&
. o~ g .. P - P
*»

et - UMNFL™ 7
) @ Bell Laboratories

Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GE! 13.9-3)
Title— BLOSIM - A Discrete Time BLOck Date— July 15, 1975
SIMulator . o
™- T75-1352-6

C T Other Keywords - BLODI, Simulation, Digital Signal

" Processing, Unix

Author(s) o - Location and Room .. Extension Charging Case 39394
G. Roylance MIT o :

- 'Questions to: : .
1’-\ M. T. Dolan MH 7C-223 2930
' J. F. Kaiser : MH 7C-201 2058

Filing Casa— 39394-11
ABS T

BLOSIM is a discrete time simulator for digital filter
hardware. The program, written in C language, takes a
functional description of the system to be simulated
(as opposed to a detailed gate level description) and
compiles the description into machine code for a PDP-1ll
minicomputer. :

Though BLOSIM is derived from the block diagram compiler
BLODI, BLOSIM and BLODI have a major difference in syntax:
blocks are described as functions on their inputs instead
of sources driving other sources. »

BLOSIM, unlike BLODI, also simulates roundoff and truncation
in the sign magnitude, odd halves, and two's complement
arithmetic systems. This ability to simulate finite word
length computation allows the exact simulation of hardware.
The price is slower execution.

(}J BLOSIM runs on a PDP-11/45 with a floating point processor
- under the UNIX time sharing system. _

-

14 : 14 28 ’ :
Pages Text___——~ _____ Other Total _ : ..B Q.TIE .:'II.E COPY
No. Figures_z._ No. Tebles 3 Ne. Refs. 6 . 'l.u%a:mod ntor o

_ E-1932-C4 (6-73) SEE REVERSE SIDE FOR OISTRIBUTION LIST .

4

& *

BELL TELEPHONE LABORATORIES, INC.
-~

COMPLETE MEMORANDUM TO
CORRESPONDENCE FILES

QFFICIAL PILE COPY
PLUS ONE COPY FOR

BACH ADDITIONAL FILING

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

$0 REFERENCE COPIES

\'«; LEN,J B
+ARDIS,R B

'HC‘URY SPECIPICATION... .C.-.l.tl.....O..-.QO.IQ.I....‘.C.O...l'.‘.‘.............I...........C..‘....l‘..'.0.0-0...... esveesscsss e

+ATAL,B §

+BERKLEY, DAVID A
BOYD, GARY D
BUCHSBAUM,S J
CHRISTERSEN,C
CLOGSTON,A M
+COKER,C H

GIORDANO, PHILIP P
+GOODMAN, DAVID J
+HALL,JOSEPH L
+HANNAY, N B

EASKELL,BARRY G
+JAYANT,N S
+JULESZ, BELA

KEBSE,W M

LIMB,J O

LYCKLAMA, BEINZ

MALTHANER, W A
+MATHEWS,MAX V
#MC GONEGAL,MISS C A

MCDONALD, B S
#MILLER,MISS JOAN E

MILLER,S E
+NARATANL, L B

NINKE,WILLIAM. H

PATEL,C K N
+PRIM, ROBERT C :
+RABINER, LAWRENCE R

ROBERTS, CHARLES S
+ROSENBERGER,JOHN R 3II
+ROSENBERG,AARCN E

SLICHTER,W P
+SONDEI,M M
STAYLOR, MICEAEL G

TEWKSBURY, S K

THOMPSON, JOHN S

TILIOTSON,L C
+WISH, MYRON

YAMIN,MRS B E

+ NAMED BY AUTHOR

.MPLETE MEMO TO:
135-DPH 13=-DIR

COVER SHEET TO:

135-MTS

COPLSI = COMPUTING/PROGRAMMING LANGUAGES/SINULATION'

COMPLETE MEMOBANDOM TO

YOUNG,JAMES A
SO-RAMES'

COVER SHEET ONLY TO

CORRESPCNDENCE FILES

& COPIES PLUS ONE
COPY FOR EACH PILING
CASE

ABRENS, RAINER B
ALCALAY,DAVID
ALLES, HAROLD G
AMORY,R W

AMRON, I
ANDERSON,G L
ANDERSON,MS K J
ARMSTRONG, DOUGLAS B
ARNOLD, GEORGE W
ARNOLD,S L
ARTHURS, ECWARD
BADURA, DENNIS C
BALDWIN,GARY L
BALLARD,ECWIN D JR .
BARTLETT,WACE S
BASEIL, RICHARD J
BAUER,MS B A
BAUGH,C R
BAYER,DOUGLAS L
BECKER,R A
BERGLAND,G DAVID
BERNSTEIN, LAWRENCE
BEYER,JEAN-DAVID
BICKFORD,N B
BILOWOS,RICHARD M
BIREN,MRS IRMA B
BISHOP,MISS V L
BLEICHER, ECWIN

BOYCE,W M
BRAINARD,RALPH C
BRECHER,S M
BREECE, BARRY T III
BROWN,W STANLEY
BROWN,WILLIAM R
BULLEY, RAYMCND M
BURG,P M
BUTZIEN,PAUL B
CALDWELL,W NEAL

N

" (REFER GEI 13.9-3)

COVER SEEET ONLY TO

CANMPBELL,J B
CAMPBELL, STEPHEN T
CANADAY,RUDD B
CANDY, JAMES C
CASPERS,MRS BARBARA B
CAVINESS,JOBN D
CHAMBERS,J M
CHAMBERS,MRS B C
CHAPMAN,W P JR

D .
CLIFFORD,ROBERT M
COBER, ROBERT M
COHEN, HARVEY
COLDREN,LARRY A
COLR,L0UIS M

COURTNEY PRAIT,J S
CRUME, LARRY L

D ANDREA,MRS LOUISE A
DAVIS,D R

DESENDORP, JUDITH
DEUTSCH,DAVID N

DI GIACOMO,J G
DICKMAN,B N
DICX,GEORGE W

EVERETT,W. W
PABISCH, MICHAEL F
PEDER,J
PELS,ALLEN M
FISCEER,H B
FLEISCHER, HERBERT I ..
TOS8,JOHN W -
POUNTCURIDIS,A
POX, PHYLLIS

FOY,J C
PRANK,MISS A J
PRANK, RUDOLPH J-
FRASER,A G
FREEMAN,K GLENN
FROST,H BONNELL
FULTON,ALAN W
GARCIA.R P

> CITED AS REFERENCE SOURCE

11-EXD 15-EXD

' t6-EXD .

BALL, ANDREW
M.HILTON 8 JR
HALL,W G
HAMILTON, MRS L
BAMILTON, PATRICIA
BARRISON, NEAL T
BARTWELL, WALTER T
HAROUTA,X
HAUSE,A D
HAWKINS, RICHARD B
HEATH, SIDNEY F Iz

" KIBBURTZ,R BRUCE
KILLMER,JOHN C JR

IDZIRR.JOEH C
LUDERER,GOTTFRIED W R
LUTZ,KENRETH J
MADDEN,MRS D M

MC CABE,PETER S

MC CONNELL,RONALD C
MC CULLOUGH, RICHARD H
MC EOWEN,JAMES R

MIHA,XENT V
MITCHELL,OLGA M M
MOLINELLI,JOHN J
MOLTA,J W
MORGAN, DENNIS J
MORGAN, S P

ese

378 TOTAL

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE QTHER SIDE.
2. POLD THIS SHEET IN BALF WITH THIS SIDE OUT AND STAPLE..
3. CIRCLE THE ADDRESS AT RIGHT.

USE NC ENVELOPE.

RADYJ
M3 7B20%
.- PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE

CTHER SIDE

TH=-75~1352-6"
TOTAL PAGES

)
NO ESVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER
SHEET TO THE COMPLETE COPY. .

IP COPIES ARE NO LONGER AVAILABLE PLEASE PORWARD THIS
REQUEST T0 THE CORRESPONDENCE FILES.

I. Introduction

BLOSIM is a simulator for discrete time systems. . Systems to
be simulated by BLOSIM are described in terms of basic blocks
(Table I) or user-defined blocks (Section V). The available
functions described in Table I include: delay, amplification, ad-
dition, subtraction, multiplication, division, maximum, minimum,
clipping, magnitude, printing(plotting), input, and multiplexer.
Those systems which contain closed loops which do not allow a
unique interpretation are rejected by the compiler.. :

This memorandum describes the language, variable precision,
implementation, and general use of BLOSIM. Some comparisons are
made between BLOSIM and BLODI (refs 1l-3). Appendices contain pro-
gram examples of BLOSIM source code and samples of new functions
introduced as user-defined blocks to be compiled outside the BLO-
SIM source code. ' : '

it rer s s aee s e e L i e o ——y.

I1. The Language

BLOSIM departs from the syntax of BLODI to a more natural
expression of a block diagram where the output of any block is a
function of its inputs. BLODI's syntax was heavily tied to as-

"sembly language with: the result that a statement in the language

would tell where the outputs of the block were going instead of
from where the inputs were coming. That system of specifying
connectivity complicates the addition of more blocks to a simula-
tion because it requires modification of the output lists of ex-
isting sections of code in order to send signals to the addition.

The compilation scheme of BLOSIM is similar to BLODI ‘s.

BLOSIM is similar to a normal computer language in that it
has statements, functions, control statements, and declarations.
The biggest difference between BLOSIM and other computer
languages is BLOSIM is non-procedural--the order of most of the
statements is irrelevant because BLOSIM decides when a particular
statement will be executed based upon efficiency.

In BLOSIM there are nodes,.numbers (literals), and func-

.8

y

7

§

BLOSIM - T

tions. Nodes correspond +to the ‘variables in a programming =

language and to the connections between blocks in a physical
sense (Fig. l). A special type of block is .a delay block,

corresponding to a physical register or memory. Its output is its
input delayed by 1 or more time periods. A delay must appear ~in.
every closed loop of a system block diagram to make ‘the loop .

deterministic or calculable. In Figure 2 the nodes “out?,
"feed", and “feedback" form a closed loop which, if there were no

p

delays, could not be interpreted by BLOSIM because the order of -

compilation of the blocks would not be known. A similar problem
is encountered in a hardware implementation; with no delay in a
loop, a race condition exists. : . .

- Pigure 1

A, B, and SuMm are nodes; "add” is a function.
| | ' 6ut -
11— g (add}— +——{ print |

lay L

Typical statements to BLOSIM corresponding to the system
block diagram in Figure 2 are .

*asterisks denote comments
out =add (il ,feedback)
feed =delay (out)
feedback=amp (feed) [-.9]
print (out) *print the result

Note that the order of the four statements is irrelevant.

The form of a statement is

nodel,...,node4 = function (argl,arg2, ...) (paral,para2, ...}

where if there are no arguments the parentheses are omitted; no
parameters, the brackets are omitted; and if no node is being as-

“y -

.

/%\

<~?'N

SLOSIM | | R

signed, the'”node =" is omitted. A maximum of four nodes to the
left of the equal sign is allowed. "Nodel",...,"node4" are set
equal to the first,...,fourth value of function. Not all func-

. tions return 4 values, however, and if you ask for values which

do not exist, the nodes are filled with some undefined number

~which happens to be lying around in a floating accumulator. An-

asterisk means the rest of the line is considered to be a com-
ment. ' : ' T Le

The node must be assigned a unigue name (an arbitrary number of
characters is allowed). The arguments and the parameters may be
numbers or nodes which appear somewhere on the left of an equal
sign or as an argument or parameter of a block (see section V).
They may not be function calls. '

III. Precision

-

A hardware system will have only finite precision. Also the
particular system of arithmetic used will have an effect on the
result of an arithmetic overflow. For example, in 8 bit (plus 1
sign bit) two’s complement arithmetic the number 256 overflows
and the result is -256. In sign magnitude arithmetic 256 would
overflow into +0. : . :

To tell BLOSIM that certain nodes are ‘computed to finite
precision the statement

: sign_mag '
[rounded] { twos } arith numberl [,number?2]
odd :

is used. The [] guantities are optional and one of the {} quan-
tities must be chosen. "Numberl®™ is the total number of bits of
precision exclusive of sign; “number2" is the bits of precision
to the right of the binary point. If "number2" is omitted, 0 is
assumed, i.e., the result appears as an integer. - The statement
sets the precision of the following nodes which are to the left
of an "=" with the exception of delay, min, and max, which just
copy one of their arguments. In those functions the call to the
precision adjust routine is avoided because in most instances the
call, which takes several machine instructions, is unnecessary.
For the result of the rounding and truncation operations see
Table I1. The statements :

twos arith 12

a =input

b =delay(a)

rounded sign_mag ardith 26,6

'S

| -

BLOSId T T 5

-

c - =amp(b) [16.325]

makes "a® a 12 bit signed integer (+4895 to -4896) and "c" a 20
. bit fixed point number with 6 of those bits to the right of the

binary point. Tne construction 4,6 is interpreted as 4 bits of
precision with the least significant bit being 2**-6. Note "b"
is the same precision as "a" and the 16.325 is unaffected, as
would any number or node other than "a" or "c®.

If no precision statement is given, the accuracy of the
machine is used; don’t ask for more than 55 bits of precision
(numberl) or, for number2, a value outside + or - (127-numberl).

T

IV. Iteration Control: The."times" statement

To tell BLOSIM how many time periods are to be executed, use
the statement ’ .

number times
where “"number" tells how many iterations aré to be done. Number

is wusually an integer, but may be a node in a user~-defined block
(see section V). — :

-~

V. User-Defined Blocks

" BLOSIM allows the user to define his own blocks. These new
blocks are separately compilable. User-defined - blocks which

resemble macros are an assemblage of BLOSIM code when compiled

within the framework of a BLOSIM source file. User-defined
blocks compiled outside the BLOSIM source file may be in C
language (Appendix I) or Fortran (Appendix II). The BLOSIM block
nas the form : : : . :

block dummyl,...,dummy4=FCN(a£§s)[parameters]

«essesStatements
dummyl=fcnl(..) (..l
«sssStatements
dummy4=fcn2(e.e) [cee]
.eessMOre statements

end

(

3
),

o

‘aLosim ST e

This sequence of statements defines a new block with the name

"FCN" « This new block has as many arguments and parameters as
the user specified in the "block"™ statement, including the possi-
bility that there are no arguments Oor no parameters, in which
case the parentheses or brackets are omitted. “Dummyl” through
"dummy4" are the formal nodes of the block which represent the
outputs of the block. The value these formal nodes are given in
the program are the values passed. back to the routine which

called the block. Only those formal nodes used to pass the out-
puts of the block need be mentioned in the definition. Other
statements and other nodes may be used within a block, but these
statements and nodes are available only to the block and not to
any other group of statements. Any function may be used in a
block definition, including those defined in other block state-
ments, with the exception that no function may call itself either

directly or indirectly through other functions (i.e. recursion is
not permitted). : SR

A user-defined block is always considered to be a non-
delaying block. This consideration demands that any closed loop
must have a "delay" block in that loop because any "delay” block
within a user-defined function is camouflaged. A “delay” block
within a user-defined block will function as would be expected
except in the special case when the argument of the "delay"™ block
is an argument or parameter of the user-defined block. If this
user-defined block is called with a node whose value is not equal .
to zero for time less than zero (because it was initialized) ,
then the user-defined block will not use the right value because
the delay block is not aware of the initialization.

The times statement and precision statements may be used in
a block. If they are not used, the time and precision are as-
sused to be that of the calling block. If they are used, the time
and precision of the calling block are restored upon exit of the
block to prevent the called block from interfering with the cal-
ling block.

For. function names, only 7 characters are significant, the
remainder being ignored. Certain function names are reserved and
therefore should not be used. Table III gives a 1list of these
names. . : : -

vI. Program Organization

Though not required by the compiler, good programming style
recommends the following layout for the source code to BLOSIM.
In the first part of the file all the user-defined blocks should
be defined. Follow those definitions by the main code. The ad-
dition of some blank lines to separate the different block defin-

 BLOSIM | 9

itions and the main code and the use of tébs and spaces for
further readability have been shown to be beneficial in reducing

‘programming errors and decreasing the total time spent on a pro-

gram. A good comment or two along the way also helps two weeks
later when some changes need to be made. BLOSIM will not com-
plain about the addition of any of these niceties.

A.roughed out form for a program is

block coe

'bloc'ls. .. SRR
- _end eece

208 times

rounded twos arith 8

VII. Using BLOSIM

To use BLOSIM, first prepate,fhe.BLOSIM source ' code using

the UNIX editor (see reference 4). BLOSIM is then invoked on

these files by the command
% blosim source® sourcel source2 sourceld ...

where each source is the product of the editor or a previously
compiled run. If the source ends in °.1° it is assumed to be a
BLOSIM source file. BLOSIM compiles this file into assembly code
on the file ‘.s’. (So the source “system.l" is compiled to
"system.s".) If source ends in “.s’ the assembler is called to

assemble it onto a ‘.0’ file. If source ends in “.c’ it will be-

compiled by the UNIX C compiler. Similarly, if-the file ends in
°.f° the FORTRAN compiler will be used. All the sources are then
loaded with the BLOSIM, C, and UNIX system libraries. The com-
mand leaves its output on a.out, .which can be executed. (if there
were no errors) by typing ' |

. Because BLOSIM’s input and output functions use the standard
input and output devices, an input file can be made up and used

as the standard input or the output can be . diverted from the

-

BLOSIM - ' T8

user ‘s terminal to a file with the use of the UNIX sheil commands .
w¢® and °>", The command string

$ a.out <fi1e_in >file_out

takes its input data from the file "file_in", processes it ac-
cording to the BLOSIM program, and writeS the results on the file

“file_out"”.
For examples of BLOSIM programs, see the appendices.

P

VII1. Defined Blocks

The éolldhiné is a table of the defined functions in BLOSIM.

TABLE I
Function Descriptions

function description

delay(signal) [length,initial] o :
Delay performs the delay function for a time of length
periods. “Initial®™ specifies the initial value of the
node at time zero; when initial is used, length is as-
sumed to be exactly 1. If the parameters are omitted,
the initial value is assumed to be @ and the length 1.
Changing the value of "length® during execution is for-
bidden and will cause unpredictable results.

amp(signal) [gain]
Amp returns “"signal® multiplied by "gain®™. Both *amp”
and "signal® may be changed during the execution of the
program. S : '

add(signall,signalz,.;.,signaln) : o o
Add produces the sum of all its arquments (which may be
arbitrarily many). SRR . :

sub(signall,signal2) : v
, . Sub returns “signall®"-"signal2".

mult(signall,signal2) .
Mult gives the product of the arguments.

-

/"/‘\

VR

BLOSIM - | A I D

div(divisor,dividend) o o
Div returns the quotient of its arguments. No check 1is
made for divide by @. ‘

max (signall,signal2,...,signaln) . '
Max gives as its value the largest -of its inputs.

min(signall,signalz,...,signaln)
Min returns the smallest argument.

clip_pos(signal)[positive_limit] _ o S
Clip_pos returns "signal® limited to a positive excur-

sion” of "positive limit". This function is equivalent

to min(signal,positive_limit). g

cIip_neg(signal)[negativg_limit]

~ The function gives signal with a lower excursion 1limit
of “negative_limit". :

clipper(signal) [limit]

This function returns "signal®” clipped in the positive

direction by "limit" and the negative direction by

rectify(signal) . - ‘
Rectify gives the absolute value of "signal®.

print (signall,signal2,...,signaln) . . : o
: This function returns nothing but prints the values of
- the signals on the standard output of UNIX. The BLOSIM
N format for printing limits .the number of signals to 8.
Users wishing to plot should save the output file. If
there is one column of output with 588 points or less,
the file may be used directly as a gplot file. If
there are more than 580 points, "pltpart” must be used.
If there is more than one column of output, "pltprep"
must be used. See Appendix III for " a discussion of
these two routines and Appendix IV for their applica-

tion. ‘
input _ -
: . . Input reads a floating point number from the UNIX stan-
dard input and returns that number as its value.

spdt(control,throwl,throwZ)[threshold] :
- ~ Spdt is a multiplexer whose output is throw2 if
control>threshold and otherwise throwl.

BLOSIM | 18

IX. Truncation and Rounding

The following is a table of the -effect ofv'the precision
statement for integers ' «

TABLE Il

Precision Effects LT RWLALEE i e
number sign magnitude two s complement odd halves
rounded truncated rounded truncated
1.008 1.09 1.60 1.00 1.8 -~ - 1.5
75 1.00 .08 1.00 .00 S)
.50 1.09 .08 1.00 .80 -
«25 .80 - .08 .08 .80 5 -
.00 .00 ' .00 .00 - .00 . 5
- 025 oaﬂ .00 ogﬂ "1.00 - 05.
- .50 -10 . 00 -100 -lonﬂ - 05
’ .75 -loﬂ .ﬂﬂ -logﬂ ‘l.ﬂﬂ - .S
- 05 .

-100 -loﬂﬂ -logg -logﬂ -log

Sometimes the value of a node may exceed the dynamic range
of that node, causing an underflow or overflow. This table is a
summary of the effect of overflow or underflow at the boundaries
of the number representation.

number sign magnitude two’s complement ~ odd halves
largest+l @ smallest smallest
smallest-1 8 la;gest largest

largest refers to the largest possible positive number
smallest refers to the most negative number

X. Errors

Here is a list of error messages the compiler produces.

e

M

BosIM 1

*Line xxxx" refers to the line of the BLOSIM source file
(filename.l) on which the error was detected. N

**ERROR 11ne XXXX syntax error
somethlng is wrong with the syntax of the lxne, such as
a missing "="

**ERROR line xxxx illegal fcn name "name®
"name"” was used before as a node, argument, or pa:ame-
ter

**ERROR line xxxx "name” already typed
*name"” was used before

**ERROR line xxxx nested definition '
attempt to define a block within a block definition

**ERROR line xxxx "name” not a function
the name used is a node or parameter in this block

**ERROR line xxxx name” already defined
"name” is a function or appears to the left of an
.in two or more places

**ERROR line xxxx too many formal nodes
only four are allowed-—-sorry

**ERROR line xxxx improper number of arguments

- #**ERROR line xxxx improper number of parameters

~ either too many or too few were specified

1f a block doesn’t exist in a BLOSIM program, the normal .C

libraries are ' searched for a match. If no match is found (i.e.,

you forgot to include part of your program) the loader will com-

"plain about some undefined symbols (the symbols will be prefixed

with a "_").

XI. Inplementation---notes for the informed.

BLOSIM is written in the C language with the aid of the YACC
compiler-compiler (refs 5 and 6). The use of a compiler-compiler
has an advantage over other technigques because language syntax
may be specified easily and quickly, as may any changes. There

J

s

-BLOSIMm

" ijs not a wide choice of languages on the PDP 11 UNIX system; even

if there were, languages such as FORTRAN are not geared to the
flavor of processing involved in writing compilers. The language
C is the production language under the UNIX system and the output
of YACC leads to a natural embedding of the compiler in this
language.

A C compiler exists for the Honeyweil machine, but the code
the BLOSIH compiler produces is for the PDP 11/45, so the tran-

.sportation of BLOSIM to that machine requires changing the - pro-
duced code and rewriting the library. There was a possibility of

having the BLOSI# compiler produce C code, but the low efficiency
of that code was felt to be too high a price to pay for the por-
tability. .

- The code which BLOSIM produces uses all double precision
floating point numbers. Some reasons for this choice are the
floating point instructions are the only machine instructions

which allow .the machine computation of multi-precision numbers,

the alternative being executing several instructions to link
words together; fractions are most easily represented as floating
point numbers, eliminating the need to do multi-precision shifts
after a fractional multiplication; and the PDP 11/45 has some
convenient instructions for truncating floating point numbers.

Commonly used functions like add, amp, and delay are com=
piled inline. Other functions are called as subroutines using
the C calling convention. _

The possibility of an arbitrary number of subroutine calls
requires a heap be used to supply the static storage for each
subroutine instance. The heap is a collection of memory 1loca-
tions which are allocated dynamically to each instance, distinct

occurrence, of a subroutine. when a subroutine is entered, it

reserves space on the heap. The heap space is allocated in such
a way that each instance will take the same locations from the
heap every time it is called. ‘ ’

After a computation is done in a statement, a subroutine is
called which adjusts the value in the appropriate floating point

.accumulator according to the external variables p_arit, p_totl,

p_tot, p_righ, p_adj, which are set before computation ensues.

These and other variables are pushed onto the stack if the called
subroutine changes them so they may be restored on exit.

I1f your program becomes very large, certain internal com-
piler tables may run out of space. Adjusting the size of the ap-

propriate macros (Section XII) in the file blosim..c and then

running YACC on blosim3.y and recompiling all of blosim?.c and
y.tab.c will fix the problem. ;

. Another solution would be to compile the different blocks
separately and load them together. -

y

BLOSIH o | 13

XII. Changes for Veiy Large Programs : e e

error - - change § define
out of list space list_max
out of symbol table sym_size

out of character space name_chr

XIII. Order of Compilation e .:4;.2afu

-

BLOSIM reads an entire function from the source file (e.g.,
ssystem.1l"), decides on the order to evaluate the blocks, and

then outputs the compiled code as assembly language to the file

*system.s". BLOSIM continues reading the functions from the
source code until an end of file. Then the file "system.s" is
given to the assembler to create the object code in the file
Bgystem.o" (meanwhile cruelly destroying any a.out file you have
around). “System.o” along with any other arguments to the BLOSIM
command are then given to the C compiler to force the loading of
the C libraries. - ‘ ' ‘ : :

The BLOSIM compiler looks through all the statements it has
until it finds one it can compile. A statement is compilable if

1) it is a non delay function and
~ ‘ a) all of its arguments and parameters have .
. been compiled : : -
b) all the delay boxes. connected to the outputs
have been compiled -

2) it is a delay function (has memory) and all the
delay boxes connected to the outputs have been
compiled. ' : :

The effect of this ordering is to save space and time in the ob-
ject code by requiring only one word per node. If this ordering
were not used, one word would be wused for the previous time
period and one for the time period being calculated. : .

-

_The statements

=input
=add (a,e)
=delay(b)
=delay(c)

- =amp(d) [2.7]

PO

might be executed in the following order (there are a few other

BLUSLIM

;

ways to meet the requirements)

a =input

d adelay(c)

c zsdelay(b) -

e =amp(d) [2.7]

b =add (a,e) A

XIV. Reserved words

The following is a table of words which should not be used

for block names. Any block name with a capital letter in it is
all right. ' ')

TABLE III _
- Reserved Block Names

atan close execl fortran 1log pow read = write
atof cos execv fptrap main printf sin ‘zztime
block create exit ftoa nargs putc sgrt zztime_
break ecvt exp getc nice putchar start

brk end fcvt getchar open rand stty

XV. Acknowledgment

-

“The author, an M.I.T. Co-op Student, created BLOSIM during
an assignment made possible through department 1352 at Bell La-
boratories in the summer of 1974. . ’

Questions should be directed to Mrs. M. T. Dolan or Mr. Je

F. Kaiser.

MH-1352-GLR-JER | G. L. Roylance

[
.

BLOSIM - 15

1.

5.
6.

REFERENCES

Kelly, Jr., J. L., Lochbaum, C., and Vyssotsky, V. A., ™A
Block Diagram Compiler", B.S.T.J., Vol. 48, No. 3, ppP-

- 669-676, May 1961.
Kelly, Jr., J. L., Lochbaum, C., and Vyssotsky, V. A., "A |

Block Diagram Compiler”, MM-61-123-4, February 1961.

Rarafin, B. J., “A User’s Manual for BLODIC, a Block Diagram
Compiler for the IBM 360",_3M-66-3322-1, June 19786. '

Kernighan, B. W., "A tutorial Introduction to the ED Text Ed-
itor" :

Kernighan, B. W., "Programming in C: A Tutorial"”

Johnson, S. C., ™YACC (Yet Another Compiler-Compiler)',.
T™M-74-1273-9, April 1974. , ‘

BLOSIM 16 R

APPENDIX I S S
C Interface :

One reasdn for followiﬁg the C cailing convention is to ease

- the introduction of new blocks. To make a new block one need

only write a C function with the right name and arguments. These
should be some representative samples of what can be done.

/* Example of C code for a single-pole double-throw switch

.spdt is a switch function whose output depends on a control input.

If the control input is greater than a threshold, the value is the
third argument, otherwise the value of the function is the second
argument. The threshold level is set by the parameter.

BLOSIM call is: foo=spdt(con,x,y){1.5]
*/ .

double spdt(control,x,y,thresh)
?ouble cqnt:ole,y,thresh;
if (control>thresh) return (y):
return(x);

}

BLOSIM ', o 17

EESIRTE A

/*example of C code to do the print function*/

/*these are variables automatxcally
set by BLOSIM before a call*/

~extern int zztime; - /*current time*/ A o '
extern char arg_cnt; /*number of args*/ o 3
extern char para cnt; /*number of paras*/
print (x) double x; o I
. -imt iy - R e e U -
~ double *pt;) o : Y -
pt = &x; /*pt now points to . ' 3
all the arguments¥*/ coom e CN

/*print the time current sample*/
printf£(® %5d ",zztime);

/*print the value of each argument in turn*/
for (i=@;i<arg_cnt;i++)

€tintf(”%8.4f ", *ptt++) ;

?tintfl"\n“);

'BLOSIM

- i R Tt
. . S TR R

/*now the hardest one--watch the heap manuevers*/

extern

double

char *heap,*heapend; /*heap pointer*/

delay(x,length) double x,length;
{ -

struct { ‘ . =T B .','."". PO I S
int index; /*which word*/ R
double dlyl(]; /*storage*/ L
.. *pt; e L memn A
int num_args; L L .
pt = heap, /*heap points to free area*/

/*allocate appropriate storage on the heap for 1ndex (2 bytes for
and for delay storage (8 bytes for double)*/

num_args=length; :

heap = &(pt->dly[num_args]):;

if (heap >= heapend) heaperr():; /*get more core*/

pt=>dly([pt->index++] = x; ,

if (pt->index >= num_args) pt—>1ndex-ﬂ'

feturn(pt->dly[pt-)index]),

(A

BLOSIM ' "'19~

" APPENDIX II
PORTRAN Interface
To use a FORTRAN subroutine or function use the statement
node = fortran funct(argl,...,argn)

which is similar to other statements except that there is only

one node to the left of the "=" sign (no error is given if there
are more, but the others are not given a defined value). The

*node =" may be omitted. If the FORTRAN subroutine returns a
value, that value must be of type DOUBLE PRECISION. The UNIX
FORTRAN compiler has support libraries associated with it which
must be loaded to run the subroutine. To tell BLOSIM to load
these files, one of the "source" files must end in ".f" or the
user must include a "-f" in the command line.

$ blosim sourcef ... sourcen -f

s

"~ -BLOSIM ‘ 20

_ APPENDIX III ‘
Accessory Programs and Sources

The sources for the BLOSIM compiler and some accessory pro-

oy grams are all contained in the subdirectory "./blosim”. This sub-
(?“\ directory is broken into the following subdirectories.

blosim/source - contains compiler sources

blosim/1lib ~ _ contains runtime libraries
<;§\ _ blosim/doc contains documentation
blosim/etc - random useful programs
blosim/etc/bits

prints out a number to a definite accuracy.
use is:sbits "number® "sig_bits"
prints decimal equivalent of "number"
. to "sig_bits" significant bits. :
blosim/etc/dft.c ‘ ,
a C subroutine to do a power of 2
discrete fast fourier transform.
blosim/etc/do_dft
, a kludge to do a DFT of a gplot
. format file -
blosim/etc/pltprep.c
- makes a gplot file from
the user program’s output.
use is:% pltprep num <in >out
where num is the output column
v number (>@). Pltprep is only necessary
, - when there is more than 1 column of output.
blosim/etc/pltpart.c
e makes a shorter gplot file from
the user program s output or from
) o the output of pltprep. ,
(?h% use is:% pltpart n m <in >out
-~ where the n-index indicates the
first point to be plotted and the
m-index indicates the last point
to be plotted. Since the gplot
maximum is 500 points, pltpart should
be used when the output file has one
column of more than 580 points.

A~

7

-

(

BLOSIM = 2 S N T

APPENDIX IV
Program Examples

This is an example BLOSIM program which computes the tran-
sient of a simple filter to observe possible limit cycle
behavior. The program, given the name "jfk.l", is placed in the
UNIX system with the editor. _ : 3

®*limit cycle --J. F. Kaiser

,*first define systeml as a block because we use ititwiée

block yout =5YS1(x) {bl,b2] ' ' o ‘ 3
sum =add (x,adsum,ayout) v o o
dsum =delay (sum)
yout =delay (dsum)

‘adsum =amp(dsum) [bl] " ‘ -
ayout =amp (yout) [b2] :
end . :

*now we define system2 as a block
block yout =SYS2(x) [bl,b2]

sumg =add (x,ayout,adsumgd) -
suml =add (dsumf ,yout)
dsumf =delay(sumd)
adsum@ =amp(dsum@) [bl]
-~ ayout =amp (yout) [b2]
yout =delay(suml)
end

*we want to try SYS1 and SYS2 with different coefficient values
*of 12 and 23 bits of precision.

256 times
*read the input signal : ’)
X =input)

*try 23 bit precision coefficients

rounded twos arith 30 ’ *ye ‘re not worried about overflow,
*just integer values on the results.

sysl_23 =SYS1(x) [1.740000089536743,-.958330035209656]) _ .E"
sys2_23 =SYS2(x) [.740000009536743,-.218330025672913]

*now try the same systems at 12 bits of precision for the coeff

sysl_12 =SYS1(x) [1.739990234375,-.958251953125]

“®

(end of)file)

" BLOSIM : S22

wjfkout".

The beginning of the file'”jfkouf“ looks like

sys2_12 =5YS2(x)[.7399908234375,-.21826171875]

*print the result

print(sysl_23,sys2_23,sysl_12,sys2_l12)

‘This program is compiled by the statement

$ blosim jfk.1l
. assem jfk.s
e .. . % mv a.out jfk

The “"mv" command renames a.out to be jfk.

The program is now given data from the file "jfk.d", which con-
tains the sequence {56,508} (the remaining values are considered
@), and the output of the program is directed to the file.

- ¢ jEk <jfk.d >jfkout » - :

11111.466 111111111111

-—-title--- A S
jEk Fri Jul 11 09:28:40 1975 v T T S
amplitude 4 T
. time periods . . L
4 -
256 ' :
' g 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00
1 0.0000e+00 (.0000e+0@ 0.0000e+08 0.0000e+00
2 5.0900e+0]l 5.080¢e+0l 5.0000e+B81 5.0000e+81
3 1.3700e+82 1l.3708e+82 1.3700e+82 1.3700e+82
"4 1.9000e+02 1.9000e+02 1.90900e+082 1.9000e+02
5 2.0000e+82 1.9900e+22 2.0000e+B2

1.99006e+02

Plots of the output are obtained by

% pltprep 1 <jfkout >plotl
$ pltprep 2 <jfkout >plot2
$ pltprep 3 <jfkout >plot3
% pltprep 4 <jfkout >plot4

and using gplot:
% gplot plotl (See Figure 3) .
etc. ’

To study details of entrance to the limit cycle, use pltpart:

$ pltpart 118 160 <plotl >part
$ gplot part (See Figure 4)

‘Pigure 3
Lt Cyote Butput 1

Fer Jul 11 10116081 1975

1.28

oo

= 0.8

10%-0.2s

ANAAL

Vvvvv‘

YAYRYAYA

. !l-

t.00 1.50

RENIND

"tiue purieds 102

NEXT DBNE

STARE

?1gure]
s of Ent olLmm

S ,‘ . . .
] © e £
Q.8
s}

—~
E.." 20Emre =T 80 ‘
¢ o o 9 8 bk e = = & 6 8
8 8 8 h] 8]] o 8
. ‘ '—.
T~
/
>

(A~ DEBUG . REWIND NEXT DeNE STARE

o

BLOSIM 23

Second Example:

This example is a fin§ trip filter used for detecting a dc
level change in the presence of ring current. See Figure 5 for
system block diagram. The file “jcondon.l" is

*ring trip filter - =J. H. Condon’
508 times

*first the bandpass section
-8l =add(in,£3,£1)

P L sld =delay(sl) ‘ o Fo i g
N - £1 =amp(sld)[.96875] *31/32 B
82 =amp(s1) [.83125] * 1/32
s3 =add (s2,s3d) ‘)
s3d ‘'=delay(s3)
s4 - =amp(s3) [.03125] * 1/32
*3 little feedback - .
: £3 =amp (s3d) [-.03125] *~1/32
*now the low.pass , :
- 85 =add (s4,£5)
s5d =delay(s5)
£5 =amp (s5d) [.96875] *31/32
*now the coupling and the output ;
. 86 =amp(sl) [.8625] * 1/16 o
T out =add (s6,s5) ' ' ' - 0
*output the result
print (out)
*get the input signal
in =input A
ﬁa\' ' ' % blosim jcondon.l S e »
. assem jcondon.s 3
$ a.out <step28 >jcout | ’
The file "step28" is a step of 15 units in the presence of 65 un-
its of .a 20 Hertz cosine wave with the first 50 ‘'samples set to 8.
Figure 6 is a plot of the input file "step20* produced by an ear-
lier run. . :)
(‘.\ Now for the output plot- . |)

% gplot jcout

Figure 7 is a plot of the output file “"jcout™.

. et s e s . i
[A U T D

._ .noo._”ﬁ.maaaam:ﬁm
S m.:_wﬁh :

o teen -
| —W

2g/1

ppo e,

Z2Ss

P4S

1P

_\s\;u

=

Fry Jut {1 10sS0151 19735

1) ge’f%ﬁ?n 6lnpul

7.“

I

” .

4.00

1.00 -2.00

tiwe pericds ¢ 10

DEBUG REWIND NEXT

STARE

e

-

. 4.%0

E w eacrmrrvee

1.004-

. Plgure T
Ring Teip Filter Butput |

Frs Jul 11 10354137 1973

4.00

3.00

2400/

.00

/ |

L/

Q.50
0.00

1.00 2.00 - " 300 4.00
tine periods & xoz

DEBUG REMIND NEXT . . D@NE STARE

