bytes remain in FIFO order.
Seeks are illegal on pipes. Pipes are implemented as small
files for efficiency. As a process attempts to write
greater than 4096 bytes on a pipe end, it is roadblocked un-
til the, other end has read some data. Because the normal
file system mechanisms and buffer pools are used for pipes,
it 1is possible (if the buffer pool activity is small) that
the data transfer becomes a memory to memory transfer and no
disk I/O takes place.

VII. Devices -~ Special Files

Referencing Devices in UNIX is done through entries in
the file system called special files [1]. Two classes of
devices are defined: character and block. Character dev-
ices are those associated with character at a time I/0 like
TTY s. Block devices transfer blocks of data 1like disks.
Each device in the system is assigned a device class, a ma-
Jjor and minor number. The major number is associated with
the software driver for that device (therefore it is gen-
erally associated with a device controller). The minor
number specifies the physical drive or device, or is used to
subset physical devices into 1logical portions. Special
files are files within the file system whose inodes have

-8-

been used to record the major and minor device numbers. In
ADDR of the inode for a special file the most significant
byte is the major device number and 1least-significant byte

is the minor. Filenames and protections apply identically
to devices as to regular files.

VIII. Mounted File-Systems

A in-active file system is mounted onto a active file
system through the use of the MOUNT command [2]. The MOUNT
command specifies the special file (device) on which the
file system resides and the file or directory (mount point)
within the running file system upon which it is to be mount-
ed. This requires that the inode for the mount point be
brought into the INODE Table and kept there for the duration
of the mount. Furthermore an entry is added to a resident
Mount Table consisting of:

1. A pointer the special file containing the new file

system.

2. A pointer to a buffer from the buffer pool that

contains the superblock of this mounted file system.

3. A pointer to the inode entry in the INODE Table for

the mount point.
The Mount Table currently has room for five mount requests.
Consider access to the pathname /D7/F7 of Figure 1. The
first / starts the search in the root directory for D7.
When its inumber is found, a search of the ilist reveals
that it is already in the INODE Table. Moreover, the inode
in the INODE Table has a flag indicating that this file is a
mount point, therefore the Mount Table is searched for a
pointer to this inode. Once that is found, the root direc-
tory (inumber = 1) of this mounted file system is substitut-
ed and the searches continues.

In summary, the flag in the inode of the mount point
acts as a switech to substitute the root inumber of a mounted
file system for the inumber under consideration.

Sl e e S—— ———— " —

All UNIX file system data is structured around the 512
byte block. UNIX buffer management 1is geared to this
number. Some data requires a different physical blocking.
For example, the 512 byte blocking is a poorer density then
is sometimes desirable on magnetic tapes. Another applica-
tion that requires a different blocking is the reading or
writing of foreign (IBM compatible) magnetic tapes. To do
this, UNIX provides a facility called "raw I/0" that by-
passes the standard UNIX buffer management and blocking to
do I/0 directly to or from the user’s memory. See Reference
2 and the DD command for more detail.

X. Acknowledgement

K. Thompson reviewed this memorandum for accuracy and

made

and R. C. Varney made suggestions to improve the readability

many helpful

of the information.

MH-8234~JFM=nroff
Copy to:

UNOS

suggestions. C. P. Imagna, B.

Yok Monesyes

J. F. Maranzano

Technical Members of Dept. 8234

G. L.
L. D.
H. S.
M. M.
B. A.

Baldwin
Green
London
Rochkind
Tague

-10=-

AC

Tague,

'\

REFERENCES

[1] D. M. Ritchie and K. Thompson, The UNIX Time~-sharing S stem,
CACM, July 1974. .

[2] K Thompson and D. M. Ritchie, UNIX Programmer s Manual,
Fifth Edition (1974).

[3] B. W. Kernighan, Programming in UNIX, Unpublished Memorandum.

(4] T. M. Raleigh Explanation of Abnormal Conditions MWithin the
UNIX Operating System, MF 75-8234-28 March 17, 1975.

[5] T. M. Raleigh Trap and Interrupt Handling Under UNIX. MF
75-8234-29 Unpublished Memorandum.

ROOT FILE SYSTEM

F4

Fe

F3

D1

D4

FS

/

D2

ROOT DIRECTORY

GO

F6

(05)

/

F7

F8

F9

MOUNTED
FILE SYSTEM

()

F10

FIGURE 1: UNIX FILE SYSTEM TREE STRUCTURE

VAN R R

2 CHARS 14 CHARS

144 ®
1 Y
35 Fi
326 D3
0. XYz
147 D4
0 WwWwWWw

DIRECTORY DA
ALL NAMES ARE LEFT JUSTIFIED WITH ZERO FILL

FIGURE 2 DIRECTORY FORMAT

\ e €1 /39y

X/ /oo
°
- (M)
\f FILE4 . N
° FILE 4 N @,
LINK TO FILE4
F'LEZ P FILE3
[T)
«*P)
FILE, @ FILE,

FIGURE 3 LINKS AND DOT CONVENTIONS

bin
dev
ete
1ib
mnt

tmp

Root Directory

Executable Commands
Devices

.System Related Commands
Compilers and Libraries
Node to Mount File Systems

Temporary Files

Figure 4A: Typical Direcfory Names in UNIX File System

bin

Cc

fort
f1
f2
£3
4
fx
io
rt
rt1
rte

games

1ib

mdec

pub

sno

User Related Directory
Less Often Used Commands
C Compiler Source
Fortran Compiler Source
—--}

---} Fortran

--=-1 Source

-}

Fértran I/0 Source

Fortran Subroutine Library Source
Fortran Math Library Source
Fortran Utility Function Source
Executable Games

Utility Routines Source
Stand-alone Utility Source

Public Tables

Snobol Compiler Source

Figure U4B: Typical Directory Names in UNIX File System

source

sys
conf
dmr

ken

s?
s2
s3
sy
s7

Command Source

Source for Commands in /bin

Source for Commands in /bin
Source for System Calis

Source for System Calls

Source for Documentation Programs
Control Program Routines
Configuration Dependent Tables
Source For Drivers and I/0

Source for File System & Scheduler

Figure U4C: Typical Directory Names in UNIX File System

EACH BLOCK IS 512 BYTES

BLOCK O UNUSED (OR BOOT PGM)
BLOCK 1 SUPER BLOCK
: N\
BLOCK 2
®
® - 1 =LIST
[
BLOCK M-
BLOCK M + 1 'R
| DATA (FILES + DIRECTORIES)
BLOCK N
/

FIGURE 5 FILE SYSTEM DEVICE FORMAT

DISPLACEMENT

DISPLACEMENT

'3

ISIZE
FSIZE
NFREE
FREEo
FREE4
FREE2
e

FREEx
FREEy
°

®
[]

FREE400

OF i-LIST BLOCKS

OF FILE SYSTEM BLOCKS
NUMBER FROM 41 TO 100
BLOCK # OF NEXT FREE LIST

- FREE BLOCK NUMBERS

~ WERE ALLOCATED
. BLOCK NUMBERS

N INODE
Inumo
Inum 4

b4

®

Inum x

®
®
®

Inum 100

OF FREE i NUMBERS
FROM 1 TO 100

- FREE iNODES NUMBERS

- WERE ALLOCATED i NUMBERS

FIGURE 6 SUPER BLOCK-MEMORY COPY

N

Ty /’Jv‘\-\

FREEg FREE o
| 99
l FREE
| BLOCK
: NUMBERS
SUPERBLOCK ,
MEMORY |
I
|
|
| DISK

99
FREE
BLOCK
NUMBERS

FIGURE 7 CHAINED LIST OF FREE BLOCKS - FREE LIST

90 N FREE
55 FREE BLOCK 55 CONTAINS NEXT FREE LIST
134
117
[J
o
.
176 NEXT BLOCK TO BE ALLOCATED
80
®
®
®
25 FREE 100
[]
o
®

FIGURE 8 EXAMPLE OF FILE ALLOCATION/DEALLOCATION @

90

55

134

117

25

25

FREE,

FREEg9
FREEgo

FREE 400

FIGURE 9 FILE ALLOCATION /DEALLOCATION @

Q3ANVdX3 S37718V1 W3ILSAS 3714 OF 34N9ld

Lyq0av

t¥aav

Oyaav

(SL18 $2) 321
Q1dNOY9
ain
SMNIT 40 #
(213 's/NSOV4.

SNOISSINY3d M/Y
135440

$3SS300¥d 40 #
dld 3QON!

(4" epou 1)
378v.1 3AONI
W3LSAS

(Y ®113)

378vl 314
W3LSAS

vﬁ ,
Sty
[}
[]
i 283Q
374
ey
by
(8j13 0-n)
378v1 3714
S$S3704d

3QON !

¢— 4ld 3QON!

300N !

3QON !

(3714 Ol ¥id)
300N !

SH3ISN TVY3A3S ¥04 S378vl 3 ¥k 38N91d

3JvdS W3LSAS NI
°

¥1ld 3QON !

dld 3QON !

318vl
3aON I

Hld 300N !

37avl
.34, W3LSAS

- 378WddYMS

Skg

Sty

N
<"'<...

Sty
°
°
°®
(4

by

378vd 34
$S300Nd

8 SS300dd

(v 30 QTIHD)
N SS300¥d

Vv SS3004d

X

PIPE

PROCESS A

1X

PROCESS B

y |4

y

PROCESS A WRITES ON FILES DESCRIPTOR X
AND READS ON y. PROCES B READS ON x AND

WRITES ON .

FIGURE 12 CONCEPTUAL PICTURE OF PIPES

DATA
INODE BLOCK

- . BYTE N

SMALL FILE ALGORITHM

INDIRECT DATA
INODE BLOCK ' BLOCK

7 7

i |
K Y BYTE N

LARGE FILE ALGORITHM

FIGURE 13: FETCHING BYTE N FROM A FILE

