/073

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is an introduction to programming on the UNIX} system. The
emphasis is on how to write programs that interface to the operating system, either
directly or through the standard 1/O library. The topics discussed include

® handling command arguments
o rudimentary I/O; the standard input and cutput
e the standard /O library; file system access
@ low-level 1/O: open, read, write, close, seek
® processes: exec, fork, pipes
® signals — interrupts, etc.
There is also an appendix which describes the standard I/O library in detail.

October 26, 1979

+ UNIX is a Trademark of Bell Laboratories.

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION .

This paper describes how to write programs that interface with the UNIX operating system in a
non-trivial way. This includes programs that use files by name, that use pipes, that invoke other
commands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of The UNIX
Programmer’s Manual [1] for Version 7 UNIX. There is no attempt to be complete; only generally
useful material is dealt with. It is assumed that you will be programming in C, so you must be able
to read the language roughly up to the level of The C Programming Language [2]. Some of the
material in sections 2 through 4 is based on topics covered more carefully there. You should also be
familiar with UNIX itself at least to the level of UNIX for Beginners [3].

2. BASICS

. Program Arguments

Whenantogramnsmnasacommand the arguments on the command line are made avail-
able to the function main as an argument count argc and an array argv of pointers to character
strings that contain the arguments. By convention, argv{0] is the command name itself, so arge
is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the ter-
minal. (This is essentiaily the echo command.)

main(arge, argv) /* echo arguments »/
int arges;
char *argv(];
{
int i;

for (i = 1; i < arge; i++)

printf("%s%c”, argv{i], (i<arge-1) ? * ’ : ‘\n’);
) .
argv is a pointer to an array whose individual elements are pointers to arrays of characters; each is
terminated by \0, so they can be treated as strings. The program starts by printing argv{1] and
loops until it has printed them ail.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2.2. The “Standard Input’’ and ‘‘Standard Output’’
The simplest input mechanism is to read the “standard input,” which is generally the user’s ter-
minal. The function getchar returns the next input character each time it is called. A file may

be substituted for the terminal by using the < conventlon if prog uses getchar, then the com-
mand line

prog <file

causes prog to read file instead of the terminal. prog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the pipe
mechanism:
otherprog | prog
provides the standard input for prog from the standard output of otherprog.
getchar returns the value EOF when it encounters the end of file (or an error) on whatever

you are reading. The value of EOF is normally defined to be -1, but it is unwise to take any .

advantage of that knowledge. As will become clear shortly, this value is automatically defined for
you when you compile a program, and need not be of any concemn.

Similarly, putchar(c) puts the character ¢ on the “standard output,” which is also by defauit
the terminal. The output can be captured on a file by using >: if prog uses putchar,
prog scutfile
writes the standard output on outfile instead of the terminal. outfile is created if it doesn’t
exist; if it already exists, its previous contents are overwritten. And a pipe can be used:
prog | otherprog
puts the standard cutput of prog into the standard input of otherprog.

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order; the output will
appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the standard -

input and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as
getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs IO with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the out-
put of one program to the input of the next. For example, the following program strips out all ascii
control characters from its input (except for newline and tab).

#include <stdio.h>

main() /% cestrip: strip non-graphic characters */
{
int ¢
while ((c = getchar()) != EOF)
if ((c>= 7 2 &4 ¢ < 0177) 1] ¢ == ’\t’ |] Cc =22 '\n’)
putchar(c);
exit(0);
) }
The line

#include <stdio.h»

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usrlinclude/stdio.h) of standard routines and symbolis that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:
cat filei file2 ... | cestrip soutput

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary to make the program work properly, but it assures that any caller of the pro-
gram will see a normal termination status (conventionally 0) from the program when it completes.

7~

~

~

-3.

Section 6 discusses status returns in more detail.

3. THE STANDARD VO LIBRARY

The “Standard I/O Library” is a collection of routines intended to provide efficient and portable
1/O services for most C programs. The standard I/O library is available on each system that sup-
ports C, so programs that confine their system interactions to its facilities can be transported from
one system to another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a
more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard output,
which we have assumed are magjcally pre-defined. The next step is to write a program that accesses
a file that is nor already connected to the program. COne simple exampie is we, which counts the
lines, words and characters in a set of files. For instance, the command

we X.C y.C¢

pnntsthenumberofhns,wordsandchamctemmx.candy ¢ and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file
system names to the I/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fopen. fopen takes an external name (like x.c or y.c), does some housekeep-
ing and negotiation with the operating system, and returns an internal name which must be used in
subsequent reads or writes of the file.

’Ih:smternalname;sacmaﬂyapmmer,m!ledaﬁlepormr,mammewhxcheommnsmfor
mation about the file, such as the location of a buffer, the current character position in the buffer,
whether the file is being read or written, and the like. Users don’t need to know the details,
because part of the standard I/O definitions obtained by including stdio.h is a structure definition
called FILE. The only declaration needed for a file pointer is exemplified by

FILE »fp, *fopen();
This says that £p is a pointer to a FILE, and fopen returns a pointer to a FILE. (FILE is a type
name, like int, not a structure tag.
The actual call to fopen in a program is
fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argument is
the mode, also as a character string, which indicates how you intend to use the file. Theonly
allowable modes are read ("r*), write ("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if possible). Open-
ing an existing file for writing causes the old conteats to be discarded. Trying to read a file that
does not exist is an error, and there may be other causes of error as well (like trying to read a file
when you don’t have permission). If there is any error, fopen will return the null pointer value
NULL (which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several pos-
sibilities, of which getc and putc are the simplest. getc returns the next character from a file; it
needs the file pointer to tell it what file. Thus

c = getc(fp)

places in c the next character from the file referred to by £p; it returns EOF when it reaches end of
file. putc is the inverse of gete:

putc(c, fp)
puts the character ¢ on the file fp and returns c. getc and putc retumn EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided
for them. These files are the standard input, the standard output, and the standard error output;
the corresponding file pointers are called stdin, stdout, and stderr. Normally these are all
connected to the terminal, but may be redirected to files or pipes as described in Section 2.2.
stdin, stdout and stderr are pre-defined in the IO library as the standard input, output and
error files; they may be used anywhere an object of type FILE * can be. They are constants, how-
ever, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they are

processed in order. If there are no arguments, the standard input is processed. This way the pro-
gram can be used stand-alone or as part of a larger process.

#include <stdio.h>

main(argc, argv) /* we: count lines, words, chars ®/
int arge;
char *argvi];
{
int ¢, i, inword;
FILE *fp, *fopen();
long linect, wordet, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i=1l;
fp = stdin;
do {
if (argec > 1 & (fp=fopen(argv(i], "r")) a= NULL) {
fprintf(stderr, "wc: can’t open %s\n", argvii]);
continue;
} .
linect = wordet = charct = inword = 03
while ((c = gete(fp)) != EOF) {
charct++;
if (e == ’\n’)
linect++; -
if (c=a="’ "7 || ¢cs= ’\t’ || ¢ sz ’\n’)
inword = 03
else if (inword == 0) {
inword = 1;
wordct++;
}

}
printf("%71d %71d %71d", linect, wordct, charct);
printf(arge > 1 ? " %s\n" : "\n", argviil]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;
} while (++i < argce):;
if (arge > 2)
printf("%71d %714 %71d total\n", tlinect, twordet, tcharct);
exit(0);
}

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written.

-5-

The function fclose is the inverse of fopen; it breaks the connection between the file pointer
and the external name that was established by fopen, freeing the file pointer for another file.
Since there is 2 limit on the number of files that a program may have open simultaneously, it’s a
goodndeatoﬁ'eethmgswhentheyarenolongerneeded. There is also another reason to call
fclose on an output file — it flushes the buffer in which putc is collecting cutput. (fclose is
called automatically for each open file when a program terminates normaily.)

3.2. Error Handling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output writ-
ten on stderr appears on the user’s terminal even if the standard cutput is redirected. wc writes
its diagnostics on stderr instead of stdout so that if one of the files can’t be accessed for some
reason, the message finds its way to the user’s terminal instead of disappearing down a pipeline or
into an output file.

The program actuaily signais errors in another way, using the function exit to terminate pro-
gram execution. The argument of exit is available to whatever process called it (see Section 6), so
the success or failure of the program can be tested by another program that uses this one as a sub-
process. Bymvennon,aremmvalueowsgnalsthataﬂxswen non-zero values signal abnormal
situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then calls
a routine named _exit. The function _exit causes immediate termination without any buffer
flushing; it may be called directly if desired.

3.3. Miscellaneous /O Functions

The standard /O library provides several other I/O functions besides those we have illustrated
above.

Normally output with pute, etc., is buffered (except to stderr); to force it out immediately,
use fflush(£fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with £printf)
that specifies the file from which the input comes; it returns EOF at ead of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that the
first argument names a character string instead of a file pointer. The conversion is done from the
string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a newline, into
buf; at most size-1 characters are copied; it returns NULL at end of file. fputs(buf, fp)
writes the string in buf onto file fp.

The function ungetc(c, f£p) *“pushes back™ the character ¢ onto the input stream £p; a sub-
sequent call to gete, fscanf, etc., will encounter c. Onlyonecharacterofpushbackperﬁlexs
permitted.

4. LOW-LEVEL /O

This section describes the bottom level of /O on the UNIX system. The lowest level of /O in
UNIX provides no buffering or any other services; it is in fact a direct entry into the operating sys-
tem. You are entirely on your own, but on the other hand, you have the most control over what
happens. And since the calls and usage are quite simple, this isn’t as bad as it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files, because
all peripheral devices, even the user’s terminal, are files in the file system. This means that a single,
homogeneous interface handles all communication between a program and peripheral devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called “opening” the file. If you are going to write on a file, it may

-6-

also be necessary to create it. The system checks your right to do so (Does the file exist? Do you
have permission to access it?), and if all is well, returns a small positive integer called a file descrip-
tor. Whenever VO is to be done on the file, the file descriptor is used instead of the name to iden-
tify the file. (This is roughly analogous to the use of READ(S,...) and WRITE(S,...) in Fortran.) All

infomaﬁonaboutanopenﬁleismaintainedbythesystem;theuserprogmmrdastotheﬂleonly

by the file descriptor.
The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors

are more fundamental. A file pointer is a pointer to a structure that contains, among other- things,

the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the “sheil”) runs a program, it opens
three files, with file descriptors 0, 1, and 2, called the standard input, the standard output, and the
standard error output. All of these are normally connected to the terminal, so if a program reads
ﬁledscriptorOandwrimﬁledscﬁpmrslandz,itcandotemlinalIIOWidmntwmryingabout
opening the files.

If /O is redirected to and from files with < and >, as in

prog <infile soutfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the named
files. Similarobservaﬁonsholdiftheinputoroutputisasociatedwithapipe. Normally file
descriptor 2 remains attached to the terminal, so error messages can go there. In all cases, the file
assignments are changed by the shell, not by the program. The program does not need to know
where its input comes from nor where its output goes, so long as it uses file 0 for input and 1 and 2
for cutput.

4.2. Read and Write

All input and cutput is done by two functions called read and write. For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data is to
come from or go to. The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading, the
numberofbytstnedmybel&thmmemberaskedfor,bemmefewamannbyta
remained to be read. (When the file is a terminal, read normally reads only up to the next new-
line,whichisgenerallylthanwhatwas-reqmed.)Aremmvalueofzerobytsimpﬁsendof
file, and -1 indicates an error of some sort. For writing, the returned value is the number of bytes
actually written; it is generally an error if this isn’t equal to the number supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are
1, which means one character at a time (“unbuffered”), and 512, which corresponds to a physical
blocksize on many peripheral devices. This latter size will be most efficient, but even character at a
time VO is not inordinately expensive.

Putﬁngthsefactstogether,wewnwriteasimpleprogramtocopyitsinputtoitsoutput. This
progmnwillcopyanythingtoanything,sincetheinputandomputmberedirectedtoanyﬁ!eor
device.

7~

ﬁ

#define BUFSIZE 512 /* best size for PDP-11 UNIX */

main() /* copy input to output */
{

char buf{BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(l, buf, n);
exit(0);
}

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to be
written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered
#define CMASK 0377 s+ for making char’s > 0 s/

getchar() /* unbuffered single character input s/
{
char c;

return((read(0, &c, 1) > 0) ? c & CMASK : EOF);
} 4

¢ must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it nega-
tive. (The constant 0377 is appropriate for the FDP-11 but not necessarily for other machines.)
The second version of getchar does input in big chunks, and hands cut the characters one at
a time.
#define CMASK 0377 /* for making char’s > 0 */
#define BUFSIZE 512

getchar() /* buffered version */
{
static char buf [BUFSIZE] ;
static char *bufp = buf;
static int n=s 0;

if (n == 0) { /* buffer is empty %/
n = read(0, buf, BUFSIZE);
bufp = buf;
}
return((--n >= Q) ? shufp++ & CMASK : EOF);

4.3. Open, Creat, Close, Unlink
Other than the default standard input, output and error files, you must explicitly open files in
order to read or write them. There are two system entry points for this, open and creat [sic].
open is rather like the fopen discussed in the previous section, except that instead of returning
a file pointer, it returns a file descriptor, which is just an int.

int fd;
fd = open(name, rwmode);:

As with fopen, the name argument is a character string corresponding to the external file name.
The access mode argument is different, however: rwmode is 0 for read, 1 for write, and 2 for read
and write access. open returns ~1 if any error occurs; otherwise it returns a valid file descriptor.

It is an error to try to open a file that does not exist. The entry point.creat is provided to
create new files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file

already exists, creat will truncate it to zero length; it is not an error to creat a file that already
exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode argu-
ment. In the UNIX file system, there are nine bits of protection information associated with a file,
controlling read, write and execute permission for the owner of the file, for the owner’s group, and
for all others. Thus a three-digit octal number is most convenient for specifying the permissions.
For example, 0755 specifies read, write and execute permission for the owner, and read and execute
permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one file
to another. (The main simplification is that our version copies only one file, and does not permit
the second argument to be a directory.) A

#define NULL O
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others »/

main(arge, argv) /* cp: copy f1 to £2 =/
int argce;
char *argv(];
{
int fi, f2, n;
char buf[BUFSIZE];

if (arge != 3)
error("Usage: cp from to", NULL):

if ((f1 = open(argv{l], 0)) == =1)
error("cp: can’t open %s", argvil]);

if ((£f2 = creat(argv({2], PMODE)) a= -1)
error(“"cp: can’t create %s", argv(2]);

while ((n = read(fi, buf, BUFSIZE)) > 0)
if (write(f£2, buf, n) !'= n)
error("cp: write error”, NULL);
exit(0);
}

error(sl, s2) /* print error message and die »/
char *s1, *s2;
{
printf(s1, s2);
printf("\n");
exit(1);
}

As we said earlier, there is a limit (typically 15-25) on the number of files which a program

-9-

may have open simuitaneously. Accordingly, any program which intends to process many files must
be prepared to re-use file descriptors. The routine close breaks the connection between a file
descriptor and an open file, and frees the file descriptor for use with some other file. Termination
of a program via exit or return from the main program closes all open files. '

The function unlink(filename) removes the file filename from the file system.

4.4. Random Access — Seek and Lseek
File VO is normaily sequential: each read or write takes place at a position in the file right
after the previcus one. When necessary, however, a file can be read or written in any arbitrary
order. The system call 1seek provides a way to move around in a file without actually reading or

lseek(£d, offset, origin);
forces the current position in the file whose descriptor is £d to move to position offset, which is
taken relative to the location specified by origin. Subsequent reading or writing will begin at that
position. offset is a long; £d and origin are int’s. origin can be 0, 1, or 2 to specify that

-offset is to be measured from the beginning, from the current position, or from the end of the

file respectively. For example, to append to a file, seek to the end before writing:
lseek(fd, oL, 2);

To get back to the beginning (“‘rewind™),
lseek(f£d, OL, 0);

Notice the OL argument; it could also be written as (long) o.

With 1seek, it is possible to treat files more or less like large arrays, at the price of slower
access. For exampie, the following simple function reads any number of bytes from any arbitrary
place in a file.

get(fd, pos, buf, n) /* read n bytes from position pos */

int #d, n;

long pos;

char sbuf;

{
lseeke(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));

}

In pre-version 7 UNIX, the basic eatry point to the I/O system is called seek. seek is identical
to lseek, except that its offset argument is an int rather than a long. Accordingly, since
PDP-11 integers have only 16 bits, the offset specified for seek is limited to 65,535; for this rea-
son, origin vaiues of 3, 4, 5 cause seek to multiply the given offset by 512 (the number of bytes
in one physical block) and then interpret origin as if it were 0, 1, or 2 respectively. Thus to get
to an arbitrary piace in a large file requires two seeks, first one which selects the block, then one
which has origin equal to 1 and moves to the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries into
the system can incur errors. Usually they indicate an error by returning a value of —1. Sometimes
it is nice to know what sort of error occurred; for this purpose ail these routines, when appropriate,
leave an error number in the external cell errno. The meanings of the various error numbers are
listed in the introduction to Section II of the UNIX Programmer’s Manual, so your program can, for
example, determine if an attempt to open a file failed because it did not exist or because the user
lacked permission to read it. Perhaps more commonly, you may want to print out the reason for
failure. The routine perror will print a message associated with the value of errno; more gen-
erally, sys_errno is an array of character strings which can be indexed by errno and printed by

-10 -

your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one’s own. This sec
tion describes how to execute a program from within another. '

5.1. The ‘“‘System’’ Function
n:estwaytomaneapmgmmﬁ'omanotheriswmethestandardh'bmrymuﬁne ‘
system. systemtaksoneargumcm,ammmmdmingexacﬂyatypedatthetunﬁnal(empt
for the newline at the end) and executes it. For instance, to time-stamp the output of a program,
main()
{
system("date");
/* rest of processing =/
}
K the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful.
Remunba-thangetcandputcnomanybuﬂertheirinput;wminalIIOwillnotbepmpeﬂy
synchronized unless this buffering is defeated. For output, use £f1lush; for input, see setbuf in
the appendix.

§.2. Low-Level Process Creation — Execl and Execv
Ifyon’remtusingthestandardlibmry,orifyounudﬁnercontmloverwhathappens,youwm
have to comstruct calls to other programs using the more primitive routines that the standard -
library’s system routine is based on.
Themostbasicoperaﬁonistoexemteanotherprogmmwizhouzremning,byusingthemuﬁne
execl. To print the date as the last action of a running program, use
execl(”/bin/date”, "date", NULL);

Theﬁmargumemwexeclistheﬁlenameofthecommand;youhavetolmowwhereitisfound
in the file system. The second argument is conventionally the program name (that is, the last com-
ponent of the file name), but this is seldom used except as a place-holder. If the command takes
argumznts,theyaresuungoutafterthis;theendaf&eﬁaismarkedbyaNU[Largnment.

The execl call overiays the existing program with the new one, runs that, then exits. There is
no retum to the original program.

Mmr&disﬁally,apmgrammightfaﬂinmmommmphmthawmunimeoﬂymmngh
temporary files. Here it is natural to make the second pass simply an execl cail from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can’t be found or is not executable. If you don't know
where date is located, say

execl("/bin/date”, "date", NULL);

execl("/usr/binsdate”, “date", NULL);
fprintf(stderr, "Someone stole ‘date’\n");

A variant of execl auedexecvisusefulwhenyoudon’tknowinadvaneehowmanyargu-
ments there are going to be. The call is
execv(filename, argp);
where argp is an array of pointers to the arguments; the last pointer in the array must be NULL so
execv can tell where the list ends. As with execl, filename is the file in which the program is
found, and argp(0] is the name of the program. (This arrangement is identical to the argv array
for program arguments.)

-11-

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument
list. If you want these, use execl to invoke the sheil sh, which then does ail the work. Construct
a string commandline that contains the complete command as it wouid have been typed at the ter-
minal, then say

execl("/binssh®, "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -C says to treat the next argu-
ment as a whole command line, so it does just what you want. The only problem is in constructing
the right information in commandline.

§5.3. Control of Processes — Fork and Wait

So far what we've talked about isn't reaily all that useful by itseif. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply overlay
thenewpmgramontheoldone,tosavetheoldonerequimthatitﬁrstbespﬁtimotwowpis;
one of these can be overlaid, while the other waits for the new, overlaying program to finish. The
splitting is done by a routine cailed fork:

proc._id = fork();

splits the program into two copies, both of which continue to run. The only difference between the
two is the value of proc_id, the “process id.” In one of these processes (the “child”), proc.id is
zero. In the other (the “parent”), proc._id is non-zero; it is the process pumber of the child.
‘I‘husthebasicwaytoaﬂ,andremmfmm,anotherprogmmis

if (fork() == 0)
execl("/binssh®, "sh", "-c", cmd, NULL); /* in child »/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the pro-
gram. In the child, the value returned by fork is zero, so it calls execl which does the command
and then dies. Intheparent,forktenn'nsnon-zemsoitshpstheexecl. (If there is any error,
fork returns -1).

Momoﬁen,mepamtwansmwaitformechﬂdtote:minmbefommnﬁndngise&. This
can be done with the function wait:

int status;

if (fork() == Q)
execl(...);
wait(&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simuitaneously. (The wait returns the
proeasidofthetetminatedchild,ifyonwanttocheckitagainstthevalueremmedbyfork.)
F’maﬂy,thisfmgmemdom’tdealwithanyfunnybehavioronthepartofthecﬁld(whichis
reported in status). Still, these three lines are the heart of the standard library’s system routine,
which we'll show in a moment. '

The status remmedbywaiteucodsinitslaw-ordereigbtbitsthesystem’sideaofthe
child’s termination status; it is 0 for normal termination and non-zero to indicate various kinds of
probiems. ‘I'henexthighereightbitsaretakenfromtheargumentofthecalltoexit which caused
a normal termination of the child process. It is good coding practice for all programs to returm
meaningful status.

When a program is called by the sheil, the three file descriptors 0, 1, and 2 are set up pointing
at the right files, and ail other possible file descriptors are available for use. When this program
calls another one, correct etiquette suggests making sure the same conditions hold. Neither fork
nor the exec calls affects open files in any way. If the parent is buffering output that must come

-12-

out before output from the child, the parent must flush its buffers before the execl. Conversely, if
aaﬂubuﬁemmhpmsum,memnedpmgtmwiﬂlosemyinfomﬁmmahasbeenrmdby
the caller. _

§.4. Pipes

Apipeisanl/Ochannelintendedforusebetweentwocooperaﬁngpm:onepmwrim
into the pipe, while the other reads. The system looks after buffering the data and synchronizing
the two processes. Most pipes are created by the shell, as in

1s | pr

whichconnectsthestandardoutpmoflstothcstandardinpmofpr. Sometimes, however, it is
most convenient for a process to set up its own plumbing; in this section, we will illustrate how the
pipe connection is established and used.
The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:
int f£d4(2);

stat = pipe(fd);
if (stat == -1) :
/* there was an error ... */

fd is an array of two file descriptors, where £d[0] is the read side of the pipe and £fd[1] is for
writing. These may be used in read, write and close calls just like any other file descriptors.

Ifaprocssreadsapipewhichisempty,itwiﬂwaitunﬁldatamﬁvs;ifapmmwﬁtsintoa
pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe is
closed, a subsequent read will encounter end of file.

Toillustratetheuseofpipsinawnlisticsetﬁng,letuswriteafunctionmlled
popen(cmd, mode), which creates a process emd (just as system does), and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen("pr®, WRITE);

creatsapromthatmcumtheprcommand;mbsequtwritecallsusingﬂxeﬁledsuiptor
fout will send their data to that process through the pipe.

popenﬁ:stcr&tsthethepipewithapipesystemcall;itthforkstocrwetwoeopisof
itself. Thechilddeddswhetheritissupposedtomdorwrite,dosstheothetsideofthepipe,
then calls the shell (via execl) to run the desired process. The parent likewise closes the end of
the pipe it does not use. 'I'h&eclossarenecmrytomakeend—of—ﬁletmsworkptopeﬂy. For
example,ifachildthatintendstomdfaﬂstoclosethewﬁteendofthepipe;itwinneverseethe
end of the pipe file, just because there is one writer potentially active.

-13-

#include «<stdio.h>

#define READ O

#define WRITE 1

#define tst(a, b) (mode ==z READ ? (b) : (a))
static int popen_pid;

popen(cad, mode)
char *cmd;
int mode;
{
int pf2];

if (pipe(p) < 0)
return(NULL) ;

if ((popen_pid = fork()) == 0) {
close(tst(p(WRITE], p(READ]));
close(tst(0, 1));
dup(tst(p{READ], pP{WRITE]));
close(tst(p(READ], p(WRITE]));
execl("/bin/sh*, "sh", "-c", cad, 0);
-2Xit(1); /» disaster has occurred if we get here */

)

if (popen_pid a= -1)
Teturn(NULL) ;

close(tst(p(READ], P[WRITE]));

return(tst(p{WRITE], p(READ]));

}

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child pro-
cess that will read data from the parent. Then the first close closes the write side of the pipe,
leaving the read side open. The lines

close(tst(0, 1));

dup(tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the child. The
close closes file descriptor 0, that is, the standard input. dup is a system call that returns a dupli-
cate of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned, so the effect of the dup is to copy the file descriptor for the pipe (read
side) to file descriptor 0; thus the read side of the pipe becomes the standard input. (Yes, this is a
bit tricky, but it’s a standard idiom.) Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from
the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable to
wait for the termination of the child process. First, the return value from pclose indicates
whether the process succeeded. Equally important when a process creates several children is that
onlyaboundednumberofunwaued-forchﬂdrenmex:st,evenxfsomeofthemhavetemnnated
performing the wait lays the child to rest. Thus:

-14-

#include <signal.h>

pclose(£d) /* close pipe fd */

int fd;

{
register r, (*hstat)(), (*istat)(), (*gstat)();
int status; .
extern int popen_pid;

close(£fd);
istat = signal (SIGINT, SIG_IGN);
qgstat = signal (SIGQUIT, SIG_IGN);
hstat = signal (SIGRUP, SIG_IGN);
while ((r = wait(&status)) !s popen_pid & r != -1);
if (r == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, gstat);
signal (SIGHUP, hstat);
return(status);

}

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is the
topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of
the single shared variable popen_pid; it really should be an array indexed by file descriptor. A
popen function, with slightly different arguments and return value is available as part of the stan-
dard VO library discussed below. As currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program fauits. Since there’s nothing very useful that can be done from within
C about program faults, which arise mainly from illegal memory references or from execution of
peculiar instructions, we’ll discuss only the outside-world signals: interrupt, which is sent when the
DEL character is typed; quit, generated by the FS character; hangup, caused by hanging up the
phone; and terminate, generated by the kill command. When one of these events occurs, the signal
is sent to all processes which were started from the corresponding terminal; unless other arrange-
ments have been made, the signal terminates the process. In the quit case, a core image file is writ-
ten for debugging purposes.

The routine which aiters the default action is called signal. It has two arguments: the first
specifies the signal, and the second specifies how to treat it. The first argument is just a number
code, but the second is the address is either a function, or a somewhat strange code that requests
that the signal either be ignored, or that it be given the default action. The include file signal.h
gives names for the various arguments, and should always be included when signals are used. Thus

#include <signal.h>

signal (SIGINT, SIG_IGN);

causes interrupts to be ignored, while
Signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous value
of the signal. The second argument to signal may instead be the name of a function (which has
to be declared explicitly if the compiler hasn’t seen it already). In this case, the named routine will
be called when the signal occurs. Most commonly this facility is used to allow the program to clean
up unfinished business before terminating, for example to delete a temporary file:

&

-15 -

#include <signal.h>

main()
{
int cnintr();

if (signal(SIGINT, SIG_IGN) != SIG_IGN)
signal (SIGINT, onintr);

/* Process ... */

exit(0);
}

onintr()

{
unlink(tempfile);
exit(1l);

}

Why the test and the double call to signal? Recall that signals like interrupt are sent to ail
processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by interrupts
intended for foreground processes. If this program began by announcing that all interrupts were to
be sent to the onintr routine regardless, that would undo the shell’s effort to protect it when run
in the background.

The solution, shown above, lstotﬁtthestateofmtemlpthandhng,andtoconnnuetoxgnore
interrupts if they are already being ignored. The code as written depends on the fact that signal
returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request to
stop what it is doing and return to its own command-processing loop. Think of a text editor: inter-
rupting a long printout should not cause it to terminate and lose the work already dene. The out-
line of the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main()
{
int (*istat)(), onintr();

istat = signal (SIGINT, SIG_IGN); /* save original status »/
set jmp(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT, onintr);

/* main processing loop */
}

onintr()
{

printf ("\nInterrupt\n®);
longjmp(sjbuf); /* return to saved state */

The include file set jmp.h declares the type jmp_buf an object in which the state can be saved.

-16 -

s jbuf is such an object; it is an array of some sort. The set jmp routine then saves the state of
things. When an interrupt occurs, a call is forced to the onintr routine, which can print a mes-
sage, set flags, or whatever. longjmp takes as argument an object stored into by set jmp, and
restores control to the location after the call to set jmp, so control (and the stack:level) will pop
back to the place in the main routine where the signal is set up and the main loop entered. Notice,
by the way, that the signal gets set again after an interrupt occurs. This is necessary; most signals
are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal sets
a flag and then returns instead of calling exit or longjmp, execution will continue at the exact
point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the termi-
nal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns. If it
were really true, as we said above, that “execution resumes at the exact point it was interrupted,”
the program would continue reading the terminal until the user typed another line. This behavior
might well be confusing, since the user might not know that the program is reading; he presumably
would prefer to have the signal take effect instantly. The method chosen to resolve this difficulty is
to terminate the terminal read when execution resumes after the signal, returning an error code
which indicates what happened.

Thus programs which catch and resume execution after signails should be prepared for *“‘errors”
which are caused by interrupted system calls. (The ones to watch out for are reads from a terminal,
wait, and pause:) A program whose onintr program just sets intflag, resets the interrupt sig-
nal, and returns, should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)
/* EOF caused by interrupt */
else
/% true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with exe-
cution of other programs. Suppose a program catches interrupts, and also includes a method (like
“!” in the editor) whereby other programs can be executed. Then the code should look something
like this:

if (fork() == 0)

execl(...);
signal (SIGINT, SIG_IGN); /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

Why is this? Again, it’s not obvious but not really difficult. Suppose the program you call catches
its own interrupts. If you interrupt the subprogram, it will get the signal and return to its main
loop, and probably read your terminal. But the calling program will also pop out of its wait for the
subprogram and read your terminal. Having two processes reading your terminal is very unfor-
tunate, since the system figuratively flips a coin to decide who should get each line of input. A sim-
ple way out is to have the parent program ignore interrupts until the child is done. This reasoning
is reflected in the standard IO library function system:

-17-

#include <signal.h>

system(s) /* run command string s */
char @»g;
{

int status, pid, w;

Tegister int (*istat)(), (*gstat)();

if ((pid = fork()) == 0) {
execl("/bin/sh", "sh", "-c", s, 0);
exit(127);

}

istat = signal (SIGINT, SIG_IGN);

qstat = signal (SIGQUIT, SIG_IGN);

while ((w = wait(&status)) != pid & w != -1)

if (w == =1)
‘status s -1;

signal (SIGINT, istat);

signal (SIGQUIT, gstat);

return(status);

}

As an aside on declarations, the function signal obviously has a rather strange second argu-
ment. It is in fact a pointer to a function delivering an integer, and this is also the type of the sig-
nal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so
they coincide with no possibie actual functions. For the enthusiast, here is how they are defined for
the PDP-11; the definitions should be sufficiently ugly and nonportable to encourage use of the
include file.

#define SIG.DFL (int (*)())0
#define SIG.IGN (inmt (*)())1

References
{1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer's Manual, Beill Laboratories, 1978.

{2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc., 1978.
[3] B. W. Kernighan, “UNIX for Beginners — Second Edition.” Bell Laboratories, 1978.

-18-

Appendix — The Standard I/O Library

D. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974
The standard /O library was designed with the following goals in mind.
1. It must be as efficient as possible, both in time and in space, so that there will be no hesitation
in using it no matter how critical the application.
2. It must be simple to use, and also free of the magic numbers and mysterious calis whose use
mars the understandability and portability of many programs using older packages.
3. The interface provided should be applicable on all machines, whether or not the programs which

implement it are directly portable to other systems, or to machines other than the PDP-11 run-
ning a version of UNIX.

1. General Usage
Each program using the library must have the line
#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no special
library argument is needed for loading. All names in the include file intended only for internal use
begin with an underscore _ to reduce the possibility of collision with a user name. The names
intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually ~1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _iob and is a useful shorthand when declaring pointers to streams.

BUFSIZ is a number (viz. 512) of the size suitable for an 1/O buffer supplied by the user. See
setbuf, below.

getc, getchar, pute, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here to
point out that it is not possible to redeclare them and that they are not actually func-
tions; thus, for example, they may not have breakpoints set on them.
Themumamthspackageofferthewnvemeneeofamomcbufferaﬂomnonmdoutpm
flushing where appropriate. The names std:.n, stdout, and stderr are in effect constants and
may not be assigned to.

2. Calls

FILE *fopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. filename is a character string specify-
ing the name. type is a character string (not a single character). It may be "r", "w", or "a"
to indicate intent to read, write, or append. The value returned is a file pointer. If it is NULL
the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If the
attempt to open fails, NULL is returned, otherwise ioptr, which will now refer to the new file.
Often the reopened stream is stdin or stdout.

-19.

int getc(ioptr) FILE *joptr;
renunsthenextchamc:er&omthestr&amnamedby ioptr, which is a pointer to a file such as
returned by fopen, or the name stdin. The integer EOF is returned on end-of-file or when
an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like gete butisagenuineﬁmcﬁon,notamacro,soitcanbepointedto,pasedasan
argument, etc.

putc(c, ioptr) FILE *ioptr;
pute writathecharactercontheomputstrmnamedby ioptr, which is a value returned
from fopen or perhaps stdout or stderr. The character is returned as value, but EOF is
returned on error. ‘ '

fpute(e, ioptr) FILE *ioptr;
amﬁkeputcbmisagenuinefuncﬁon,nmamm.

fclose(ioptr) FILE *ioptr;
The file corresponding to ioptrisclosedaiteranybuffmareempﬁed. A buffer allocated by
the J/O system is freed. fclose is automatic on normal termination of the program.

fflush(ioptr) FILE »ioptr;
Anybuffemdinformaﬁononthe(output)sﬂmnamedbyioptriswﬁnenoun Output files
arenormaﬂybufferedifandonlyiftheyarenotdirectedtotheterminal;however, stderr
alwaysstamoﬁunbuﬁetedandremainssounmsetbufisnsed,orun!mitisteopened.

exit(errcode);
texminatathepmmandrennnsitsargxmentasstamstotheparem. This is a special version
ofthermtinewhichwllsfﬂushformhoutputﬂe. To terminate without flushing, use
-exit. :

feof (ioptr) FILE *ioptr;
renunsnon-zemwhenend-of-ﬁlehamrredonthespeciﬁedinpmstream.

ferror(ioptr) FILE *ioptr;
mnmnon-zemwhenanenwhasoccunedwhﬂemdingorwﬁﬁngthenamedm. The
error indication lasts until the file has been closed.

getchar();
is identical to getc(stdin).

putchar(c);
is identical to putc(c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
readsupton-lcharactexs&omthgmeamioptrintothechmcterpointers. The read ter-
minates with a newline character, 'l'henewlinecharacuerisplaudinmebufferfoﬂowedbya
null character. fgets returns the first argument, or NULL if error or end-of:file occurred,

fputs(s, ioptr) char *s; FILE *ioptr;
writes the nuil-terminated string (character array) s on the stream ioptr. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE *ioptr;
neargxmentchamctercispushedbackontheinpmmeamnamedbyioptr. Only one
character may be pushed back.

printf(format, al, ...) char *format;

fprintf(ioptr, format, al, ...) FILE *ioptr; char *format;

sprintf(s, format, al, ...)char *s, *format;
printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are as
described in section printf(3) of the UNIX Programmer’s Manual.

-20-

scanf (format, al, ...) char *format;

fscanf (ioptr, format, al, ...) FILE *ioptr; char *format;

sscanf(s, format, al, ...) char *s, *format; :
scanf reads from the standard input. fscanf reads from the named input stream. sscanf
reads from the character string supplied as s. scanf reads characters, interprets them accord-
ing to a format, and stores the results in its arguments. Each routine expects as arguments a
control string format, and a set of arguments, each of which must be a pointer, indicating
where the converted input should be stored.

scanf returns as its value the pumber of successfully matched and assigned input items. This
can be used to decide how many input items were found. On end of file, EOF is returned; note
that this is different from 0, which means that the next input character does not match what
was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
reads nitems of data beginning at ptr from file ioptr. No advance notification that binary
VO is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE *ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system(string) char *string;
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE »ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A *‘word”
is 16 bits on the PDP-11.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf (ioptr, buf) FILE *ioptr; char *buf;
setbuf may be used after a stream has been opened but before /O has started. X buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf[BUFSIZ];

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is
1, the offset is measured from the current read or write pointer; if ptrname is 2, the offset is
measured from the end of the file. - The routine accounts properly for any buffering. (When
this routine is used on non-UNIX systems, the offset must be a value returned from ftell and
the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
call is useful only for handing to £seek, so as to position the file to the same place it was when
ftell was called.)

getpw(uid, buf) char *buf;

)

The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user ID then 1 is returned.

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable for any pur-
pose. NULL is returned if no space is available.

char *calloc(num, size);
allocates space for num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
available .

cfree(ptr) char »ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloe.

The following are macros whose definitions may be obtained by including <ctype.h>.
isalpha(c¢) returns non-zero if the argument is aiphabetic.

isupper(c) returns non-zero if the argument is upper-case alphabetic.

islower(c) returns non-zero if the argument is lower-case alphabetic.

isdigit(c) returns non-zero if the argument is a digit.

isspace(c) retumns non-zero if the argument is a spacing character: tab, newline, carriage retum,
vertical tab, form feed, space.

ispunct(c) retumns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint(c) returns non-zero if the argument is printable — a letter, digit, or punctuation charac-
ter.

iscntrl(c) returns non-zero if the argument is a control character.

isaseii(c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
toupper(c) returns the upper-case character corresponding to the lower-case letter c.
tolower(c) returns the lower-case character corresponding to the upper-case letter c.

