A

@ Bell Laboratories

Cover Sheet for Technica}l Memorandum

/067

The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)

Title- Introduction to Scheduling and Switching under UNIX Date- October 20,1975
: TM- 75-8234-7
Other Keywords- UNIX
Operating Systems
Timesharing Scheduler
Author Location Extension Charging Case- 49170-120
T.M.Raleigh MH 2C-411 3390 Filing Case- 40952-001

ABSTRACT

The UNIX timesharing system possesses a distributed supervisor. Selec-
tion of processes to use the CPU (process Switcher) and for memory use (the
Scheduler) are separate functions within the operating system.

“This memorandum discusses process Switching and Scheduling under
UNIX using queuing models as an aid to visualization of the system’s opera-
tion. The models are used strictly as an aid to understanding the system and
no mathematical analysis is used.

The operating system uses a muitiple queue feedback system for ordering
processes for CPU usage. The concept of process priority as it relates to the
queuing setup and the method by which the processor is relinquished is ex-
plained. Reentrancy within the operating system, together with its implications
for interrupt processing and preemption are also discussed. Penalty schemes
used for limiting the amount of time a process may use the CPU are discussed
for both the current version of UNIX and the Research version of UNIX.

Pages Text 15 Other 18 Total 33
No. Figures 21 No. Tables 0 No. Refs. 23

E-1932-U (6-73)

SEE REVERSE SIDE FOR DISTRIBUTION LIST

BELL TELEPHONE LABORATORIES, INC.

COMPLETE MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE QOPY FOR

COMPLETE MEMORANDUM TO

JOHNSTON,WALTER E JR
KAPLAN,A E
KAUFELD,J C JR
KAUFMAN,LARRY 8

EACH ADDITIONAL FILING KAYEL,R G

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

ALBERTS,BARBARA A
ARNOLD,S L
ARTHURS , EDWARD
BAYER, DOUGLAS L
BIRCHALL,R H

<KEESE,W M

<KELLY,L J
CKERNIGHAN,BRIAN W
KEVORKIAN,CCUGLAS E
KLEIN,MISS R L
LESSEK, PETER V
LIND,R C

LORENC, ANTHONY
LUDERER,GOTTFRIED W R
LUDWIG,J J
LUKACS,M E

LYONS,T G

DISTRIBUTION
(REFER GEI 13.9-3)

COMPLETE MEMORANDUM TO

WEBB, FRANCIS J
WEBR,L A
WHITE,RALPE C JR
WILSON,GEOFFREY A
WINHEIM,MISS IRENE A
WONSIEWICZ,E C
WooD,J 1L

119 NAMES

COVER SHEET ONLY 10
CORRESPONDENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING

COVER SHEET ONLY TO

BYRNE, EDWARD R
<CALESS0,GIULIO L
CAMPBELL,J H
CAMPBELL, STEPEEN T
CARROLL,J J
CASPERS,MRS BARBARA E
CASSETT.E W JR
CAVINESS,JOHN D
CHAMBERS,J M
CHAMBERS (MRS B C
CHANDRA,R
CHANG,S~-J

CHEN, STEPHEN
CHERRY,MS L L
CHIANG,T C
CHIPPENDALE,R A
CHRIST,C W JR

TM-75-8234~7

COVER SHEET ONLY TO
FRANK,MISS A J '
FRANZ,ANN M
FRASER,A 6
FREEDMAN, M 1
FREEMAN,R DON
FREIDENREICH,MRS B
FULTON,ALAN W
GAREY,MICHAEL R
GARY, KAREN V
GAY,FRANCIS A
GEER,EUGENE W JR
GEPNER,JAMES R
GEYLING,F T
GIBB,KENNETHE R
GIBSON,H T JR
GIMPEL,JAMES F
GITHENS,JOHN A

()

BIREN,MRS IRMA B MACHOL,R E JR CASE CICON,J P GLUCK,F
<BLINN,JAMES C MARANZANO,JOSEPH F CIRILLO,CARL GOETZ,FRANK M
BLUM, MRS MARION MASHEY,JOEN R ACKERMAK,A E CLAYTOR,D P GOLABEK,MISS R
+BRANDT, RICHARD B MORGAN, S F ABO,A V CLOUTIER,J E GOLDSMITH,L D A
BURROWS,T A NORTON, MRE SUZANNE W AHRENS, RAINER B COBEN, ROBERT M GOLDSTEIN,A JAY !
CANADAY,RUDD H O BRYAN,HENRY M JR ALCALAY, CAVID COCHRAN, MRS A <GORMAN, JAMES E
CARDOZA,WAYNE M © CONNELL,T F ALLISON,CHARLES E COBEN, HARVEY GRAHAM,R L ‘
CARRAN,J H O NEILL,DENNIS M AMOSS, JOBN J COLE,LOUIS M GREENBAUM,H J ~—
CARR, DAVID C OSSANNA,J F JR ANDERSON,MS K J COLE.M O GURRERA, DOMINIC J
CHAFFEE,N F PARA,P S <ARCHER,RUSSELL E JR CORMIER,ROGER J HAFER,E B
CHODROW,MARK M PATEL,C K N ARNDT, DENNIS L CORNELL.R G HAGGERTY,J F
COOK, THOMAS J PERDUE,R J ARNOLD, GEORGE W COSTON, WALTER P BAGGERTY,JOSEPH P
COPP, DAVID H PEREZ,MRS CATHERINE D ARNOLD, THOMAS F COULTER,J REGINALD HALL,ANDREW D JR
COREY,D A PERNESKI,A o ARSENAULT, JAMES R CRAGUN,D W BALL,JOE T
CRANE, RODERICK P PETERSON,RALPE W ASKEW,W B CRUME,LARRY L HALL, MILTON S JR
<CRUM, TEC A PETTIT,MS GEORGETTE BACCASH,M1SS J M D ONOFRIO,MRS P L HARKNESS,C J
CUNNINGHAM, STEPHEN J PHILLIPS,S J BAKER, BRENDA S D STEFAN,D d HARRISON, NEAL T
DE JAGER,D S PILLA,MICHAEL A BASEIL,RICHARD J DAVIS,D R HARUTA, K
DOLOTTA,T A RALEIGH,TBOMAS M BAUGH,C R DAVIS,R D BAUSE,A D
DOWD, PATRICK G RIDDLE,GUY G <BECKER,R A DEUTSCH,DAVID N HAWKINS,RICHARD B
DRUMMOND, R E <RITACCO,J E BECKETT,J T CI PILLO,FRANK A HAYES,JEREMIAH F
DWYER, T J ROBINSON, HERMAN E BELL,R E DICKMAN,B N HEATH,SIDNEY F 1II
EDMUNDS,T W ROCHKIND,¥ J BERNSTEIN, LAWRENCE DIMMICK,JAMES O HEDRICK,MISS ELLEN L
ERRICHIELLO,PEILIP M ROMITO, LETITIA J BERRYMAN,R T DONOFRIO,L J HELD,RICHARD W
FACTOR,R M ROSLER, LAWRENCE BERRY,M J DOUGLASS,J J HERGENHAN,C B o~
FEDER,J SABSEVITZ,A L BEYER, JEAN-DAVID DOWDEN,D € HEROLD,JOHN W '
FIORE,MRS RHODA J SATZ,L R S BICKFORD,N B DRAKE MRS L HESTER,S D
FLANDRENA,R J SHRUM, EDGAR V BILOWQS, RICHARD M DUDLEY,MRS E H HONIG,W L
FORTNEY,V J SIX,FREDERICK B BLAZIER,S T DUFFY, FRANCIS P HOOPER, E A
FRANK,H G SMITH,D W BLETCHER, EDWIN EDELSON, D HOPPERT,D J -
<FREEMAN,K GLENN SOUTHEERN,MS M J B8LY,JOSEPH A EITELBACH,DAVID L HOYT,WILLIAM F
GANNON,T F STAMPFEL,JCEN ¥ BODEN,F J ELLIOTT,G L HO,MS J
GATES,G W STEVENSOR,T E BONARNI,LORENZO E ELY,T C HUDSON,E T
GLASSER,ALAN L STORM,A R JR BOROWSKI,MRS JANE ESSERMAN,ALAN R <HUMCKE,D J
GRAVEMAN,R F STURMAN,JOEL N BOTHUR,R H ESTOCK,R G HUNNICUTT,CHARLES F
HAIGHT,R C SWANSON, GEORGE X BOURNE, STEPHEN R FABISCH,MICHAEL P EYDE,J P
HALPIN, THOMAS SWIFT,R E BOWERS,J L PAULKNER,R & IERLEY,W H
HAMILTON, PATRICIA TAGUE, BERKLEY A BOWLES,J B FELTON,W A IMAGNA,CLYDE P
CHANSEN,MRS G J . URDERWOCD,R W BOYCE,W M FETTE,CHARLES J IPPOLITI,O D
. HUPKA,MRS FLORENCE VASSALLC,J C BROWN, COLIN W FISCHER,H B IRVINE,M M
HYMAN, B VIGGIANG,F A BROWN,JAMES ® FLEYSCHER, HERBERT I JACKSON,JAMES H
IVIE,EVAN L VOGEL,D W JR BROWN,W STANLEY FOUGHT,B T JACOBS,H &
JACKOWSKI, D J VOGEL, GERALL € BROWN, WILLIAM R FOUNTOUKIDIS,A JESSOP, WARREN H
JENSEN, PAUL D WANDZILAK,F D BULFER,ANDREW F FOX, PHYLLIS JOHNSON, DAVID S
JOHNSON, STEPHEN C WATKINS,G T BURNETTE,W A FRANKS,RICHARD L JOHNSON, DAVILC T
+ NAMED BY AUTEOR > CITED AS REFERENCE < REQUESTED BY READER (NAMES WITEOUT PREFIX 418 TOTAL
WERE SELECTED USING THE AUTHOR®S SUBJECT OR ORGANIZATIONAL SPECIFICATION AS GIVEN BELOW)
~
MERCURY SPECTEICATION«« oo oeeecscasscssossscssssssesssssssssesnsassscessassoseassssssossssssasssssessssssmesssssnesvnsssassnassansas
COMPLETE MEMO TO:
8234
UNOS# = UNIX/OPERATING SYSTEM
COVER SBEET TO:
8231 8233 A
COTCOS = THEORY OF COMPUTER OPERATING SYSTEMS
\.J'
BC CORRESPONDENCE FILES T™-75-8234-7
HO 5C101 TOTAL PAGES 29 /™

TO GET A COMPLETE COPY:

PLEASE SENC A COMPLETE COPY T0 THE ADDRESS SHOWN ON THE
OTHER SIDE.

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
2. FOLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT. USE NO ENVELOPE.

()

()

Bell Laboratories

Subjcer: Introduction to Scheduling and Switching under UNIX dwe: October 20,1975
Case- 39170-120 -- File- 40952-001
from: T.M.Raleigh

™: 75-8234-7

MEMORANDUM FOR FILE

This memorandum provides an overview of Scheduling and. Switching under UNIX and
discusses some of the basic timing within the operating system. A second more detailed
memorandum{17) is forthcoming and will describe the algorithms used by the Scheduler and
process Swilcher and much of the details of their implementation.

1. Introduction

In order 10 provide a framework for discussion of the UNIX Scheduler and Switcher an
overview of the operation of the system using queuing models will be used. No attlempt will
be made 10 arrive al any analvtical results in terms of queuing theory as the mathematics are
rather involved and not enough data is currenily available about the distribution of the
queues, distribution of arrivals in the queues, elc. for UNIX. (There are a number of sources
in the literature {1.2.3.6,7.8.9,10,15.19.21] for those interesied in queuing modeis.) The queuing
model will simply be used as an aid (0 visualization of the overall operation of the sysiem.
Since the UNIX operaling system possesses a distributed supervisor, il will also be a con-
venient method for illustrating how the supervisory functions of the system are spread
throughout the system and how they work together.

While the mathematics of queuing theory will be studiously avoided in the following
description, a number of lopics such as the type and number of queues, service within queues,
penalties and preemption must be fully discussed in order 10 completely construct a2 model. In
order 10 do this, a very simple model will be elaborated and new aspects of the model will be
introduced as needed.

It will be assumed that the reader is familiar in general with operating systems, with the

basic functions of operating sysiems and with some of the basic terminology (processes, inter-

rupts, traps, etc.). It is also not the purpose of this document 10 describe the operation of DEC
hardware or peripherals{4]. There is ample literature available 10 provide a background for the
reader(3.5.12.13,14,16,22,23]).

A choice has been made in the method in which the operating sysiem is viewed in this
memorandum. The operating sysiem could have been viewed as an entity which a user pro-
cess communicates with when the process requires any services which it cannot provide for il-
self (1/0.etc.). The operaling system performs the desired service and returns control o the
user process. The second means of viewing an operating sysitem is as a collection of shared
code which implements services thal a process may avail itself of. In this view, a request for
service is viewed as a continuation of the execution of the process bul in a different address
space and with appropriate protection of other processes. The difference between the two is
that in the first view the operaling system is an active entity which satisfies a request, whereas

in the second view, it is a passive entity providing common code and protection for the contin-
ued execution of a user process. It is in this latter sense that the UNIX operating system will
be discussed. This is appropriate as the UNIX operating system is a distributed supervisor;
that is, the supervisory functions are not localized to one particular portion of the system or
one particular process in the system. Rather, these functions are spread throughout the sys-
tem. The chief advantage of this view is that it will allow us to speak about a "process relinqu-
ishing the CPU", making the distinction between roadblocking and preemption clearer.

2. Basic Concepts

2.1. Queuing Models

Figure 1 shows a simple queuing model with a processor and a series of processes queued
up awaiting their turn to utilize the processor. These processes arrive in the system with some
distribution and are selected to run on the CPU by some policy. This policy may be based on
priority, execution time, bribing or any criteria that the system chooses and is usually referred
to as the Scheduling algorithm.

Under the UNIX Operating System, the supervisory functions are distributed
throughout the system and are not localized to one section of the system. The policy for use
of the CPU is enforced by a function called the process Switcher. The Scheduler under UNIX
refers to the part of the system that manages the selection of processes to be placed in or re-
moved from memory. Although these are two separate operations, the fact that the Switcher
can only select processes that are in memory for execution means that there is interaction
between the two functions. Both of these functions must be understood in order to under-
stand process execution behavior.

One of the earliest models studied in conjunction with timesharing systems is the Round -
Robin (RR) discipline (see Figure 2). Here each process is allocated a quantum of execution
time and fed back to the end of the queue after it has executed for its quantum. Processes are
selected on a first come first served basis and a process cycles through the queue using as
many quantums as necessary to complete a job.

Numerous variations of this discipline have been implemented on past and present day
systems. Figure 3 shows a queuing model with multiple feedback queues. Here we have a
series of queues waiting for use of the CPU. Each queue could correspond to a grade of service
or priority assigned to all processes in that queue. The higher the priority, the sooner the
processes in the queue would receive service. A process could be assigned to a priority queue
for the duration of time that it was in the system. The queue could instead be assigned based
on the characteristics of the process. Each time a new process enters the system, it would be
assigned to an appropriate queue based on its characteristics (JCL). Since the process charac-
teristics relevant for queue assignment may not be known when the process enters the system
or may change in time, a system could be adaptive. As processes execute in the system, more
information is acquired so that the system can do a better job of queue assignment to achieve
its overall service goals. We would therefore expect that a scheme whereby a process would
move from queue to queue as knowledge about its characteristics is obtained or as its charac-
teristics change is more efficient than one where a process is permanently assigned to a gueue.

This adaptive approach is incorporated into the UNIX operating system. Basically, there
are a series of queues representing fixed priority levels within the operating system. Processes
within the system move from queue to queue depending on the type of activity they are per-
forming.

There are a number of other features 10 the queuing model used by UNIX, however, to
simplify matters we will assume for the moment that there are only a fixed number of queues
at fixed priority levels.

The method for selecling a new process (o execute on the CPU is a variation of the
Round Robin method. A function within the operating system called the process Switcher con-
tinually selects processes from the queue with the highest priority that contains processes that
can be run. Each process in a queue is marked to indicate whether it can be run or not. The
Switcher may find several processes in a queue, but if none are runnable, the Switcher must
look at a lower queue for a candidate. If no processes are fed back o higher queues the service
within a queue will be Round Robin.

2.2. Priority Queues

UNIX uses both queues at fixed priority values and queues that are established at priority
values as needed (floating queues). (These queues are discussed in detail in the succeeding
memorandum[17].) The lowest fixed priority queue (PUSER - see Figure 3) contains most of
the processes in Lhe system. These are processes which have nol been roadblocked and are
awaiting their turn to use the CPU. The remainder of the fixed queues are for processes which
have roadblocked or just become unblocked. These processes are placed in one of the higher
queues so that the process Switcher will give them use of the CPU before the processes in the
queue at PUSER. The numerical priority value assigned to these queues need not concern us
at this time, however, the order that these priority values represent is a measure of how urgent -
the system deems that a particular activity should be serviced. The order of the most impor-
tant queues in the system is,

1) PSWP - 1/O to the swap device.

2) PBIO - 1/O 10 a block device (disks, tapes, elc.).

3) PINOD - Access 10 an inode list.

4) TTOPRI - /O to a character device (teletype, paper tape, etc.).

5) PUSER - A queue for processes that are executable in user mode.

Floaling queues are established at fixed priority values in intermediate positions in the ordering
scheme to solve problems of giving better service 1o a process and of penalizing processes that
misbehave (see sections below).

2.3. Implicit and Explicit Queues

. Without attempting to get into any of the details of implementation it should be men-
tioned that there is no elaborate sysiem of linked lists within UNIX to explicitly implement
the queueing structure illustrated in Figure 3. Instead, by the very fact that a process is as-
signed a priority, the queues implicitly exist. There is a iradeoff between the amount of linking
and unlinking or the amount of searching that must be done in a system (0 implement either
scheme and for the UNIX operating system the choice was made not to link together queues
of processes at the same priorily. This means that there is a large amount of searching re-
quired both when it is desired o choose another process 10 run and when a wakeup (see next
section) occurs, however it does allow the establishment of an arbitrarily large number of
queues with ease.

Now that the nature of the queues and the service discipline for selecting a process from a
queue has been established, the determination of which queue a process moves 10 and when it
moves to that queue must also be defined. The approach taken on UNIX is that when a pro-
cess relinquishes the CPU (because it must wait for 1/0 completion, for access to a locked list,

etc) it assigns itself a priority based on the reason that it blocked. This priority defines the
queue that it will appear in when it is unblocked.

2.4. Semantics for Multiprocessing

If a process requests service from the system and the system cannot satisfy the request
immediately, (I/0 not complete, etc.) the process roadblocks itself. This is a signal for the pro-
cess Switcher to run another process at ieast until resources are available for the first process.
In order to implement this, the system must have both a means for indicating that the process
is relinquishing the CPU and a means for indicating that the desired event has occurred. (It
should be remembered that we are speaking in terms of a process continuing execution within
the system when it requires service. While executing within the operating system, events such
as 1/0 completion may be detected so that a mechanism for relinquishing the CPU can be im-
plemented gracefully.)

Within the UNIX Operating System, a process relinquishes the CPU by executing the fol-
lowing function (within the operating system)

sleep(event,priority)

This marks the currently executing process as unable to execute until some event occurs. The
quantity priority is the queue that the process will enter once it has been awakened. The sleep
call results in the currently executing process giving up the processor and an attempt by the
process Switcher to select and run another process. If none are available, the processor will
idle until there are processes that can be run. When an event that unblocks a process occurs, a
call of the following form,

wakeup(event)

awakens the process. The quantity event in both calls is a mutually agreed upon value (usually
an address within the system) which is used to synchronize the blocking and unblocking of a
process. This call makes al/ processes that were waiting for the occurrence of event runnable
and places them on the queue that the sleep call specified. With this setup, several processes
may block waiting for the occurrence of the same event but at different priorities. When the
event occurs, all of the processes waiting on that event will be awakened (made runnable) but
will enter different queues.

It should be mentioned that the UNIX operating system uses a procedure which is essen-
tially the converse of the Multics Operating System convention[20]. Under Multics, a process
relinquishes the CPU by a call of the form,

sleep(event)
and is awakened by
wakeup(event,priority)
Under this setup, the awakening event specifies the queue to which an unblocked process is to

be placed. For UNIX, a process enters a queue at the specified priority when it relinquishes the
CPU while for Multics a process would stay in its present queue until the wakeup occurs.

) (

L)

()

2.5. Feedback and Arrival

Now that the nature of the fixed queues has been established and a means for entering
the queues has been given, a short example will be given to illustrate the transitions that a pro-
cess might undergo.

So far, processes have only been discussed as existing quantities. Processes arrive in the
system as a result of the FORK mechanism. This is done so that there is a parent-child rela-
tionship between processes in the system. This is the only means that a process may enter the
system. (Another memorandum will discuss processes[18].)

A typical process would enter the system (via FORK) and be placed in the queue PUSER
(see Figure 3) as a runnable process. At some time the process Switcher would select the pro-
cess to run on the CPU. If during the execution of the process a system call is made and the
process must relinquish the processor (e.g., to wait for 1/0 completion) the process relinqu-
ishes the CPU via the sleep call and enters one of the higher queues, say PBIO (for block dev-
ice 1/0). The process waits in the queue while the Switcher selects and runs other processes.
The process cannot itself be chosen because it must wait for [/O to complete. When the 1/0
does complete, a wakeup will be sent to the process and it wiil appear as a runnable process on
the queue PBIO. At some later time the process Switcher will again select the process to run
(this will depend on how many processes areé in higher queues) and the system call will be
completed by the process. When the system call returns from the operating system to the user
process, the process’ priority will be changed to PUSER. This does not have much significance
in this case because the process has the CPU and is not waiting in any queue to use it. (It will
however be a factor when preemption is introduced.) Thus, the length of time that the process
spends in the queue PBIO depends on how long it takes the event (e.g, /O to complete) to oc-
cur. The time that the process spends as an active candidate in that queue depends on how
many active candidates there are in higher queues and on how long these higher priority
processes occupy the CPU’s time. Figure 4 illustrates the example and shows the priority
changes and the periods of time that the process is queued and running (The CPU time in-
cludes the time that the process spends executing within the operating system.)

3. Interrupt Processing

In order to continue with the elaboration of a model, a number of topics, such as the
amount of time a process may use before being preempted, must be discussed. In order to il-
lustrate exactly how the processor is relinquished and provide a basis for the specification of
time quanta, some hardware issues must be developed. Preemption is discussed only after a
few of these topics are explained.

The DEC PDPI11 line of computers have a hardware Memory Management Unit which
implements the process protection mechanism for UNIX. There are three modes that the pro-
cessor may be in; User, Kernel and Supervisor (the last not available on 11/40’s). For each of
these modes there is a virtual address map in the Memory Management Unit which performs
address relocation and contains access control permissions for blocks of mapped memory.
Thus we can speak of the processor executing in User or Kernel mode (the Supervisory mode
is currently unused by UNIX). Instructions exist for setting the address map and for fetching
and storing across address spaces (MFPI - Move From Previous [nstruction space, MTPI -
Move To Previous Instruction space, etc.) however, the instructions for fetching and storing
across address spaces are normally disallowed to user processes by the compilers and assem-
blers under UNIX so that the system is protected from user processes.

UNIX uses the Kernel Memory Management registers for mapping the virtual address
space of the operating system and the User Memory Management registers for the address
mapping of the executing user process.

The UNIX that resides in Kernel address space conltains all of the code for satisfving the
system calls as well as all of the code for the interrupt and trap handlers. When a user process
makes a sysiem call (via a trap) the processor will change states as indicated in Figure 5 from
User 1o Kernel mode, perform the system call on behalf of the user and return control 10 the
user process. All sysiem services are performed while the processor is in Kernel mode.

3.1. Hardware Priorities

Interrupts are likewise handled in Kernel mode, however, as interrupts are asynchronous
events, they may occur while the processor is in Kernel or User mode. Figure 6 shows a user
process that is interrupted several limes 1o process an interrupt. PDPll computers have a
hardware priority scheme which allows a limited amount of inlerrupt masking and stacking.
There are seven different hardware priority levels that a device may interrupt the processor on.
The processor also has a priority (in the processor status word) that may be set under software
control to allow or disallow interrupts of lower hardware priority. Each device on the sysiem is
hardwired so that it interrupis the processor at one of the hardware priorities when it requires
service. The interrupt handlers (sofiware) in UNIX which reside in Kernel address space are
not considered to be processes within the system as they are not scheduled by the software.
They are essentially functions that are called as interrupts occur. Figure 6 illustrates a series of
interrupts occurring while the processor is in User mode. The interrupts occur asynchronous-
ly, are handled in Kernel mode and may be siacked depending on the hardware priority of the
interrupl. A case of interrupt stacking is also illustrated in Figure 6 where process A has been
slopped 1o handle one interrupt when an interrupt of higher (hardware) priority occurs. The
svstem handies the higher priority interrupt first, returns to handling the interrupt of lower
priority, then returns execution to process A. Each time a process performs -a sysiem call or is
inlerrupted, the system saves and restores the context of the interrupted process.

Under the UNIX Operating System the processor's priorily is a/ways sel 10 zero when it is
in User mode so that any interrup! occurring will be handled immediately.

3.2. Critical Regions and Mutual Exclusion

The case of interrupts occurring while the processor is in Kernel mode poses some seri-
ous probiems for reentrancy (0 (the operating sysiem, so that there were a number of choices 10
be made in designing the system. Within the sysiem there are a-number of critical regions of
code. During the execution of a critical region the syvsiem must prevent data that could be
changed by interrupt handlers from being altered. These regions of code may also be critical
regions because il is necessary 10 exclude other processes from accessing data or from execul-
ing the same code.

On some exisling or proposed systems[5], this problem is solved through the use of spe-
cial semantics for execution of these critical regions. The problem is solved by two separate
methods under UNIX.

For the case where il is desired 10 prevent interrupt handlers from changing data within a
critical region, the processor’s priorily is raised 10 a value that locks out interrupts from devices
that could change the data. This is done by use of the sp/ (set priority level in ihe processor
status word) instruction (simulated for 11/40’s). A critical region of code within the operating
system that required the lockout of devices producing interrupts at priority leve! 5 would be
surrounded by the following two function calls.

spl50);

/*critical region software*/

spl0Q);

The first call raises the processors priority level o 5 (by executing the spl instruction) locking
out all interrupts at that level and below for the duration of execution of the critical region.
The processor’s priority level is usually lowered to zero after this to allow any interrupts that
have occurred in the interim to be processed. The spl0(), spll(), spl4(), spiSQ), spl6() and
_spl70) functions are available to set the processor’s hardware priority to 0, 1, 4, 5, 6, and 7
respectively. Figure 7 shows an example of how the handling of an interrupt is delayed while
the system is executing within one of these critical regions. ‘The interrupt is delayed for the
period shown and is processed when the processor’s priority is lowered to a level below that of
the pending interrupl.

Some regions may only be critical as far as certain interrupts are concerned. For exam-
ple, executing a critical region in the character 1/0 region may require the lockout of interrupts
from character devices but not from block oriented devices.

When several processes can access the same variables, a probiem of murual exclusion
develops. This has implications for the design of an operating system, for if one process may
be preempted in the midst of executing a system call any local or global variabies accessed by
that system call may be altered before the preempted process resumes. If it is assumed that
the system clock or any interrupt handler can preempt the currently executing process, then
when executing a critical region of this lype it is necessary 10 prevent these interrupts from oc-
curring. (This situation could be avoided if there were some special hardware instruction or
programming semantics for this situation but as there are none available under UNIX, the best
solution would seem to be to prevent the processor from handling interrupts during the execu-
tion of these regions.) This is, however, not desirable as the clock interrupt handler makes in-
terrupt request at hardware priority 6 and locking out the system clock would aiso lock out in-
terrupts from afl other hardware devices. Critical regions would then have to be limited to a
section of code that could only execute for a short period of time (otherwise timeouts on the
UNIBUS would occur) and the total number of such critical regions would also have to be lim-
ited.

The solution chosen by the designers of UNIX was to allow preemption of the processor
in Kernel mode only at the end of a system cail (that is just before the system returns control
to the user process) or at the end of processing an interrupt. This essentially eliminates the
reentrancy requirement for the operating system.

For the interrupt handlers, the approach has also been taken that interrupts for a particu-
lar device are handled by the processor at the priority that ihey occur. That is, the processor’s
priority is set to the same level as that of the interrupt thus locking out all other interrupts of
the same level and lower. This eliminates the reentrancy requirement for interrupt handlers.
As a beneficial side effect, both of these design choices eliminate the need for doing additional
context saving (Kernel mode registers wouid need o be saved in a reentrant system).

3.3. Preemption

Under the UNIX Operating System, a process is preempted by the sysiem clock or as the
result of some interrupt which wakes up a process. In the case of the system clock, the
preemption is done to enforce a time limit on the execution of a process. For interrupts which
wakeup another process, the preemption is done in an effort to give service to a process that
has willingly relinquished the CPU as soon as possible. The speed at which it will receive ser-
vice depends on how urgently (what priority queue) the process shouild be served and on how
many processes there are in higher queues. Because the system is non reentrant for the rea-
sons discussed above, preempting a process that was executing in User mode and one that was
executing in Kernel mode is different and will be discussed separately. Preemption as the

result of an interrupt waking up a process will be distinguished from the system clock preempt-
ing a process even though preemption by the system clock is the result of an interrupt (the
clock interrupt). The reason for this is that for ordinary interrupts, the preemption is done to
give reasonable response to processses that willingly relinquish the CPU while preemption by
the system clock is part of a penalty scheme to limit the use of the CPU.

We will first consider the case where the system clock or more specifically the clock in-
terrupt handler preempts a process. Figure 8 shows a process executing in user mode when a
clock interrupt occurs. The context of process A is saved when the clock interrupt occurs.
The interrupt is processed and in the case shown, the clock interrupt handler has decided to
preempt the process so that the Process Switcher runs and selects a new process. Since the
clock interrupt handler generates an interrupt once every sixtieth of a second, it would be un-
wise to preempt a process every time a clock interrupt occurred when the processor was in user
mode. With an average instruction execution time of approximately 2.5 usec. for 11/45 proces-
sors, a 16.6 msec. time slice between process switches would not allow much computing. (The
question of time quanta is taken up in a later section however, the system clock will preempt a
process only at the one second clock interrupt.) All processing of the interrupt occurs before
the clock interrupt handier preempts the process so that there is no problem with reentrancy.

As discussed previously, when the processor is in User mode all interrupts are allowed.
Figure 6 shows interrupts being processed and control returning to the user process. If an in-
terrupt results in some other process being awakened, then rather than return control to the
same process after the interrupt is handled the process Switcher is called. Figure 8 illustrates
the sequence of events. Again, the determination of whether to run the process- Switcher and
preempt the previously executing process is made only after the interrupt is processed and con-
trol is about to be returned to the user process.

Figure 9 shows a process which has made a system call and is executing in Kernel mode
when an interrupt occurs. If a process could be preempted in the middle of a system call, the
problem of reentrancy discussed previously could produce problems of mutual exclusion if the
system call was not coded as a reentrant function. By disallowing preemption during this
period the reentrancy problem is solved. For this reason, the one second clock interrupt is not
aliowed to preempt a process if the clock interrupt occurred while the processor is in Kernel
mode.

For interrupts (which wake up some process) occurring while the processor is in Kernel
mode, it is desirable to be able to preempt the current process even though the interrupt oc-
curred in Kernel mode. Preemption is still disallowed by reentrancy requirements, however,
the system can remember that an interrupt occurred while the system call was in progress so
that the process Switcher can be called when the system call is finished and the process
preempted at that time. Figure 10 illustrates this case.

In summary, the types of preemption that may occur are:

1) As the result of the system clock preempting a user process when it is executing in
User mode to enforce a time limit.

2) As the result of an interrupt which wakes up a process.

a) If the interrupt occurs in User mode the interrupt is handled immediately and
the preemption occurs after the interrupt is processed.

b) If the interrupt occurs while the processor is in Kernel mode, the currently ex-
ecuting process is preempted at the end of the system call it was executing.

) €

3.4. Traps

Traps out of user mode are handled in exactly the same manner as interrupts (system
calls are .made by trapping). Traps occuring while the system is executing in Kernel mode are
not normally possible. If they occur, they are regarded as serious hardware errors and the sys-
tem is brought down as gracefully as possible.

4. Timing and Penaities

4.1. Time Quanta

So far, the manner in which the processor is relinquished has been discussed from two
standpoints. Either it was relinquished willingly as the results of some resource not being
available or it was preempred by the system clock or as the result of an interrupt waking up
another process. Preempting a process when a wakeup is issued by an interrupt handler is
done so that when a process roadblocks at a high priority (disk 1/0,file access,etc.) will receive
control as soon as possible after the resource is available. There will however be processes in
the system that are compute bound or system bound and will not willingly relinquish the CPU.
Compute bound processes can be identified as those processes which spend most of their time in
user mode, never making any system calls and can easily be preempted since no reentrancy re-
quirements are violated. System bound processes areé processes which spend most of their time
making system calls which do not compete for system resources and hence never willingly relinqu-
ish the CPU even though they spend a conderable amount of time in the system. These
processes are more difficult to isolate. An example of this would be a process in a tight end-
less loop requesting the time of day from the system. In order to even out the performance of
the system so that each user will see approximately the same type of response, it is necessary
10 limit the amount of time (a quantum) that a process may use the processor at one time.

The present version of UNIX depends on an averaging type of effect to enforce-a one
second time quantum limit on processes. Once every second the clock interrupt handler deter-
mines whether the clock interrupt occurred while the processor was in User or Kernel mode.
If the processor was in User mode then the currently running process is preempted after the
fashion shown in Figure 8. The assumption is made that the process has run for a full one
second quantum. This may not be the case but on the average in will not damage the response
of the process. If however, the clock interrupt occurred out of Kernel mode, no preemption to
enforce the time limit is made because of reentrancy requirements and because there is a finite
probability that the process will roadblock anyway as the result of the system call. (This is not
strictly true as the clock interrupt handler does behave as other interrupt handlers and may
wake up other processes. In particular, the clock interrupt handler maintains an event called
the lightning bolt. The clock interrupt handler issues a wakeup to all processes sleeping on the
lightning bolt once every four seconds. In this case, the clock interrupt handler is not directly
preempting a process, rather, the same mechanism as was employed for the interrupt handlers
when they issued a wakeup to a process is employed.) Figure 11 illustrates the effect of enforc-
ing the one second time limit (on the average). The behavier of the processes (number of sys-
tem calls, time to process a system call , etc.) has been greatly exaggerated for clarity of the
drawing. Note that if it is assumed that the system calls take only a short amount of time and
that processes spend much of their execution time in user mode the one second time slice will
be enforced. Also, for the case where the clock interrupt occurs out of Kernel mode, the sys-
tem call that was being executed may result in the process blocking so that the likelihood of
the one second time quanta maximum will be increased.

The time quanta criteria will only influence compute bound jobs which run on the aver-
age for their full quantum. This however, is not a sufficient penalty to apply because an 1/0

-10 -

bound process will relinquish the processor a large number of times, thus giving the compute
bound processes a large number of full quanta to use. Some other mechanism is required (o
insure that compute bound processes do not hog thé CPU. To provide this restriction the lime
quantum criteria is coupled 1o a penally scheme.

4.2. System Call Limitation

The preemption applied ai the end of the one second interval limits the amount of time
that a compute bound process may occupy the system’s time. The preemption is not applied if
the CPU is in Kernel mode so that system bound processes would not be detected. (The pro-
cess could have been preempied at the end of the system call as is done for interrupts awaken-
ing processes, however, this would be an additional penalty applied to normally inleractive
processes which relinquish the CPU when they make a system call. That is, a process might
only have made one system call when it was preempted.) A count of the number of consecu-
live system calls between a process roadblocking itself is kept. If a process makes seventeen
consecutive system calls without having to roadblock, the process is considered 1o be behaving
as a system bound process and is preempted.

4.3. Process Penalties and General Amnesty

In order for the preemption schemes of the previous section 10 be effective, they musi be
coupled 10 a penalty scheme thal takes into account the priority queues. The model presented
so far possesses a number of fixed priority queues awaiting use of the processor. The queues at
higher priorities than PUSER are for processes that have relinquished the CPU and are waiting
10 be awakened or serviced. The duration of time that a process spends in one of these higher
queues is typically short. (Only a very interactive process would spend a good deal of time in
the higher queues and most of that time the process would nol be runnable.) The PUSER
gueue would then contain the remainder of the processes in the sysitem. In particular, the
compute bound and system bound processes would always appear in this queue because they
do not relinquish the processor of their own volition. If we were to discount for a moment any
processes in the other queues, then a compute bound process in the PUSER queue would re-
ceive extremely good service (because it would run for its full quantum) compared 10 processes
which were less compute bound in that queue. This assumes that the service within a queue is
Round Robin. Compute bound process would receive a large percentage of the CPU’s tlime re-
lative to interactive processes. The same would be true of sysiem bound processes; even
though they are preempled after a certain number of system calls, they would achieve a higher
percentage of CPU time compared 1o processes that roadblocked. In order 1o build into the
system a cerlain amount of adaptivity and smooth out the response per user, a scheme where-
by processes receive a priority penalty for poor behavior when they are preempied is used. This in
effect corresponds to the formation of new (lower priority) queues as needed (o take care of
these processes (see Figure 12). Thus if the process Switcher used the scheme where higher
priority queues are served before those lower priority queues, we would have a Shortest
Elapsed Time (SET) effect for a group of compute bound processes (see Figure 13). Once a
process had used its quantum, it would be placed in a lower priority queue. Since selection of
the next process (o run is done on a highest priority queue basis, an execution profile of the
system would show that those processes which have received few quantums would be favored
over those which have had many quantums. For compute bound process, those with few
quantums would quickly receive enough quantums to catch up to those which had received a
higher number of quantums. Processes which were less compute bound would find themselves
favored as they would continually appear in higher queues.

-11 -

It should be reemphasized that throughout this discussion of penaity schemes we are
referring to processes that do not behave as the normal timesharing job. Interactive processes
should escape the effect of any penalty scheme in the long run. Those processes which are
misbehaving will be found in the queue PUSER (or lower queues) never in any of the fixed
priority queues. Queues above this contain processes which have recently relinquished the
CPU and are waiting for resources in order to be served.

Coupled with the preemption scheme discussed in the previous sections, there are (wo
different penaity criteria that are applied to prevent processes from obtaining more than their
fair share of the processors time.

One penalty scheme is intended to penalize system bound processes. Al the end of every
seventeen system calls, a process’s priority is lowered by one point and it is preempted if none
of the seventeen system calls resulted in the process roadblocking. Applying the preemption
after the seventeenth consecutive system call is the criteria used to isolate the system bound
processes from the more interactive processes. When the (system bound) process is again
selected 1o run, a general amnesty is declared for that process so that it will return to its former
priority (PUSER). Figure 14 illustrates the priority variations of a process which continually
spends its time in system space without ever having to block. Each of the vertical ticks on the
normal user priority line (PUSER) represents both the one time imposition of the one point
penalty and the preemption of the process.

A similar scheme is utilized for penalizing compute bound processes. For each time that
a process is found executing in user mode when the one second clock interrupt clock interrupt
occurs, a one point priority penalty is imposed on the process. As discussed previously the
clock interrupt handler should on the average provide Lthe one second time quantum slicing, so
that this penalty corresponds roughly to a penalty for using the full one second quantum. Un-
like the penalty for system bound processes, this penalty is cumulative so that a process will
continue to be penalized if it continues to exhibit the same type of behavior. Currently, the
lowest queue to which a process may sink is set at 105 (5 queues below PUSER - see Figure
15). The queue at 105 corresponds to a process which has received five quantums without re-
questing any system service. As with the previous scheme, a general amnesty is declared as soon
as the process stops behaving as a compute bound job (i.e., when it makes its first system call).

In both of the cases discussed above, a general amnesty Was declared as soon as a process
began to exhibit normal (timesharing like) behavior and there was a limit on how undesirable
a process may become in the eyes of the system. This is done so that no job reaches a state
where it is so undesirable that it receives no service or excessively poor service (e.g., a third
shift job in the batch world).

4.4. New Penalty Scheme

The penalty scheme described above is somewhat blunt in that at least for the compute
bound case it relies on identifying the CPU hog based on the fact that on the "average” he will
be found executing in user mode. This however takes time to determine and is something
which is dependent on the number of other processes in the system, the type of activity,
number of interrupts, etc. For processes that hit on the right combination of misbehavior,
the limits and penalties will be escaped and the process will use a good portion of the CPU’s
time. In order to more accurately and quickly detect misbehaving processes, a scheme where-
by the cumuiative execution time of each process is kept has been adopted on the UNIX
Research System. (The clock interrupt occurs once every sixtieth of a second so that if one as-
sumes that all of the CPU time since the last clock interrupt was occupied by the process that
was interrupted an accurate account of the CPU usage may be kept. It is impossible to
discount the time that was used to handle the clock interrupt or for any interrupt that occurred
between clock interupts.) Priority penalties for a process are applied based on the number of

-12-

cumulative CPU seconds the process has received without roadbiocking. A one point priority
penalty is applied for each of the first five consecutive CPU seconds and one point for each
fifteen seconds thereafter. Figure 16 illustrates the priority penalty scheme. (A continuous
function is shown for clarity however it should be remembered that the graph should actually
be a step function as in Figure 15 .) There is no longer a distinction between the penalty for
CPU bound and system bound processes. Note also that the penalty is rather severe at first
(identification of misbehaving process) but sofiens (to prevent total discrimination) after the
first five seconds. There is no immediate ground level reached either as with the previous
scheme. The process will continue to be penalized until it reaches the floor value for priorities
(priority 127 see Figure 16). As with the previous scheme, a general amnesty is applied as
soon as the process begins behaving properly.

4.5. User Initiated Penalties

There is a system call (NICE) available which allows a user process to lower the base
value (PUSER) of its priority and thereby voluntarily receive a lower grade of service
(effectively run in the background). This essentially just shifts the base line at which the
penalty scheme is applied to the process. It does nof in any way affect the process’s placement
in any of the fixed queues in the system, (PINOD, PBIO, etc), so that the response to a request
for a system resource is the same. The only difference is that because of the downshift of the
base user priority the process will receive a smaller fraction of the CPU’s time.

4.6. Achieving a Better Grade of Service

The same system call which allowed a user process to lower its base priority level, will al-
low a process with super user permissions to achieve a better grade of service. This is done in
exactly the same manner as was used to lower a process’s base priority. In this case, however
the base value is raised. This is a crude tool for obtaining better service because as higher and
higher.values are chosen for a process’s base priority, competition with the fixed queues in the
system becomes a factor (see Figure 16) and the response to system calls by other processes is
degraded. For a typical well behaving process, the effect of the nice system call is to establish
a new queue above PUSER for the "special” user process. This "special” process will occupy
the system’s time and only during the periods that it is roadblocked will processes of lower
priority be served. In the case of CPU bound or system bound processes, raising the base
priority dramatically changes the system’s performance since the CPU bound processes will
use all of their time quantums and the penalty scheme will take some time before the process’s
priority is lowered to a point where other processes can compete for service. With a general
amnesty declared, processes which are not completely compute bound have an even greater
effect. For the CPU bound portion of their execution they will be prime candidates for the
process Switcher and since they are partially interactive, they will roadblock occasionally restor-
ing them to the high priority that the NICE system call gave them.

S. Major Divisions in the System

Now that the details of the model have been clarified, a more complex model can be
described and the domain of the process Switcher and the Scheduler may be illustrated.

()

()

5.1. A Complex Model

In order to more fully describe the distribution of function within the operating system,
the queuing model of Figure 3 will be expanded and replaced by that of Figure 18. Here, we
see that several additional queues and feedback paths have been added.

Two new queues have been introduced. The first queue is labeled WAKEUP and con-
sists of all those processes which are in memory but are blocked awaiting some resource. When
they are awakened they are fed into the proper queue. In the previous model we assumed that
the process Switcher knew which processes could be run and which could not. This is still the
case, however, conceptuaily it is clearer to view these unrunnable processes as being in a
queue of their own. The WAKEUP queue can be considered to be a kind of free running
queue as processes make the transition to one of the priority queues at the time they are awak-
ened (ie., asynchronously). Note that processes which roadblock themselves (by calling sleep
(event, priority)) thereby placing themselves on the WAKEUP queue are fed back only to the
fixed system queues, never to a user queue. This is because, as discussed previously, a process
goes o sleep at one of the fixed priority levels (i.e., user processes cannot call the sleep func-
tion directly) as the result of a system cail. The second queue (CORE) consists of all of those
processes on the swap area. These processes may be sleeping or executable, however, they
cannot execute until they are brought into memory.

An extra path has been added to show the path taken by processes that are preempted.
These processes are runnable when the CPU is taken from them so they are fed back directly
to one of the queues. These processes are fed back only to the user queue (PUSER) or to one
of the penalty queues.

5.2. The Process Switcher

The process Switcher is the function within the system which selects the next process to
run from the queuing setup described previously. The processes present in these queues are
only those processes which are not roadblocked and which are in memory. The Switcher knows
nothing about the size or arrangement of memory. Its sole function is to find the runnable
processes in the highest queue and to select one to use the CPU. The length of time that each
process will run at one time will depend on the process’ demands on the resources of the sys-
tem and their availability and will be subject to the time quantum limits discussed earlier. If
none of these processes are fed back to higher queues, the service within the queue will be
Round Robin.

5§.3. The Scheduler

The Scheduler is itself a process (albeit a process within the operating system that runs
entirely and continually in Kernel mode) which is responsible for the swapping in and (most)
of the swapping out of processes. It is a process which is never swapped and is always at the
highest priority (PSWP) in the system (although it does go to sleep when it has no work to do
and while the 1/0O for swapping processes takes place). Thus the Scheduler is a rearranger of
the queues the Switcher sees even though it is in one of those queues (i.e., it may add or re-
move a process from consideration by swapping it out) and it is in this manner that the two
functions interact..

-14-

5.4. Domain of the process Switcher and Scheduler

The process Switching function is easily isolalable to a section of the system where the
choice of a new process is made. In the model of Figure 19 the boxed off area indicates the
area of the model concerned by the process Switcher. Not all swapping out is performed by
the Scheduler so thal the Scheduling funclion is more distributed and is not as easily isolatable.
For example, if a process requests more memory (for dvnamic storage allocation or as the
result of a slack overflow) the process may be automatically swapped out withoul any interac-
tion with the Scheduler. The Scheduler is of course the only function capable of bringing the
process back into memory but no notification of the Scheduling process is made in this case.
The process is merely marked as being nonresident and placed in the CORE queue. When the
Scheduler does select processes to be removed from memory, it examines the WAKEUP queue
first {the processes in the WAKEUP queue are roadblocked) for a candidate. If none are
found, the Swilcher’s queues are examined. The Scheduler is thus concerned primarily with
the CORE and WAKEUP queues, although it must at times select a process from the
Switcher's (runnable) queues as a candidate to boot out of memory.

6. The Scheduling Process

6.1. Operation of the Scheduler

As mentioned previously, the Scheduler is a process under UNIX. It maintains the
CORE queue. When the process Switcher selects the Scheduler to run, the Scheduler will swap
processes 10 and from the priority queues (one at a time). The Scheduler will thus run in a sorl
of piecemeal fashion as shown in Figure 20. A typical cycle of execution is illustraied in Fig-
ure 20 where the process Switcher has selecied the Scheduler 10 run. The Scheduler will, if
need be, select a process 1o be swapped oul 10 make room in memory for another process.
While the 1/O for the swap oul is occurring, the Scheduler will go 1o sleep thus placing itself in
the WAKEUP queue. When the 1/0 is complete, the Scheduler will be awakened as a result of
the interrupt signalling the completion of the 1/0 and since it is such a high priority process
(priority PSWP), it will be selected by the process Swilcher almost immediately. The Scheduler
will then select a process o be brought in and will again sleep until the 1/O completes.

There are restrictions on the candidales to be swapped out (to prevent thrashing) so that
the Scheduler rearranges memory approximately once every second. During the time that the
swapping I/0 occurs, the Scheduling process will pass to the WAKEUP queue until the I/0 is
completed. The Scheduling process will never itself enter the CORE queue as it is locked in
- memory.

6.2. Process Age

The process Switcher’s only criteria for choosing a process 10 use the CPU is the priority
assigned 10 Lhal process. The Scheduler primarily -uses a different quantity in choosing a pro-
cess 10 swap in or out of memory. This is the age of a process. The age is defined as the
amount of time (in seconds) thal a process has spent in memory or on the swap area. The age
is reset 10 zero whenever a process makes a transition 10 or from memory.

-15-

6.3. Scheduling Criteria

In selecling processes 10 be removed from memory, the Scheduler gives some con-
sideration 10 the structure of the priority queues. The Scheduler views processes as broken
into roughly two groups (see Figure 21). These are processes that will enter the priorily
queues al a queue whose priorily is above zero, (SLEEP priorities - see Figure 21) and those
that will enter the queues alt some value below zero, (WAITING or USER priority queues).
The queues corresponding to the SLEEP priority (this is a different concept from the sleep
system call available 1o user processes or relinquishing the processor by the system function
sleep(event, priorily))‘ are for processes which should be given the CPU as soon as possible
when awakened (to complete a sysiem call, run the Scheduler, etc.). The WAITING priority
queues are for procesées that slept on an event (hat is not quile as urgent (blocked wailing 10
read a leletype, waiting for another process 10 terminate, etc.). The USER priorily queues are
those queues that a user process is in normally or is in because of a penally and usually
represent the lower pr‘iorily queues of the system. When the Scheduler is looking for a process
10 be removed from memory it examines the WAKEUP queue and chooses the first process
that is blocked at a priority that will place it in a WAITING queue when it is unblocked. If
none of these processes are in the system more drastic means must be used to find memory
for an incoming process. The choice of a process to bring into memory is on a First Out First In
basis so that the oldest process on the swap area is the first 10 be brought in. If the oldest pro-
cess on the swap area has been there for less than three seconds no further attempts to free
some memory 10 brinh it in are made. If, however, the process has been on the swap area for
more than three seconds, the Scheduler searches both the Switcher's and WAKEUP queues for
the process that has been in memory longest and if that process has been in memory for
longer than iwo seconds it is removed regardless of its size. Note that while the Scheduler uses
the priority scheme as a figure of merit for determining which process to remove from
memory, the choice is primarily based on the age of the process (in memory or on the swap
area) and not its pridrily. No aulempt at compacting of memory is made by the Scheduler.
(For an interesting di#scussion of the merits of compacting memory see [111.) A First Available
Fir algorithm is used for placement of a swapped in processes and no consideration of memory
size is given when swapping a process oul. This is done 10 eliminate any bias toward smail size
processes, improving their response al the expense of larger processes. Since the granularity of
age is one second, the Scheduler becomes synchronized so memory is rearranged approximalte-
ly once a second and does as litlle work as possible in satisfving processes needs so that if

there is enough memory, no swapping wiil occur at all.

!
7. Conclusion

" This memorandum has served as an overview of the operation of the Scheduling and
Switching functions under UNIX. A basic framework has been developed from which a more
detailed discussion of the Scheduling and Switching aigorithms and implementation may be

given in a succeeding memorandum{l17}.

I would like to ‘hank D. M. Riichie, B.A.Tague, J.F.Maranzano and R.Brandt for reading
the draft and both D. M. Ritchie and K. Thompson for their explanations of some points about
the system and for their patience with my guestions. Any errors in the text are the responsi-

bility of the author. |

1
|
|
i

Tty fakog .
MH-8234-TMR-nroff T.M.Raleigh v/
Allachments !

References(23)
Figures(21)

(1]

(2

3]

4]

(5

(61

7
(8

191

(10]

(11]

(12]

[13]

[14]

[15]

-16 -

References

Chang, W., Single-server Queuing Processes in Computing Systems, IBM Syst. J., No. 1,
1970, pp. 36-71.

Coffman, E.G., and Kleinrock, L., Computer Scheduling Methods and Their Countermeas-
ures. AFIPS SJCC 1968, Vol. 32, pp. 11-21.

Coffman, E.G. and Denning, P.J., Operating Systems Theory. Prentice-Hall Inc., 1973.

Digital Equipment Corporation. PDP-11/40 Processor Handbook (1972). PDP-11/45 Pro-

cessor Handbook (1971). PDP-11/70 Processor Handbook (1975). PDP-11 Peripherais
Handbook (1975).

Hansen, P.B., Operating System Principles. Prentice Hall, Englewood N.J. 1973,

Hellerman, H., Some principles of time-sharing scheduler strategies. IBM Syst. 1, No.2,
1969 pp. 94-107.

Kleinrock, L., Queuing Systems. Vol. 1, John Wiley & Sons, 1975.

Kleinrock, L. and Muntz, R.R., Processor Sharing Queueing Models of Mixed Scheduling
Disciplines for Time Shared Systems. JACM, Vol. 19, No. 3, (July) 1972, pp. 464-482.

Kleinrock, L., Time-shared Systems: A Theoretical Treatment. J ACM 14, No. 2 (April)
1967, pp. 242-261. :

Kleinrock, L., Swap-Time Considerations in Time-Shared Systems, IEEE Transactions on
Computers, June 1970, pp. 534-540.

Knuth, D.E, The Art of Computer Programming: Vol. 1 Fundamental Algorithms,
Addison-Wesley, pp. 435-451,1968.

Lampson, B.W., A Scheduling Philosophy for Multiprocessing Systems. CACM, Vol. 11,
No. 5, (May) 1968.

Loren, H., Paralielism in Hardware and Software: Real and Apparent Concurrency.
Prentice-Hall, Englewood Cliffs, N.J. ,1972.

Madhnick, S.E., and Donovan, J.J,, Operating Systems. McGraw-Hill Book Company, New
York 1974.

McKinney, M., A Survey of Analytical Time-Sharing Models. Computing Surveys, Vol. 1
No. 2, (June) 1969 pp. 105-116.

-

{16]

1n

(18]

(19}

{20}

[21]

(22}

{23

-17-

Organick, E. I, The Mutlics system: Ah examination of its structure. MIT Press Cam-
bridge Massachusetts and London England, 1972.

Raleigh, T.M,, Scheduling and Switching under UNIX: Algorithms and Implementation.
In preparation.)

Raleigh, T.M., Processes under UNIX. In preparation.

Rasch, P.J., A Queueing Theory Study o? Round-Robin Scheduling of Time-Shared Com-
puter Systems. JACM, Vol. 17, No. 1, (January) 1970, pp. 131-145. :

Saltzer, J.E., Traffic Control in a Multiplexed Computer System. Project MAC, Thesis
MAC-TR-30, June 1966.

Shemer, J.E., Some Mathematical Considerations of Time-Sharing Scheduling Algorithms,
JACM, Vol. 14, No. 2, (April) 1967, pp. 262-272.

Thompson, K.T., and Ritchie, D.M., The UNIX time-sharing system. Comm. ACM Vol
17 No. 7 (July) 1974 365-375.

Watson, R.W., Timesharing System Design Concepts. McGraw-Hill Book Company, New
York 1970.

ARRIVAL cPU COMPLETION

FIG. 1 PROCESSES QUEUED FOR PROCESSOR USE

COMPLETION

ARRIVAL :u— CPU

FIG. 2 FEEDBACK LOOP FOR ROUND ROBIN SERVICE

PSWP
S

PINOD
Y

PBIO

PWAIT

ARRIVAL PUSER
"

FIG. 3 ESTABLISHED QUEUES AT FIXED PRIORITY LEVELS

CPU

COMPLETION

>

SNOILISNVYL XLIMOIMd 40 FTIWVXH h "DId

JNIL
| I]] 1] NndJ

—— 1 L 1 - ONISN
' v ' $S53204d

u.u_.r I I ' i 1 i (3T18VNNNY)
A] [QU:N:G
v ' |

Nl

| | | i | {
1IVO YIHOLIMS TIVvI YIHOLIMS
SAS A8 dNINVM SMI018AV0YH SAS SINVIN A8

S3131dW0D Q3103138 SS300Ud $S300¥d $§300¥d 0310317138 TVAIYYY

AL, ! | | 1 I

y3asnd

— 0l8d

F ALIYOIYd
S300¥d

'PROCESSOR #

MODE
SYSTEM CALL
KERNEL .
PROCESS PROCESS
USER |-
I L -
START END TIME
SYSTEM SYSTEM
CALL CALL
FIG. 5 USER AND KERNEL MODE EXECUTION
PROCESSOR 4
MODE " o
KERNEL |- (™ Mr“lﬂ
PROCESS | | A PROCESS PROCESS
A A A
USER |- —
-
TIME

FIG. 6 INTERRUPT HANDLING IN USER MODE

) C

PROCESSOR
MODE

KERNEL

USER

>

PROCESS
A

CRITICAL
REGION

DELAY

—

r

PROCESS
' A

INTERRUPT
REQUEST
ARRIVES

INTERRUPT
HANDLED

-
TIME

FIG. 7 CRITICAL REGIONS AND INTERRUPTS

PROCESS

PROCESSOR §
MODES SWITCHER
KERNEL |-
PROCESS PROCESS
A B
USER -
- >
INTERRUPT TIME
FIG. 8 INTERRUPT IN USER MODE
AWAKENING ANOTHER PROCESS
PROCESSOR 4
MODE
KERNEL |
PROCESS PROCESS
A A
USER |-
| 1 | -
START INTERRUPT END TIME
SYSTEM SYSTEM
CALL CALL
FIG. 9 INTERRUPT IN KERNEL MODE

PROCESSOR § PROCESS
MODE SWITCHER
KERNEL |-
PROCESS PROCESS
A B
USER |-
! L
START INTERRUPT END OF TIME
SYSTEM SYSTEM
CALL CALL

FIG. 10 .. INTERRUPT IN KERNEL MODE

AWAKENING ANOTHER PROCESS

HITANVYH LdNHU3ILNI MOO0T1D A8 ONIDINS 3INWIL TT °91d

(SANOD3S)
INIL 9 g v - € 2 }
- | T T T | T
¥3asn
3 aQ a 9 g g v
$S3204d
~ rr; ~ - | n ~ 13NyaN
~e U
NOILdW334d ON S1dNYYILNT 300N

X0010 y H0SS300¥d

PUSER

ARRIVAL B
PUSER + |
PUSER+ 2 COMPLETION
4 CPU ‘.
PUSER + 3
. v
MIN PUSER
_‘(

FIG. 12 QUEUES FORMED FOR USER PENALTY

CPU

PUSER

c
-

< MIN PUSER

FIG. 13 SHORTEST ELAPSED TIME EFFECT

INCREASING
PRIORITY

T T T T T T
PUSER+1 |-

FLOOR (127)
L 1 1 ! J -
17 38 51 68 85 NO. OF
CONSECUTIVE
SYS CALLS

(W/O BLOCKING)

FIG. 14PENALTY SCHEME FOR SYSTEM BOUND PROCESSES

INCREASING A
PRIORITY

PUSER

105 [~

FLOOR (127)
' -

CUMULATIVE EXECUTION

TIME BETWEEN
SLEEPS

(SECONDS)

FIG. 15 PENALTY SCHEME FOR CPU BOUND PROCESSES

INCREASING
PRIORITY !

PUSER

FLOOR (127)

—
—

l
0] S : 20 35

CUMULATIVE EXECTION
FIG. 16 NEW PENALTY SCHEME TIME BETWEEN SLEEPS

(SECONDS)

INCREASING

PRIORITIES J'\ CEILING (-100)

PSWP
PINOD [~

P8I0

0

PWAIT

PUSER

FLOOR (127)
1 I | | I | | I |
5. 20 35 50 65 80 95 110 125 440 155 170 185

CUMULATIVE EXECTION
TIME BETWEEN SLEEPS

FIG. 17 EFFECT OF NICE SYSTEM CALL ON (SECONDS)
NEW (AND OLD) PENALTY SCHEME

S3N3ND INGYNNNY OGNV ‘ONII3IIIS '‘G3ddVYMS 40 NOILYNHYd3S gT °"HId
>
—
3402 Q3 LdW33yd ——
4
¥1SNd NIW
835nd _
< ndd —
NOIL31dWOD d41Sd
¢
——
olad
dNINYM
dMSd
-

AVAIHYY

v

r Illllllllllllllll_-l llllllllllllll =TT
_ X . _
| | “
! |

| 3402 “ 1 03 1dW33ud ﬂ” _
“ ““ ¥3SNd NIW “
| || |
| I} : }
“ I LT m,H “ IVAINNY

I

| Il |
| < -4 ndd AI. I
" NOILL31dW0D “ “ d1sd “ .
| .) |
| 1} _u |
| b 018d !
| N |
| N : |
| Il ~u |
“ dN3INYM ““ aMSd "
| 1 |
| P |
| || I
b e e e ——— — ——— — e e ol b e —— . ————— —— —— —— -

Y3 INA3HOS H3HOLIMS ’ .

.

¥3TINO3IHOS XINN 40 NOILVY3JO LNVLLIWY3LNI 02 "DId

- 3137dWOJ

(ONOD3S 3NO)
1dNYYILNI MO0T1D

.

1

Q3LVILINI O/I ¥3TINA3HIS

INIL 0/1 dVMS
PN ‘.
Q3137dW0D 0/1
J
v v
$S3704d $S3704d
MIHOLIMS MIINQIHIS H¥IHOLIMS
$S3704d $53704d
#

ARA

YIHOLIMS YITINA3HIS YIHOLIMS

$S3004d

$S300¥d

v
$$300¥d

e

y3asn

— TTINYIN

S3AON
¥0SS3d20ud

——

SLEEP
PRIORITY
QUEUES

4

waIT
PRIORITY
QUEUES

____¥_____

ARRIVAL

cpPU

USER
PRIORITY
QUEUES

I

PSWP
—»
PINOD
—
PBIO
Iq
PPIPE
#
PWAIT
f—p
PSLP
wﬂ
PUSER
PUSER + |
o
MIN PUSER

>

y §
COMPLET;
>

A 4

FIG. 21 GROUPING OF QUEUES

()

)

(

(1)

) (V)

