=

MERT PROGRAMMER S MANUAL

First Edition

H. Lycklama
D. L. Bayer

October, 1975

Copyright 1975
Bell Telephone Laboratories, Incorporated

~

' 070

)

Copyright 1975
Bell Telephone Laboratories, Incorporated

INTRODUCTION TO THIS MANUAL

This manual provides a description of the internal features of
the MERT operating system. It is meant to be used as a supple-
ment to the UNIX PROGRAMMER'S MANUAL. A more general overview of
the MERT operating system is provided by the two technical
“memoranda:

A Structured Operating System for a PDP-11/45 - TM=75-1352-4.
MERT - A Multi-Environment Real-Time Operating System - TM-75-1352-7.

Within the area it surveys, this manual attempts to be as com-
plete and timely as possible. A conscious decision was made to
describe each program in exactly the state it was in at the time
its manual section was prepared. In particular, the desire to
describe something as it should be, not as it is, was resisted.
Inevitably, this means that many sections will soon be out of
date.

This manual is divided into six sections:

A. Supervisor Process Calls

B. Kernel Process Calls

C. Inter-Process Message Formats
D. File System (and Utilities)
E. MERT-UNIX Programs

F. MERT-UNIX System Calls

The PCB (Process Control Block) of a supervisor-user process is
described in section A. A supervisor-user process has entries
into the kernel by means of EMT traps. Each one of these is
-described in detail. The binary object code for each routine is
kept in the library file "/lib/libe.a".

The kernel process header is described in section B. A kernel
process has entries 1into the kernel by means of another set of
EMT traps. Each of these 1is described in detail here. The
binary object code for each routine is kept in the library file
“/lib/libk.a".

Inter-process communication is achieved mainly by means of mes-
sages. The header of a message is described in section C along
with the contents of the various message types which are recog-
nized by the basic system processes. These processes include
kernel I/0 drivers, file manager, process manager, memory manager
and system process scheduler.

The format of a file system is described in section D along with
the 1layout of each file i-node. The utility programs which deal
with the file system are also described here. For those which
are not described, the reader is referred to the UNIX
PROGRAMMER °S MANUAL.

Section E describes the various utility programs which are used
to build special MERT files such as process images and the boot
image. It also includes desriptions of programs which will run

<

INTRO(A)

1/22/75

INTRO(A)

INTRODUCTION TO SUPERVISOR EMT TRAPS

The interface between a supervisor process

and the Kkernel

consists of a read only data segment called the process con-

trol block (PCB), approximately fifty EMT traps, and a
associated with creation and termination of a pro-

messages
cess and its ¢

The PCB describes the process virtual
modes) , defines entry points for han-
and

superv:.sor an

dling interrupts (events)

scheduler wit

is:
struct pcb
int
int
cnar
char
char
int
int
int

struct
int

int

int

} o tim

-

char

char

char

char

char
int

int
int

hildren.

d user

n space

when switching between processes.

{
o_pnum;
p_parent;

o) OrlOf,

-

P_ “chan;
P_ “name (8] ;
p_ttg;
p_slice;
D_size;
{

ktime;

stime;

utime;

es;
p_timeout;

p_wait;

e_tflag;

-

p_ttype;

*p_tident;

o

save;

o_semafor;
D_dummy;

few

address space (both
faults, and provides the
saving the state of the machine

The structure of the PCB

/*process number*/

/*Process number of parent pro-
cess */

/*Initial scheduling priority*/
/*Process control channel */

/* ASCII name of process */
/*Scheduler saves Time To Go
of process time slice on premp-
tion */
/*Process time
seconds*/
/*Total number of bytes in seg-
ment table*/

slice in 1/69

/*Total time svent in kernel
moda while process was active*/
/*Total time spent in supervi-
sor mode while process was ac-
tive*/

/*Total time spent in user mode
while process was active*/

/*Inhibit context c¢nange flag
for the scheduler?*/

/*Hold in memory until time
slice runs out £flag to the
scheduler*/

/* If non-zero a terminate

message of type p ttype will be

sent to parent upon the death
of this process*/

/*message type to send to
parent on death of this pro-

cess*/

/* Message Ident to be sent to
parent on death of process*/

/* Scheduler.saves pointer to
preempted process here*/

/* not used */

/* not used */

under MERT-UNIX making use of the new "system call’s" added to
" the MERT version of the UNIX supervisor.

Section F describes all of the new "UNIX system call 's" added to
the MERT-UNIX supervisor. The binary object code for each
routine is kept in the library file "/lib/libr.a".

Most sections begin with an introduction section. Each section
consists of a number of independent entries of a page or so each.
The name of the entry is in the upper corners of its pages, its
preparation date in the upper middle. Entries within each sec-
tion are alphabetized (except for section C). The page numbers
of each entry start at 1.

All entries are based on a common format, not all of whose sub-
sections will always appear. '

The name section repeats the entry name and gives a very short
description of its purpose.

The synopsis summarizes the use of the program being described.
A few conventions are used, particularly in the Commands sec-
tion:

Boldface words are considered literals, and are typed Jjust as
they appear.

Square brackets ([]) around an argument indicate ghat the ar-
gument is optional. When an argument is given as " “name ~, it
always refers to a file name.

Ellipses "“.l.l." " are used to show that the previous argument-
prototype may be repeated.

A final convention is used by the commands themselves. An argu-
ment beginning with a minus sign *°'_"" is often taken to mean
some sort of flag argument even if it appears in a position
where a file name could appear. Therefore, it is unwise to have

LY

files whose names begin with e
The description section discusses in detail the subject at hand.

The files section gives the names -of files which are built into
the program.

A see also section gives pointers to related information.

A diaghostics section discusses the diagnostic indications which
may be produced. Messages which are intended to be self-
explanatory are not listed.

The bugs section gives known bugs and sometimes deficiencies.
Occasionally also the suggested fix is described.

<

INTRO(A) 1/22/75 INTRO(A)

int *r leng; /* Segment length in 32 word blocks
%

char r ucnt; /* Number of users */

char r status; - /* Segment status flags */

char *r_disk; /* Starting block on the swap dev-

ice */
int r_name{2] /* Unique 32 bit name */
}s

The sharing of segments by independent cooperating processes is
accomplished wvia the r_name entry in the RSDE table. The
processes need only create a segment with the same unique name in
order to share the same physical segment. The system convention
for establishing unique names for segments is based on the prem-
ise that shared segments will contain some initial data, and this
data will reside in a file. The name is simply the absolute disk
address (major, minor device and block number) of the first block
of the initialized data. For processes which have a parent child
relationship, sharing is accomplished by passing a segment ID
between parent and child.

The bits of pstat are defined as follows:

bit 15 1 if segment is active. Symbolic name pcbnn for
need now.]

bit 14 1 if segment is needed next time the process is
activated. Symbolic name pcbnxt for next.

bit 13:12 Address space: 1 for supervisor, 2 for user

bit 11 1l if D-space

bit 19:8 Starting segmentation register number.

bit 7 1 if segment has been made non-swap by the pro-
cess ~

bit 6 1 if memory manager did not load this segment

(even though pcbnn or pcnxt were set) because
of 1insufficient swap. space. Symbolic name

~ pcbnold.

bit 5§ 1 1f segment is sharable. Symbolic name
pcbshare. -

bit 4 1T it segment is writeable by the process. Sym-
bolic name ocbwrite.

bit 3 -1 if segment 1s a stack segment. Symbolic name
pcbed.

bit 2:0 Access setting for the segment.

In this section of the manual, the statement "segment indexed by
segnum” means that the kernel will access the PCB segment table:

struct pcb p;

p.p_tab[segnum].pstat .

The kernel procedure on all traps from supervisor and user mode,
except break point traps from supervisor (a core dump is produced
.in /cdmp/p name) , is:

1) The psd saved on the stack is put into the PCB at

p_fpsd.

2) For floating point or segmentatlon traps, the appropri-
ate registers are saved in p fsav.

3) The fault code is saved in p p fcode:

INTRO(A) 1/22/75 INTRO(A)

struct psdd p_topsd; /*Scheduler save pc and ps of
process on time out or preemp-

tion*/
struct {
int p_toreg[6];
int p ssp: /*supervisor stack pointer*/
int p_usp; /*User stack pointer*/
int p_kssr3; /*Current state of supervisor

and user D space register*/
double p_fprg[6]; /*Floating point registers */
int p_£fps;

} p_tosave; /*Scheduler saves the context
of a process here*/

int p_event; /*Event flags are stored here
*/

struct psdd p_evect; /* ps and pc for vectoring to
event handling routine*/

struct psdd p_evpsd; /* Interrupted ps, pc are saved
here */

int p_evmask; /* Event mask word; a 1 in

: each bit position enables the

corresponding event */

struct psdd p_fvect; /* ps, pc for vectoring to su-

pervisor fault handling
routine*/

int p_£code; /* Type of fault */

struct psdd p fpsd; /* ps, pc save area */

int p_fsav[3]; /* save area for fault depen-

dent parameters - for segmenta-
tion faults ssr9, ssrl, and
ssr2; for floating point faults
FEC, FEA, and floating point
status register */

struct psdd p_emtpsd; /* ps, pc on EMT traps to the

kernel */
int p emtsave([6); /* rd -r5 are saved nere on EMT
- traps to the kernel */
struct {
int pstat; /* Segment status word*/
int psegid; /* Segment ID */

} } p_tab(];

The segment table p tab[] defines the supervisor and user virtual
address spaces. The table contains a minimum of three entries
which, in the order they appear, are: the PCB segment, a supervi-
sor stack segment, and a code segment. The maximum number of en-
tries is currently limited to 48 (no more than 32 can be active
at one time). Each table entry defines how a segment is to be
accessed by the process (see pstat below). The segments speci-
fied by Bsegid are contiguous pleces of memory and (swap space on
disk) which vary from 32 to 32K words in 32 word increments. The
segment ID is a pointer to a table in the kernel (the RSDE table)
which has the structure:
struct rsde {
char *r ptr; /* Pointer to memory management
tables*/

ADDSEG(A) 1/17/75 ADDSEG(A)

NAME
addseg - add a segment to the process address space

SYNOPSIS
(addseg = 4)
addseg (segnum)

DESCRIPTION

Addseg searches the process segment table and deactivates
(and removes non-swap status from) any other segment which
starts at the same virtual address as the entry indexed by
segnum. If the new segment is in memory or if space for an
uninitialized segment is available, the appropriate segmen-
tation registers (as specified by the flags word of the seg-
ment table entry) are loaded. 1If the new segment is not in
memory, the "need next" bit is set in the process segment
table, the process status is set to ‘"swap permitted, not
ready to run", and control is transfered to the scheduler.
when rescheduled non-swap status is re-instated .

ALSO SEB
rmovseg(a)

DIAGNOSTICS
C returns -1 if the segnum points to a null segment table
entry. Fault return with code 19 if segnum exceeds the
available number of segment table-entries.

INTRO(A) | : 1/22/75 INTRO(A)

bus error

illegal instruction

trace trap

IOT trap

power fault

EMT (from user only)

trap trap

floating point exception

segmentation fault

19 invalid emt (from supervisor mode only)

4) The new ps and pc are extracted from p fvect and put on
the kernel stack.

5) The c-bit in the new ps is set if the trap is a segmen-
tation fault from supervisor mode.

6) If £ code = 1@, p _fvect is cleared.)

7) The kernel executes an rti to give control to the super-
visor trap handling routine.

W ooTU W&

The kernel procedure on the arrival of an event is:
1) The appropriate bit in p event is set.
2) If the corresponding bit in p evmask is set and the psd
in v event, 1is defined, the interrupted ps and pc are
et t—
postea 1n p evpsd and an rti is executed to the psd 1in

p_evpsd.

The description of all the EMT calling sequences are given for C.
In most cases no reference to the assembly language calling se-
quence is given. One can translate the C call to the assembly
call by putting the address of the argument list in r¢ and sub-
stituting c-bit set for -1 returns. In cases where the assembly
language returns are more complex than simple success or fail, a
complete description is included.

The message formats for creating and terminating processes are
discussed in section C of the manual.

"

ADDUSER (a) 1/1/75 ADDUSER(a)

NAME
adduser - increment user count on a process
SYNOPSIS
(adduser = 43.)
adduser (process) .
int process; /* process number */
DESCRIPTION
Adduser increments the user count on the process specified
by process. A 1 is returned from C for a successful call.
SEE ALSO
DIAGNOSTICS

A -1 is returned from C if the process does not exist.

ALOCKSEG(A) 1/20/75 ALOCKSEG (A)

alockseg - lock a segment in memory and set write back

SYNOPSIS
(alockseg = 13.)
alockseg (segnum)

DESCRIPTION
The segment indexed by segnum is locked in memory and the
segment write back bit is set. This system function should
be used for reading into a segment; lockseg should be used

for writing out of a segment. See lockseg for unlocking
responsibility.

ALSO SEE -
lockseg(a), lockid(a), ulockseg(a), ulockid(a)

DIAGNOSTICS
C returns -1 if:
l) segnum points to a null segment table entry
2) segnum points to an inactive segment

Fault return with code 14, if segnum points beyond the end
of the segment table. :

ALOCSEG(a) 1/16/75 ALOCSEG(a)

- NAME
alocseg - create a segment
SYNOPSIS
(alocseg = §)
alocseg (segnum,size,partition,@)
alocseg (segnum,size,partition,name)
int segnum;
int size;
int partition;
int name(2];
DESCRIPTION
If name is zero, a segment id and size (words) of swap space
are allocated. If name is non-zero and matchs an existing
segment name, the segment user count 1is incremented. If
name is non-zero but does not match an existing name, an ID
is allocated and set in the blocked state to permit initial-
ization. The ID 1is returned in the process segment table
indexed by segnum. The new segment will not be added to the
process address space and thus is not brought into memory.
Wwhen read into memory, the segment will be loaded into the
memory partition specified by partition.
From assembly language, rd points to a four word block con-
taining segnum, size, partition, and name (the address of a
double word name). If the reguest is successful, the c¢-bit
is clear and rd contains the new segment id. If the regquest
is partially successful, the c~bit is set and r@ contains
the status of the reguest:
" 1) rd = -1 Swap space is saturated
2) 8 = @ Segment is blocked and the process has been
put to sleep on the segment id (named seg-
ments only).
3) r® = ID Segment has been created and must be ini=-
tialized (named segments only).
A typical sequence to create a named segment is:
l) allocate a named segment id
2) setmap to define virtual address
3) addseg to bring the segment into the process ad-
dress space
4) read data into the segment
S) unblock the segment
ALSO SEE
addseg(a), setmap(a), sleep(a), unblkseg(z)
DIAGNOSTICS

C returns -1 if system is out of swap space or segment ID’s.
A return of zero if a named segment has been created in the
blocked state (eg is being initialized by another process).
Fault return with fault code 19 if segment table entry is
non-zero Or segnum is greater than 47.

ATTACH (a) 1/1/75 ATTACH(a)

NAME
attach - attach process to interrupt vector

SYNOPSIS ' -
(attach = 35.) ;;s
attach(process, vector, entry) . d

DESCRIPTION

Attach attaches the process process to the interrupt vector

at address vector. The PC, PS pair is loaded with the entry

point entry and the priority of the process, respectively.

The address of the "jsr" attached to the interrupt is re-

turned in C. This system function is normally only invoked S
by the process manager to load and enable a new device N
driver.

SEE ALSO
detach(a) .

DIAGNQOSTICS
An error is returned if the process does not exist, if ac-
cessing the device register gives a bus error or if the in-
terrupt vector is invalid (-1 in C).

NAME

COPYSEG (a) 1/1/75 | COPYSEG (a)

copyseg - make a copy of a segment

SYNOPSIS

(copyseg = 21.)
copyseg (segnum, &newid, msident)

int segnum; /* index into PCB segment table */

int *newid; /* address of new segment ID */

int msident; /* message identifier word */
DESCRIPTION

Copyseg makes a copy of the segment specified by segnum in
memory if possible. If the in-core copy has been success-
ful, a value of 1 is returned in C. If the in-core copy was
not successful, but a copy had to be created in the swap
area, a value of @ is returned in C. 1In this case a message
has been sent to the memory manager to make a copy. An ack-
nowledgement message will be returned to this process upon
completion of the copy with a message identifier word
msident. In both cases the segment id of the new segment is
returned in newid. This system function is typically used
to make a copy of an existing process.

SEE ALSO

DIAGNOSTICS

If the segment to be copied does not exist or if space could
not be allocated for the new segment, a -1 is returned from
C.

CLREVENT (a) 1/1/75 CLREVENT (a)

NAME
clrevent - clear event flag(s)

SYNOPSIS
(clrevent = 33.)
clrevent(eflag)

DESCRIPTION :
Clrevent clears the event flag(s) specified by the bits set
in eflag, in the PCB (See event(a) for definition of pre-
defined flag bits). The bits set in eflag are reset in the

event word in the PCB.. The bit(s) to be cleared normally

correspond to the event just received. '

SEE ALSO
event(a), enevent(a)

DIAGNOSTICS

CWAIT (a) 10/10/75 CWAIT (2)

NAME
cwait - conditional wait for event

SYNOPSIS
(cwait = 25.) .
cwait(&flaqg)
int flag;

or
cwait(0)

DESCRIPTION
Cwait causes the current process to give up control (enter
the road blocked state) if the value of flag is non-zero; an
immediate return occurs if flag is zero. A cwait cell with
#n argument of zero causes the p_cwait location in the PCB
to be used in place of flag. P_cwait is set to one by many
of the kernel EMT treps: (sleep, sendmsg, sendmsgfrom,
sendcpmsg, ioqueuem, getmsg, gettype, event, c¢rdblk, and
cwait), and cleared by the kernel EMT traps enevant 2nd
clrevent, 2s well as the occurance of any event. If flaa
(or p_cwait) is non-zero the locetion p_wait (also in the
PCB) will be set. This will cause the scheduler to keep
the process in memory for the remainder of it's time slice.
Cwait should only be used if the process expects the condi-
tion causing the process to road block will ke cleared up
within 200 milliseconds. 1If a longer wait is expected |us2
crdblk.
Since event interrupts are inhibited while the kernel checks
flag, potential timing problems between the "base line" and
asynchronous event handler parts of a supervisor process can
be resolved. The type of timing preoblem is illustrated by
the buffered I/C in the UNIX supervisor: The "base 1line"
code will <set flag to one and initiate 2 buffer write then
call cwait(&flag) waiting for the I/C -to complets. If the
I/C manages to complete before the "base line" completes ex-
ecution of the cwait (preemption c¢ould occur), the event
handler will merk the buffer I/0 as donz and clear flag.
Base line will then complete the cwzit c¢c21l. The kernel will
detect a zero flag 2nd return from the cwait preventing the
supervisor from road blocking for an event which has z2lready
occurred.

SEE ALSC
crdblk(a).

DIAGXCSTICS

CRDBLK (2} 9/16/76 CRDBLK (2a)

NAME
crdblk - conditional road block for event

SYNCPSIS
(crdblk = 24.)
crdblk(&flaqg)
int flag;

or
crdblk (0)

DESCRIPTION
Créblk causes the current process to give up control (enter
the road blocked state) if the value of flag is non-zero; an
immediate return occurs if flaa is zero. A crdblk call with
an argument of zero causes the p_cwait location in the PCB
to be used in place of flag. P_cwait is set to one by many
of the kernel EMT trazps: (sleep, sendmsg, sendmsgfrom,
sendcomsg, ioqueuem, getmsg, gettype, event, crdblk, and
cwait), and cleared by the kernel EMT traps enevent and
clrevent, zs well as the occurance of any event. Since
event interrupts are inhibited while the kernel checks flag,
potential timing problems between the "base line" and asyn-
chronous event handler parts of a supervisor process can be
resolved.

SEE ALSO
cwait(a).

DIAGNOSTICS

ry

DROPSEG (A) 1/19/75 " DROPSEG(A)

NAME E .

dropseg - drop a segment from a process virtual address
space

SYNOPSIS
(dropseg = 6)
dropseg (segnum)

DESCRIPTION
The segment indexed by segnum is removed from the process
virtual address space (the "active®” bit is cleared in the
segment table status word). The "altered” bit is uncondi-
tionally cleared and the "new segment" bit is set. The
result of all this bit setting and clearing is that the con-
tents of the segment are totally unpredictable. If the
current contents of the segment are no longer required,
swapping will be reduced when the segment is reactivated.
This system function can be used by a process which dynami-
cally creates subtasks and must assign working storage to

. the subtask. The contents of the segment can be disgarded

when the subtask finishes, but the segment is retained for
future tasks.)

ALSQO SEE
rmovseg{(a)

DIAGNOSTICS

C returns -1 if the segnum peints to a null segment table
entry. Fault return with code 1§. if segnum exceeds the
available number of segment table.entries.

DETACH (a) 1/1/75 DETACH (a)

detach - detach process from interrupt vector

SYNOPSIS

{detach = 36.)
detach(process, vector)

DESCRIPTION

Detach detaches the process process from the interrupt vec-
tor at address vector. The entry point for the process is
cleared and the device control register 1is also cleared.
This system function is normally only invoked by the process
manager in the process of taking down a device driver.

SEE ALSO

attacn(a).

DIAGNOSTICS

An error is returned if the process does not exist or if the
interrupt vector <is invalid (-1 in Q).

P

EVENT (a) 1/1/75) EVENT(a)

NAME
event - send event to a process
SYNQOPSIS
; (event = 32.)
L p— event (process, eflag)
DESCRIPTION
Event sends the event(s) specified by the eflag word to the
process specified by process. Sixteen flag bits are avail-
able, eight of which have the following pre-defined mean-
ings:
e 0100900 wakeup
{ - 0040000 timeout
' ‘ 00200800 message
0010088 hangup
80040060 interrupt
POG2060 quit
0901008 abort
0098406 init
The other eight are user definable. Sending an event causes
the system to set the appropriate bit in the process con-
trol table and trigger the programmed interrupt at the pro-
cessor priority of the receiving process.
SEE ALSO
clrevent(a), enevent(a)
DIAGNOSTICS

If the process specified does not exist, an error 1is re-
turned (-1 in Q).

ENEVENT (a) 1/1/75 ENEVENT (a)

NAME
enevent - enable event £flag(s)
SYNOPSIS

(enevent = 34.)
enevent (eflag)

DESCRIPTION : -
Enevent sets the event flag(s) specified by the bits set in
eflag, in the PCB p evmask word (See event(a) for definition
of pre-defined flag bits). The bit(s) to be set correspond
to the event(s) which the process is enabled to receive.

The evmask word is cleared upon the receipt of an event to TN
prevent multiple events from being received. Y
SEE ALSO

event(a), clrevent(a)

DIAGNOSTICS

Q:;>

g?')

FREESEG(A) 1/17/75 FREESEG (A)

NAME
freeseg - remove a segment ID from the process segment table
SYNOPSIS
(freeseg = 3)
freeseg (segnum) ;
int segnum;
DESCRIPTION ' :
The segment table entry indexed by segnum is zeroed. The
segment user count is decremented and if zero, the segment
ID is set in the unallocated state and the associated swap
space is returned to the system.
ALSO SEE
dropseg(a) , rmovseg(a)
DIAGNOSTICS

C returns -1 if the segment table entry indexed by segnum is
zZero. Fault return with code 19 if segnum exceeds the seg-
ment table. o

EXECUTE (a) ' 1/1/75 EXECUTE (a)

NAME
execute - execute new process

SYNOPSIS
(execute = 44.) . o
execute (pcbbase, dspace, &psd) N
int pcbbase; /* base register for PCB */
int dspace; /* process d-space bits */
int *psd; /* pointer to entry points */

DESCRIPTION

Execute frees up all currently active segments except for
the PCB and sets all the remaining segments as active. Va-
cated slots in the PCB are squeezed out. Pcbbase specifies N
wnich base register is used to point to the PCB (8-7 is su=-
pervisor i-space and 8-15 is supervisor d-space). The two
low order bits of dspace indicate if d-space is to be turned
on for the supervisor (bit 1) and for the user (bit 8). Psd
points to three sets of entry point pairs of PS and PC:

event entry point

normal entry point

fault entry point
An INIT event is sent to this process to start it up. No
return is possible from this system call. The execute func-
tion 1is wused by the NU2 process to start up a new
supervisor—-user process.

SEE ALSO
setdspac(a), event(a).

DIAGNOSTICS

GETIME (a) 1/1/75 GETIME (a)

NAME
getime - get time

SYNOPSIS .
(getime = 39.)
getime(time)
int time(2];

DESCRIPTION
Getime returns the time in the kernel into the array time.

SEE ALSO
setime(a).

DIAGNOSTICS

GETCHAR(a) 1/1/75 . GETCHAR(a)

NAME
getchar - get characters from kernel process
SYNOPSIS
(getchar = 192.)
getchar (pointer, segid, offset, count, &flag)
int *pointer; /* pointer to process, channel pair */
int segid; /* ID of segment being read into */
int offset; /* byte offset into segment */
int count; /* byte count */
int *flag; /* flag word */
DESCRIPTION

-

Getchar returns count characters to the caller in the seg-
ment specified by segid starting at offset bytes into the
segment. If the segment 1s a stack segment the offset 1is
from the end of the segment. Pointer points to the pair of
words specifying the process number of the kernel process
and the logical channel number of the device controlled by
the kernel process. The call to the kernel within the 1li-
brary routine returns the byte count. If no bytes are read,
the library routine roadblocks the user, waiting for input.
If a =1 1is returned, an EOT signal was received on input,
and control is passed directly back to the user with a zero
byte count. In the roadblock state, if a quit or interrupt
signal is received, the user is unroadblocked, and the non-
zero value of the flag causes an immediate return to the
user.

SEE ALSO

putchar (a) , setty(a), getty(a)

DIAGNOSTICS

If an error condition is detected (illegal buffer address or
size) the negative value of the error code is returned in C.

GETTY (a)- 1/1/75 GETTY (a)

NAME
getty - get state of tty driver process
SYNOPSIS
(getty = 195.)
getty(pointer, buffer)
int *pointer; /* pointer to process, channel pair */
int buffer[3]; /* 3 word buffer */
DESCRIPTION
Getty returns the state of the tty kernel driver process
specified by the process/channel number pair pointed to by
ointer into the three word buffer buffer. The contents of
the buffer are dependent upon the device type of the kernel
process. A value of 1 is returned by C.
SEE ALSO
getchar, putchar(a), setty(a)
DIAGNOSTICS

A value of -1 is returned from C if the kernel device driver
is not a character device.

GETCSW (a) 1/1/75 GETCSW (a)

NAME
getcsw - get console switch register setting

SYNOPSIS
(getcsw = 46.)
getcsw()

DESCRIPTION '
Getcsw returns the console switch register setting.

SEE ALSO

DIAGNOSTICS

GROWSEG (3) ' 1/19/75 - GROWSEG (A)

NAME~
growseg- increase or decrease the size of a segment

SYNOPSIS
(growseg = 8.)
growseg (segnum,size)

DESCRIPTION
The segment indexed by segnum is set to size words. New
swap space will be allocated if the new size causes the seg-
ment to cross a sector boundary on the swap device. The new
piece is zeroed and appears at the high address end for nor-
mal segments and the low address end for stack segments. If
the segment 1is decreasing in size, the high address end is
truncated.

ALSO SEE

DIAGNOSTICS

Return of -1: :
1) segnum points to a null segment
2) segnum points to an inactive segment
3) System swap space is saturated
4) New size causes the process to exceed available
memory (the "pcbnold” bit will be set on all user mode
segments if fail return is for this reason).
5) The new size will cause the segment to require nonex-
istant or privileged segmentation registers (eg the new
size of a segment starting in user I-space register 7
causes the segment to spill over into D-space base re-
gister 0).
Fault return with code 18.:
1) segnum exceeds the number of available segment table
entries
2) the segment is non-swap

GETHSG (a) 1/1/75 GETMSG (a)

NAME

getmsg - get a message

SYNOPSIS

(getmsg‘= 36.)
getmsg (&msgbuf)
int *msgbuf; /* pointer to message buffer */

DESCRIPTION

Getmsg gets a message in the buffer msgbuf from the process
message input queue. (See sendmsg(a) for message header
description). If no message is on this process’s input
qgueue, the process roadblocks within the library routine,
waiting for a message event. The receiver of the message
must f£ill in the mssize word to indicate the largest message

"he is willing to receive. Fhe size of the message is ex-

clusive of the size of the message header. Messages are de-
queued according to FIFO.

SEE ALSO

sendmsg (a) , sndmsgfrom(a), gettype(a).

DIAGNOSTICS

[

INHIBIT (a) 18/16/75 INHIBIT(a)

NAME

inhibit - run process at priority one
SYNOPSIS

(inhibit = 22.)

inhibit()
DESCRIPTION

Inhibit changes the hardware priority at which the proéess

runs to one, to protect critical regions in the supervisor

code from receiving events which may be received at proces-
sor priority one. The critical region can only be protected
for up to 3 clock ticks (48 msec.) before the processor
priority is lowered to zero by the system. A process should
use permit (see permit(a)) to lower the processor priority
upon exiting the critical region.

SEE ALSO

permit(a) .

DIAGNOSTICS

GETTYPE (a) 1/1/75 GETTYPE(a)

NAME

gettype - get a message of given type
SYNOPSIS

(gettype = 31.)

gettype (msgbuf)

int *msgbuf; /* pointer to message buffer */
DESCRIPTION

Gettype gets a message of a particular type mstype in the
buffer msgbuf from the process message input queue. (See
sendmsg (a) for message header description). If no message
is on this process’s input queue of the type mstype the pro=-
cess roadblocks within the library routine, waiting for a
message event (In assembly language, the c-bit is set). The
receiver of the message must £fill in the mssize word to in-
dicate +the 1largest message he is willing to receive. The
size of the message is exclusive of the size of the message
header. He must also f£ill in the message type mstype which
he expects to receive back. This system function 1s provid-
ed to give the user control over the order in which he re-
ceives the different types of messages. Messages are de-
gueued according to FIFO.

SEE ALSO
sendmsg (a) , sndmsgfrom(a), getmsg(a).

DIAGNOSTICS

LOCKSEG(A) 1/28/75 LOCKSEG(A)

NAME
lockseg - lock a segment in memory

SYNOPSIS
(lockseg = 11.)
lockseg (segnum)

DESCRIPTION
The segment indexed by segnum is locked in memory (eg can
not be swapped or moved from its current position in physi-
cal memory). By convention all processes which issue 1/0
messages are expected to lock the segment in memory before
issuing the I/O message. The kernel will unlock the segment
when the I/0 is complete.

ALSO SEE)
alockseg(a), lockid(a), ulockseg(a), ulockid(a)

DIAGNOSTICS

C returns -1 if:

1) segnum points to a null segment table entry

2) segnum points to an inactive segment.
Fault return with code 186, if segnum points beyond the end
of the segment table.

JOBCHG (2) 1/1/75 JOBCHG (a)

NAME

jobchg = change control to next process
SYNOPSIS

(jobchg = 23.)

jobchg ()
DESCRIPTION

Jobchg causes the current process to give up control to the
next process which 1is ready to run. 1If there is no other
process ready to run, control will be returned back to the

current process.
SEE ALSO

DIAGNQSTICS)
A -1 is returned from C if no process is ready to run.

PERMIT (a) 14/18/75 ' PERMIT (a)

NAME

permit = run process at priority zero
SYNOPSIS

(permit = 47.)

permit ()
DESCRIPTION

Permit changes the hardware priority at which the process
runs to zero. A process should use permit to lower the pro-
cessor priority upon exiting a critical region. The criti-
cal region must be protected by calling inhibit.

SEE ALSQ
inhibit(a).

DIAGNOSTICS

LOCKID(A) 1/26/75 LOCKID(A)

NAME
lockid - increment the lock count on a segment
SYNOPSIS
(lockid = 12.)
lockid (segid)
DESCRIPTION
The lock count on the segment segid is incremented. Lockid
differs from lockseg in two important respects: the segment
must already be locked before lockid 1is called and segid
need not be in the address space of the calling process.
Processes initiating multiple independent I1/0 transfers into
a segment belonging to another process find lockid useful.
ALSO SEE
alockseg(a), lockseg(a), ulockseg(a), ulockid(a)
DIAGNOSTICS

C returns -1 ifs
1) segid is not a valid segment id
2) segid is not locked in memory.

PSWAP (A) 1/21/75 PSWAE (A)

NAME
pswap - remove non-swap status from a process
SYNOPSIS
(pswap = 17.)
pswap ()
DESCRIPTION ‘
Non-swap status is removed from all segments in the process
segment table and the non~swap bit in the kernel scheduler
tables is cleared. This is the opposite of punswap.
ALSO SEE
punswap(a)
DIAGNQSTICS

OPENSEG (A) 1/17/75 OFENSEG (A) /

NAME
openseg - add a segment id to the process segment table

SYNOPSIS .
(openseg = 1) N
openseg (segnum,segid,segflags) ~

DESCRIPTION

The process segment table entry indexed by segnum is filled
in with segflags and segid. The user count of the segment
named by segid 1s incremented. This system fuction is used
by - the process manager in producing a core dump of a pro-

cess.
7~
ALSO SEE
alocseg(a), setmap(a), unblkseg(a)
DIAGNOSTICS
C returns -1 if segid is not a valid segment id or if segid
is unallocated. rault return with fault code 18 if the seg-.
ment table entry indexed by segnum is non-zero. A return of
zero if segid is in the blocked state.
~~

PUTCHAR(a) 1/1/75 PUTCHAR(a)

NAME:
putchar - output characters to character device driver

SYNOPSIS
(putchar = 193.)
putchar(901nter, segid, offset, count, &flag)
int *pointer; /* pointer to process, channel pair */

int segid; /* ID of segment being written from */
int offsety /* byte offset into segment */
int count; /* byte count */
int *flag; /* flag word */
DESCRIPTION

Putchar outputs count characters from the caller £rom the
segment spec1f1ed by segid starting at offset bytes into the
segment. If the segment 1s a stack segment the offset is
from the end of the segment. Pointer points tc the pair of
words specifying the process number of the kernel process
and the 1logical channel number of the device controlled by
the kernel process. The call to the kernel within the 1li-
brary routine returns the byte count. If all bytes are not

written in one call to the kernel device driver, the library
routine roadblocks, waiting £for a wakeup from the kernel
driver process. In the roadblock state, if a guit or inter-
rupt signal is received, the user is unroadblocked, and the
non-zero value of the flag causes an immediate return to the
user. As many calls are issued to the kernel driver process
as required to write out all count bytes. The total bytes
written are returned from the library routine.

SEE ALSO
getchar(a), setty(a), getty(a)

DIAGNOSTICS
If an error condition is detected (illegal buffer address or
‘'size) the negative value of the error code is returned in C.

PSTART(a) . 1/1/75 : PSTART (a)

NAME
pstart - start process

SYNOPSIS
(pstart = 42.)
pstart(pprior, chan, segid, param, parent)
int pprior; /* processor priority (1 <= pprior <= 7) */
int chan; /* process control channel number */
int segid; /* segment ID */
int param;
int parent; /* process number of parent */

DESCRIPTION
Pstart puts an entry for the new process in the DCT table.
The new process must be started by the parent process by
sending it a wakeup event. The processor priority specified
pprior is 1 for a supervisory process and from 3 to 7 for a
kernel process. The priority of 2 is not allowed. The pro-
cess control channel is specified by chan. For a superviso-
ry process, segid is the segment ID of the PCB of the pro-
cess being started. For a kernel process, segid is the seg-
ment ID of the first Kkernel process segment. The basic
priority at which a process is to run (& - $360) is speci-
fied by param for a supervisory process. For a kernel pro-
cess, param specifies the total number of segments in the
process. The process number of the started process is re-
turned from C. The high order byte of the process number is
the incarnation count and the low order byte 1is the entry
number in the DCT table.

SEE ALSO

DIAGNOSTICS

A -1 is returned from C if the process could not be started.

-~

RTI (a) 1/1/75

NAME
rti - return from trap

SYNOPSIS
(rti = 37.)
rti(pc, ps)
int pc¢;
int ps;

DESCRIPTION
Rti returns back up to the user

SEE ALSO

DIAGNOSTICS

RTI(a)

at the address specified by
pS and the hardware priority specified by ps.

PUNSWAP (A) 1/21/75 PUNSWAP (4)

NAME

punswap - make a process non-swap

SYNOPSIS

(punswap = 16.)
punswap ()

DESCRIPTION

ALSO

All the active segments in the process segment table are
made non-swap (segments are not “locked" since they can
still be shifted in memory to reduce fragmentation). The
non-swap bit is set in the kernel process tables which per-
mits the scheduler to dispatch to the process without cal-
ling the memory manager to check if all the segments are in
memory. This is useful for processes which require service
within real time limits shorter than the swap time.

SEE
pswap(a)

DIAGNOSTICS

C returns -1 if the memory available for swapping will be
less than 8K words after all the segments are made non-swap.

SENDHSG (a) 1/1/175 SENDMSG (a)

NAME
sendmsg - send a message

SYNOPSIS
(sendmsg = 28.)
sendmsg (msgbuf)
int *msgbuf; /* pointer to message */

DESCRIPTION
Sendmsg sends a message from the current process to another
process (kernel or supervisor-user type). The message to be
sent starts at msgbuf and may be up to 112 words long. A
message consists of a six word header defined by the follow-
ing structure:

struct msghdr {
int *mslink; /* pointer to next input message */
int msfrom; /* sending vrocess number */
int msto; /* receiving process number */
char mssize; /* message size in words */
char mstype; /* message type */
int msident; /* message identifier */
char msstat; /* message status word */
char mssegnum; /* message sequence number */

}i

and the sender’s data. The sender need only £ill in the
msto, mstype and mssize fields of the message. The mssize
word is the size of the sender s message in words exclusive
of the header. The mst ne byte may be any number from @ to
9376. The value of 6377 reserved for acknowledgement
messages. The ' sender may flll in msident in order to iden-
tify a particular-acknowledgement message, as this word is
never modified during the life of this message. The message
is verified and copied into a kernel address space message
buffer area. Here the msfrom word is filled in by the ker-
nel as well as the message sequence number. The message 1is
put on the input queue of messages for the msto process us-
ing the mslink. word. A programmed interrupt request is en-
abled by sending a message event to the msto process. The
message sequence number mssegnum is used only for deougging
purposes. The msstat byte is filled in by the receiver of
this message in its acknowledgement to this message. It
contains the error code 1if non-zero. The value of -1 is
reserved by the system for the case where the intended re-
ceiver process does not exist or is aborted abnormally.

SEE ALSO
sndmsgfrom(a) , getmsg(a), gettype(a).

DIAGNOSTICS
If the message is too big, a -1 is returned from C.

RMOVSEG (&) 1/17/75 RMOVSEG (A)

NAME
rmovseg - remove a segment from a process virtual address

space

SYNOPSIS
(rmovseg = 5.)
rmovseg (segnum)

DESCRIPTION

The segment indexed by segnum is removed from the process
virtual address space (the "active" bit is cleared in the
segment table status word). If the "non-swap" bit of the
segment table status word is non-zero, the bit is cleared
and the segment "non-swap" count is decremented. The seg-
ment activityv count is decremented and if zero, the segment
becomes a candidate for swapping. This system function
should be used if the contents of the segment are to be used
at a later time. If the segment is used for scratch storage
and the current data are not needed when the segment is
reactivated, dropseg should be used.

ALSO SEE A
dropseg(a), freeseg(a).

DIAGNOSTICS
C returns -1 if the segnum points to a null segment table
entry. Fault return with code 1§ if segnum exceeds the
available number of segment table entries.

SENDPORT (a) 16/18/75 : SENDPORT(a)

DIAGNOSTICS
If the message is too big, the port number is invalid or the
receiving process is unable to hold any more messages on its
input qQueue, a -1 is returned from C.

SENDPORT (a}) 16/16/75 SENDPORT(a)

NAME
sendport - send message through port

SYNOPSIS
(sendport = 49.)
sendport (msgbuf) °
int *msgbuf; /* pointer to message */

DESCRIPTION
Sendport sends a message from the current process to the
process connected to the specified port number. The message
to be sent starts at msgbuf and may be up to 112 words long.
A message consists of a six word header defined by the fol-
lowing structure:

struct msghdr { .
int *mslink; /* pointer to next input message */
int msfrom; /* sending process number */
int msto; /* receiving process number (conn. t
char mssize; /* message size in words */
char mstype; /* message type */
int msident; /* message identifier */
char msstat; /* message status word.*/
char mssegnum; . /* message seguence number */

}e

and the sender ‘s data. The sender need only £fill in the
msto, mstype and mssize fields of the message. The mssize
word is the size of the sender’s message in words exclusive
of the header. The mstype byte may be arny number from 8 to
$376. The value of 0377 1s reserved for acknowledgement
messages. The msto field must contain the port number to
which the receiving process is connected. The sender may
£ill in msident in order to identify a particular ack-
nowledgement message, as this word is never modified during
the 1life of this message. The message is verified and
copied into a kernel address space message buffer area.
Here the msfrom word is filled in by the kernel as well as
the message sequence number. The message is put on the in-
put queue of messages for the process connected to the port
number specified in msto using the mslink word. A pro-
grammed interrupt Treguest is enabled by sending a message
event to the receiving process. The message seguence number
msseqgnum is used only for debugging purposes. The msstat
byte is filled in by the receiver of this message in 1ts
acknowledgement to this message. It contains the error code
if non-zero. The value of -1 is reserved by the system for
the case where the intended receiver process does not exist
or is aborted abnormally.

SEE ALSO
sendmsg (a) , sndmsgfrom(a), getmsg(a), gettype(a).

SETHMAP (A)

NAME

1/19/75 SETMAP (A)

setmap - set access, mode and starting segmentation register

SYNOPSIS

(setmap =

9.)

setmap (segnum,access,basereqg)

DESCRIPTION

Setmap sets the virtual address space (supervisor or user),
address in I or D space, and the access permissions
expansion direction, of the segment indexed by
The virtual address space and access are specified
as follows:

virtual
including
segnum.
by access
bit 13:12
bit 5
bit 3
bit 2:90
The virtual address
bit 3
bit 2:0

mode (1 - supervisor, 2 - user)

l if segment is shareable

expansion direction (1 for stack segment)
access (6 - read/write, 2 - read only)

is specifed by basereg:
I or D space (1 Eor D space)
starting segmentation register

Setmap does not affect the activity of a segment (eg if the
segment was inactive, it remains inactive).

ALSO SEE
addseg(a)

DIAGNOSTICS

C returns -1 if:

1) segnum points to a null entry
2) basereg causes the segment to spill over into non-
existent segmentation registers
Fault return with code 10 if segnum exceeds the available
number of segment table entries.

SETDSPAC(a) 1/1/75 SETDSPAC(a)

NAMNE
setdspac - set user-supervisor d-space bits

SYNOPSIS
(setdspac = 45.)
setdspac (dspacbits)
int dspacbits;

DESCRIPTION
Setdspac sets the d-space bits for user and supervisor ad-
dress spaces according to dspacbits. Bit @ = 1 turns on
user d-space and bit 1 = 1 turns on supervisor d-space.

ScE ALSO

DIAGNOSTICS

SETTY (a) 1/1/75 SETTY (a)

NAME
setty - set state of tty driver process

SYNOPSIS
(setty = 194.)
setty(pointer, buffer, &flag)
int *pointer; /* pointer to process, channel pair */
int buffer(3]; /* 3 word buffer */
int *flag; /* pointer to event flag */

DESCRIPTION .
Setty sets the state of the tty kernel driver process speci-
fied by the - process/channel number pair pointed to by
pointer from the three word buffer buffer. The contents of
tne Uffer are dependent upon the device type of the kernel
process. If the kernel driver still has characters on its
output gqueue, the library routine roadblocks the user, wait-
ing for a wakeup event before returning back to the kernel
driver. 1In the roadblock state, if a quit or interrupt sig-
nal is received, the user is unroadblocked, and the a non-
zero value of the flag causes an immediate return to the
user with the error condition set. A value of 1 is returned
by C normally.

SEE ALSO
getchar, putchar(a), getty(a)

DIAGNOSTICS

A value of -1 is returned from C if the kernel device driver
is not a character device.

SETIME (a) 1/1/75 SETIME (a)

NAME
setime - set time

SYNOPSIS
(setime = 38.)
setime(time)
int time([2];

DESCRIPTION ,
Setime sets the time in the kernel according to the 32-bit
Ssrane = .
time in the array time.

SEE ALSO
getime(a).

DIAGNOSTICS

SLEEP (a) 1/1/75 SLEEP(a)

NAME
sleep - set a bit pattern to sleep on
SYNOPSIS T
(sleep = 26.)
sleep(pattern)
DESCRIPTION)
Sleep sets the bit pattern pattern in the current process s
DCT entry. Then when this process is subsequently road-
blocked, it is re-scheduled by a call to wakeup (pattern).
SEE ALSO
wakeup(a), rdblk(a), psleep(b).
DIAGNOSTICS

If a sleep is impossible, a -1 is returned from C.

SETPRIOR(a) 1/1/75 SETPRIOR(a)

NAME
setprior - set priority of process

SYNOPSIS
(setprior = 41.)
setprior(priority)
int priority;

DESCRIPTION
Setprior sets the priority of the process to priority (8 -
8277) . This is the base priority of the process set in the
PCB word p prior and the process DCT table entry, and is the
priority at which the process normally runs.

SEE ALSO

DIAGNOSTICS

SPACALOC (A) 1/19/75 SPACALOC(A)

NAME

spacaloc - allocate memory for a segment; add the segment to
the process virtual address space

“SYNOPSIS
(spacaloc = 7)
spacaloc(segnum)

DESCRIPTION
Memory is allocated, zeroced, and assigned to the segment in-
dexed by segnum. The segment is then added to the process
virtual address space (see addseg(a)). If the calling pro~-
cess does not have write permission on the segment, this
system function reduces to addsegq.

ALSO SEE
addseg(a)

DIAGNOSTICS

C returns -1 if the segnum points to a null segment table
entry. Fault return with code 18 if segnum exceeds the
available number of segment table entries.

SIZESEG(a) 1/1/75 SIZESEG(a)

NAME
sizeseg - get size of segment
SYNOPSIS : .
(sizeseg = 28.)
size = sizeseg(segnum)
DESCRIPTION
Sizeseg returns the size of the segment (in words) indexed
by segnum in the process segment table in the PCB.
SEE ALSO
DIAGNOSTICS

From C, a ~1 is returned if the segment does not exist, i.e.
there is no entry in the process’s PCB.

SSWAP (A) 1721775 SSWAP (A)

NAME .
sswap - remove non-swap status from a segment

SYNOPSIS
(sswap = 19.)
sswap (segnum)

DESCRIPTION
The non-swap bit in the process segment table indexed by
segnum 1is c¢leared and the segment non-swap count is decre-
mented (if zero the segment can be swapped out of memory).
The process non-swap status in the scheduler tables is also
cleared.

ALSO SEE
punswap(a), pswap(a), sunswap(a)

DIAGNOSTICS

C returns -1 if the segnum points to a null segment table
entry. Fault return with code 10 if segnum exceeds the
available number of segment table entries.

SND#MSGFROM (a) 1/1/75 SNDISGFRO#M (a)

NAME

sndmsgfrom - send a message from a process

SYNOPSIS

(sndmsgfrom = 29.)
sndmsgfrom(msgbuf) ,
int *msgbuf; /* pointer to message */

DESCRIPTION

Sndmsgfrom sends a message from the current process to
another process (kernel or supervisor-user type) on behalf
of the process which sent a message to the current process (
See sendmsg(a) for message header description). It differs
from sendmsg only in that the msfrom word in the message
header must also be filled in Dy the sender. This word is
not touched by the kernel emt trap handler. The net result
is that the acknowledgement to this message is sent directly
back to the original sender. Tnis function is provided par-
ticularly for a supervisor-mode file manager process to send
read/write messages directly to the device driver processes
which in turn send the acknowledgement messages directly
back to the original sender in order to - reduce message
traffic. The msstat byte is filled in by the receiver of
this message in its acknowledgement to this message. It
contains the error code if non-zero. The value of -1 is
reserved by the system for the case where the intended re-
ceiver process does not exist or is aborted abnormally.

SEE ALSO

sendmsg(a)., getmsg(a), gettype(a).

DIAGNOSTICS

If the message is too big, a -1 is returned from C.

SYSPROC(a) 16/18/75 SYSPROC(a)

NAME
Sysproc - system process
SYNOPSIS
(sysproc = 48.)
sysproc(portnum, flag)
int portnum; /* system port number */
int flag; /* function flag */
DESCRIPTION

Sysproc performs some operation on one of the system process
ports specified by portnum according to the value of the
function flag. Portnum 1s a value from 6 to one less than
the maximum process port numbers (currently 4). For flag
egqual to B, the current process is connected to the process
port ortnum. For flag equal to 1, the current process is

disconnected from the process port. For flag equal to 2,
the wvalue of the process connected to the process port
portnum is returned. '

SEE ALSO

sendport(a).

DIAGNOSTICS

C returns -1 if the portnum is invalid or the function flag
is invalid.

SUNSWAP (A) 1/21/75 SUNSWAP (A)

NAME
sunswap - make a segment non-swap
SYNOPSIS
(sunswap = 18.)
sunswap (segnum)-
DESCRIPTION
‘'The segment indexed by segnum is made non-swap (the segment
is not locked since 1t can still be shifted in memory to
reduce fragmentation).
ALSO SEE
punswap(a) , pswap(a), sswap(a)
DIAGNOSTICS

C returns -1:
1) segnum points to a null segment
2) segnum points to an inactive segment
3) memory available for swapping will be less than 8K
words after the segment is made non-swap .
Fault return with code 10 if segnum points beyond the end of
the segment table. ‘

ULOCKID (A) . 1/20/75 _ ULOCKID (A)

NAME

ulockid - decrement the lock count on a segment
SYNOPSIS

(ulockid = 15.)

‘ ulockid (segid)

DESCRIPTION _

The lock count on the segment segid is decremented.
ALSO SEE

alockseg(a), lockseg(a), lockid(a), ulockseg(a)
DIAGNOQSTICS

C returns -1 if segid is not a valid segment id. Fault
turn with code 1@ 1f segid is not locked in memory.

re-

TOUTSET (a)
NAME
toutset - set time-out
SYNOPSIS
(toutset = 40.)
toutset (ticks)
DESCRIPTION

1/1/75 TOUTSET (a)

Toutset schedules a time-out event to occur ticks 68th°s of

a second later. A val
time-out event. This
ing" in UNIX and for
time. It may also be
fixed time intervals.

SEE ALSO
event(a), clrevent(a),

DIAGNOSTICS

ue of ticks equal to zero disables the
system function is used for ‘“profil-
putting the process asleep for a fixed
used to schedule a task (process) at

enevent(a).

UNBLKSEG (A) 1/17/75 . UNBLKSEG (A)

NAME
unblkseg - unblock a named segment

SYNOPSIS
(unblkseg = 2)
unblkseg (segnum)

DESCRIPTION _
The segment id indexed by segnum is unblocked. All
processes sleeping on the segment 1d are awakened.

ALSO SEE
alocseg(a) , openseg(a)

DIAGNOSTICS
C returns -1 if the segment table entry indexed by segnum is
zero. Fault return with fault code 16 if segnum is greater

than the number of available segment entries in the PCB seg-
ment table.

ULOCKSEG (A) 1/20/75 ULOCKSEG (A)

NAME
ulockseg - decrement the lock count on a segment

SYNOPSIS
(ulockseg-= 14.)
ulockseg (segnum)

DESCRIPTION
The lock count on the segment indexed by segnum is decre-
mented. Ulockseg 1is used primarily by the process manager
to remove kernel processes from memory.

ALSO
alockseg(a), lockseg(a), ulockid(a)

DIAGNOSTICS
C returns ~1 if the segnum points to a null segment table
entry. Fault return with code 19 if segnum exceeds the
available number of segment table entries.

-
¢

WRITESEG(A) 1/19/75 WRITESEG(A)

NAME
writeseg - Force a segment to be written back

SYNOPSIS
(writeseg = 10.)
writeseg (segnum)

DESCRIPTION
The writeback bit is set on the segment id indexed :-by
segnum.

ALSQO SEE

DIAGNOSTICS
C returns -1 if the segnum points to a null segment table
entry. Fault return with code 19 if segnum exceeds the
available number of segment table entries.

WAKEUP (a) 1/1/75 WAKEUP (a)

NAME
wakeup - wakeup all processes sleeping on a pattern
SYNOPSIS

(wakeup = 27.)
wakeup (pattern)

DESCRIPTION
wakeup wakes up all processes sleeping on the bit pattern
pattern. A succesful call returns the value of 1.

SEE ALSO
sleep(a), rdblk(a)

DIAGNOSTICS

INTRO(B) 1/28/75 INTRO(B)

INTRODUCTION TO KERNEL EMT CALLS

Section B of this manual lists all the kernel EMT entries into
the kernel from the kernel mode processes. In most cases two
calling sequences are specified, one of which is usable from as-
sembly language, and the other from C. Most of these calls have
an error return. From assembly language an erroneous call is al-
ways indicated by turning on the c-bit of the condition codes.
The presence of an error is most easily tested by the instruc-
tions bes and bec (‘branch on error set (or clear)” ’). These
are synonyms for the bcs and becc instructions.

From C, an error condition is indicated by an otherwise impossi-
ble returned value. Almost always this is =-1; the individual
sections specify the details.

A kernel process is defined in the kernel in a DCT (dispatcher
control table) entry. The structure of a DCT entry is:

struct dct {

int flags; /* process flag bits */

int flink; /* pointer to next process on this gueue at
hardware this priority */

int sleep; /* sleep bit pattern */

int *mesg; /* pointer to first message on input queue
*

int time; /* time-out value in 68ths of a second */

int eflags; /* event flags */

int process;/* process number */

char cchan; /* control channel */

char status; /* process status bits */

int segadr; /* physical block address of start of code

for kernel process, process control block
segment ID for supervisor-user process */

int prior; /* priority bytes */

char mcount; /* count of messages on process input gueue
, */

char £ill; /* not used */

}

The variable process is externally defined in a kernel mode pro-
cess which references it. A kernel mode process runs at its
specified hardware priority in flags and uses I-space only to
provide protection for the kernel tables in D-space. The code
for a kernel process must begin at address 060600 and may be up
to 12K words 1long. Kernel base register 3 (KBR3) is set up to
the beginning of the code. KBR4 and KBRS are only set up if re-
quired. However KBRS is used by the iomap emt call to set up a
transfer directly into a supervisor or user segment for character
I/0. KBR6 1is always set up for access to the kernel library
routines, such as the general tty routines. A kernel process
uses the kernel stack. It also has access to the I/O address
space by means of KBR7 and to the kernel message buffers by means
of KBR9. '

INTRO(B) 1/28/75 ' INTRO(B)

Each kernel process has a 27 word header preceeding the actual
code with the following structure:

struct k_pcb {
struct {
int sar;/* segment address register */
int sdr;/* segment descriptor register */

} kr(6]; /* kernel base register settings for
KBR3, KBR4, KBR5 (I and D) */

int- k_segid[6]; /* segment ID’'s (I and D) */

int k_sav, /* pointer to Dbase register save
routine in kernel */

int k_ent[3];/* process entry points:

event entry point
emt entry point
fault entry point

*/
int k_pn; /* kernel process number */
int kK™ —_iflg; /* interrupt flag set by kernel when
interrupt occurs for this process */
int k_rsv([4];/* register save area upon entry to

this kernel process */

}

The kernel process is dispatched to by means of an interrupt or
by the PIR (programmed interrupt request) triggered by an event.
A kernel process does not need to be attached to an interrupt
vector. In this case the process is dispatched to by means of an
EMT call from the supervisor (EMT code >= 192.). Upon entry to
the kernel process, the kernel saves the current settings of KBR3
and of KBR4 and KBR5 only if used. The base registers are re-
stored on exit.

The kernel processes as well as the supervisor processes communi-
cate via messages. However, kernel processes may read and write
the message buffer area directly. EMT trap calls are provided to
allocate and free messages in the kernel buffer area. The mes-
sage consists of a six word header and up to 106 words of data.
The size of the message may be a multiple of 16 words up to a to-
tal of 112 words. The layout of the message is defined by the
structure: '

struct {
int *mslink;/* link to next message on input gueue
*/
int msfrom; /* process from which message was re-
ceived */
int msto; /* process to which message is to be
sent */
char mssize; /* bits 6-2 size in multiples of
16 words
bit 3 allocated bit
bit 4 acknowledgement bit
bit 5 iolock bit
char mstype; /* message type */
int msident;/* message identification word only

used by sender */

INTRO(B) 1/28/75 INTRO(B)

char msstat;/* status byte set by receiver in ack-
nowledgement message or by system if
receiver process does not exist */
char mssegnum;/* message sequence number */

}

The data in the body of the message must be filled in directly by
the sender of the message.

ALOCMSG (b) 1/1/75 ALOCMSG (b)

NAME
alocmsg - allocate message buffer

SYNOPSIS
(alocmsg =12.)
alocmsg (nwords) ,
int nwords; /* number of words */

DESCRIPTION

Alocmsg allocates a contiguous piece of kernel memory in the
message buffer pool. The size of message allocated is a
multiple of 16 words and egqual to or greater than nwords
plus the size of the message header msghdr. The allocate
bit and message size bits are set in the mssize byte of the
message header. The rest of the message buffer is zeroed
out. A pointer to the beginning of the message is returned
in C.

In assembly language, rd must contain the size of message
buffer required in words. A pointer to the message buffer
is returned in ré.

SEE ALSO
queuem(b) , messink(b), dequeuem(b), freemsg(b), dgtype(b),
gueuemn (b)

DIAGNOSTICS
A 8 is returned from C if no message buffer space exists or
if the size of message requested is greater than 112 words
minus the message header size (6 words).

In assembly language, the c-bit is set to indicate an error.

v

DEQUEUEM (D) 1/1/75 DEQUEUEM(b)

NAME
dequeuem - dequeue a message

SYNOPSIS
(dequeuem = 9.)
dequeuem (process)
int process; /* process number */

DESCRIPTION i
Dequeuem dequeues a message from the input message gueue for
the process specified by process. The first message on the
queue is removed first. A polnter to the message buffer 1is
returned from C.

In assembly language, rl must contain process. A pointer to
the beginning of the message is returned in ra@.

SEE ALSO
alocmsg (b) , messink(b), queuem(b), freemsg(b), dgtype(b),
queuemn (b)

DIAGNOSTICS
A null pointer is returned from C if there is no message on
the input gqueue.

In assembly language, a null pointer is returned in r@.

ATCHINTR (D) _ 1/1/75 ATCHINTR (D)

NAME .
atchintr - attach a process to an interrupt

SYNOPSIS
(atchintr = 17.)
atchintr (process, vector, entry)

int process; /* process number */

int vector; /* device vector address */

int entry; /* process entry point */
DESCRIPTION

Atchintr attaches the process process to the interrupt vec-
tor at address vector. The PC,PS pair is loaded with the
entry point entry and the priority of the process, respec-
tively. This EMT trap is provided to enable the catching of
interrupts for a device. If a process is not attached to a
device, interrupts for this device are ignored. A value of
1l is returned from C.

In assembly language, the following registers must be set

up:
rd vector address
rl process number
r2 entry point

The c¢-bit is cleared for a normal return.

SEE ALSO
dtchintr (b), attach(a), detach(a).

DIAGNOSTICS

A -1 is returned from C if the process does not exist, the

vector address is out of range, or if access to the control
and status register of the device produces a bus error.

In assembly language, the c-bit is set to indicate an error.

‘ DTCHINTR(b) 1/1/75 DTCHINTR(b)'

NAME
dtchintr - detach a process from an interrupt

SYNOPSIS
(dtchintr = 18.)
dtchintr (process, vector)

int process; /* process number */
int vector; /* device vector address */
DESCRIPTION

Dtchintr detaches the process process from the interrupt
vector at address vector. The entry point for the process
is cleared as well as the device control register. This EMT
trap is provided to enable the disabling of interrupts for a
device. If a process is not attached to a device, inter-
rupts for this device are ignored. A value of 1 is returned
from C.

In assembly language, the following registers must be set
up:

rd vector address

rl process number
The c-bit is cleared for a normal return.

SEE ALSO
atchintr(b), attach(a), detach(a).

DIAGNOSTICS
A -1 is returned from C if the process does not exist or the
vector address is out of range. ;

In assembly language, the c-bit is set to indicate an error.

DQTYPE (b) 1/1/75 DQTYPE (b)

NAME
dgtype - degqueue a particular message type

SYNOPSIS
{agtype = 189.)
dgtype (process, type)
int process; /* process number */
int type; /* message type */

DESCRIPTION
Dgtype dequeues a message of type type from the input mes-
sage queue for the process specified by process. . The first
message of this type on the gueue is remove first. A
p01nter to the message buffer is returned from C.
In assembly language, rl must contain the process number and
rd the message type. A pointer to the beginning of the mes-
sage is returned in r#.

SEE ALSO
alocmsg(p) , messink(b), degueuem(b), freemsg(b), gqueuem(b),
gueuemn (b)

DIAGNOSTICS

A null pointer is returned from C if there is no message of
this type on the input gqueue.

In assembly language, a null pointer is returned in rd.

GETARG (b) 1/1/75 GETARG (b)

NAME'
getarg -~ get argument from SUP address space
" 'SYNOPSIS
getarg(address)
int address; /* address in supervisor D-space */
DESCRIPTION

Getarg gets the value of the argument pointed to by address
in supervisor D-space. This function involves no EMT trap.
The value is returned from C.

This function need not be called from assembly language.

SEE ALSO
putarg(b).

DIAGNOSTICS

FREEMSG (b) 1/1/75 FREEMSG (b)

NAME
freemsg - free up message buffer

SYNOPSIS
(freemsg = 11.)
freemsg (&msgbuf)
int *msgbuf; /* pointer to message buffer */

DESCRIPTION
Freemsg frees up a message in the kernel message buffer pool
pointed to by msgbuf. This is done by simply clearing the
allocate bit in the status byte of the message header.
In assembly language, rf must contain a pointer to the mes-
sage.

SEE ALSO
alocmsg (b) , messink(b), degueuem(b), queuem(b), dgtype(b),
gueuemn (b)

DIAGNOSTICS

A~

TOLOCK (b) 1/1/75 IOLOCK (b)

NAME

iolock - lock segment for 1/0
SYNOPSIS

(iolock = 4.)

iolock (segid) :

int seqgid; /* segment ID */
DESCRIPTION

Iolock locks the segment named by segid into memory for an
1/0 transfer. This is done by incrementing a lock count as-
sociated with this segment in the segment descriptor table.
The starting block address of this segment is returned from
C. *

In assembly language, rd must contain the segment ID, segid.
The starting block address of this segment is returned in
cd.

SEE ALSO

uniolock(b).

DIAGNOSTICS

A -1 is returned from C if segid is not a valid segment 1ID
or if the segment is not in memory.

In assembly language, the c-bit is set.

GETIME (b) - 18/16/75

NAME :
getime - get system time

SYNOPSIS
(getime = 21.)
getime (&tbuf) -
int tbuf([2]; /* time buffer */

DESCRIPTION

Getime returns the 32-bit gquantity specifying

value of 1.

SEE ALSO
setime(b) .

DIAGNOSTICS

GETIME (b)

time of
the system with the high order time bits in first word and
low order time bits in second word of buffer tbuf.
specified by tbuf is in 6@ths of a second. C returns a

The time

IOQUEUEM (b) 1/1/75 IOQUEUEM (b)

NAME
iogueuem - send message to I/0 device driver
SYNOPSIS
(ioqueuem = 1.)
iogqueuem (&msgbuf)
int *msgbuf; /* pointer to message buffer */
DESCRIPTION
Iogueuem computes the physical address for an I/0 transfer
as defined by the message pointed to by msgbuf. The message
body must contain:
word 8§ segment id
word 1 word offset into segment
word 2 I/0 byte count.
A negative word offset indicates offset is from top of seg-
ment. Upon return word 1 of the message will contain the 16
least significant bits of the physical address. The user
status byte in msstat of the message contains the extension
bits. This routine also sets the iolock bit in the mssize
byte so that the segment will be unlocked by messink. A
value of 1 is returned from C.
In assembly language, rfd must contain the message buffer ad-
dress.
SEE ALSO
iomap(b) , messink(b), iomsg(c).
DIAGNOSTICS

A null value is returned from C if the segment ID is not
valid, if the segment is not in memory, if the segment is
not locked for I/0, or if the transfer to be initiated would
be outside the address space of the segment.

In assembly language, the c-bit is set.

IOMAP (b) 1/1/75 IOMAP (b)

NAME
iomap - map segid/offset to virtual address
SYNOPSIS
(iomap = 2.)
‘iomap(segid, offset, count)
int segid; /* segment ID */
int offset; /* byte offset into segment */
int count; /* byte count */
DESCRIPTION

Iomap maps the virtual address given by segid and offset
into a virtual address using kernel I-space register 5. 1If
the segment is a stack segment, the byte offset is from the
top of the segment. The virtual address is returned from C.
Up to 8192 bytes may be transferred once this virtual ad-

dress is determined.

In assembly language, r@ must contain the segment ID, seqid,
rl the byte offset into the segment, and r2 the actual
number of bytes to be transferred. The virtual address is
returned in rg.

SEE ALSO

iogueuem(b) .

DIAGNOSTICS

A -1 is returned from C if segid is not a valid segment 1ID,
if the segment 1is not in memory, or if the transfer to be
initiated would be outside the address space of the segment.

In assembly language, the c-bit is set.

PSIGNAL (b) 1/1/75 PSIGNAL(b)

NAME
psignal -~ send events to processes on a control channel

SYNOPSIS:
(psignal = 28.)
psignal (channel, evflags)

int channel:; /* control channel number */
int evflags; /* event flags */
DESCRIPTION

Psignal sends the events specified by the bits set in
evilags to all processes which have the control channel
channel. Sending an event causes the system to set the ap-
- propriate bit in the grocess' control table and trigger the
programmed interrupt at the processor priority of the re-
ceiving process. The processes are placed on the run gueue

at the. highest possible software priority. Nothing 1is re-
turned from C.

In assembly language, rf must contain the channel number and
rl the event flags.

SEE ALSO
event(a), sendevent(b).

DIAGNQOSTICS

MESSINK(b) 1/1/75 MESSINK (b)

NAME
messink - return a message

SYNOPSIS
(messink = 8.)
messink (&msgbuf)
int *msgbuf; /* pointer to message buffer */

DESCRIPTION
Messink returns a message to the kernel. If the noack bit
is on in the mssize byte of the message header, the message
buffer is freed up for future allocation. Otherwise the
message is returned to the original sender as an ack-
nowledgement message (mstype = -1). The iolock bit in the
mssize byte of the message header is also checked to see if
the segment into which I/O was done is to be unlocked. The
message is gqueued on the original sender’s message input
queue and a message event is sent to this process. A value
of 1 is returned from C.
In assembly language, rf must contain the message buffer ad-
dress.

SEE ALSO
alocmsg (b) , gqueuem(b), dequeuem(b), freemsg(b), dgtype(b),
gueuemn (b)

DIAGNOSTICS

A value of @ is returned from C if the original sender pro-
cess no longer exists.

In assembly language, a value of 1 is returned.

PTIMER (b) 1/1/75 PTIMER(b)

NAME :
ptimer - set time-out value for process
SYNOPSIS
(ptimer = 13.)
ptimer (process, time)
int process; /* process number */
int time; /* time-out value */
DESCRIPTION

Ptimer sets a timeout value in the process process’ DCT
table entry. The time specified by time is in 6uths of a
second. C returns a value of 1.

In assembly language, r# contains the timeout value and rl
the process number. '

SEE ALSO
timleft(b).

DIAGNOSTICS
If the process specified is invalid a null value is returned
from C.

In assembly language, the c-bit is set.

PSLEEP (b) 1/1/75 PSLEEP (b)

NAME
psleep - put process to sleep on bit pattern

SYNOPSIS
(psleep = 14.)
psleep(process, pattern)

int process; /* process number */
int pattern; /* bit pattern */
DESCRIPTION

Psleep puts the process process to sleep on the bit pattern

attern. This function 1s implemented by setting the pat-
tern in the DCT table. Return is immediate and 1is usually
followed by a rdblk at the higher level to become effective.
The process is unroadblocked by a call to pwakeup with the
bit pattern pattern. A value of 1 is returned from C.

In assembly language, r® must contain the bit pattern and rl
the process number.

SEE ALSO
pwakeup(b) , sleep(a), wakeup(a).

DIAGNOSTICS
In C, a null value is returned if the process does not ex-
ist.

In assembly language, the c-bit is set.

PWAKEUP (D) - 1/1/75 PWAKEUP (b)

NAME
pwakeup - wake up processes sleeping on bit pattern
SYNOPSIS
(pwakeup = 15.)
‘pwakeup (pattern) .
int pattern; /* bit pattern */
DESCRIPTION :
Pwakeup wakes up all processes sleeping on the bit pattern
pattern. The processes to be woken up are sent a wakeup
event and set to run at a high priority. A value of 1 is
returned from C.
In assembly language, r@ must contain the bit pattern.
SEE ALSO
psleep(b), sleep(a), wakeup(a).
DIAGNOSTICS

PUTARG (b) 1/1/75 PUTARG (b)

NAME
putarg - put argument into SUP address space
SYNOPSIS
putarg (address, value)
int address; /* address in supervisor D-space */
int value; /* value to be moved */
DESCRIPTION

Putarg puts value into the supervisor D-space address speci-
fied py address. This function involves no EMT trap.

This function need not be called from assembly language.

SEE ALSO
getarg(b).

DIAGNOSTICS

QUEUEHMN (b) 1/1/75 QUEUEMN (b)

. NAME

queuemn - queue message with no acknowledgement expected

SYNOPSIS . -
(queuemn = 6.)
queuemn (msgbuf)
int *msgbuf; - /* pointer to message buffer */

DESCRIPTION
Queuemn queues the message pointed to by msgbuf on the input
message queue of the process specified by msto in the mes-
sage header with no acknowledgement to this message expect-
ed. The current value of the message sequence number is
placed in mssegnum of the message header and then updated.
A message event is sent to the msto process. A value of 1
is returned from C.
In assembly language, rd must contain the message buffer ad-
dress.

SEE ALSO :
alocmsg (b) , messink(b), dequeuem(b), freemsg(b), dgtype(b),
queuem(b)

DIAGNOSTICS

A value of @ is returned from C if the msto process is not a
valid process number. If no more messages can be put on the
teceiver's input message queue, the message buffer is freed
up.

In assembly language, the c-bit is set.

QUEUEM (b) 1/1/75 QUEUEM (b)

NAME
gueuem - gueue message on input queue

SYNOPSIS
(gqueuem = 7.)
queuem (msgbuf)
int *msgbuf; /* pointer to message buffer */

DESCRIPTION
Queuem queues the message pointed to by msgbuf on the input
message queue of the process specified by msto in the mes-
sage header. The current value of the message sequence
number is placed in msseanum of the message header and then
updated. A message event 1s sent to the msto process. A
value of 1 is returned from C. ‘
In assembly language, r@ must contain the message buffer ad-
dress.

SEE ALSO
alocmsg (b) , messink(b), dequeuem(b), freemsg(b), dgtype(b),
gueuemn (b)

DIAGNOSTICS '

A value of @ is returned from C if the msto process is not a
valid process number. 1In this case an error status code of
-1 is returned to the sender as an acknowledgement message.
If no more messages can be put on receiver ‘s input message
queue, the message buffer is freed up.

In assembly language, the c~bit is set.

SENDEVENT (b) 1/1/75 SENDEVENT (b)

NAME
sendevent - send event to a process
SYNOPSIS

(sendevent = 19.)
sendevent (process, evflags)

int process; /* process number */
int evflags; /* event flags */
DESCRIPTION

Sendevent sends the events specified by the bits set

in

evfIags to the process specified by process. Sixteen event
types may be specified, eight of which have the following

pre-defined meanings:
0100069 wakeup
p940090 timeout
0020890 message
90190903 hangup
0004000 interrupt
6062008 quit
0091600 abort
0000469 init
The other eight event types are user-definable. Sending

an

event causes the system to set the appropriate bit in the
process control table and trigger the programmed interrupt

at the processor priority of the receiving process.

In assembly language, r# must contain the event flags
rl the process number.

SEE ALSO
event(a).

DIAGNOSTICS

and

If the process specified does not exist, a -1 1is returned

from C.

In assembly language, the c-bit is set.

RITEBACK (b) 1/1/75 ' RITEBACK (b)

NAME
riteback - set altered bit on a segment

SYNOPSIS
(riteback = 5.) B
riteback(segid) ~ .
int segid; /* segment ID */

DESCRIPTION

Riteback sets the altered bit on the segment specified by
segid. A value of 1 is returned from C.

In assembly language, rf must contain the value of segid.
SEE ALSO , ' ~
DIAGNUSTICS)

A null value is returned from C if the segment is not in

memory.

In assembly language, the c=bit is set.

TIMLEFT(b) 1/1/75 TIMLEFT (b)

NAME 4
timleft - get time—-out value for process
SYNOPSIS
(timleft = 16.)
timleft (process)
int process; /* process number */
DESCRIPTION
Timleft returns the time left in 68ths of a second before
the time-out event 1is to be triggered for the process
process.
In assembly language, rl contains the process number. The
time-out value is returned in r@.
SEE ALSO
ptimer(b).
DIAGNOSTICS

If the process specified is invalid or time-out .was not en-
abled for this process a null value is returned from C.

In assembly language, the c-bit is set.

SETIME (b) 16/16/75 SETIME (b)

NAME
setime - set system time

SYNOPS1IS
(setime = 22.)
setime (&tbuf)
int tbuf(2]; /* time buffer */

DESCRIPTION
Setime sets the 32-bit quantity specifying the time of the
system with the high order time bits in first word and low
order time bits in second word of buffer tbuf. The time
specified by tbuf is in 6@ths of a second. C returns a
value of 1.

SEE ALSO
getime(b).

DIAGNOSTICS

INTRO(C) 2/12/75 INTRO(C)

INTRODUCTION TO INTER-PROCESS MESSAGE FORMATS

Section C of this manual describes the formats of all of the mes-
sages used in inter-process communication. A message consists of
a 6 word neader and up to 196 words of data in the body of the
message. Messages may be sent from a kernel process or a super-
visor process to any other kernel . or supervisor process. The
message header is defined by the ‘following structure:

struct msghdr {

int *mslink;/* link to next message on input queue
dJe

int msfrom; /* process from which message was re-
ceived */

int msto; /* process to which message is to be

: sent */

char mssize; /* bits @-2 size in multiples of

16 words

bit 3 allocated bit
bit 4 acknowledgement bit
bit 5 iolock bit '

char mstype; /* message type */

int msident;/* message identification word only
used by sender */

char msstat;/* status byte set either by sender of
message or by the kernel */

char msseqnum;/* message seguence number */

}

The data in the body of the message must be filled in directly by
the sender of the message and varies with the message type as
well as the receiving process. Normally the sender need only
fill in the msto and mstyvpe fields of the message header.

In the case of a kernel process "sender”, an alocmsg(nwords) EHT
call 1is required to alocate space for the message in the kernel
message buffer pool. This call £ills in the appropriate “size"
and "allocate" bits in the: mssize field of the message. The
msfrom field must also be filled in oy thne "sender". The msident
field may be filled in by the "sender” only if he wishes to
recognize the acknowledgement to this message. The kernel pro-
cess may then fill in the body of the message and send it to the
intended receiver by means of the gqueuem or gueuemn (no ack-
nowledgement expected from receiving process) ENT calls. The
kernel queues the message on the input queue of the receiving
orocess using the mslink word. The kernel also fills in the
msseqgnum byte, which 1s used strictly as a debugging aigd. The
msstat tield of the message is filled in by the receiving process
to pass back error status. The value of -1 is reserved by the
kernel to indicate that the receiving process does not exist or
received an abnormal termination.

In the case of a supervisor process "sender", the mssize field
must be filled in. Here the mssize field is now the number of
words in the body of the message excluding the header. The com-

UNIOLOCK (b) ' 1/1/75 UNIOLOCK (D)

NAME
uniolock - unlock segment for I/0
SYNOPSIS
(unioclock = 3.)
uniolock(segid)
int segid; /* segment ID */
DESCRIPTION
Uniolock unlocks the segment named by segid. The uniolock
function is called after an I/0 transfer has taken place, to
or from this segment. This is done by decrementing a 1lock
count associated with this segment in the segment descriptor
table. This routine need only be called if messink is not
called. A value of 1 is returned from C.
In assembly language, r@ must contain the segment ID, segid.
SEE ALSO
iolock (b) , messink(b). .
DIAGNOSTICS

A -1 is returned from C if segid is not a valid segment 1ID
or if the segment is not in memory.

In assembly language, the c-bit is set.

FILE MANAGER(cC) 2/8/175 FILE MANAGER(c)

INTRODUCTION TO FILE MANAGER MESSAGES
The types of messages which the file manager is programmed
to accept are:

EXEC 1 open file for execution

FORK 2 increment count on open files
READ 3 read from £file

WRITE 4 write to file

OPEN 5 open file

CLOSE 6 close file

NMCODE 7 get segment name

CREAT 8 create file

LINK 9 link to a file

UNLINK 10 remove link from file

MDATE 11 modify date of file

CHDIR 12 change directory

INIT 13 initialization message

MKNOD 14 make a node

CHOD 15 change mode of file

CHOWN 16 change owner of file

S¥YNC 17 update file systems on secondary
STAT 18 get status of file

FSIZE 19 get size of file

FSTAT 29 get status of open file

SMOUNT 21 mount file system

SUMOUNT 22 unmount file system

MOVE 23 move file into contiguous area
ALLQOC 24 allocate contiguous space for file
OPENI 25 open file by inode number

For messages sent to the file manager, the first two words
of the body of the message must contain the current directo-
ry and the user and group ID's. The rest of the message
contains various arguments depending on the message type.
The structure of a message to the file manager is given by:

struct {
struct msghdr; /* 6 word message header */
int fm_cdir; /* current working directory *.
char fm_uid; /* user ID */
char fm_gid; /* group ID */

} int fm_argll]; /* list of arguments */

The fm cdir is actually a file descriptor pointing to the
inode maintained by the file manager which is actually the
message sender ‘s current directory. This value may be zero
if the current directory is to be the root directory. The
fm uid and fm gid identifiers are used to determine the mes-
sage sender s access privileges to particular files. For
all messages, error codes are passed back to the sender in
msstat. A system error is indicated by a -1 value of
msstat. The meanings of the possible error codes from the
file manager are the same as the standard UNIX error codes
as explained in section II of this manual. If the message
type sent 1is illegal, an error code is also returned. The

INTRO(C) 2/12/75 INTRO(C)

plete message is formed in a message buffer in the supervisor ad-
dress space. This message is sent to the intended receiver using
the "sendmsg" EMT call. The kernel allocates space for the mes-
.sage in the kernel message buffer pool and copies in the message
from the supervisor address space, converting the mssize word to
the appropriate bit field in so doing. The mslink and mssegnum
words are filled in by the kernel as in the case of a kernel pro-
cess. In addition the kernel fills in the msfrom word in the
message header.

Upon sending a message, the receiver is sent a message event to
inform it of the presence of a message on its input gqueue. 1In
the case of a kernel process receiver, no copy of the message oc-
curs; a - "dequeuem" or "dgtype" EMT call returns a pointer to the
message buffer, allowing the receiver to directly access the body
of the message. In the case of a supervisor process, a call to
getmsg or gettype will initiate the copy of the message from the
kernel message buffer pool to the supervisor buffer provided by
the receiver, freeing up the space used by this message in the
kernel message buffer pool in the process. The receiver need
only £ill in the maximum size message which he expects to re-
ceive.

This section of the manual details all message types for the
processes sending and receiving messages. In each case the 6
word header is identical. Only the contents of the body of the
message varies. The processes discussed include:

File PFanager
Process Manager
Memory Manager
Scheduler

I/0 Processes

Yiessage types are discussed according to what types of messages
each process is willing to accept.

CHDIR(c) 16/16/75 ~ CHDIR(c)

NAME

chdir - change working directory
SYNOPSIS

chdir = 12.
ARGUMENTS (input)

2 - name byte offset into message
1l - pathname of file

VALUES (returned)
0@ - new working directory file descriptor

DESCRIPTION
Chdir causes the directory specified by the given pathname
to become the new working directory.

SEE ALSO
chdir(I), chdirc(1I).

DIAGNOSTICS
An error status byte is returned if the given name is not
that of a working directory or it is not readable.

FILE MANAGER(cC) _ 2/8/15 FILE MANAGER(C)

additional error codes are:
63 EBADTPYE bad message type
In messages which require a file name to be speciffed, the

file pathname (a null-terminated string) is copied into the
body of the message. A pathname may be up to 64 characters

long. The start of each pathname string is specified by a -

byte offset into the body of . the message starting at
fm_arg(@].

N/

CHDIR(c) . 16/18/75 " CHDIR(c)

NAME
chdir - change working directory

SYNOPSIS
chdir = 12.

- ARGUMENTS (input)
? - name byte offset into message
1 - pathname of file

"VALUES (returned)
@ - new working directory file descriptor

DESCRIPTION
Chdir causes the directory specified by the given pathname
to become the new working directory.

SEE ALSO
chdir(I), chdir(II).

DIAGNOSTICS
An error status byte is returned if the given name 1is not
that of a working directory or it is not readabple.

CHMOD (¢) 18/16/75 A CHMOD (c)

NAME
chmod - change mode of file

SYNQPS1I1S
chmod = 15.

ARGUMENTS (input)
‘? - name byte offset into message
1 - mode
2 - file pathname

VALUES (returned)
none

DESCRIPTION .
The file specified by the given file name has its mode
changed to mode. Modes are described in chmod(II). OCnly
the owner of a file or the super-user may change the mode.

SEE ALSO
chmod (1), chmod(II).

DIAGNOSTICS
An error status byte is returned if the given file name can-
not be found or if the current user is neither the owner of
the file nor the super-user.

CHCOWN (c) 18/14/75 CHOWN (c)
'.,,_?‘

NAME
chown - change owner of file

SYNOPSIS
" chmod = 16.

ARGUMENTS (input)
¢ - name byte offset into message
1 - owner (uid, gid)
2 - file pathname

VALUES (returned)
none

DESCRIPTION
The file whose name is given has its owner cchanged to owner
(low byte 1is wuid, high byte is gid). Only the super-user
may change the owner of a file. Changing the owner of a
file removes the set-user-ID protection bit unless it is
done by the super user.

SEE ALSO
chown(I), chown(Il), passwd(V).

DIAGNOSTICS .
An error status byte is returned for illegal owner changes.

CLOSE (c) ' 18/14/75 CLOSE (¢)

NAME
close - close a file
SYNOPSIS)
close = 6.
ARGUMENTS (input)
§ - file descriptor
VALUES (returned)
none
DESCRIPTION

A close message will close the file specified by the file
descriptor in argument 8. If the file is a normal file, any
extra extents beyond the length of the file are freed |up.
For contiguous files, the extents beyond the current length
of the file are not freed up. If the file is a special dev=-
ice file, a close message is sent to the device driver by
the file manager.- Tnen the appropriate terminate message is
sent to the process message to decrement the user count on
the device driver and remove the driver from memory if the
user count is 4.

SEE ALSO : :
"creat(II), open(II), creat(c), open(c), falloc(c).

DIAGNOSTICS

An error status byte is returned if an unknown file descrip-
tor is specified.

CREAT(c) 18/14/75 CREAT(c)

NAME
creat - creat a new file

SYNOPSIS
creat = 8.

ARGUMENTS (input)
§ - name byte offset into message
1 - mode bits)

VALUES (returned)
p - file descriptor
l - file type

DESCRIPTION
Creat creates a new file or opens the existing file speci-
fied by the null-terminated pathname in the message. If the
file did not exist, it is given mode mode (see chmod(II)).
If the file did exist, its mode and owner remain unchanged
but it is truncated to § length; however, 1its extents are
not released. The file is opened for writing.

SEE ALSO
write(II), close(II), stat(II), write(c), close(c).

DIAGNOSTICS
An error status byte is returned if a needed directory is
not searchable, the file does not exist and the directory in
which it is to be created is not writable, the file does ex-
ist and is unwritable or the file is a directory.

EXEC(c)

NAME

exec - open file for
SYNOPSIS

exec = 1.
ARGUMENTS (input)

@ - name byte offset
1 - pathname of file

VALUES (returned)
fm_uid (conditional)
fm_gid (conditional)
g - file descriptor.

DESCRIPTION

-10/14/75

execution

into message

EXEC(c)

This message is sent by a UNIX supervisor to open a file for

execution. The execute permission bits are checked.
ISUID bit is set in the file inode,
returned in the acknowledgement message.

for the ISGID bit.

SEE ALSO
open(II), open(c).

DIAGNOSTICS

An error status byte is returned if the file is not

able.

the uid of the file

The same is true

If the
is

execut-

FALLOC (¢) 10/14/75 FALLOC(c)

<

NAME
falloc - allocate contiguous space for a file

SYNOPSIS) o
falloc = 24. . N\

ARGUMENTS (input) :
@ - name byte offset into message
1 - mode
2,3 - size (in bytes)
4 - pathname of file

VALUES (returned)

U - file descriptor -
l - file type
4 - number of ‘contiguous blocks allocated
DESCRIPTION
Falloc creates a new file specified by " the given pathname
with mode bits set to mode (see chmod(II)). The contiguous
bit is also set for this file. Contiguous file space is al-
located on secondary to make room for the specified number
of bytes. The file is opened for writing. When the file is
closed, any extra blocks beyond the size of the file are not
freed up as in the case of a normal file.
SEE ALSO
creat(Il), chmod(II), creat(c), chmod(c).
DIAGNOSTICS)
An error status byte.is returned if the file already exists,
a needed directory is not searchable, or the directory in
which is the file is to be created is not writable.
_—
/
~
/

FMOVE (¢) 19/14/75 FMOVE (c)

NAME
fmove - move file into a contiguous area

SYNOPSIS
fmove = 23.

ARGUMENTS (input)
@ - £file system device number
1 - inode number of file
2 - flag

VALUES (returned)
none

DESCRIPTION
The file specified by the file system and the inode number
is locked by the file manager for -exclusive use, prohibiting
access by other users. The extents of the super-block of
the file system are searched for a contiguous area into
which the file can be moved. The file, if it is smaller
than a critical size, is then moved into this area and the
file map is updated appropriately. 1If the value of £fla is
zero the file is moved only if it can be moved to a lower
contiguous area. If flag is non-zero, the file will be
moved into the 1lowest .contiguous area, even if not lower
than the area it currently occupies.

SEE ALSO
recon(d), fmove(d), fmove(f).

DIAGNOSTICS

An error status byte will be returned, if the user 1is not
super-user, the file is a special file, the file no longer
exists, the file is active or not enough contiguous space
can be found.

FORK (¢) 1/38/75 FORK (¢)

NAME .
fork - increment count on open files

SYNOPSIS
fork = 2.

ARGUMENTS (input)
g - number of files
1l - open count
2 - file descriptor 1

n - file dsecriptor n

VALUES (returned)
none

DESCRIPTION
The FORK message is used to increment the open count on the
list™ of files specified, by the increment specified. This
increment may be positive or negative.

SEE ALSO

DIAGNOSTICS
An error status byte is returned if a bad descriptor is
specified.

[-

FSIZE(c) 16/14/75 FSIZE(cC)

NAME
fsize - get size of file

SYNOPSIS
fsize = 19.

ARGUMENTS (input)
@ - file descriptor

VALUES (returned)
@ - nigh order word of 32-bit size
1l - low order word of 32-bit size

DESCRIPTION
The size of the file specified by the file descriptor is re-
turned as a two-word value. This message type is typically
used to get size of file when a seek beyond the end of the
file is reguested by a UNIX user.

SEE ALSO
stat(ec), fstat(c).

DIAGNOSTICS

FSTAT (¢) "16/14/75

NAME
fstat - get status of open file

SYNOPSIS
fstat = 26.

ARGUMENTS (input)
- g - file descriptor

VALUES (returned)
=17 - file status as described

DESCRIPTION)
The status of the given file is
ment message (18 words). Tnis
except that it operates on open
by name. It is most often used

FSTAT (c)

the standard input and output files, whose names are unk-

nown.

SEE ALSO

1s(I), stat(Il), fstat(Ill), stat(C), fs(D).

DIAGNOSTICS .

An error status byte is returned if the file descriptor is

unknown. :

-~
in stat(c).
returned in the acknowledge- -
message is identical to stat
files instead of files given
by UNIX to get the status of
~.
_
)

INIT(C) 18/15/75 : INIT(c)

NAME
init - initialize file system manager

SYNOPSIS
init = 13.

ARGUMENTS (input)
@ - root file system device (major/minor)
2 - root device process number’

VALUES (returned)
none

DESCRIPTICN
The INIT message is sent by the kernel when booting wup the
system to pass the root device code and the root process
device driver number to the file manager.

SEE ALSO

DIAGNOSTICS

LINK (c) , 16/14/75 LINK(c)

NAME
link - link to a file

_ SYNOPSIS
link = 9.

ARGUMENTS (input)
8 - byte offset to namel
1l - byte offset to name2
2 - pathname of namel

n - pathname of name2

VALUES (returned)
none

DESCRIPTICON
A link to namel is created. The link has the name nameZ2.
Either name may be an arbitrary pathname.

SEE ALSO
1link(II), link(I), unlink(II).

DIAGNOSTICS -
An error status byte is returned if namel cannot be found,
when name2 already exists, when the directory of name2 can-
not be written, when an attempt is made to link to a direc-
tory by a user other than the super-user, or when an attempt
is made to link to a file on another file system.

MDATE () 18/14/75 MDATE (C)

NAME
mdate - modify date of file
SYNOPSIS
I mdate = 1ll.
-~
ARGUMENTS (input)
@ - name byte offset into message
1,2 - date (32 bits)
3 - pathname of file
VALUES (returned)
. none
{' .
o DESCRIPTION
The modified time of the file whose name is specified is set
to the 32-bit time passed in the message. Only the super-
user or owner of the file may set the modified time of the
file.
SEE ALSO
time(II), mdate(II).
DIAGNOSTICS
An error status byte is returned if the user is neither the
owner nor the super-user or if the file cannot be found.
-

MKNOD(c) 16/14/75 ' MKNOD (c)

NAME

mknod - make a directory or a special file
SYNOPSIS

mknod = 14.

ARGUMENTS (input)

@ - name byte offset into message
1 - mode
2 - device

VALUES (returned)

none

DESCRIPTION

Mknod creates a new file whose name is that of the given

file. The mode of the new file (including directory and -

special file bits) is initialized from mode. The first pny-
sical address of the file (first extent) Is initialized from
device. This is zero for a normal or a directory file. For
a special file, device specifies which special file. Mknod
may only be invoked by the super-user (i.e. fm_uid = 8).

SEE ALSO

mkdir(I), mknod(II), mknod(VIII), £fs(D).

DIAGNOSTICS :

An error status byte is returned if the file already -exists
or if fm_uid is not @.

MOUNT (¢) 16/14/75 MOUNT (<) A

NAME-
mount - mount file system

SYNOPSIS
mount = 21.

ARGUMENTS (input)

- name offset into message of special file
name offset into message of root file
read/write flag rwflag

pathname of special file

pathname of root file

HwoHES

VALUES (returned)-
none

DESCRIPTION

Mount mounts a removable file system on the block=-structured
special file special. Thereafter, all references to the
root file name will refer to the root file on the newly
mounted file system. The root file must already exist. 1Its
old contents are inaccessible while the file system 1is
mounted. The rwflag determines whether the file system can
be written on. If it is @ writing is allowed, 1if non-zero
no writing is done.

SEE ALSO
mount(II), mount(VIII), umount(II).

DIAGNOSTICS
An error status byte is returned if the special file 1is
inaccessible or not an appropriate file, the root file does
not exist, special is already mounted or there are already
too many file systems mounted.

NiCODE (¢) 18/14/75 NMCODE (c)

NAHE
nmcode - get name code for segment

SYNOPSIS
nmcode = 7.

ARGUMENTS (input)
p - file descriptor
1l - byte offset in file

VALUES (returned)
P,1 - unique 32-bit name for segment

DESCRIPTION
The nmcode message is used to get a unigue 32-bit name for a
segment which is to be 1loaded from a file. The name is
derived from the location of the file on secondary storage
and is used to allocate memory space for a named segment.

SEE ALSO
intro(a).

DIAGNOSTICS
An error status byte is returned if the file descriptor does
not correspond to an open file.

OPEN(c) 19/14/75

NAME

open - open file
SYNOPSIS

open = 5,

ARGUMENTS (input)

8 - name byte offset into message
1 - mode
2 - file pathname

VALUES (returned)
@ - file descriptor
1 - file type

OPEN (c)

2 - process number (for device file only)
3 - channel number {for device file only)

4,5 - size of file

DESCRIPTION

The open message requests that the

file specified Dby the

pathname pointed to by the name offset in argument zero is
opened for reading (mode = 3), writing (mode = 1) or for

both reading and .writing (mode

= 2). The returned file

descr%ptor must be’saved to be used for subseguent read’s,
write’s and close’s. The file type is returned in bits 3-5
of argument one. These bits correspond to bits 12-14 in

mode bits of the inode (see fs(d)).

If the file type is a

device file, the file manager will send the appropriate mes-
sages to the process manager to load and lock in memory the

appropriate device driver. An open

message will also be

sent to this device driver if one 1s expected by this device
driver. In this case, arguments 2 and 3 will contain the
process number of the device driver and the logical channel

of this driver, respectively.

SEE ALSO

creat(II), read(Il), write(II), close(II).
creat(ec), read(c), write(c), close(c).

DIAGNOSTICS

An error status byte is returned if the file does not exist,
if one of the necessary directories does not exist or is un-

readable, or if the file 'is not

readable(resp. writable).

Also an error status byte is returned if the device driver
can not be loaded by the process manager or if a bus error
is generated by accessing the device control and status re-

gister.

OPENI(c) 16/14/75 OPENI (c)

NAME
openi - open file specified by inode number

SYNOPSIS
openi = 25.

ARGUMENTS (input)
@ - file system device code
1l - file inode number
2 - mode

VALUES (returned)
g - file descriptor
1l - file type
2 - process number (for device file only)
3 = channel number (for device file only)
4,5 - size of file

DESCRIPTION.

The openi message requests that the file specified by the
pathname pointed to by the name offset in argument zero is
opened for reading (mode = @), writing (mode = 1) or for
both reading and writing (mode = 2). The returned file
descriptor must be saved to be used for subsequent read’s,
write’s and close’s. The file type is returned in bits 3-5
of argument one. These bits correspond to bits 12-14 in
mode bits of the inode (see £s(d)). If the file type is a
device file, the file manager will send the appropriate mes-
sages to the process manager to load and lock in memory the
appropriate device driver. An open message will also be
sent to this device driver if one 1s expected by this device
driver. 1In this case, arguments 2 and 3 will contain the
process number of the device driver and the logical channel
of this driver, respectively. '

SEE ALSO
creat(II), read(II), write(II), close(II).
creat(c), read(c), write(c), close(c).

DIAGNOSTICS
An error status byte is returned if the file does not exist,
if one of the necessary directories does not exist or is un-
readable, or if the file is not readable(resp. writable).
Also an error status byte is returned if the device driver
can not be loaded by the process manager or if a bus error
is generated by accessing the device control and status re-
gister.

"

READ (c) 16/15/75 REAch)

NAME
read - read from file

SYNOPSIS
read = 3.

ARGUMENTS (input)
@ - segment ID
1 - word ‘offset into segment
2 - byte count
3 - file descriptor
4 - block number in file.

VALUES (returned)
4 - bytes read

DESCRIPTION
Read messages must specify a starting block number in the
file to be read from as well as a byte count. The File
Manager converts the block number into a block number on the
particular file system. The bytes read will not extend
beyond the end of the file. If the word offset is negative,
the offset is from the end of the segment. The sender of
the message is required to lock the segment into which the
I/0 transfer 1is to be done in memory. If the I/0 transfer
can be done in one operation, the acknowledgement to this
message is sent directly from the particular device driver.
Otherwise, the read messages are sent off in parallel to the
appropriate device driver and waited for by the file
manager.

SEE ALSO
open(II), open(c).

DIAGNOSTICS

A 6 is returned if end of file has been reached. An error
status byte is returned if a bad descriptor is given, the
read would extend beyond the end of the segment or if physi-
cal I/0 errors occur.,

STAT(c) 18/15/75

NAME
stat - get file status

SYNOPSIS

STAT(c)

stat = 18. TN
.
ARGUMENTS (input)
@ - name byte offset into message
l - file pathname
VALUES (returned)
§=17 - file status as described below
DESCRIPTION ~
The status of the given file is returned in the acknowledge-
ment message (18 words). It is not necessary to have any
vermissions with respect to the file, but all directories
leading to the file nmust be readable. Starting at
fm_arg[d], the returned status of the file in the message is
described by:
struct {
char minor; /* minor device of i-node */
char major; /* major device of i-node */
int inumber; /* i-node number */
int flags; /* see below */
char nlinks; /* number of links to file */
char uid; /* user ID of owner */
char gid; /* group ID Of owner */
char size8; /* high byte of 24-bit size */
char *gizel; /* low word of 24-bit size */
int addr {81]:; /* extents or device number */
int atime[2]; /* time of last access */
int mtime[2]; /* time of last modification *,
};
The flags are as follows:
100068 i-node is allocated
376006 3-bit file type N
200080 plain file .
040000 directory
020000 character-type special file
0696500 block-type special file
P70000 record-type special file
§160068 contiguous file
054058 set user-ID on execution
P02p600 set group-ID on execution ~

208499 read (owner)
PoG208 write (owner)
0¥8165 execute (owner)

poop76 read, write, execute (group)
pogeH7 read, write, execute (others)

Neor

STAT (<) | | 16/15/75

SEE ALSO | .
1s(I), stat(II), fstat(II), £Stat(C), £s(D).
DIAGNOSTICS
An error status byte is. returned
found. .

if the

file

STAT(c) -

cannot be

SYNC(c) 16/15/75 SYNC(c)

NABME
sync - update super-block

SYNOPSIS)
Sync = 17. . :,.v \

ARGUMENTS (input)
none

VALUES (returned)
none

DESCRIPTION . .
Sync causes all information in file manager buffers that has ~
been modified, to be written out. This includes modified
super-blocks, modified i-nodes and delayed block 1I/0. It
should be used by programs which examine a file system, for
example check, df. It must always be used before a boot of
the system. -

SEE ALSO
sync(II), sync(VIII).

DIAGNOSTICS

~o
N P

UMOUNT (c) 16/15/75 UMOUNT (¢)

NAME
umount - dismount file system

SYNOPSIS

umount 22.

ARGUMENTS (input)
@ - name byte offset into message of special file
1 - pathname of special file

VALUES (returned)
none

DESCRIPTION : A
Umount dismounts the special file special so that it no
Tonger contains a removable file system. The file associat-
ed with the special file reverts to its ordinary interpreta-
tion.

SEE ALSO
mount(II), mount(VIII), umount(II), mount(c).

DIAGNOSTICS
An error status byte is returned if no file system was
mounted on the special file or if there are still active
files on the mounted file system.

UNLINK (¢) . 16/15/75 UNLINK(c)

NAME

unlink - remove directory entry

SYNOPSIS

unlink = 18.

ARGUMENTS (input)

P - name byte offset into message
1l - pathname of file

VALUES (returned)

none

DESCRIPTION

Unlink removes the entry for the file specified from its
directory. If this entry was the-last link to the file, the
extents of the file are freed and the file is destroyed. 1If
however the file was open in any process, the actual des-

‘truction is delaved until it 1is closed, even though the

directory entry has disappeared.

SEE ALSO

rm(I), rmdirc(I), link(II), unlink(II).

DIAGNOSTICS

An error status byte is returned if the file does not exist
or if its directory cannot be written. Write permisssion is
not required on the file itself. Only the super-user may
unlink a directory.

WRITE(c) 16/15/75 WRITE (c)

NAME
write - write to file
SYNOPSIS
A write = 4.
o '
ARGUMENTS (input)
g - segment ID
1l - word offset into segment
2 - byte count
3 - file descriptor
4 - block number in file.
/ﬂ.\ VALUES (returned)
4 - bytes written
DESCRIPTION
Write messages must specify a starting block number in the
file to be written to as well as a byte count. The File
Manager converts the block number into a block number on the
particular file system. If the word offset is negative, the
offset is from the end of the segment. The sender of the
message 1is required to lock the segment into which the I/0
transfer is to be done in memory. If the I/0 transfer can
be done in one operation, the acknowledgement to this mes-
sage is sent directly from the particular device driver.
Otherwise, the write messages are sent off in parallel to
the appropriate device driver and waited for by the file
manager.
SEE ALSO
creat(IIl), open(II), creat(c), open(c), falloc(c).
DIAGNOSTICS
An error status byte is returned if a bad descriptor is
given, the write would extend beyond the end of the segment
or if physical I/0 errors occur.
-

I1/0 MESSAGES (c) 2/12/75 I/0 MESSAGES (c)

INTRODUCTION TO I/O PROCESS MESSAGES
Most block and record device I/0 driver processes are pro-
grammed to accept messages of tne following types:

IOREAD 1
IOWRITE 2
IOOPEN 3
IOCLOSE 4

However some I/0 device drivers may not be programmed to
accept IOOPEN and IOCLOSE messages, as they may be unneces-
sary for these devices. When the 1I/0 device driver process
is built wusing ldp(e) one of the specifications is whether
the prdcess will accept open and close messages. The format
of a message to the device drivers is specified by the fol=-
lowing structure:

struct io_msgd {
struct msghdr io dhr; /* message 6-word header */

int msiosid; ~/* ID of segment into wnich or from
which 1/0 is to take place */

int msioba; /* word offset into segment */

int msiobc; /* number of bytes to be read

or written */
char msiodev; /* logical device number */
char msiobd; /* high order byte of block number */
char *msiobl; /* low order word of block number */
char msiopri; /* priority of 1/0 */
char msiotry; /* number of retries on error */

int msiocnt; /* number of bytes read */

int msfilll; /* scratch word, may be used
by driver */

int msfill2; /* scratch word, may be used
by driver */

int msfill3; /* scratch word, may be used

by driver */

The IOOPEN and IOCLOSE messages need only specify the logi-
cal device number of the particular device driver and the
number of times that the device driver file is owpen. This
information 1is normally only available to the file manager
process; the file manager thus will automatically send the
open and close messages to the device drivers when the spe-
cial files are opened and closed. The IOREAD and IOWRITE
messages must specify a total of 5 arguments besides the
normal parameters in the message header as discussed in the
introduction. These are the ID of the segment into or from
which the I/0 transfer is to take place, the word offset
into this segment, the number of bytes to be transferred,
the logical device number of the driver and the block number
at which the transfer is to start. The segment may be ei-
ther in supervisor or user address space, but it must Dbe
locked for I1/0 by the sender of the message before the mes-
sage is sent. The word offset into the seament is from the
beginning of the segment if it is positive, otherwise it is
from the end of the segment (e.g. for stack segment). Nor=-

I1/0 MESSAGES (¢)) 2/12/75 I/0 MESSAGES(c¢)

mally the file manager will make a call to the iocueuem
routine to determine if the transfer is within the bounds ot
the segment and if the segment 1is 1locked in memory.
Ioqueuem then sends message to the appropriate driver. This
routine will convert the virtual address given by msiosid
and msioba into a 18-bit physical address. The lower 16
bits are returned in msioba and the upper 2 bits are set 1in
the msustat byte o the message status byte. The total
number of bytes read or written are returned in msiocnt. By
invoking the messink routine when the I/0 transfer i1s com-
plete, the segment 1s unlocked.

SEE ALSO
ioqueuem(b), open(c), close(c).

DIAGNOSTICS
An error status byte is returned if the segment is not
locked for I/0, the segment does not exist, the I/0 transfer
would extend beyond the end of the segment or if a physical
I/0 error occurs in the transfer.

PROCESS MANAGER(C)

2/11/75 PROCESS MANAGER(c)

INTRCDUCTION TO THE PROCESS MANAGER MESSAGES
The message types accepted by the process manager are:

P_CREAT 1
P_DUMP 3
P_INIT 4
P_WAIT 5

Create a process from a pathname
Produce a core dump of a process

Initialize the process manager (sent

when the system is first booted)
Sent to the process manager when a
process it has created dies

In the following descriptions, the arguements refer to the
words which make up the body of the message. The structure
of a message to the process manager is:

struct {

- struct msghdr hdr;
int pm_arg(];

}

Error codes are always returned in msustat. The possible

errors are:
MSTYPERR
MSNOPRC

MSNOFILE
MSNOSLOT

MSNOMEM

MSNOSWAP

~N oy s N

MSREADERR

HSNOINTR 18

MSVERSIOMERR 11

Message type is not recognized by the
process manager

Process file does not exist or does
not have the correct magic number.

A public library £file does not exist.
All the process slots in the system
are in use

A kernel process could not be 1loaded
because of insufficient memory

All the system segments and/or swap
space is allocated

Process manager is unable to read the
process file (the sender does not
have read permissions on the process
file)

A kernel ©process has attempted to
connect to a nonexistent interrupt or
an interrupt’ which is attached to
another process. ‘
.The version number of a public 1li-
brary or the system library does not
agree with the version number of the
process

For the sake of completeness, the P INIT and P WAIT messages

will be discussed.

They are internal messages which are

necessary for the process manager to maintain its internal

tables.

PROCESS ®ANAGER(c)

NAME

2/11/75 PROCESS MANAGER(c)

P_INIT - initialize the process manager

SYNOPSIS
P_INIT =

INPUT
struct {

4

struct msghdr hdr;
maxprc;

int
int
int
int
int

int
int

stru

} bl
}i

VALUES
none

DESCRIPTION

syslib[2];
slsid;
sloff;

nprc;

switch;
swapdev;

ct {

char

char
char

char
int

k[];:-

pn;
nseg;

iprior;

sprior;
seg{3];

/*Maxixmum number of processes in
system */

/*Creation date of system library */
/* Segment ID of kernel */

/* Offset into kernel segment of sys-
tem library */

/* Number of processes in boot image
*/ °

/* Console switch register */

/* Major and minor device of swap
device */

/* Process number of boot process*/
/* Number of segments in the process
*/

/*processor priority of the process
*/

/* Scheduler priority */

/*Segment IDs of the segments making
up the process */

The init message is used to pass several system generation
parameters to the process manager. The process manager ini-
tializes its internal tables, copies the PCB of the nub pro-

cess in
cess.

DIAGNOSTICS
none

to

an internal buffer, then terminates the nub pro-

PROCESS MANAGER(C) 2/11/75 PROCESS MANAGER(c)

NAME
P_WAIT - Message type received when a process created by the
process manager terminates
SYNOPSIS
P_WAIT = 5
_INPUT
struct {

struct msghdr hdr;
int buf(];

VALUES
none

DESCRIPTION |
The process manager updates its internal process tables and
forwards the message to the parent of the terminating pro-
cess.

DIAGNOSTICS
none

TERMINATE () 2/17/75 ~ TERMINATE (c)

NAME
terminate ~ terminate a process and produce a core dump
SYNOPSIS
terminate = 3
INPUT
struct {
struct msghdr hdr;
char uid;
char gid; B
int pn; /* process number to dump */
int segid; /* Segment id of process PCB (supervi-
sor only)*/
int pathindex; /*Offset to start of pathname */
int buf(];
}s :
VALUES
none
DESCRIPTION
If the process specified by pn is a kernel process, the seg-
ments are unlocked and returned to the system. If pathindex
is nonzero, a core dump will be produced. Pathindex 1Is the
index into buf to the first character of the null terminated
pathname for the core dump file. If pathindex = -1, the
pathname will be the last part of the process file name ap-
pended to /cdmp (i.e. 1f the process file pathname was
/dev/cdé, the core file would be /cdmp/cdé6). If the dump is
produced by a bpt or a bad kernel emt, the array buf will
contain: A
ouf[g=-5] - r6 - r5
buf (6] - Reason for dump
ouf (7] - pcC
buf (8] - ps
The process manager will create a file having the same for-
mat as pfile produced by ldg, with the exception that the
registers, code, pc, and ps will be placed in the last 9
words of the header block.
ALSQO SEE
idp(e), pfile(q)
DIAGKOSTICS

If the file pointed to by pathindex cannot Dbe created, no
dump will be produced and no error will be returned.

PCREAT (¢) 2/15/75 PCREAT (¢)

NAME
pcreat - create a process from a file
SYNOPSIS
pcreat = 1
INPUT
struct {
struct msghdr hdr;
int cdir; /*file descriptor of current directory
of sender*/
char uid; /*User id */
‘char gid; /*Group id */
int pn; /*Process number of new process (re-
) turned) */
int parent; /*Process number of parent*/
char flag; /*1f non-zero a message of type mtype
will be sent to parent when the process
dies*/
char mtype; /*A message of mtype will be sent to
arent if flag is nonzero*/
char chan; ;*Control channel number of new pro-
" cess*/
char arg; /*Flag set if parent sends message to
new process*/
int des; /* unused */
int share([2]); /* Segment to share with created
process{flags,ID)*/
char path(]; /Pathname of file to make into a pro-
cess*/ '
}s
VALUES (returned)
pn - the process number of the new process
DESCRIPTION .
Pcreat causes the process file specified by path to be load-
ed and executed. If the new process is a supervisor pro-
cess, the process manager creates a mini-supervisor (called
the nub) which reads the process file into the appropriate
segments, and transfers control to it. If the new process
is a kernel process, the process manager will create the ap-
propriate segments and issue messages to the memory manager
to process lock them in memory.
ALSO SEE :
ldp(e) , pcreat(f), pfile(qg).
DIAGNOSTICS

Many error codes are returned. See the introduction to the
process manager.

MEMORY-MANAGER (C) 2/17/75 MEMORY-MANAGER (C)

INTRODUCTION

The memory manager is part of the basic kernel. It executes
at processor priority 2 with kernel D-space enabled. The
primary function of the memory manager is to load the next
process for the system scheduler. Since the memory manager
contains all the code for managing physical memory, certain
other -services, primarily for the benefit of the process
manager, are included.

NAME
load - load a process
SYNOPSIS
locad = 9
INPUT
struct {
struct msghdr hdr;
int segid; /*Segment ID of process PCB */
¥ ‘
VALUES
user status = the number of segments read in to satisfy the
request
DESCRIPTION

The PCB segment specified by segid is loaded, then all seg-
ments with the "pconn" or "pcbnxt" bits are loaded. Other
segments which are not locked may be shifted in memory.
Segments which are not nonswap or active may be swapped

out.
DIAGNOSTICS .
Thé user status is set to =1 if there 1is insufficient
memory. .
NAME)
lock - process lock a segment
SYNOPSIS
INPUT
struct {
struct msghdr hdr;
int segid; /* Segment ID to lock */
bi :
VALUES

segid = physical address of the start of the segment

DESCRIPTION
The segment segid is loaded in memory contiguous with other
process locked or nonswap segments and locked in memory.

MEMORY-MANAGER (C) | 2/17/75 MEMORY-MANAGER (C)

DIAGNOSTICS :
User status is set to =1 if there is insufficient memory.
NAME
term - terminate a process
SYNOPSIS
term = 3
INPUT
struct {
struct msghdr hdr;
char uid;
char gid;
int pn; /* process number to terminate */
int segid; /* Segment id of process PCB */
int buf(];
}s
VALUE
The same message is forwarded to the parent. of the terminat-
ing process
DESCRIPTION .
The process PCB segment secid is brought into memory. The
user count on all the segments in the PCB is decremented and
if zero, the segment is returned to the system.
DIAGNOSTICS

none

SYSTEM-SCHEDULER(C) 2/17/75 SYSTEM=-SCHEDULER(C)

INTRODUCTION

The system scheduler is part of the basic kernel. It exe-
cutes at processor priority 2 with kernel D-space enabled.
The primary function of the scheduler is to schedule
processes which execute at processor priority one and zero
So as to maximize CPU usage without compromising real time
response. The scheduler is primarily a message source, with
almost all messages going to the memory manager, however,
process termination requires manipulation of scheduler
queues, hence the requirement that all terminate messages be
sent to the scheduler.

NAME .
term - terminate a process
SYNOPSIS
term = 3
INPUT
struct {
struct msghdr hdr;
char uid;
char gid;
int pn; . /* process number to Jump */
int seqgid; /* Segment id of process PCB (supervi-
sor only)*/
int pathindex; /*Offset to start of pathname */
int ouf(];
};
VALUE

The same message is forwarded to either the memory manager
or the process manager.

DESCRIFTION

The user count on the process pn is decremented and if zero,
it is removed from the queue of active processes. . All out-
standing messages to the terminating process are returned
with the system status byte equal to 89294. If the process
is a kernel process or if pathindex is nonzero, the message
is forwarded to the process manager, otherwise it is for-
warded to the memory managder.

DIAGNOSTICS
The user status byte is set to -1 if pn is invalid.

CHECK(4) 18/17/75 CHECK (4)

NAME , ‘
check - file system consistency check
SYNOPSIS .
check [-lsib [numbers]] [filesystem]
DESCRIPTION

Check examines a file system, builds a bit map of used
blocks, and compares this bit map against the free list
maintained on the file system. It also reads directories
and compares the link-count in each i-node with the number
of directory entries by which it is referenced. If the file
system is not specified, a check of a default file system is
performed. The normal output of check includes a report of

The number of blocks missing; i.e. not in any file nor
in the free list,

The number of special files,

The total number of files,

The number of directories,

The number of blocks used in files,

The highest-numbered block appearing in a file,

The number of free blocks.

The -1 flag causes check to produce as part of its output
report a list of the all the path names of files on the file
system. The list is in i-number order; the first name for
each file gives the i-number while subseguent names (i.e.

-

}}nks) have the i-number suppressed. The entries “'.°" and

4

.. = for directories are also suppressed.

The -s flag causes check to ignore the actual free list and
reconstruct a new one by rewriting the super-block and bit
map of the file system. The file system should be dismount-
ed while this is done; if this is not possible (for example
if the root file system has to be salvaged) care should be
taken that the system is guiescent and that it is rebooted
immediately afterwards so that the old, bad in-core copy of
the super-block will not continue to be used. Notice also
that the words in the super-block which indicate the size of
the free 1list and of the i-list are believed. 1If the
super-block has been curdled these words will have to be
patched. The -s flag causes the normal output reports to be
suppressed.

The occurrence of i n times in a flag argqument -ii...i
causes check to store away the next n arguments which are
taken to be i-numbers. When any of these i-numbers is en-
countered in a directory a diagnostic is produced, as
described below, which indicates among other things the en-
try name.

Likewise, n appearances of b in a flag 1like «bb...b cause
the next n arguments to be taken as block numbers which are
remembered; whenever any of the named blocks turns up in a
file, a diagnostic is produced.

CHECK (d) 16/17/75 CHECK (d)

FILES
Currently, /dev/tff, /dev/tf3 and /dev/tfl are the default
file systems.

SEE ALSO
’ fs (4)

DIAGNOSTICS ‘ ’
There are some self-evident diagnostics 1like “‘can’t open
eee ', “‘can’t write " If a read error is encountered,
the block number of the bad block is printed and check ex-
its. ‘*Bad freeblock’® means that a block number outside
the available space was encountered in the free 1list. **n
dups in free’® means that n blocks were found in the free
list which duplicate blocks either in some file or in the

earlier part of the free list.

An important class of diagnostics is produced by a routine
which is called for each block which is encountered in an
i-node corresponding to an ordinary £file or directory.
These have the form

b# complaint ; i= i# (class)

Here b# is the block number being considered; complaint is
the dlagnostic itself. It may be

blk if the block number was mentioned as an argument
after =-b;

bad if the block number has a value not inside the allo-
catable space on the device, as indicated by the
devices s super-block;

dup if the block number has already been seen in a file;

din if the block is a member of a directory, and if an
entry is found therein whose i-number is outside the
range of the i-list on the device, as indicated by
the i-list size specified by the super-block. Un-
fortunately this diagnostic does not indicate the
offending entry name, but since the i-number of the
directory itself is given (see below) the problem
can be tracked down.

The i# in the form above is the i-number in which the named
block was found. The class is an indicator of what type of
block was involved in the difficulty:

sdir indicates that the block is a data block in a file;

free indicates that the block was mentioned after -b and
is free; .

urk indicates a malfunction in check.

When an i-number specified after =-i is encountered while
reading a directory, a report in the form

ino; i= d# (class) name

where i# is the requested i-number. d# is the i-number of

¢

CHECK (4) 18/17/75 _ CHECK (4)

BUGS

the directory, class is the class of the dlrectory block as
discussed above (virtually always *‘sdir”’) and name is the
entry name. This diagnostic gives enough information to
find a £full path name for an i-number without using the -1
option: use -b n to find an entry name and the i-number of
the directory containing the reference to n, then recursive-
ly use -b on the i-number of the directory to find its name.

another important class of file system diseases indicated by
check is files for - which the number of directory entries
does not agree with the link-count field of the i-node. The
diagnostic is hard to interpret. It has the form

i# delta
Here i# is the i-number affected. Delta is an octal number
accumulated in a byte, and thus can have the value # through
377(8) . The easiest way (short of rewrltlng the routine) of
explaining the significance of delta is to describe how it
is computed.

If the associated i-node is allocated (that 1is, has the
allocated bit on) add 100 to delta. If its link-count is
non-zero, add another 108 plus the link-count. Each time a
directory entry specifying the associated i-number is en-
countered, subtract 1 from delta. At the end, the i-number
and delta are printed if delta is neither @ nor 206. The
first case indicates that the i-node was unallocated and no
entries for it appear; the second that it was allocated and
that the link-count and the number of directory entries
agree.

Therefore (ta explain the symptoms of the most common diffi-
culties) delta = 377 (-1 in 8-bit, 2°s complement octal)
means that there is a directory entry for an unallocated i-
node. This is somewhat serious and the entry should be
found and removed forthwith. Delta = 281 usually means that
a normal, allocated i-node " has no directory entry. This
difficulty is much less serious. Whatever blocks there are
in the file are unavailable, but no further damage will oc-
cur if nothing is done. A iclr followed by a check -s will
restore the lost space at leisure.

In general, values of delta equal to or somewhat above 8,
106, or 288 are relatively innocuous; 3just below these
numbers there is danger of spreading infection.

Unfortunately, check -1 on file systems with more than 30090
or so files does not work because it runs out of core.

Since check is inherently two-pass in nature, extraneous 4i-
agnostics may be produced if applied to active file systems.

It believes even preposterous super-blocks and consequently
can get core images.

DF (d) 18/15/75 DF (d)

NAME
df - disk free

SYNOPSIS
af [filesystem]

DESCRIPTION
Df prints out the number of free blocks available on a file
systen. It also prints out (in parenthesis) the number of
blocks which are free but not in the in-core free list. If
the file system is unspecified, the free space on all of the
normally mounted file systems is printed.

FILES
/dev/rf£?, /dev/rk?, /dev/rp?

SEE ALSO
check (VIII)

BUGS

FALLOC (d) - 18/15/75 FALLOC (d)

NAME

falloc - allocate contiguous file space

SYNOPSIS

falloc filename nblocks

DESCRIPTION

Falloc creates a new file specified by the given pathname
filename with default mode bits of 9666. The contiguous
mode bit is set for this file. Contiguous file space is al-
located on secondary storage to make room for nblocks of 512
bytes each. The file is initially of length zero.

This command is useful for creating large £files, to/from
which the user wishes to guarantee large data transfers us-
ing physical I/0 and minimum latency time.

DIAGNOSTICS

If the file already exists or the directory in which the
file is to be <created is not writeable, the file is not
created. If insufficient file space exists, the largest
possible contiguous file space will be allocated to this
file. '

.SEE ALSO

BUGS

falloc(c), £s(d).

FMOVE (4) . 16/15/75 FMOVE (4)

NAME
fmove - move file into contiguous area

SYNOPSIS
fmove [-] filename

DESCRIPTION
Fmove moves the file filename into a contiguous secondary
storage area using only one extent to describe its alloca-
tion area on disk. If the optional argument "=-" is not
specified and the file cannot be moved to a lower area on
disk than it currently is, it will not be moved. Specifying
this optional flag over-rides this restriction and the file
is moved anyways.
This command is useful for moving a file into a contiguous
area, to/from which the user wishes to guarantee large data
transfers using physical I/0 and minimum latency time.

DIAGNOSTICS

SEE ALSO ‘
falloc(c), fs(d), falloc(d).

BUGS

<

FILE SYSTEM(4) 18/17/75 PILE SYSTEM(d)

NAME
fs - format of file system volume

DESCRIPTION
Caution: this information applies only to the latest ver-

sions of the MERT file system.

Every file system storage volume (e.g. RF disk, RK disk, RP
disk, DECtape reel) has a common format for certain vital
information. Every such volume is divided into a certain
number of 256 word (512 byte) blocks. Block 8 is unused and
is available to contain a bootstrap program, pack label, or
other information.

Block 1 is the super block. Starting~from its first word,
the format of a super-block is

struct {
char *s_isize; /* number of blocks of inodes */
char *s fsize; /* number of blocks in file system
struct {
char *stblk;
char *ncblks; -
} s ext[64];
int"™ s_ninode; /* number of free inodes */
int s_inode([60];
int s_nupdate; /* number of update entries filled
struct {
char *stblk;
int nublks;
} s_update(38];
char s_£lock;
char s_ilock;
char s_fmod;
char s_ronly;
int s_time(2};

b

Isize is the number of blocks devoted to the i-list, which
starts just after the super-block, in block 2. Fsize is the
first block not potentially available for allocation to a
file. This number is unused by the system, but is used by
programs like check (d) to test for bad block numbers.

The free list for each volume is maintained as follows. The
in-core free 1list for each mounted volume consists of 64
double-word entries. The first word in an entry is the
first free block stblk of the number ncblks of consecutive
free blocks described by this extent. The free 1list for
each volume is also maintained in a bit map kept on the
volume starting just beyond the blocks devoted to the i-
list. A number of update entries s nupdate are kept in the
in-core list s update to keep the bit map uptodate. These
update entries consist of double word entries, a starting
block number and number of consecutive blocks.

FILE SYSTEM(Q) 18/17/75 FILE SYSTEM(Q)

To allocate nb blocks, the in-core free list is searched for
the best entry to use. The algorithm used is to search the
list for the smallest entry from which nb blocks can be al-
located. If there are not nb free blocks, the largest entry
_is chosen. If Tthere are no free blocks, the in-core free
list is reconstructed using the bit map maintained on the
volume. If there are still no free blocks, an error is re-
turned. The in-core free list is updated and an entry is
put in the update list. When the update list becomes full,
the bit map is updated on the volume using the in-core up-
date list and the update list is marked empty.

To free nb blocks, the in-core free list is searched accord-
ing to the following algorithm. The nb blocks are added to
an ex15t1ng entry if they are contiguous with it. The entry
is put in a null entry if one exists. If there is no empty
entry, the smallest entry is replaced by the new entry.
This entry is also put on the update list with a negative
block count to distinguish it from an "alloc®" entry. When
the update list becomes full, the bit map is updated on the
volume using the in-core update list and the update list 1is
marked empty.

Ninode is the number of free i-numbers in the inode array.
To allocate an i-node: if ninode is greater than @, decre-
ment it and return inode[ninode]. If it was 8, read the i-
list and place the numbers of all free inodes (up to 108)
into the inode array, then try again. To free an i-node,
provided " ninode is less than 108, place its number into
1node[n1noa] and increment ninode. If ninode 1is already
106, don t bother to enter the freed i-node into any table.
This list of i-nodes is only to speed up the allocation pro-
cess; the information as to whether the inode is really free
or not is maintained in the inode itself.

Flock and ilock are flags maintained in the core copy of the
file system while it is mounted and their values on disk are
immaterial. The value of fmod on disk is likewise immateri-
al; it 1is wused as a flag to indicate that the super-block
has changed and should be copied to the disk during the next
periodic update of file system information. Ronly is a flag
used to indicate that the file system is read-only, i.e. no
files may be modified.

Time is the last time the super-block of the file system was
changed, and is a double-prec151on representation of the
‘number of seconds that have elapsed since 8609 Jan. .1 1970
(GMT). During a reboot, the time of the super—block for the
root file system is used to set the system’'s idea of the
time.

I-numbers begin at 1, and the storage for i-nodes begins. in
block 2. Also, i=-nodes are 64 words 1ong, so 4 of them fit
into a block. Therefore, i-node i is located in block
(i + 7) / 4, and begins 1288.9((i + 7) (mod 4) bytes from its
start. I-node 1 is reserved for the root directory of the
file system, but no other i-number has a built-in meaning.

-2 -

<

FILE SYSTEM(Q) 18/17/75 FILE SYSTEM(4)

Each i-node represents one file. The format of an i-node is
as follows.

struct {
int flags; /* +0: see below */
char nlinks; /* +2: number of links to file */
char uid; /* +3: user ID of owner */
char gid; /* +4: group ID of owner */
char £ill; /* +#5: used internally */
int size@; /* +6: high byte of 32-bit size */
int sizel:; /* +8: low word of 32-bit size */
struct {
int *stbhlk; /* starting block number */
int *ncblks:; /* number of cons. blocks */
} extents([27];
int actime(2]; /* +118: time of last access */
int modtime([2]; /* +122: time of last modification -
int chksum; /* not used */ _

}s
The flags are as follows:

100000 i-node is allocated
870009 3=-bit file type:
p900090 plain file
240009 directory
220009 character-type special file
260909 block-type special file
970600 record-type special file.
010049 contiguous file
404000 set- user-ID on execution
002909 set group-ID on execution
360409 read (owner)
600200 write (owner)
2901909 execute (owner)
000970 read, write, execute (group)
0008087 read, write, execute (others)

Special files are recognized by their flags and not by i-
number. A block-type special file is basically one which
can potentially be mounted as a file system; a character-
type special file cannot, though it is not necessarily
character-oriented. For special files the high byte of the
first extent word specifies the type of device; the low byte
specifies one of several devices of that type. The device
type numbers of block and character special files overlap.

The extent words of ordinary files and directories contain
pairs of starting block numbers and number of consecutive
blocks. As many extents are used as are required to
describe the discontinuous pieces of the file. A contiguous
file requires only one extent.

Byte number n of a file is accessed as follows. N is divid-
ed by 512 to find its logical block number (say b) in the
file. The physical block number is the b th logical block
in the 1list of extents. The remainder from the division

~ FILE SYSTEM(4) 16/17/75 FILE SYSTEM(4)

yields the>byte in the block which is to be accessed.

SEE ALSO
check (d4)

ICAT(4) 18/15/75 - ICAT(4)

NAME

icat - concatenate i-node

SYNOPSIS

icat [filesystem] i-number ... i-number

DESCRIPTION

Icat concatenates the contents of the file described by the
i-node numbered i-number. An arbitrary number of i-node
numbers may be specified. The file system argument must be
a special file name referring to a device containing a file
system. .

Read permission is required on the specified file system
device. The primary purpose of this routine is to concaten-
ate the contents of a file which has an i-node allocated but
no corresponding entry in any directory. By using "icat ([
filesystem] i-number > savefile", it is possible to save
the contents of a file on another filesystem before using
"iclr" to clear the i-node entry.

SEE ALSO

BUGS

iclr(d), idmp(d), isnp(d).

ICLR

(4) . 16/15/75 , ICLR(d)

NAME
iclr - clear i-node

SYNOPSIS)
‘iclr [filesystem] i-number ... i-number

DESCRIPTION
Iclr writes zeros on the 64 words occupied by the i-node
numbered i-number. aAn arbitrary number of i-node numbers
may be specified. The file system argument must be a spe-
cial file name referring to a device containing a file sys-
tem. . After iclr, any blocks in the affected file will show
up as " ‘missing =~ in a check of the file system.
Read and write permission is required on the specified file
system device. The i-node becomes allocatable.
The primary purpose of this routine is to remove a file
which for some reason appears in no directory. 1If it is
used to zap an i-node which does appear in a directory, care
should be taken to track down the entry and remove it. Oth-
erwise, when the i-node is reallocated to some new file, the
old entry will still point to that file. At that point re-
moving the old entry will destroy the new file. The new en-
try will again point to an unallocated i-node, so the whole
cycle is likely to be repeated again and again.

SEE AlSO
icat(d), idmp(d), isnp(d).

BUGS

If the file is open, iclr is likely to be ineffective.

IDMP (d) 18/15/75 L IDMP(d)

NAME.

idmp - dump i-node

SYNOPSIS T

idmp [filesystem] i-number ... i-number

DESCRIPTION -

Idmp dumps the contents of the file described by the i-node
numbered i-number. An arbitrary number of i-node numbers
may be specified. The file system argument must be a spe-
cial file name referring to a device containing a file sys-
tem.

Read permission is required on the specified file system
device. The primary purpose of this routine is to dump the
contents of a file which has an i-node allocated but no
corresponding entry in any directory.

SEE ALSO

BUGS

icle(d), icat(d), isnp(d).

ISNP(d) 16/15/75 : ISNP(4)

NAME

isnp - snap i-node contents

'SYNOPSIS

isnp [filesystem] i-number ... i-number

DESCRIPTION

Isnp snaps the contents of the i-node numbered i-number. An
arbitrary number of i-node numbers may be specified. The
file system argument must be a special file name referring
to a device containing a file system.

Read permission is required on the .specified file system
device. The primary purpose of this routine is to snap the
contents of the i-node.

SEE ALSO

BUGS

iclr(d), icat(d), idmp(d).

MKNOD (d) 16/15/75 MKNOD ()

NAME

mknod - build special file

SYNOPSIS

/etc/mknod name [¢] [b] major minor

DESCRIPTION

Mknod makes a directory entry and corresponding i-node for a
special file. The first argument is the name of the entry.
The second is b if the special file 1is block=~type (disks,
dectape), r 1If it is record-type (magtape, TIU) or ¢ if it
is character-type (other devices). The last two arguments
are numbers specifying the major device type and the minor
device (e.g. unit, drive, or line number).

The assignment of major device numbers is specific to each
system. The major device number corresponds to the ap-
propriate device driver process in "/prc® directory.

SEE ALSO

BUGS

mknod (II)

MKPT (d) 4/18/74 MKPT (4)

NAME

mkpt - make prototype file for use by mkfs

SYNOPSIS

/etc/mkpt spec proto

DESCRIPTION

Mk t constructs a prototype file proto according to the

ections found in the specification file spec. The
speczflcatlon file must contain the name of the boot file
as the first token, the size of the file system to be creat-
ed as the second token and the size of the i-list in blocks
as the third token. The next set of tokens comprise the
specification for the root file. See mkfs (VIII) for the
correct format of the above tokens.

All of the following tokens consist of directory names.
Directory names followed by a “: are made directory entries
in the proto file. Directory names not terminated by a ‘i

are scanned by mkpt and all entries are put in the proto
file (recursively). 1f no “:° terminated directory name ap-
pears, all entries taken from the specified directories are
entered into the proto file as originating from the root
directory. A directory name terminated by a “:° and fol-
lowed immediately by another directory name terminated by a

“:” will be entered as an empty directory entry in the proto

file. A directory name terminated by a “: may be followed
by as many directory names not terminated by “:’s as
desired.

A directory name terminated by a “: may be several 1levels
deep, e.g. usr/usra: . All subsequent directory names ter-
minated by “:° will be put in the directory ‘usr . One may
back up a directory 1level by means of the entry et
This enables one to extract selectively certain sub-
directories of a given directory.

Editing of the proto file will only be required if one
wisnes to change the names of some files. Otherwise the

proto file may be used exactly as is to create a new file

system using mkfs (see mkfs (VIII)).
Some sample specification files follow:

/usr/mdec/uboot
4872 55
d=-=777 3 1
bin: /bin
lib: /1lib
dev: /dev
etc: /etc
tmp:

usr:

mnt:

crp:

MKPT (d)

and

and

and

and

SEE ALSO
file system(V), directory(V), boot procedures(VIII).

/usr/mdec/uboot
4290890 500
d--777 3 1

/usr

/usr/mdec/uboot
20000 308
d=--777 31
usra: /usr/usrl
usrbs: /usr/usrd
usrc:

usrd: /usr/usrS

/usr/mdec/uboot
350009 4590
d--777 3 1

/

/usr/mdec/uboot
4000 80

d--777 3 1

bin: /bin

etc: /etc

dev: /dev

lib: /1lib

tmp:

4/18/74

/usr/usr2 /usr/usr3

usr/usra: /usr/usra

usrb: /usr/usrb
usrc:

bin: /usr/bin
mnt:

crp:

DIAGNOSTICS

BUGS

There
direc

are diagnostics for

tories.

non-existent

or

MKPT (4)

non-readable

If a very large proto file is created, it cannot be edited

to ma

ke any changes.

RECDMN (4) 10/15/75 RECDMN (4)

NAME

recdmn - reconfiguration daemon

SYNOPSIS

/etc/recdmn

DESCRIPTION

FILES

Recdmn is the file system reconfiguration daemon. It checks
every 38 minutes to see if the time is between 3AM and 4AM
and then performs reconfiguration on the file systems which
are specified in its internal table only if it can success-
fully unmount the file system. Thus the file system must be
inactive for a reconfiguration to be performed. The inter-=
nal table consists of entries with pointers to 3 ascii
strings, e.g.:
u/dev/thu' n/usrn' n_su'

Here the first string specifies the file system to be un-
mounted, the second string specifies the name of the direc-
tory under which the file system is to be mounted upon com=-
pletion of the reconfiguration, and the third string speci-
fies the algorithm to be used in the compaction of the file
system. '

The diagnostics produced by the daemon are written on the
file "/etc/recdlog" and may be examined the next morning for
a post-mortem. Each night that the reconfiguration daemon
runs, it starts writing at the beginning of the diagnostic
file again.

/dev/rf?, /dev/rk?, /dev/rp?, /etc/recdlog

SEE ALSO

BUGS

recon(d), check(d).

RECON

() 18/15/75 RECON (d)

NAME

tecon - reconfigure file system
SYNOPSIS

recon [=x] [£ 1 [highwater] filesystem
DESCRIPTION

Recon examines a file system, builds a bit map of used

blocks from the contents of the i-nodes, and reconfigures

files on the file system so as to compact all files onto the
lower blocks of the file system, making the files contiguous
if possible. Three basic algorithms may be used to compact
a file system. The first optional flag is used to specify
which of the algorithms are to be used. The -a option
causes all files to be compacted and relocated to lower
block numbers only if enough contiguous file space can be

.found. The search starts with i-node 1 and goes up to the

FILES

highest i-node in the file system. The search may be done
in reverse order starting with the highest i-node number in
the file system by specifying the second r flag. Files
which are contigquous, i.e. marked contiguous by bit in i-
node flag, are not moved under any circumstances.

The -b option causes only files above a certain highwater
block number to be searched as candidates to be relocated to
lower block numbers. After the search for all possible can-
didates, the i-nodes are sorted in order of file with the
highest block number first. Thus the files with higher
block numbers will be relocated to lower holes before mov-
ing those files which are already at lower block numbers in-
itially.

The ~s option causes only files above a certain highwater
block number to be searched as candidates to be relocated to
lower block numbers. After the search for all possible can-
didates, the i-nodes are sorted in order of largest file
first. Thus the largest file will be moved first to fill in
any existing holes in the bit map. - The smaller files will
fill in the holes that are left over.

In both -b and -s options the r flag may also be used to do
the sorting in~ the reverse order. Also if the argument
after the flags is numerical, it will be taken as the actual
highwater block highwater in the search for files to be

moved. The -s option 1s taken as a default option.

The filesystem must be unmounted before a reconfiguration is
attempted on it. Once recon has started to move files, all
signals are ignored so that the program cannot be aborted
when partially completed.

There is no default file system.

RECON (d) 196/15/75 RECON (4)

SEE ALSO
fs(d), check(d), recdmn(d).

DIAGNOSTICS

If a read error is encountered, the block number of the bad
block is printed and recon exits.

BUGS
There is currently no check against applying recon to an ac-
tive file system. It believes even preposterous super-
blocks and consequently can get core images.

ACP(e) 16/17/75 ACP(e)

NAME

acp - asynchronous copy

SYNOPSIS

acp filel file2

DESCRIPTION

The first file is copied onto the second file using asyn-
chronous I/0 directly from/to user’s address space. Reads
and writes are done in 3K word blocks. One read and one
write are outstanding simultaneously. The mode and owner of
the target file are preserved if it already existed; the
mode of the source file is used otherwise.

If file2 is a directory, then the target file is a £file 1in
that directory with the file-name of filel.

SEE ALSO

BUGS

cat(I), pr(I), mv(I), cp(I), pcp(e).

Copying a file onto itself destroys its contents.

kdb (e) 7/22/75 kdb(e)

NAME

kdb - kernel debugger

SYNOPSIS

or

kdb [=] [namelist]

kdb {[core [namelist]]

DESCRIPTION

Kdb is a debugging package for the kernel leyer of the MERT
operating system. Like the UNIX debugger, kdb is used to
examine core image files. Typically, the file “will be ei-
ther a core image of a system resulting from a crash or
/dev/mem when examining the current operating system.
The command line has two forms:
If a minus (-) is specified, kdb will use /dev/mem as
the core file. References to segments which are not
currently in memory will be satisfied by reading the
segment from /dev/swap.

If 2 core file is specified, kdb will treat all refer-
ences to the segments which are not in the core image
as errors.
If no arguments are given, the default core file is kore in
the current directory and the default namelist |is
/mrt/krn.sym.

The format of kdb requests is a one or two character mneu-
monic followed by a list of parameters. Numeric parameters
are assumed to be octal unless terminated by &a decimal
point. In the following description only the first two
characters of mneumonics are regquired:

$.

The user, supervisor, and kernel stack .pointers,
followed by the general registers are typed. This
command causes kdb to set its internal tables for
virtual address mapping of the kernel address
space to that at the time the kore image was pro-
duced. This should not be used when debugging
/dev/mem.

command line

The exclamation point (!) is strippved and the rest
of the line is sent to the shell for execution.

The values of the Kkernel segmentation registers
(sdr and sar) are displayed.

= symbol
The value of the symbol symbol is displayed.

dct pnl pn2
The Dispatcher Control Tables starting at worocess
pnl through pn2 are displayed. 1If pnl is not en-
tered, 211 the DCTs are typed.

dl pril ori2 0 < pril <= 7 pril <= pri2 <= 7
The Dispatcher Control Tables (DCT) entries which
are on the vrocessor priority chain pril are list-

-1 -

* kdb(e)

ml
msg

pmsg

rsde
sde

seg

snap -

Xt

7/22/75 kdb (e)

ed in the order inwhich they appear on the 1linked
list. After all DCT entries are listed, pril is
incremented. If pril is less than pr12, the next
chain is listed.

The Segment Discriptor Entries (SDE) are listed in
order of increasing memory.

The contents of all the message buffers are
displayed.

pnl pn2

The contents of all messages on the message queues
of processes pnl through pn2 are dlsplayed.

segid

The RSDE (Re51dent Segnent Descriptor Entry) for
the segment segid is displayed. If segid is not
specified, all RSDEs are displayed.

address

The SDE (Segment Descriptor Entry) pointed to by
address is displayed. If no address is specified
all SDEs are displayed.

segid offset n

The contents of the segment segid starting at byte
offset offset into the segment and continulng for
n bytes is displayed. 1If n is not specified the
end of the segment is assumed. If offset lS not
specified, zero is assumed.

start end pattern mask

Kernel virtual address space is searched starting
at start up to and lncludlng end for a match on
the pattern pattern. Each word “of kernel memory
is masked with mask before the comparisons are
made.

addr[d] n

The kernel virtual address addr and n consecutive
bytes are typed. If the address is followed by 2
"d" (no blanks or tzbs) the address is interpreted
as a D-space address, otherwise I-space is as-
sumed. Virtual address to file offset is done via
the image of the segmentation registers in kdb's
internal tables. If /dev/mem is being examined,
there 1is no way to get the current setting of the
segmentation registers. If a core file |is belng
examined, the '$' command will set kdb's mapping
tables to those of the system at the time the core
image was produced.

pn

Extracts an image of the process pn into the file
korexxx, where xxx is the octal index into the DCT
tables for the process. The program sdb can be
used to examine these core images.

kdb (e) . 7/22/75

ALSO SEE
sdb(e) ,kdmp(e) ,tdmp(e)

DIAGNOSTICS
"Open err:” if a file cannot be opened, otherwise "?2".

FILES .
kore core image file
/dev/mem

/dev/swap

/mrt/krn.sym namelist

kdb (e)

f
h
S’

KDMP (e) . 18/17/75 KDMP (e)

NAME .
kdmp - dump system state into core file
SYNOPSIS
kdmp [korefile] [diskfile]
DESCRIPTION
Rdmp reads the state of the system as it was saved on disk
when the system "panic’ed" producing a dump of all of memory
starting on a fixed disk cylinder. If no korefile is speci-
fied, the dump is put in the file "kore" in the current
directory. If no diskfile is specified, the dump is taken
from the default "diskfile" compiled into kdmp.
The starting cylinder numbers of the system dump for the
various disks are: .
Telefile 2089.
RP@3 2080.
RP@4 4908.
DECtape 9.
The “kore" file is suitable for debugging with kdb.
SEE ALSO
kdb(e) , tdmp(e).
BUGS

LDP (e) 4/18/75 - LDP(e)

NAME

1dp - load a process

SYNCPSIS

l1dp file

DESCRIPTION

Ldp breaks programs up into segments, performs relocation of
the text, data, and bss, satisfies external references to
shared data segments (data libraries), and shared code seg-
ments (public libraries), and provides the machinery for de-
fining symbols (of type common) in segments other than the
process data and bss segment. :

Input to 1dp is a specification file which consists of lines
containing a colon (:) terminated keyword and a vparameter
list. The elements in the parameter list are snparated by
blanks, tabs, commas, or if enclosed in braces ({}), by new
lines. Numerical parameters are assumed to be octal unless
terminated by a decima2l point. In the discussion of the
keywords parameters enclosed in brackets ([]) are optional,
address means the ascii name of an external symbol, and ps
is the octal value of the processor status word.

bss: symkol [symbol ...]
The bss option permits symbols of type common to
be allocated at the beginning if the data segment
rather than at the end. This option is useful if
one 1is trying to insure that a set of structures
begin on a 32 word boundary. The keyword bss is a
misnomer since symbols of type bss can not be re-
located using this option.
common : sr [=] symbol [symbol ...]

The common option defines a shared segment start-
ing in segmentation register sr and assigns the
symbols in the parameter 1list to the segment.
Only symbols of type common (any uninitialized C
structure) can be assigned. The size of the seg-
ment is equal to the sum cf the storage regquired
by the symbols in the parameter list. Up to eight
common segments may be specified for supervisor or
user processes and two for kernel processes. The
common keyword must be repeated for each segment.
The segment will contain all zeros when created.
Subsequent invocations of the prccess (via a
create message to the process manager) will simply
increment the user count on the segment. Ldp al-
locates a dummy block of 512 bytes at the end of
the process data for each common block. This is
required in order to associate a unigue name with
the corresponding segment,. If the minus (=)
parameter is specified, the common segment will be
set up as a stack segment (growing to lower ad-
dresses). The first symbol address will be com-
puted according to the C statement:

-1 -

LDP (e)

copy:

data:

database:

dcom:

emt:

4/18/75 | LDP (e)
addr = (sr<<1l3) + 8192 - sizeof(symbol);

Successive symbols are assigned lower addresses.

n

This specifies the maximum number of invocations
of the process For a2 process such as the disk
driver n is usually 1. For the unix supervisor, n
is normally grezter than the number of available
processes in the system.

pathname [pathname ...]

References to symbols in shared data segments oare
satisfied. The data segments are placed in the
holes in the process address space after all space
has been allocated for public libraries, process
text, process private data, and stack. Pathnemes
must begin at the root file system and must be the
same in the system under which 1dp is running as
in the system the process will run.

sr [s] .
The data and bss sections of the public 1library
are loaded starting in segmentation register sr.
The s parameter causes this segment to be shared
by multiple invocations of the library. This is
useful for generatlng system libraries where the
text, data, and bss zre combined in one sharable,
writable =egnent. This keyword- is only .meaningful
if a public library is being created (mode: p).

The dcom option (for data common) causes the pro-
cess data segment to be shared (normally the text
segment is shared and a new copy of the data seg-
ment is made). The segment always appears as the
third entry in the PCB segment table for supervi-
sor processes; for kernel processes the data seg-
ment will begin at the next BK byte boundary.

sr [-] symbol [symbol ...]

The dsect keyword is short hand for dummy section.
It permits symbols of type common {eg uninitial-
ized C structures) to be assigned values
corresponding to segmentation register sr (eg if
st = 3, the first symbol would have the” address

060000). By default, sSuccessive symbols are as-

signed higher addresses. Symbol addresses may
cross segmentation register boundaries 2and reap
around. If the minus (-) parameter is given, the
address assigned to the first symbol is given by
the C statement: .

addr = (sr<<l2) + 8192 -sizeof(symbol);

Successive symbols are allocated at 1lower ad-
dresses. No 1logical segment 1is created by the

dsect option; it is simply a way of controlling

the addresses of structures without knowing their
sizes.
address

L]

.- LDP(e) .

entry:

event:

fault:

idchar:

ifile:

4/18/75 LDP (e)

Address specifies the entry point into a kernel
process for servicing emt traps from supervisor
processes.

address ([ps]
Address specifies the initial entry point into a
supervisor process.

address [ps] .
Address specifies the entry 901nt into a supervi-
sor process for receiving event interrupts.
address [ps]
Address specifies the entry point to handle all
traps (except emt and bpt from supervisor or ker-
nel mode).

c

The character ¢ is passed the process manager in
the process file header. The process manager
passes the character to the kernel process tables
where it is available for 1dent1fy1ng the process
with the os program. This option is only meaning-
ful for kernel processes.

pathname [pathname] ... [-1x] ...

This option specifies the list of object files to
be link-edited together to form the process image
The normal shell syntax may be used (eg *.o &bc?
x[r=-2]*.0). The "elx" is short hand for
/lib/likbx.a and is used to specify archive format
libraries. The modules are lozded and libraries
searched in the order specified in the parameter
list. The system library (if a kernel process so
requests), any public likraries, /lib/libe.a (for
supervisor processes) or /lib/libk.a (for kernel
processes), /lib/libs.a, and /llb/llbc a are then
searched in order.

interrupt: device entry

or
vector entry
The parameter list specifies the vector addresses
and the <corresponding entry voint for all inter-
rupts the process eoxpects to handle. The specifi-
cation of the vector address can be by vector, the
octal address of the interrupt vector, or device,
a symbolic name for one of the standard DEC peri-
pherals: _
rconsole keyboard part of console teletype
xconsole printer part of console-teletype

pcllic paper tape reader
pcllp paper tape ounch
kwllo programmable clock
parity parity memory

rl ’ xyplotter

lp 1oll line printer
1s 1sll line printer
cf rfll disk

rc rcll disk

te tcll DEC tape

rk rkll disk

-3 -

LDP (e)

mode:

ofile:

open:

pcbbase:

priority:

publib:

share:

stack:

4/18/75 : : LDP (e)

tm tmll magnetic tape

cr crll card reader

cd ¢dll card reader

cm cmll card reader

rp rp03 disk

tf telefile rp03 eqguivalent disk
ta cassette tape

A process can specify up to 32 interrupts.
ksup (1] (4] [i]

Specifies whether the output file is a public 1i-
brary (p)., kernel (k), supervisor (s), or user (u)
process. The 1 option causes the system library
symbol table ~to be searched before the libraries
/lib/libk.a and /llb/llbs a (kernel processes
only). The d (or i) option causes data and bss to
be relocated to the data segmenatation registers.
pathname

The process file is deposited in pathname.

This keyword specifies that the process expects an
open I/0 message from the file system whenever a
device handled by the process is opened and 2 close
I/0 message whenever a device is closed.

sr

The segmentation register allocated to the process
PCB is sr. The default value is zero.

n A

For kernel processes n 1is the actual processor
priority at which the processor (bits 7:5 of the
ps) is set while the process is exocuting (3 <= n
<= 7). For supervisor processes n is the scheduler
priority of the process (0<= n <= 260)

pathname ([pathname ...]
The public libraries specified by the parameter
list are searched during the binding phase of pro-
cess building. The vathnemes must start from the
root file system and be the same in the system
under which 1dp is running as the system under
which the process will run.

sr access [symbol symbol ...]
The share option permits a2 process to specify that
a shared segment is to be provided by the creating
process, and that the shared segment is to appear
in the ©process virtual address space starting in
segmentatlon register sr. The shared segment will
be given access permission access (2 for read only,
6 for read/write), and the symbols (of type common)
will be given addresses starting at the beginning
of the segment. For supervisor processes, the
shared segment will appear in the PCR segment table
as the third entry (after the PCRB, stack, and text)
if the data and stack are combined (see stack op-
tion) or as the fourth entry (after the data seg-
ment) if the data and stack are not combined.

size sr [d]
The stack segment of size bytes will be allocated

-4 -

LDP (e)

swap:

time:

textbase:

4/18/75 ' LDP(e)

starting in segmentation register sr and occupying
successive (lower numbered) segmentation registers.
The 4 option causes data, bss, and common symbols
to be loaded at the top (high address end) of the
stack segment. If the 4 option is specified, the
size of the stack will be:
data size + bss size + common size + size.
The stack pointer will be initialized to point to
the appropriate virtual address:
sp = (sr <<13) + 8192 - data size - bss size;

or .
sp = (sr <<13) + 8192;
The stack segment always apvears as the second en-
try in the PCB segment table.
start nblks
The swap keyword declares the process as a valid
candidate for supporting system swapping. Start is
the block number (relative to the start of the log-
ical device defined by sgen (e)), and nblks is the
number of blocks in the Swao area. An example for
an rk disk might be:

swap: 4000., 872.
Note that there are no checks on 1logical device
between sgen and ldp, hence an incorrect specifica-
tion of the logical device could result in a file
system being destroyed.
n
The length of the process time slice (in 1/60ths
second) is set to n. .
st
The starting . segmentation register for the text
sharable segment of a publlc library is set to sr.
If the database keyword is not specified, all data
and bss will be included in the text segment and
thus will be read only. The textbase keyword is
only meaningful when a public 1library is being
tuilt (mode: p).

The specification file for the unix supervisor.is:

mode: s

pcbbase: 5

dcom:

sp: 1024.,7
dsect: 7,_u

ifile: *.,0

ofile: /etc/unix
entry: start,030000
fault: trap,030000
event: event, 030040
time: 120.

The specification filz for the kernel process which han-
dles the dhll device is:

mode: kl
priority: S
interrupt:{
320, dhrint
324,dhxint

-5 -

LDP(e)
}
emt:
event:
ifile:
- ofile:
FILES
/bin/14d
/bin/sh
a.out
ALSO SEE
ps (1)
DIAGNCSTICS

4/18/75 LDP (e)
314,_dmint

dhemt

dhevent

dh.o dhdm.o dhmch.o
/dev/cdevl

Error conditions are classified as being either fatal or

non-fatal.

The following warning messages are output on

the occurrence of a non-fatal error
Bzd option A bad keyword in the specif-

ication file =~ the line is
ignored.

Event entry point 2? No entry point was specified

for events.

Intr. vectors ?? No interrupts were specified
for a kernel process.
U: symbol The symbol symbol is unde-
: fined

K LDU(e) 5/25/76 LDU (e)

NAME :
1du - load a user process with public libraries
SYNOPSIS '
ldu [-in] name.o ... [=-p plib] [-0 ofile]
DESCRIPTION
Ldu provides an aid to forming a UNIX user program which
uses public libraries. It forms a temporary file with pro-
cess specifications which are then given to the lgg program
(1dp(e)). The default parameters are:
mode: uc
ifile: /lib/crt0.o0 name.o
ofile: p.out
stack: 02400.
The optional keys which may be specified are:

-1 program text and data areas are separated into I
and D space.

-n text portion of output file will be read-only and
shared by all users executing the output file.

-p the name of the file following this option will be
taken as a public librzry. The symbol names in
the public library file are linked into the main
program. The wpublic 1library is loaded when the
executable output file is loaded.

-0 the name of the ocutput file may be specified by
the name following the option key.

In the default case, the main orogram has text and data com-
bined. Up to 3 public libraries may be included in the out-
put file.

SEE ALSO
ldp(e), 1ll(e).

BUGS

LL(e)

NAME

SYNOP

18/24/75 . LL(e)

11 - library loader

SIS
11 -dxsxtx

DESCRIPTION

FILES

ALSO

DIAGN

LL takes a file in a.out format, with relocation bits and no
undefined external symbols, relocates it and inverts the
symbol table and program. The resulting file (called a pub-
lic library) can be used by the loader to satisfy references
to symbols defined in the file without including the code in
the loader output file. The flags define the type of relo-
cation to be performed, relocation bias, and access to be
associated with the library. .

d - Use D-space, the number x is the segmentation register
in which the data is to reside.

s - The library text segment is to execute in segmentation
register x. The text is given read/write permissions.
If the d option is not specified, the data will be ap-
pended “to the text. This option is used to construct
the system library. ,

t - The library text is to execute in segmentation regis-
ter X. The text is given read only access. If the d
option is not specified, the data will be appended to
the text and will have.read only access.

a.out

SEE
1ldp (e), sgen (e)

OSTICS
?? A letter other than d, s, or t is given as
a flag.
X

Bad base register does not satisfy 0 <= x <= 7.

”~

PCP(e) 18/17/75 PCP(e)

NAME
pcp - physical copy
SYNOPSIS
pep filel file2
DESCRIPTION
The first file is copied onto the second file using physical
I/0 directly from/to user s address space. Reads and writes
are done in 3K word blocks. The mode and owner of the tar-
get file are preserved if it already existed; the mode of
the source file is used otherwise.
If file2 is a directory, then the target file is a file in
that directory with the file-name of filel. '
SEE ALSO
cat(I), pr(1i), mv(I), cp(I), acp(e).
BUGS

Copying a file onto itself destroys its contents.

PIO(e) 18/17/75 " PIO(e)

NAME
pio - physical 1/0

SYNOPSIS .
pio command

DESCRIPTION
The given command is executed using physical I/O to/from all
files where possible. If physical I/0 is not possible, the
system does the appropriate side-~buffering.

This command is useful for doing “"check", "dd" and other
UNIX type commands which make use of raw I/O.

SEE ALSO o
cp(I), pcpl(e), acple).

BUGS

PS(e)

NAME

7/18/75 PS(e)

ps - process status

SYNOPSIS

ps [aklstx] namelist

DESCRIPTION

Ps prints certain indicia about <active processes. The a
tlag asks for 1nformatlon about all processes with teletypes
(ordinarily only one’s own processes are displayed); t asks
for all processes with the teletypes named in next argue-
ment. X asks even about processes with no typewriter; 1
asks for a long listing; k asks for a listing of all kernel
processes; s permits the specification of an alternate swap
device. The pathname of the swap device must be the next
argument. Namelist will be used for the kernel symbol table
instead of 7mrt7 rn.sym. QOrdinarily only the typewriter
number (if not one’s own) and the process number are given.

The long listing is columnar and contains
A word containing the process status flags.

The priority of the pfocess; high numbers mean high
priority.

The amount of kernel, supervisor, and user time con-
sumed by the process (in 1/66th second) is displayed in
the next three words.

The last character of the control typewriter of the
process.

The process unigue number (as in certain cults it |is
possible to kill a process if you know its true name).

The size (in 32 word blocks) of the process (includes
supervisor segments).

The bit pattern on which the process is sleeping.

A guess at the command line used to envoke the process.
The list of attributes for the kernel processes contains:

The process status flags. |

The hardware priority at which the process executes.

The head of the process message queue or zero if the
queue is empty.

The number of clock ticks until the next time out event
or blank if the process is not timing.

The process event flags word.

PS(e)

7/18/75 PS(e)

The process control channel number (always 6376).

The process unigue number.

The physical (block) memory address of the start of the
process.

The octal index into the process tables (DCT tables)
for the process. ‘
A one character identifier which is specified at pro-
cess build time.
The name of the controller or device which the process e
handles ~)
Plain ps will tell you only a list of numbers.
FILES
/mrt/krn.sym system namelist
/dev/swap swap device
/dev/mem resident system
/mrt/kprc names of controllers for kernel processes
SEE ALSO
kill(I) tkill(e) ldp(e)
~
._,-/
7

RUN (e) | : 5/20/76 RUN (e)

NAME
run - run an environment

SYNOPSIS
run [-b] [-f] file T

DESCRIPTION .
A new environment (task) is started up. The specifications
of the task are contained in the file file. The file is
built using ldp (see ldp(e)).
A new process is created from the contents of file. The
death of this process is waited for only if the b option is
not spec1f1ed to.run the process in the background. A non-
zero flag 1s passed to the new process if the f.option is
specified.

SEE ALSO
pcreat(f), wait(II).

BUGS

SGEN (e) 6/2§/75 SGEN (e)

NAME

sgen - system generation program

SYNCPSIS

sgen [-uv] spec [file]

DESCRIPTION

Sgen is a program which builds a core image of the basic

MERT operating system. The functions performed are:

1) It generates the low core image, allocating inter-
rupt vectors and establishing the linkage by which
processes can attach to the interrupts at run time.

2) Relocates the kernel text and data segments so that
they each start at 20000(8).

3) Appends the basic modules needed at boot to the
kernel core image. These include:

1) The system library
2) The process for the root device
3) The process for the swap device
4) The file manager process
5) The process manager bootstrap process
6) The nub process (a subtask of the process
manager)
7) System initialization process
4) Generates a table of pathnames of processes to be
created by the process manager at boot time.

Input to sgen consists of flags and a specification file.
The flags are:

u Do an update sysgen, that is do not regenerate a
new low core image.
v Verbose mode - print out a map of memory a2t the

end of system generation.

The specification file consists of lines contazining a key-
word and a parameter list. The elements in the parameter
list may be separated by blanks, tabs, or commas. A comment
delimited by /* may be added to any line. All numerical
parameters are assumed to be octal unless terminated by a
decimal point. The keywords are:
fmgr pathname
The file pathname contains the process file
(the output of 1dp) of the file manager pro-
cess
init pathname
The file pathname contains the relocatable
initialization process.

kernel pathname
The file pathname contains the relocatable
kernel.

lowcore pathname
The file pathname contains the relocatable
binary of the lowcore module. This module
is generated by sgen from the assembly
language files lcor0.s and lcorl.s.

-1 -

A

SGEN (e)

nubprc

pmboot

pmar

rooudev
rootprc
swapdev
swapprc

syslib

user

The following key words are associated with construction of

6/26/175 ~ SGEN(e)

pathname

The file pathname contains the process file
(output of 1dp) of the process which creates
supervisor mode processes. This process is
actually a subtask of the process manager.
It is included in system genera2tion to sim-
plify booting.

pathname

The file pathname contains the process file
(the output of 1dp) of the process which
will create the process manager.

pathname

The file pathname contains the process file
of the process manager. Sgen simply passes
this pathname to the init process which in
turn passes it to pmboot. The pathname must
start from the root and the file must exist
on the root file system at boot time.

major minor

Major is the major device numker of the root
file system. Minor 1s the minor device
number of the root file system.

pathname

The file Eatbname is the process file of the
process which services the device containing
the root file system.

major minor

Major is the major device number of the swap
device. Minor is the minor device number of
the swap device.

pa thname

The file pathname is the process file of the
orocess which services the device which con-
tains the system sw2p area.

pathname '

The file pathname centains the puklic 1i-
brary fiTe (output of 11) set up to execute
in kernel base register six. If this key-
word is excluded, no system library will be
generated. By convention the pathname of
the system library file is /mrt/syslib.
pathname

The file pathname is the process file of a
process to be started up by the kernel ini-
tialization process at boot time. COnly one
pathname can be specified with each user
keyword. The user keyword may bke repeated
nine times.

£

low core and memory management tables. These specifications
are ignored if the "-u" option is specified.

memory

start size [start size [start sizel]

Physical memory is broken up into ons2, twvo,
or three partitions. Start is the beginning
(64 byte) block address of the partition,

-2 -

SGEN (e) 6/26/75 SGEN (e)

size is the number of (64 byte) blocks in
the pertition. At system initialization
time the actual size of memory is determined
and the size of the last partition is ad-
justed to reflect the top of memory.
messages n
N = 16 word message buffers are allocated.
The default is 32 and the max1mum allowed is
160.
nrsde n
M resident segment descriptor entries (RSDE)
will be allocated in the kernel private data
segment (not low core). The number of RSDEs
determines the maximum number of segments
that can exist in the system at any time.
One should allow about 3.7 segments per
process.
processes n
. N process table entries (DCT) are allocated.
The default is 50 and the maximum is 127.
stack size
The size of the system stack is size bytes.
The system stack resides at the high address
end of the lowcore segment.
v addr csr
' the v (for vector) keyword is included for
defining non-standard devices or standard
devices which use interrupt vectors and/or
control and status registers which do not
conform with DEC conventions. Addr 1is the
interrupt vector address used by the device
and csr is the address of the device control
and status register (the register contalnlng
the interrupt enable bit).
The following keywords are provided to, handle standard DEC
devices and are simply "built in" ¥ keywords (e.g. the pro-
gram knows the vector and csr addresses).

console pcll kwllo parity plot
adol afecll aalls aalll lpll
1s1l rfll rcll tcll tmll
tull htll rkll cdll cmll
crll udcll rpll rp03 hpll
rjp04 tf£11 tall dcll kl1ll
dllla - dlllb dlllc dl114d dllle
dmlla dmllb dnll dpll drlla
drllc dtll djll dhll dall
dull
FILES
/bin/1ld
/bin/as

lcor0.s generated by sgen and used to form lowcore imaq=
lcorl.s contains constants which must be in I = D = phyical
memory

SGEN (e) | _ 6/26/75 : SGEN(e) .

ALSO SEE
ldp{e) , 11(e)

TDMP (e) 16/17/75 ’ TDMP (e)

NAME

tdmp - dump system state into core file
* SYNOPSIS

tdmp [korefile]

DESCRIPTION
Tdmp reads the state of the system as it was saved on DEC-
tape (drive 1) when the system “panic’ed" producing a dump
of all of memory starting at block 6 on the DECtape. If no
korefile is specified, the dump is put in the file "kore"” in

~ the current directory.)

The "kore"” file is suitable for debugging with kdb.

SEE ALSO
kdb(e), kdmp(e).

BUGS

- ogm

N

~

INTRO(F) 3/12/75 INTRO(F)

INTRODUCTION TO MERT UNIX SYSTEM CALLS

Section F of this manual lists all of the additional entries into
the UNIX system over and above those described in section II.
These entries are only supported by the MERT system. These addi-
tional entries 1into the UNIX system can be categorized as fol-
lows:

(1) support of multi-environment features

(2) physical and asynchronous I/0 into user area
(3) use of system message facilities

(4) sharing of segments between processes

In most cases two calling sequences are specified, one of which
is usable from assembly language, and the other from C. Most of
these calls have an error return. From assembly language an er-
roneous call is always indicated by turning on the c-bit of the
condition codes. The presence of an error is most easily tested
by the instructions bes and bec (“branch on error set (or
clear)). These are synonyms for the bcs and bcc instructions.

From C, an error condition is indicated by an otherwise impossi-
ble returned value. Almost always this is -1; the individual
sections specify the details.

In both cases an error number is also available. In assembly
language, this number is returned in r@ on erroneous calls. From
C, the external variable errno is set to the error number. Errno
is not cleared on succesful calls, so it should be tested only
after an error has occurred. There is a table of messages asso-
ciated with each error, and a routine for printing the message.
See perror (III).

The possible error numbers are not recited with each writeup in
section F, since many errors are possible for most of the calls.
See the introduction to section II for a list of all the possible
error numbers.

CALL (F) - 3/25/175 CALL (F)

NAME

call - combination fork, exec, wait

SYNOPSIS

(call = 70.)

sys call; &status; name; args
status: .=.4+2

name: <...\0>

args: argl; arg2; ...; O
argl: <...\0>

arg2: <...\0>

lcall (&status, name, argl, argz, eesy argn, 0)
int status; :
char *name, *argl, *arg2, ..., *argn;

vcall(astatus, name, argv)
int status;

char *name;

char *argv(];

DESCRIPTION

Call does the equivalent of 2 fork and 2 wait for the parent
process and the equivalent of a exec for the child process
which is spawned. Call spawns a child process without mak-
ing a copy of the user segments; the child process sets up
its wuser address space with the named file and then
transfers to the beginning of the core image cf the file.

Files remain open across call calls. Ignored signals remain
ignored across <call, but signals that are caught are reset
to their default values.

Each user has a real user ID and group ID and an effective
user ID and group ID (The real ID identifies the person us-
ing the system; the effective ID determines his access
privileges.) Call changes the effective user 2and croup ID to
the owner of th? executed file if the file has th ‘set-

user~-ID'' or set-group-ID'' modes. The real user ID is
not affected.

The form of this call differs somewhat depending on whether
it is called from assembly language or C; see below for the
C version.

The first argument to call is the address of the status word
in which the result of the call is returned. The second ar-
gument to call is a pointer to the name of the file to be
executed. = The third is the address of a null-terminated
list of pointers to arguments to be passed to the £ile.
Conventionally, the second argument is the name of the file,

-1 -

CALL (F) 1 3/25/75 CALL(F)
Each pointer addresses a string terminated by a null byte.

Cnce the called file starts execution, the arguments are
availeble as follows. The stack pointer points to a word
containing the number of arguments. Just .above this number
is a 1list of pointers to the argument strings. The argu-
ments are placed as high as possible in core.

sp-> nargs
argl

argn

argl:' <argl\0>

argn: <argn\0>

From C, two intefaces are aveilable. 1lczll is useful when a
known file with known arguments is being called; the argu-
ments to lcall are the character strings constituting the
file and the arguments; as in the besic call, the first ar-
gument is conventionally the same as the file name (or its
last component). A 0 argument must end the argument list.

The vcall version is useful when the number of arguments |is
unknown in advance; the arguments to vcall are the name of
the file to be exescuted 2nd a vector of strings conteining
the arguments. The last argument string must be followed by
a 0 pointer.

When a C program is executed, it is called as follows:

main(argc, argv)
int argc;
char *argv(]:;

where argc is the argument count and argv is an array of
character pointers to the arguments themselves. Aas indicat-
ed, argc is conventionally at least one and the first member
of the array points to a string containing the name of the
file.

Argv is not directly usable in another wvcall, since
argvlargc] is -1 and not 0.

SEE ALSO
fork(II), exec(II), wait(II)

DIAGNCSTICS
If the file cannot be found, if it is not executable, if it
does not have a2 valid header (407, 410 or 411 octal as first
word), if maximum memory is exceeded, if the arguments re-
cquire more than 512 bytes, or if a new process cannot be
created, the error bit (c-bit) is set. From C the returned
velue is -1. .

N

CALL (F) : 3/25/75 ‘ CALL (F)

BUGS
Only 512 characters of arguments are allowed.

FALLOC (F) 3/18/75 FALLOC(F)

NAME
' falloc - allocate space for contiguous file

SYNOPSIS

' (falloc = 77.)

sys falloc; name; mode; size[8]; size[l]
(file descriptor in r#)

falloc(name, mode, size[8], size[l])
char *name;

DESCRIPTION

Falloc creates a new file called name, given as the address
©f a null-terminated string. The file must not already ex-
'ist. It is given mode mode and the ICONT bit is also set in
the inode (see chmod(c)). Contiguous file system space is
allocated to the file corresponding to the number of bytes
specified by size[#] (high order size word) and size(l] (low
order size word). The file system space allocated to this
file is only returned to the free list when the last link to
the file is removed, regardless of the actual size of the
file.

The file is also opened for writing, and its file descriptor
is returned in r@.

This system call is typically used to insure the allocation
of contiguous file system space for a large file which will
be described by one extent. Large physical or asynchronous
I/0 transfers may be issued to these files with the as-
surance of good real-time response.

SEE ALSO
creat(II), creat(c), chmod(c).

DIAGNOSTICS
The error bit (c-bit) is set if a needed directory is not
searchable, the file already exists, there is insufficient
file system space or too many files are already open. From
C, a -1 value is returned on an error.

FMOVE (F) 3/18/175 FMOVE (F)

NAME :
fmove - move file into contiguous area

SYNOPSIS
({fmove = 78.)
sys fmove; dev; inode; flag
fmove (dev, inode, flag)

DESCRIPTION
Fmove moves the file specified by dev which is the device
number of the file system on which it resides and by inode
which is the file number on that file system into a contigu-
ous area of the file system starting at a lower block ad-
dress if possible. The arguments for fmove are typically
returned by £stat or stat (see fstat(IIl) and stat(lIl)).
The file is locked and may not be accessed by other ~users
while the file is being moved. If the value of flag is zero
and the file cannot be moved into a contiguous area lower
than which it currently resides in, it is not moved. If
flag is non-zero, the file will always be moved if enough
contiguous space is available.
This system call may be used to move a file into a contigu-
ous area thereby guaranteeing minimum latency in read/write
operations on the file and ensuring fast response to large
physical I/0 transfers to/from the file.

SEE ALSO
fmove(c), fmove(d).

DIAGNOSTICS

The error bit (c-bit) is set if the user is not super-user,
the file is currrently active or it cannot be moved because
of insufficient space. From C, a -1 value is returned on an
error.

GETSEG (F)

NAME

8/18/76 . GETSECG (F)

getseg - get user segment

SYNCPSIS

(getseg = 71.; not in assembler)
(function code in t0)

Sys getseg; segstruct

(code in r0)

segd = getseg(segstrp)

code = rmovseg(segstrp)

segd = connseg(segstrp)

code = discseg(segstrp)

segd = getsnam(segstrp)

struct segstruct *segstrp;
DESCRIPTICN’

The five routines manipulate user segments in the user's ad-

dress

space (either I or D). The user may have up to six

(6) segments in his address space in addition to the code,

data

and stack segments at any one time. The user can mani-

pulate more than six segments at a time but only six of
these may be in his active address space simultaneously.

From

assembly language, the function code in register 0

specifies the reguest type.

0

The user may put a2 segment known by name in his address
space or a new segment may be created in his address
space.

A segment may be completely removed from the user's ad-
dress space and the segment will no longer be one of
his available segments.

An already existing segment (previously put in his ad-
dress space by a call to getseg) may be put in the
user's active address space.

A segment may be disconnected from the wuser's address
space. This segment is still aveilable to be put in
his active address space at a later time.

The name of a user segmént may be determined. The seg-
ment may be a part of the user's address space as the
result of the inclusion of a public library.

All uses of this system call regquire the reference to a
five-word (5) structure as follows:

struct segstruct {

int segname[2];
char perm;

char breg;

int segsize;
char *segaddr;

}:

The segment name segname is a 32-bit quantity and must be

-1 -

v

SNt

g

¢ GETSEG(F) . ‘ 8/18/76 GETSEG(F)

.

specified when a segment is being referred to. Segments are
normally managed by maintaining a table of the a2bove struc-
tures, one for each segment. If the name of a2 segment is
not known, the segment descriptor code, sead may be used to
identify it. This segment descriptor refers to an entry in
the process PCB table of user segments, a value of sead
equal to . zero being the first entry. Thus if the segment

.name segname passed as an argument to the system call is

less than 256, it is taken to be a segment descriptor, sead.

Getseg allocates a segment in the user's address space. If
the name, segname is zero, the segment is assumed not to ex-
ist and a new one is created. However, if the name is non-
zero, it is assumed to already exist. The base register to
be used to point to the user segment may be specified by
breqg. A value of breg from 0 to 7 will put the segment in
the I-mode address space of the user; a value from 8 to 15
will put the segment in the D-mode address space of the
user. If the user wishes the system to determine the next
available base register for the segment, a value of -1 must
be given for breg. The address of the logical segment will
start on a segment boundary, i.ec. a multiple of 8192 bytes
and will be seagsize bytes in length. The user must specify
the length of the segment to be created; however, if the
segment already exists and the user has been passed the name
of the segment in a message, a length of zero bytes should
be specified to ensure that a brand new segment 1is not
created. This segment may be shared between the parent and
any number of its children. The share permissions of the
segment perm are specified for the child in bits <5-3> and
for the parent in bits <2-0> as follows:

<5=3> - 0 - not shared
- read only
- read/write
- shareable by orocess created by "pcreat"”
- read only
- read/write.
A user segment number (descriptor) is returned in gegd. The
name of the segment is returned in segname and may be used
for future reference to the segment. The size of the seg-
ment in bytes 1is returned in seasize in case the size was
not known. 1In all ceses the starting address of the segment
is returned in segaddr. This segment is made one of the
user's active segments. The shared segment is maintained
across all system fork's and exec's. Synchronization may be
achieved by means of the sendev and waitev primitives.

<2-0> ~-

oOVN N avi

Rmovseg is used to remove a segment completely from the
user's address space. The slot in the user's vprocess PCE is
also freed up for later use. All that the user need svecify
in the structure is the segment name. The name may be ei-
ther 2 32-bit name or a number less than 256, in which case
it is treated as a sead. The segment can no longer be out
back in the user's address space, unless another process
still has it as one of its segments and the user invokes
getseq ‘again with the name cf the segment. A positive re-

-2 -

GETSEG(F) 8/18/76 GETSEG (F)

turn code indicates success, i.e. the segment did exist and
~was in fact removed.

connseg connects a segment in the process's PCB table into
the user's address space at the specified address. If the
value of breg is -1, the next available user base register
will be used, other wise the one specified by breg will be
used. The name of the segment must be passed 'in segname.
If the name is less than 256, it is taken to be the segment
descriptor, sead. The segment descriptor, segd is returned
in r0. The starting address of the user segment is returned

in segaddr.

Discseqg disconnects a user segment from his active address
space. The name specified has the same convention as speci-
fied by connseg above. The segment may be connected as an
active segment at a later time. A positive return code in-
dicates a2 successful function call.

Getsnam returns the name of the segment specified by seagd in
the segment name field, segname. The 32-bit name of the
segment is returned in segname. The segment descriotor is
returned in r0. The segment is not put in the user's active
address space.

SEE ALSO

sendev (f), waitev(f).

DIAGNOSTICS

The error bit (c-bit) is set if a2 new segment cannot be
created because of insufficient swep space. From C, a2 -1
value is returned on an error. Cther error conditions pos-
sible.are the non-existence of the named segment or insuffi-
cient z2ddress space in the user's address space for the seg-
ment. '

@

2

* LOCK(F) ' 16/6/75 LOCK (F)

NAME
lock = lock a flag
unlock - unlock a flag
tlock - test and lock a flag

SYNOPSIS
(lock = 848.)
sys lock; func; flag
(current value of flag in r@)
func = 8 lock

1 unlock
2 tlock
lock (flag)
unlock(£lag)
tlock(flag)
DESCRIPTION

Lock suspends execution of the calling process while the
semaphore -is locked by another process. Otherwise the sema-
phore is locked by setting the flag word to the current pro-
cess ID. 1If the current value of flag is non-zero, the pro-
cess sleeps on the address of the flag. Unlock sets the
value of flag to 0 and wakes up all processes waiting on
this flag. Tlock sets the value of the flag to the current
process ID only if the current value of the flag is zero.
The calling process is not suspended.

SEE ALSO

DIAGNOSTICS
The error bit (c-bit) is set if an illegal function is re-
quested. From C, a -1 value is returned on an error.

MSGPORT (F) 18/3/75 : MSGPORT(F)

NAME
msgport - send message to a process connected to a port

SYNOPSIS
(msgport = 69.)
(message size in r@)
sys msgport; msgbuf
msgport (msgbuf, msgsize)

DESCRIPTION
Msgport sends the message in the message buffer msgbuf to
the process connected to the port specified in the msto word
of the message header (see sendmsg(c) for message header
format). The size of the message to be sent (in words)
msgsize includes the six word message header. The sender
must £ill in the msto word of the message header. The sys-
tem fills in the mssize byte and the mstype byte. The user
is only allowed to send type -3 messages. The acknowledge-
ments to the sender s messages may be identified by £filling
in the msident word in the message header.

SEE ALSO '

msgsend (f) , sendmsg(c), getmsg(c), msgrecv(f).

DIAGNOSTICS :
The error bit (c-bit) is set if the intended receiver pro-
cess is non-existent, the port number is invalid, no process
is connected to the port, or if the message buffer is not in

the user s address space. From C, a -1 value is returned on
an error.

w

MSGRECV(F) 3/18/175 MSGRECV (F)

NAME
msgrecv - receive message

SYNOPSIS
{msgrecv = 66.)
(message size in r@)
sys msgrecv; msgbuf
msgrecv (msgbuf, msgsize)

DESCRIPTION

- Msgrecv receives a message into the message buffer msgbuf

(see sendmsg(c) - for message header format). The maximum .
size of the message that will be received (in words) is
msgsize including the six word message header. The system
£fills in the mssize byte and the mstype byte. The mssize
byte will contain the actual number of words received. The
user will only receive type -3 messages. Acknowledgements
to particular messages may be identified by the msident word
in the message header.
The status byte in the message header may be wused by the
sending process to indicate the status of the particular
message request.

SEE ALSO
sendmsg (c) , getmsg(c) , msgsend(f).

DIAGNOSTICS

The error bit (c-bit) is set if the message buffer address
is not in user’s address space. From C, a -1 value is re-

turned on an error.

MSGSEND(F) 3/18/75 MSGSEND (F)

NAME
msgsend - send message to a process

SYNOPSIS
(msgsend = 67.)
(message size in r#9)
sys msgsend; msgbuf
msgsend (msgbuf, msgsize)

DESCRIPTION
Msgsend sends the message in the message buffer msgbuf to
the process specified in the msto word of the message header
(see sendmsg(c) for message header format). The size of the
message to be sent (in words) msgsize includes the six word
message header. The sender must t £fill in the msto word of
the message header. The syster £f£ills in the mssize byte and
the mstype byte. The user is only allowed to sena type -3
messages. The acknowledgements to the sender s messages may
be identified by filling in the msident word in the message
header.

SEE ALSO
sendmsg (¢) , getmsg(c), msgrecv(f).

DIAGNOSTICS

The error bit (c-bit) is set if the intended receiver pro-
cess is non-existent or if the message buffer is not in the
user ‘s address space. From C, a -1 value is returned on an
error.

PCREAT (F) 3/12/75 : PCREAT(F)

NAME
pcreat - creat new process

SYNOPSIS
(pcreat = 65.)
Sys pcreat; name
pcreat (name)
char *name;

DESCRIPTION
Pcreat sends off a message to the process manager to create
a new process from the description given in the file name.
Name is the address of a string of ASCII characters
representing a path name, terminated by a null character. A
user segment which has been created by using connseg (see
connseg(f)) with child permissions equal to 67 may be
shared with the newly created process.
The process number of the new process is returned in rd.
The process may be "waited" for using the standard "sys
wait" system entry. This system entry is used to set up a
new environment other than the UNIX time-sharing environ-
ment. The file containing the initial process image is
created using ldp (see section E).

SEE ALSO
fork(II), wait(II), ldp(e).

DIAGNOSTICS

The error bit (c-bit) is set if the file does not exist, the
file is not in the correct format or a new process could not
be created because of lack of process space. From C, a -1
value is returned on an error.

PLOCK(F) 16/6/75 PLOCK (F)

NAME

plock = lock process in memory
SYNOPSIS

(Plock = 79.)

(lock flag in r#9)

sys plock

plock(flag)
DESCRIPTION

Plock locks the current process in memory if the value of
fIag is non-zero and unlocks the current process if flag is
zero. When a process is lockéd in memory, all segments ts be-
longing to the process are marked as non-swappable. These
segments may be shifted in memory but may not be written
back to secondary.

SEE ALSO
pswap(a) , punswap(a).

DIAGNOSTICS
The error bit (c-bit) is set if less than 8K words of memory
are available for swapping after locklng all of a process s
segments in memory. From C, a -1 value is returned on an
error.

Y

SENDEV(F) 3/18/75 SENDEV (F)

NAME
sendev - send event(s)

SYNOPSIS
(sendev = 73.)
(process number in r8)
sys sendev; event

sendev (proc, event)

DESCRIPTION
Sendev sends any number of events (up to 8 maximum) to the
process proc. The eight possible event flags are the low
eight bits of the word event.

This primitive may be used to synchronize the execution of
co-operating processes sharing a common data segment.

SEE ALSO
connseg (f) , waitev(f).

DIAGNOSTICS
The error bit (c-bit) is set if the process proc does not
exist. From C, a -1 value is returned on an error.

SETIO(F) 3/18/75 SETIO(F)

setio - set I/0 mode of file

SYNOPSIS

(setio = 75.)
(file descriptor in r@)
sys setio; mode

setio(fildes, mode)

DESCRIPTION

Setio sets the I/0 mode of subsequent reads or writes to the
file specified by the file descriptor fildes which is a word
returned from a successful open oh a fiIe. The possible
modes which may be set for file I/0 are:

8 - normal buffered I/0

1 - physical I/0 directly to or from
the user s address space

@2 - asynchronous I/0 directly to or from the
user ‘s address space

I1f asynchronous I/0 to the user s address space is initiat-
ed, the I/0 must eventually be waited for by a call to
statio. To obtain physical I/0 without system side-
buffering, a file descriptor of -1 may be specified with a
mode of 1. A setio(-1,8) will turn off the general physical
1/0 mode and revert back to normal system side-buffering.

In the case of physical 1/0, if the I/0 does not start on a
device block boundary, i.e. a multiple of 256 words, normal
system side-buffering is used. An I/0 transfer may be bro-
ken up into a combination of physical I/0 and buffered I/0
by the system if this is possible. 1In the case of asynchro-
nous I/O to or from the user’s address space, the transfer
must always start on a device block boundary but need not
necessarily end on a block boundary.

SEE ALSO :

open(II), read(II), write(II), read(c), write(c), statio(f).

DIAGNOSTICS

The error bit (c-bit) is set if the file descriptor is not
that of an open file. From C, a -1 value is returned on an
error.

@

STATIC(F) 3/18/75 STATIO(F)

NAME
statio - get status of asynchronous I/0
SYNOPSIS)
(statio = 76.)
(buffer descriptor in r@)
sys statio; statbuf; wflag
statio(bufdes, statbuf, wflag)
int statbuf([3]; /* buffer descriptor */
/* flag word indicating I/O0 status */
/* 1I/0 byte count */
DESCRIPTION
Statio returns the status of the asynchronous 1I/0 transfer
initiated by a read or write from or to a file for which the
I/0 mode had previously been set to asynchronous I/0 (see
setio(f)). The read or write returns immediately with a
‘System 1/0 buffer descriptor butdes which must be saved for
later reference to the status of this I/O transfer.
To check the status of the I/0 transfer a call to statio
with a zero value of wflag will return immediately with the
status of the I/0 in the second word of the status buffer
and the I/0O byte count in the third word of the status
buffer. The flags in the flag word are as follows:
82 - I/0 complete
#4 - I/0 error
If the I/0 transfer is not complete, computation may be
resumed and I/0 completion checked for at a later time. A
statio call with a non-zero value of wflag will not return
control to the user until this particular I/0 is complete.
A statio call with bufdes equal to zero will return the 1I/0
status of the first outstanding asynchronous I/O completed.
Currently a total of four asynchronous I/0Q transfers may be
initiated at any one time on up to four different files.
SEE ALSO
open(II), read(II), write(II), read(c), write(c), setio(f).
DIAGNOSTICS

The error bit (c=bit) is set if the buffer descriptor |is
not legal or if there is no outstanding I/0 waiting to be
completed. From C, a -1 value is returned on an error.

SYSPROC (F) 18/3/175 SYSPROC (F)

NAME :
sysproc - system process

SYNOPSIS
(sysproc = 68.) .
(process port number in r®) _ Rt

sys sysproc; flag
process = sysproc(syspnum, flag)

DESCRIPTION

Sysproc performs some operation on one of the system process

ports specified by syspnum according to the value of the

flag flag. Syspnum is a value from @ to the maximum process ~
port number (currently 4). If flag is 0 the current process

is connected to the process port syspnum. If flag is 1 the

current process is disconnected from the process port

syspnum. If flag is 2 the value of the process process con-

nected to the process port syspnum is returned. :

SEE ALSO
msgport(£f) .

DIAGNOSTICS
The error bit (c-bit) is set if the port number or flag
value is invalid. From C, a -1 value is returned on an er-
ror.

TN

WAITEV(F) 3/18/75

NAME
waitev - wait for an event

SYNOPS1IS \
(waitev = 74.)
sys waitev
(event word in r0)

event = waitev()

DESCRIPTICN

Waitev waits for the receipt of an

event from

WAITEV(F) .

process.

The eight possible event flags are the low eight bits of the

word event.

This primitive may be used to synchronize the

execution of

co~operating processes sharing 2 common data segment.

SEE ALSO
connseg (f), sendev(f).

DIAGNCSTICS

