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Introduction

There exists on the UNIX time sharing system a collection of arbitrary precision arith-
metic routines and a convenient language BC to to call on the routines [1,2]. The existence of
these programs provided a strong temptation to write a set of mathematical library functions to
use the arbitrary accuracy.

The temptation was not resisted and there is now a small reference standard collection of
library functions written in BC which is designed to serve

— for computation of constants for inclusion in library routines where, generally, the
computations should be done to slightly greater accuracy than the target machine pro-
vides.

~ for generating test values to validate mathematical library routines. These also must be
computed to slightly greater accuracy than the target machine provides.

— for the rare application which needs extra precision.

The Library
The arithmetic routines that are available at the time of writing are:
Function Name
exponential e(x)
sine s(x)
cosine c(x)
arctangent a(x)
logarithm 1(x)
Bessel’s function j(n,x)

Usage
The library is accessed by typing the UNIX command
bc -1

The library is then loaded with a default precision of twenty decimal places. This precision can
be changed to k decimal places by typing

scale = k

where k must not exceed 99. Statements can then be typed in order to print or to use values



of the functions as described in [1].

Design Criteria

The purpose of the reference standard library is to provide reference results with predict-
able error characteristics. The intent was to supply the number of decimal places requested by
the user and preferably see to it that they are all correct. Speed of execution was a secondary
goal,

It is reasonable to supply function values either with a specified number of significant di-
gits or with a specified number of decimal places. There are genuine advantages and disadvan-
tages to either approach. Because BC is a scaled fixed-point facility, it turned out to be some-
what easier to supply a specified number of decimal places of accuracy. This accuracy can be
maintained even when the number is very large.

In BC, there is an internal quantity called scale which determines the number of decimal
places that are retained in multiplications, divisions, and in other operations that require dis-
carding of digits. The value of scale is under control of the BC programmer and it is used by
the library as a specification of the number of decimal places of accuracy required.

The details of the scaling operations in BC make it very easy to keep control over the ac-
curacy of computations. In particular, additions and subtractions are never truncated, regard-
less of the value of scale. Therefore sums and differences are exact. The scale of a product is
generally truncated if more decimal places would be generated than the value of scale. How-
ever at least as many decimal places are retained as there are in the operand with the larger
number of decimal places. As many decimal places are retained in a square root as there are in
the operand, unless the value of scale is larger. No arithmetic results are rounded by BC.

The crucial parts of this scaling doctrine are
= that no new errors are introduced by addition and

— that the accuracy of a multiplication can be controlled by controlling the scales of the

operands,

Once the decision is made to specify the desired accuracy of a result in terms of a given
number of decimal places, then it follows that we have 1o infer that the user has given the

function argument to sufficient accuracy to warrant such accuracy in the result. For example,
if we are greeted with

scale =20
a(l)

which is a request to print the value of w/4 to twenty decimals, then we certainly can assume
that the argument was intended to be taken as a 1 with lots of zeros after the decimal point (20
in fact).

Conversely, if the argument is given to more decimal places than required to produce the
desired accuracy, we can safely throw away the extra digits. For example, the statements

scale =10
a(142857.142857)

ask for a 10-decimal place arctangent, but in fact none of the digits after the decimal point are
needed to provide the desired accuracy in the result.

The doctrine, then, is to ascribe an accuracy to the argument of just enough decimal
places to produce the desired accuracy in the result.
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Accuracy Problems

The most convenient general method for computing values of the basic mathematical
functions is by summing a power series. The process of addition of series terms leads to trun-
cation errors due to digits of the series terms being thrown away at every step. Besides, there
is a series truncation error due to the terms in the series that are ignored and the error is equal
to the sum of the ignored terms.

Some of the series expansions that one would like to use do not converge for all values of
the argument. Examples are the power series expansions for the logarithm and for the
arctangent. In these cases some sort of transformation of the argument is required before sum-
mation takes place. As a result, the series sum may need some manipulation to correspond to
the initial transformation. Convergence is not the whole problem since, for example, the
power series for sine and cosine converge for all arguments but it is much faster to compute
these two functions after subtracting multiples of 2.

To get the desired accuracy it is necessary to take a critical look at every transaction that
takes place on the way from the argument to the result.

Fixed-Point Error Analysis

Here is an analysis of the effect of individual arithmetic operations on fixed-point accura-
cy expressed in terms of decimal places. This analysis is needed to be able to analyze the accu-
racy of a function as a whole.

The only characteristic of an arithmetic operation that is relevant to this analysis is the
derivative of the function (or of an arithmetic operation when viewed as a function).

If the transformation x —f(x) has the derivative f'(x), then uncertainties or errors in
the value of x are multiplied by f*(x) to produce corresponding uncertainties in the value of
f(x). This fact is an immediate consequence of the definition of a derivative.

Now if the number of decimal places in x is », then the uncertainty in its value is 10 ~*.
Conversely, an uncertainty of ¢ corresponds to —log;p€ decimal places of accuracy. An uncer-
tainty of € in the value of x produces an uncertainty of €f"(x) in the value of f(x) supposing €
to be small enough to justify ignoring higher order terms. When expressed in terms of places
of accuracy, an accuracy of v decimal places in x corresponds to (i.e. produces) an accuracy of
v —log;of"(x).

The analysis that is most appropriate for our application is a retrospective one; how many
decimal places of accuracy are needed in an operand (or function argument) to produce given
accuracy in a.result. If the required accuracy is » decimal places, then the accuracy required of
the argument is

v +log;of (x)
if everything else is exact. This requirement holds not only for a function treated as a whole
but also for every individual operation that goes into the process of function evaluation.

If we are to estimate the error introduced by computing a function of k variables, we can
distinguish two situations which are easy to analyze. If we can assume that all of the error in
the result is due to uncertainty in just one of the variables, then the analysis above is appropri-
ate. If on the other hand, we can assume that each of the variables contributes an equal share
of error, then an accuracy of v decimal places in x; produces an accuracy of

v _10310,‘3%1"f(xl o0 ) —logygk

where k is the number of variables x;.



Intermediate Resuits

Perhaps the most valuable characteristic of BC for computing mathematical functions is
that intermediate results can become exceedingly large without harming the accuracy of the
final result.

We must take care that the accuracy of intermediate results is large enough that the

desired final accuracy can be obtained. If, for example, we were to compute the identity func-
tion x —x by first dividing by 10 and then multiplying by 10, then one decimal place of accu-
racy would be lost in the intermediate result that could not be retrieved.

There are two ways of interpreting these doctrines that are useful lines of thought.

First, if an intermediate result y is obtained for which the derivative dy/dx is less than the
derivative f"(x), then accuracy will be lost unless the value of the intermediate result is com-
puted to higher accuracy. The increase of accuracy is the logarithm of the ratio of the two
derivatives. .

Second, if an intermediate result y is obtained for which the derivative 8f(x)/y is greater
than 1, then the intermediate result y must be known to more accuracy than is required for the
result £(x). The increase of accuracy is again the logarithm of the derivative.

The preceding two criteria are in fact identical.

Here are the quantities that we have to work with

(1) The scales of the arguments and all the intermediate results.

(2) The derivatives of the result with respect to all intermediate results.

(3) The scale of the result — this is the amount of information required at the far end of the
process.

Multiplication

Suppose that, given x and J, We are to compute the value of f(x,y) =xy to a given
number » of decimal places. To how many decimal places need we compute x and y to pro-
duce the required » places in the result?

The values of the relevant derivatives are
0ffdx=y
/oy =x
The number of decimal places needed in x (if y is exact) is
v+log;oy
and the number needed in y (if x is exact) is
v+log)px

The errors are additive. If a product of & terms is formed and it is assumed that each fac-
tor contributes an equal share of error, then each must be computed to logyo & places of addi-
tional accuracy. The same analysis applies to multiplication by a constant. Suppose that, given
X, We are to compute the value of 7“x to a given number » of decimal places. Then 72 needs
to be computed to » +log;ox decimal places under the assumption that x is given as accurate.

If x is an intermediate result, then we can obtain the same accuracy by computing 72 to
v +log;gx+log;y2 places and x to » +logyq (m?) +1log;o2 places.

[ {and
.



Exponentiation
If the value of x¥ is required to » decimal places, then we can appeal directly to the par-
tial derivative rule and find that x must be known to
1 4 +lOglok+ (k -1 )logwx

decimal places. The exponentiation may be computed by repeated multiplication by x and the
same rule predicts how may decimal places of each partial result x/ need to be retained.

Addition

The derivatives with respect to x and y of the function f(x) =x+ y are both equal to 1,
and the errors are purely additive. Just as in the case of multiplication, if we assume that each
addend contributes equal error, it is sufficient that each summand be known to v+logjok de-
cimal places.

The Exponential Function

The most obvious route to computing values of the exponential function is to form ap-

propriate partial sums of the power series
o0 xk

o k!
which converges for all values of x. It converges rapidly in the sense that eventually the ratio
between successive terms approaches zero.

The following scheme will serve to perform the desired computation
(1) Form successive powers x* of x and successive factorials k!
(2) At each step, perform the division x*/&!
(3) Add the quotient from (2) into an accumulating sum.
(4) When we have taken enough terms, we can stop.
The following questions of accuracy arise.
—  What accuracy is needed for each xk?
—  To what accuracy need the division be performed?
—  To what accuracy should the addition be performed?
—  What is the series truncation error?

The additional accuracy that must be ascribed to the argument x in order to obtain » de-
cimal places in e* is log;ge*. Then x must be considered to have an accuracy

v, =v+0435x -

Each of the terms x¥/k! in the summation must be evaluated to a precision greater than v
places and the extra precision depends on the total number k& of terms summed.

The total number & of terms in the sum can be estimated by first observing that it re-
quires no more than

eX=

Ky = ¢ |x]|

terms for the term xk‘/kl! to become less than 1 in magnitude (by Stirling’s formula) and that
from this point on, each successive term is multiplied by a factor smaller in magnitude than
1/e so that no more than

ky = v logl0
more terms are needed to reach a term less than 10 . The error caused by truncation cannot
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exceed twice the value of the first neglected term. (The factor is actually e / (e —1)).
Therefore the total number of terms required in the series is bounded by
k= e|x| +v logl0
This estimate is very accurate for large x and for small x it doesn’t matter much.

We now have enough information to say how to perform the computation without
exceeding the error requirement.

x must be treated as if it has v +0.435x places of accuracy and it is convenient (but not
necessary) to form all the powers x/ to this accuracy. The division x///1 must be performed to
give results to » +logok places (k as defined above) and the summation must be performed to
this accuracy.

The Logarithm

S(x) =log (x)

The function can conveniently be evaluated by repeatedly taking the square root of the argu-
ment x until the result yis in the interval 0.5 < »<20. Then

y=xl/p
where p is a power of 2. Then the transformation
u=Q@p-1)/(y+1)

reduces u to the range —1/3 < u < 1/3 and permits us to evaluate the logarithm by the series

3 5
3 5
and then
logx =2pt

In order to control the error in this computation we must consider the chain of computation
X =y —u—t—f(x)

The reader will please note that it was an attempt to analyze just this mess that led to the
development of the explicit methods of this paper.

Len v be the number of decimal places required in the answer. By evaluatiﬁg the deriva-
tive at each step we derive the following results for the number of decimal places required in
each intermediate result.

v (x) =v —logox

v(y) =v+logop —log,qy

v (u) =v +logop ~log)gp —log,o2 + 2log,y (y+1)
v(t) =v+ log)pp+log;2

By using the known bounds on the value of y, we can find very close bounds for the accuracy
required at each step of the calculation. The result is that the entire computation can be done
o v +log;op+1 decimal piaces.

)

N
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The Sine and Cosine

Since f"(x) <1 for all x, we need only » decimal places of the argument. We can sub-
tract (or add) multiples of 27 to get the argument into the range —m < x < 7 and the multiple
must have v places. So = must be computed (presumably from the arctangent routine) to
v +log o2x/m decimal places. We can go further and add or subtract = (as appropriate) to
reduce the range of the argument to the interval —mn/2 < x< m/2.

Then the sine can be evaluated from the power series

3 5 7
. x’ . X X
sinx =x 3 +? 7 + -
The number of terms is bounded in just the'same way as for the exponential function and the
bound is

=%—+ viogl0

Thus the division and the summation need to be performed to v +log gk places and the
evaluation of x/ need be done to only » places.

The cosine is evaluated by
cos (x) =sin (x+127-)

The Arctangent

The argument x can be reduced to the range |x| <.5 by two applications of the addition
law for arctangents, namely, the transformation

. V14x2-1
X

to form the new argument y. Then arctanx =4 arctany and we can use the series

3 s 7
arctany.—..y—i_.l..L_L.i. « e
3 5 7
which converges for y < 1. Since the derivative of arctan is not greater than 1, the argument x
can be used to v places. arctany is needed to »+logjy4 places and therefore this is also
enough places for y. In the series, the division and the summation must be done to
v +logg4 +vlog, 10.

Bessel's Function J of Integer Order
The definition of the function is

X\ e (—x2/4)%
J (x) = (X)yn$ X 12)
() =6) % K (n+k)!
The derivative is never greater than 1 in magnitude, so the argument can be used to » places.
The number of terms needed in the summation can be estimated in much the same way as for
the exponential function and an upper bound is
ex v n
=— —_
k 5 7!og 10 >
This expression for k can turn out to be negative and in such cases, the function value is zero
to the required number of places.

MH-1271-RM ' Robert Morris
Atts.
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APPENDIX

The subroutines whose listings appear in this appendix were designed primarily for accu-
racy and there was little attempt to make them run fast.

The routines were written at different times with different styles. In most cases the
bounds used for the required scales of the computations were simplified.

There are some programming techniques and tricks worthy of mention:

The value of the expression length(a) —scale(a) is log,q (a) rounded up to the next in-
teger. This computation is used constantly to set the internal scale.

The lines

scale =t
a=afl

serves to give to the quantity a the scale .
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define e(x){

autoa, b, c, i, s, t
t = scale
s=X

if(s<0) s = —s -
a=272*% + 2.31*%
a=length(a) — scale(a)

s=t+ 435*x + 1
ifs<0)s =0
scale =s -

X = x/1

scale =t +a
a=1]
b=1
s=1
for(i=1; 1==1; i++)(:
a = a*x
b = b*i
c =alb
if(c == 0){scale=t; return(s/1))
S = §+¢C

)

.
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define 1(x){

auto a, b,c,d,e,p, 8, u, s, t
if(x <=0) return(1—10"scale)
t = scale

p=1
scale = scale + scale(x) — length(x) + 1
s=scale
while(x > 2){
s =s + (length(x)-scale(x))/2 + 1
if(s>0) scale = s
X = sqrt(x)
p=p*2

)

while(x < .5){ :
s = s + (length(x)—scale(x))/2 + 1
if(s>0) scale =s
x = sqrt(x)

} p=p*2

scale = t + length(p) — scale(p) + 1
u = (x—=1)/(x+1)

scale = scale + 1.1*length(t) — 1.1*scale(t)
s = u*u
b=2%

o Ao
o

b
1
1
for(a=3;1==1;a=a+2){
b=b"*s
c=c*a+d*b
d=d*a
g=c/d
if(g==e)(
scale =t
return(u*c/d)

=g
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define s(x){

)

autoa, b, c,s,t,y,p, n, i

t = scale

y =x/.7853

s =t + length(y) ~ scale(y)
if(s<t) s=t

scale = s

p=a(l)

scale = 0

if(x>=0) n = (x/(2*p)+1)72
if(x<0) n = (x/(2*p)-1)/2
X =X —4*n*p

if(n%2!=0) x = —x

scale = t + length(1.2*t) — scale(1.2*)

y = —x*x
a=x
b=1
s=x
for(i=3; 1==1; i=i+2){
a=a‘y
b = b*i*(i—-1)
¢ =a/b
if(c==0){scale=t; return(s/1))
S = §+4¢C

define c(x){

auto t

t = scale

scale = scale+1
x = s(x+2*a(1))
scale =t
return(x/1)

~—"
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define a(x){

autoa, b,c,d, e, f, g,,t

if(x==0) return(0)

t = scale

f=1

while(x > .5){
scale = scale + 1
x= —(1-sqrt(1.+x*x))/x
f=f*2

)‘,z

while(x < =.5){
scale = scale + 1
x = —(1-sqrt(1.+x*x))/x
f=f*2

('DQ.G a-mt-v-'
fnf gt

¢

*

>

—— ey |

=
7~

a=3;]1==] ;a=a+2) {

b=b*s

c=c*a+d*b

d=d*a

g=c/d

if (g==e){.
scale = t
return(x*c/d)

or

c=g
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define j(n,x){
auto a,b,c,d,e.g.i,s,k,t

if(n<0){
n=-n
X= ~X

).

=X
if(a<0) a = —a

t = scale

k = 1.36%a + 1.16*t — n/2
k = length(k) — scale(k)
if(k>0) scale = scale + k

= —Xx*x/4
a=]
c=1
for(i=1;i<=n;i++){
a=a*x
c =c*2%
}
=a
d=1
e=1
for(i=1;1;i++){
a=a’s
b=b*i*(n+i) + a
c=c*i*(n+i)
g=b/c
if(g==e){
scale =t
i'eturn (g/1)

b



