~

S /C/f4

Bell Laboratories . Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboraiories and is not for publication. (See GEI 13.9-3)

Title- Struct - Date- December 22, 1975
A Program which Structures Fortran
T™- 75-1271-12
Other Keywords- ¥ :

Structured Programming
Ratfor
Author Location .Exlension Charging Case- 39199
B. S. Baker MH 2C-514 6503 Filing Case- 39199-11
ABSTRACT

Fortran programs are often difficult to read because Fortran lacks good
constructs for describing flow of control. Programs with many goto statements
are sometimes incomprehensible. Struct is a program which rewrites Fortran
programs using Ratfor control constructs, such as while and if else statements.
These constructs are used by Struct to make loops and branching apparent.
The resulting programs appear natural to the reader because Struct follows
structuring principles based on normal programming practices. Consequently,
the structured programs generated by Struct are dramatically easier 1o under-
stand than their Fortran counterparts.

Since the structured programs are easier to understand, lhey are easier 1o
modify and debug. Therefore, Struct is a useful tool for the maintenance of
existing Fortran programs. New programs can be written in Ratfor, while old
programs can be translated into Ratfor. Thus, all programs can be maintained
in the same structured language. -

Struct is written in C and currently runs on the PDP-11/45 under UVIX

Pages Text 10 Other 3 Total 13
No. Figures 0 No. Tables 0 . No. Refs. 20
E-1932-U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST

December 22, 1975

LELL TELLPHONE LABORATORIES, INC.

SOMELETE MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR

EACH AUDITIONAL FILING
CASE REFERENCED

DATE FILE COPY
(FORM E=-1328)

10 REFERENCE COPIES

CAHO,A V
<BECKEF,R A
¢BLUE,J L
BROWN, W STANLEY
<CHEN,STEPHEN
<CHERRY,MS L L
<FLEISCHER, HERBERT I
<FRASER,A G
<GOLDSTEIN,A JAY
<HAMILTON, PATRICIA
HAMMING,RK W
+HANNAY,N B
- ¢<JOHNSON, STEPHEN C
CKEESE,W M
>KEaNIGHAN, BRIAN W
CLUDERER,GOTTFRIED W R
<MARANZANO, JOSEPH F
<AARKY,4ISS G A
<MC GILIL,ROBERT
MC ILROY,M DOUGLAS
+MEOONALD,H S
MORGAN,S P
<OSSANNA,J F JR
PINSON,LLIOT N
+PRIM, ROBERT C
<RALEIGH,THOMAS M
<SCHLEZGEL,C T
+SCHRYER,N L
TERRY,M E
<ThOMSON,M-L
CWALFOFD,ROBERT E
*WARNZR,D D
CYAMIN,MRS E E
33 NAMES

COVZR SHEET ONLY TO

CORKRESFONDENCE FILES

¢ COFIES PLUS ONE
COPY FOR EACH FILING
CASE

ACKERMAN,A F
AHERN, PETER L
AHRENS, FAINEK B
ALCALAY,DAVID
AMRON, I

+ NAMED BY AUTHOR

> CITED- AS REFERENCE.

COVER SHEET ONLY TO

ANDERSON, ELMER E
ANDERSON,MS K J
ARNDT, DENNIS L
ARNOLD, GEORGE W
ARNOLD, S L
ARNOLD, THOMAS F
ATAL,B S
BADURA, DENNIS €
BAKER, BRENDA S
BASEIL,RICHARD J
BAUGH,C R
BERNSTEIN, LAWRENCE
BEYER,JEAN-DAVID
BICKFORD,N B
BILOWOS,RICHARD M
BIRCHALL,R H
BIREN,MRS IRMA B
BISHOP,MISS V L
SLINN,JAMES C
BLUM, MRS MARION
BLY,JOSEPH A
BODEN,F J
BOLSKY,MOKRRIS I
BONANNI, LORENZO E
BOURNE, STEPHEN R
BOWERS,J L
BOWYER,L KAY
BOYCE,W M
BOYLE, GERALD €
BOYLE,W §

BRONZO,J A
BROOKS,CATHERINE A
BROWN, JAMES W
BROWN,WILLIAM R
BULFER,ANDREW F
BULLEY,RAYMOND M
BYRNE, EDWARD R

<B2OWY,D E
CAMPBELL, STEPHEN T
CANADAY,RUDD H
CASPERS,MRS BARBARA E
CASTELLANO,MRS M A
CAVINZSS,JOHN D
CHAMBERS,J M
CHAMBERS, MRS B C
CHANDRA,R
CHEN, EDWARD
CHODROW,MARK M
CHRIST,C W JR
CLARK,MS CONSTANCE E
CLAYTON,D P
COBEN, ROBERT M
COHEN, HARVEY
COLE,LOUIS M
COLE,M 0 -
COOPER,A E
COSTANTINO,B B
CRAGUN,D W
CRUME, LARRY L
CUTLER,C CHAPIN
D ANDREA,MRS LOUISE A
DAVIS,D R

< REQUESTED BY REALER

DISTRIBUTION
(REFER GEI 13.9-3)

COVER SHEET ONLY TO

DAVIS,R D
DESENDORF ,JUDITH
DESMOND,J P
DEUTSCH,DAVID N
DEVLIN,MRS SUSAN J
DICKMAN,B N
DIETZEL,K ROBERT
DIMMICR,JANES O
DOLOTTA,T A

* DOMBROWSKI,F J

DONNELLY,MISS MARY M
DOWDEN,C €
DRAKE,MRS L
DWYER,T J
EIGEN,D
EIBELE,RONALD €
ELLIOTT,R J
ELY,T C

ERDLE,K W
ESSERMAN,ALAN R
FABISCH,MIGHAEL P
FAULKNER,K A
FEDER,J

FELLCMAN, STUART I
FELS,ALLEN M
FISCHER,H B
FLANDRENA,R J
FOUNTOUKIDIS,A
FOWLER, BRUCE R
FOX,PHYLLIS
FOY,J C
FRANK,MISS A J
FRANK, RUDOLPH J
FREEMAN,K GLENN
FROST,H EONNELL
FULTON,ALAN W
GALLANT, K J
GARCIA,R F
GATES,G W
GAWRON,L J

GAY, FRANCIS A
GEPNER,JAMES R
GEYLING,F T
GIBB,KENNETH R
<GILLETTE,DEAN
GIMPEL,JAMES F
GITHENS,JOHN A
GLASSER,ALAN L
GLUCK, F
<GNANADESIRAN, R
GOLABEX,MISS R
GOLLSMITH,L D
GORDON, BRIAN G
GOTTDENKER ,ROBERT G
GRAHAM,R L
GREENE,MRS CELTA A
GROSSO0, I
GROSS,AKTHUR G
GUERRIEKO, JOSEFH &
GUIDI,PIER V
GUNDERMAN, k
HAFER,E H

COVER SHEET ONLY TO

HALL,ANDREW D Jk
HALL,MILTON S Jk
HALL,W G
<HANNAH,JUDY kK
<HARKNESS,C J
HARRISON,NEAL T
HARTMAN, WILLIAM H
HARUTA K
HAUSE,A D
<HAWKINS,DONALD T
HAWKINS,RICHARD B
HEATH,SIDNEY F III
HERGENHAN,C B
HEROLD,JCHN W
HESS ,MILTON §
HINDERKS,L W
HOLTMAN,JAMES P
HONIG,W L
HOWARD, PHYLLIS A
HOYT,WILLIAM F
HO,MS J
HUDSON,E T
HUNNICUTT,CHARLES F
HUPKA,MRB FLORENCE
<HYMAN,B
IFFLAND,FRZDERICK C
IPPOLITI,O D
IRVINE,M M
IVIE,EVAN L
JACKOWSKI,D J
JACOBS,H S
<JENSEN, PAUL D
JESSOP,WARREN H
<JUDICE,CHARLES N
<KAISER,J F
KANE,MRS ANNE B
KAPLAN,M M
KAUFMAN, LARRY S
KAYEL,k G
KELLY,L J
KENNEDY, ROBERT A
KERTZ,DENIS R
KESSELL,DAVID L
KILLMER,JOHN C JR
KING,WILLIAM C
KLAPPROTH,F F

_ KNOWLTON, KENNETH

" KNUDSCN,DONALD B
KORBE,WILLIAM P
KORNEGAY,R L
KREIDER,DANIEL M
LEGENHAUSEN, S
LEHRMAN, WLLLIAM
LERNER,E M.
LESK,MICHAEL E
LESSEK, PETEF V
LICWINKO,J S
LIEBERT,THOMAS A
LINDERMAN,J
LIND,Kk O

<LOGAN,MRS V G
LOMUTO, N

.. (NAMES WITHOUT PREFIX

WERE SELECTED USING THE AUTHOR®S SUBJECT OR ORGANIZATIONAL SPECIFICATION AS GIVEN BELOW)

MERCURY SPECIFICATION:ccccacscccacrancontesnccccnncncscasnescenceestiasiasteeteeesteenesacecosatacacensoesssacccsscroacecscacsacsssnss

COMPLETE MEMO TO:
127-8UP

COVER SHEET 103
12-DIR

13-DIR 127

COPLSP = SPECIAL~PURPOSE CO4PUTER PROGRAMMING LANGUAGES ANC PROCESSOKS
COPRSQ = COMPUTER SOFTWARE QUALITY

[R—

TM=75=1271=12%

COVER SHEET ONLY TO

LOYD,D G
LUTZ KENNETH J
<LYCKLAMA, HEINZ
LYONS,STEVEN H
LYONS,T G
MADDEN, MRS D M _
MAHLEK,G K E
MALCHESKI,W J J& N
MALCOLM,J A

MALLOWS, COLIN L)
MAROWITZ,J E

MARSH,MISS 1
MASHEY,JOHN K
MATHEWS, MAX V
MATTAVI, RONALD A
MATULIONIS,MRS P H
MAUNSELL, BENRY I G
MC CABE, PETER 3

MC CULLOUGH, RICHARD H
MC EOWEN,JAMES R -
MC GONEGAL,MISS C A o
MC LAUGHLIN,C D -
MC MAHON,L E

<MC MILIAN,W F

MC MULLEN,E €

MC RAE,JEAN E

<HC TIGUE,G &

MELCHNER, MELVIN J

MENIST, DAVID B

<MENNINGEK,R E

MENON,P R

MERCADANTE,P F

METZ,RO3ERT F

MEYERS,# N

MIHALAKIS,J M

MILLER,ALAN H

MILLER,G L

MILLER,S E

MILLS,MISS AKLINE D
MITCHELL,OLGA M o
MOLINELLI,JOHN J

MOLTA,J W

MORGAN,DENNIS J
MORRIS,ROBERT

MORK,PHILLIP L

MUIR,DAVID

MUSA,J D

NZHRLICH,W R

NELSON,DONALD R

NELSON,N=P

<NINKE,WLLLIAM H

NORTON, HERBERT ©

NOWITZ,D A

O CONNELL,T F

O NEIL,F J

O SHEA,W T

O SULLIVAN,JOHN A
OBERER,ZRIC

OLSEN, KONALD G

OLSON,R F

OPFERMAN, L &
CORCHARD, R A .

385 TOTAL

-

)

TO GET A COMPLETE COPY:

1. BE SBURE YCUR COKRECT ADDRESS I8 GIVEN ON THE OTHER BIDE.
2. YOLD THIS SHEET IN HALP WITH THIS BIDE OUT AND BTAPLE.
3. CIRCLE THE ADDRESS AT RIGHT.

UBE NO ENVELOPE.

BAKER,B S
MH 2€514

TM-75-1271=12
TOTAL PAGES 13

PLEASE SENL A COMPLETE COPY TO THE ADDRESS SHGWN ON THZ
OTHER SIDE

NO ENVELOPE WILL BE NEELED IF YOU SIMFLY STAPLE THIS COVER
SHEET TO THE COMPLETE COPY.

IF COPIES ARE NO LONGER AVAILABLE PLEASL FORWARD TH1b

REQUEST T0 THE CORRESPONDENCE PILKS.

[~

Bell Laboratories

Subject: Struct - A Program which Structures Fortran date: December 22, 1975
Case- 39199 -- File- 39199-11 . '
from: B. S. Baker

™: 75-1271-12

MEMORANDUM FOR FILE

1. Introduction

Structured programming emphasizes the use of programming language constructs such as
while loops and if else statements, which enable flow of control to be specified clearly. Unfor-
tunately, Fortran lacks these construcis. Yet, Fortran is still heavily used today, for reasons
which include efficiency of object code and ease of portability. This paper describes Struct, a
program which rewrites Fortran programs in terms of these constructs. The outpul programs
satisfy certain principles of good structuring chosen 1o ensure that the programs appear natural
to the human reader. '

Struct is an implementation of the structuring algorithm described in [BAK]. The algo-
rithm itself is not restricted to Fortran as ils inpul language or 10 any particular output
language. It requires only that the flow of control of the input programs be describable by a
static flow graph and that all input language stalements occur in the outpul language.

The constructs implemented in Struct include while loops, repeat {i.e. do forever) loops,
if. if else, next (which causes a jump to the next iteration of the smallest enclosing loop), and
break (which causes a jump to the statement following the smallest enclosing loop). The form
of the constructs implemented in Struct is based on the Fortran preprocessor language Ratfor
[KER]

Struct improves the readability of Fortran programs, often dramatically. Since the struc-
tured programs are easicr 10 understand, they are easier (o modify, extend, and debug than the
original Fortran. Therefore, Struct provides a useful tool for the maintenance of existing For-
tran programs. By applying Struct 1o existing Fortran programs, and writing new programs in
Ratfor, all programs may be maintained in the same structured language.

2. Previous approaches to structuring programs

The main goal of Struct is to rewrite existing Fortran programs 10 make them more read-
able. Previous approaches 1o structuring programs have generally concentrated on eliminating
goto statements, since "structured programming’ is often equated with "programming without
goto statements." However, the known ways of eliminating all goto statemenis can cause pro-
grams 10 become less readable [KNI].

One way of eliminating goto stalements is to add extra variables [AM,BJ,BS,COO.KOS].
The extra variables are used to record information aboul which statements were executed pre-
viously, and the variables are tested to decide what 10 execute next. Unforiunately, artificial
variable names have little mnemonic value and may be confusing when assignments to them
are mingled with the main computation of the program.

Another method of eliminating goto statements is to modify the program so that goto
statements may be replaced by other kinds of siatements [KOS.PKT]. For example, a break(i)
statement may be available to cause a jump to the statement following the i smallest loops en-
closing the break(i) statement. By creating dummy loops (i.e. loops where no iteration occurs),
the goto statements can be replaced by break(i) staiements. This method makes it difficult 10
determine where looping really occurs in the program, and it only disguises the goto sialements
as break statements in any case.

Another method of avoiding goto statements is to copy code which can be reached from
several places [AM,BJ.BS,COO,KOS,PKT]. This technique may cause programs 10 become un-
duly long, and makes it difficult to observe the identity of the copied statements. An alterna-
tive 1o copying code is 0 creale subroutines oul of code segments which can be reached from
several places. However, the code segments would not necessarily be semantic entities which
deserved 10 be called subroutines.

Each of the above techniques may be appropriate for some programs. Rather than make a
value judgment for each program, Struct does not apply these techniques. Instead, Struct ap-
plies structuring principles based on normal programming prdcm.e o ensure that the resulting
programs appear natural to the reader.

Another approach to structuring Fortran has been laken by de Balbine [BAL74,BAL75].

Like Struct. his "structuring engine" attempts to produce structured programs acceptable 10 hu-

man readers. The "structuring engine" does not create ¢xtra variables but sometimes creates

" subroutines or copies code 10 guarantee that each block of code has a single entry and single

exit. The "structuring engine" is proprietary and no explicit description of the structuring prin-
ciples or algorithm has been published.

3. Fortran and Ratfor control constructs

Struct accepts a large dialect of Fortran which includes American National Standard For-
tran [ANS66, ANS69, ANS71]. It assumes that its input is a syntactically valid Fortran rou-
tine. It does not check the program for errors, except for those which make the flow of con-
trol impossible to determine, such as a goto to a non-exisient statement label. It looks for la-
beled statements and for the following statements which contain labels or affect flow of con-
trol (braces enclose optional strings, /ubel* denotes a list of labels, and ... denotes omitted parts
of statements):

assign label to ...
continue
do /abel ... =
end
entry ...
format (...)

. function ...
goto (/abel™), ... “computed goto'
goto (label*) "assigned goto"
goto /abel
if (...) label, label, label "arithmetic if "
if (...) starement *logical if "
print /abel {....)
punch /abel {....}
read (...{./abel}{.opt }{.op1 2} ...

where opt] and opr2 are end=/abel or esr=lubc!

return
stop

subroutine ...
write (...[./abel}{.err=label}) ...

Any statement not recognized as one of the above is treated as straight line code, since 11 does
) not affect the structuring process.

Struct rewrites Fortran programs using the following additional Ratfor constructs, where
S, S1. and S2 are Ratfor statements and p is a Fortran logical expression:
D if(eSs

Fortran equivalent:

-~
‘) if (.not.p) goto 10
S
10

2) if (p) S1 else S2
Fortran equivalent:

if (.not.p) goto 10
S1
goto 20

10 S2

20

3) while(p) S
Fortran equivalent:

10 if (.not.p) goto 20
S
goto 10

)

20

Nar

4) repeat S
Fortran equivalent:

-~ 10 S
goto 10

5) do control-sequence S
Fortran equivaleni:

do 10 control-sequence
S
10 continue

6) break
meaning: go to the statement following the smallest enclosing loop,
-7} next

meaning: goto to the next iteration of the smallest enclosing loop (lo_lhe predicate in a
while loop)

8) braces {} may be used to group multiple Ratfor statements into single Ratfor statements.

Struct applies structuring principles to rewrite a Fortran input program using these Ratfor
constructs. ‘

4. Struct and principle§ of proper structuring

Proper use of control constructs such as while loops and if else statements should make
the flow of control of a program evident from its form. The following eight principles are fol-
lowed by Struct in order to-produce structured programs with clear flow of control.

Principle 1.

Unreachable statements in a Fortran program are deleted during structuring. Structuring
preserves the number of occurrences of reachable predicates and segments of straight
line code. Their execution order is also preserved to ensure that the structured program
is equivalent to the orginal program. No new predicates or straight line code are added.

Principle 2.

Looping constructs reflect iteration in the program. Each statement enclosed by a loop-
ing construct such as while or repeat is reachable from the head of the loop and can lead
10 an iteration of the loop.

For example, Struct generates

repeat {
n = f(n)
if (n > 0) break
}

code segment

return

rather than

S—

<)

N

repeat {
n = f(n)
if (n > 0){
code segment
return
)
)

since the latter code violates Principle 2. In this example, this principle prevents the whole
program from appearing inside the repeat when only two stalements are iterated.

Principle 3.

Loops are created only by means of while or repeat. Each goto statement must jump to a
statement after it on the page, so that the target of the goto is easy (o locate.

Principle 4.

A goto may not jump into & then or else clause except from outside a loop containing the
clause (see Principle 6 below).

Principle 5.

A then or else clause must contain as much code as it can without violating Principle 2 or
Principle 4.

For example, consider ihe following code segment.

if (p)

e
il
2
S

else

[V
i
[

i=j

Placing the statement i = j inside either the then or else clause would require a goto into the
clause. Therefore, this code segment must be written as is to obey Principle 5.

Principle 6.

When a loop is entered in several places, one entry point is selected as the "head" of the
loop, and the inside of the loop is structured as if the loop were entered only at its head.
The other entry points are then reached by goto statements from outside the loop..

It has been shown that jumps into the middle of loops cannot always be avoided without copy-
ing code [HU72]. Principle 6 prevents a jump into a loop from destroying the structure of the
inside of the loop. For example, consider the following code segment.

if (p) goto 10
while(g) {
if (r)
while(s) {
10 j] = j+1
= j+1

——

This example contains a jump into an inner loop, and obeys Principle 6. The while statements
are structured as they would be if both the true and false branches of the if (p) went 10 the
outer while. As a result, the code contains a jump into the if (r) statement from outside the
outer while (see Principle 4). However, the flow of control within the while (q) is clear, and
the jump into the inner loop is obvious.

Principle 7.

Every loop construct may be entered at its head, and not just through labeled statements
in its body.

Principle 8.

Each statement or predicate may be the head of al most one loop, i.e. the first statement
inside a repeat stalement cannol be another loop construct.

This principle is motivated by the desire to avoid unnecessary complexity in the output. for
example, the fcliowing code segment violates Principle 8.

repeat {
repeat {
x = f(x)
i}f (p) break

;f (q) break

This segment may be rewritten with only one repeat to salisfy Principle 8.

repeat {
x = f(x)
if (p)
if (q) break

Every well-formed Fortran program (i.c. with no loops containing only goto and continue
stalements) has at least one corresponding structured program which satisfies these principles.
Moreover, if each loop can be entered only at its head, the organization of the structured pro-
gram into lnops and if else statements is unique (a more precise version of this stalement is

~ T

e

.-

proved in [BAK]). Given a well-formed Fortran program, Struct applies a structuring algorithm
based on the above principles 10 produce a structured program. The algorithm is described
briefly in the next section. Struct treats specific Fortran constructs as follows.

Struct transforms all logical and arithmetic if statements into statements of the form if (p)
S or if (p) S1 else S2. Predicates are negated when necessary to achieve the if (p) S form.
Fortran do loops are retained as do loops. Other loops identified according Lo the structuring
principles are turned into either while loops or repeat loops according to the following criterion.
If a loop begins with a test, and one branch of the test exits from the loop, Siruct generates a
while loop. Otherwise, it generates a repeat loop.

Labels occurring in the original program are discarded. New labels are generated as need-
ed, in increasing order on the page to make them easy to locate.

Struct assumes that each comment applies 1o the line of code following the comment.
Comments occurring before a goto or continue statement are deleted, because goto and contin-
ue statements are not preserved in the output program. Other comments are kept with the fol-
towing code. Format statements are placed at the end of the routine.

Two statements in Fortran which make control flow difficult to follow are the assigned
goto and the computed goto. Other peculiar forms of goto in Foriran are the err= and end=
conditions on read and write statements. These statements are left unchanged except for the
subsiitution of new labels for the original labels.

Struct indents its output 1o make the scope and nesting of loops and then or else clauses
evident. Struct also replaces Hollerith strings (e.g. Shhello) by quoted strings (e.g."helle"), and
comparison operators (e.g. .gt.) by symbols (e.g. >). It applies certain logical identities (e.g.
.not.(c.le.b) is changed 10 ¢ > b). These cosmetic changes improve the readability of the pro-
grams.

The Appendix contains an example of a Fortran program and the structured program
generated from it by Struct.

5. The algorithm

This section describes the basic ideas of the structuring algorithm. A full description of
the algorithm is given in [BAK].

The first step in analyzing a Fortran program is to obtain a flow graph for the program.
Nodes in a flow graph correspond to statements and if predicates, while arcs indicate flow of
control between statements and predicates. The node corresponding to the first statement in
the program is distinguished as the "start” node of the graph.

A loop in a program corresponds to-a cycle in the flow graph, i.e. a path which begins and
ends at the same node. A node at which the loop may be entered from outside the loop is re-
ferred to as an entry point. One entry point of each cycle may be located by means of a depth
first search [HU74] starting at the start node of the graph. A depth first search scans the graph
by searching arcs from the most recently searched node before arcs from previously searched
nodes. The entry point selected by the depth first search becomes the "head" of the loop when
the program is wrilten out.

In the structured program a statement should not appear inside a loop unless it can lead
to an iteration of the loop. Therefore, for each node, Struct finds the smallest loop in which
the node can lead (o an iteration, and uses this information (o determine what should be writ-
ten inside each loop. A statement is made to follow any non-enclosing loops from which it can
be reached, so that if goto's are needed they will flow downward on the page.

The next step in the analysis is to decide what statements should be written in the then
or else clauses of each if statement. Consider the following fragment of code.

if (x.gt.0) goto 10

5§ y==x
goto 20

10 y=x

20 z= sqri(y)

One might like this fragment to be rewritten as

if(x > 0)
Y=X
else
y=-x
z = sqri(y)

In order to produce the above structuring, it must be ascertained that no other stalements
jump to § or 10, and that control passes to 20 from both § and 10. That is, statements must be
classified according to whether they can be reached only from the "true" ("false”) arc of an if
node, or whether they can be reached from both the "true” and "false” arcs.

This information can be obtained by applying techniques usually used in code optimiza-
tion. A node b dominates node ¢ if every path from the start node to node ¢ passes through
node & [AU]. Node b is the immediate dominator of node ¢ if node b is the closest dominator
1o cin the flow graph. Dominators are used in structuring a program as follows. If a statement
can be reached through both the "true" and "false" links of an if node, the stalement is- made
1o follow the if statement which is its immediate dominator. This ensures that any goto’s to
this node flow downward on the page.

At this point, the basic form of the structured program is determined. Next, Struct deter-
mines how each arc in the flowgraph should be written - as a next, break, goto, or with no ex-
plicit statement. Finally, labels are added where necessary.

6. Implementation of Struct

Struct is writlen in the programming language C. 1t consists of about 3000 lines of code,
and runs on a PDP-11/45 with 32K 16-bit words of memory. The space and time used are pro-
portional to the square of the length of the input. With 32K words of memory, it is able to
structure Fortran programs several hundred lines in length.

7. Evaluation of Struct

The readability of most Fortran programs is improved by Struct, often dramatically. The
structured programs usually appear quite natural (o the reader. In fact, if a typical Ratfor pro-
gram is translated into Fortran by the Ratfor preprocessor, and Struct is applied to the resulting
program, the output from Struct is usually very similar to the original Ratfor program, except
where the original Ratfor program contains Ratfor control structures not implemented in Struct
(such as for and until staiements). If each loop can be entered only at its head and the origi-
nal Ratfor program follows the structuring principles, the structured program generated by
Struct is guaranteed 1o have the same basic form as the original [BAK].

Struct makes the structure of Fortran programs clear, but does not improve the structure
of badly-writiten programs. However, the structure of a Fortran program may be reasonable
even when the program looks like a tangled mess of goto's. in such a case, Struct untangies the

o~

~—

N

program (o produce a nice Ratfor program. When the structure of the Fortran program is not
good. peculiar flow of control stands out in the Ratfor version and may indicate sections of the
program which could be improved by rewriting.

The structured version of a well-written Fortran program generally has few goto state-
ments. Many of the goto statements which do occur could be replaced by multi-level break
statements or multi-level next statements if these stalements were implemented in Struct.
Since all goto stalements generated by Struct flow downward on the page, and labels increase
from top to botiom of the page, it is not difficult to determine the target of goto statements.

The structured versions of Fortran programs frequently contain many repeat statements
rather than while statements. The reason is that Fortran programmers frequently place tests
for exit conditions in the middle or at the end of the loop rather than at the beginning.

Certain types of control flow do not become substantially clearer as a result of structuring.
A goto statement must be used to enter a loop at a point other than the 10p of the loop. Ratfor
does not have a control construct capable of describing complex ways of merging flow of con-
trol. For example, the following code segment cannot be written in a nicer way using the same
number of occurrences of the predicales and assignments.

if (pl) {
if (p2) goto 20
}

else if (p3)

goto 20
10 i=1
goto 30
20 i=2
30 y=f{(i)

In some cases. copying code or creating subroutines would improve the Ratfor output from
Struct. In other cases. improvement would be obtained only by modifying the actual code exe-
cuted.

Struct is not capable of making semantic decisions. 1t is not able 10 identify commonly
occurring code sequences such as

=1
fpPji=2

—te Gome

in order 10 replace them by code such as the following.

ifpj=2
elsej=1

-10-

To do this, Struct would need to examine the semantics of the statements. Similarly, succes-
sive tests such as those occurring in

if (p) goto 10
if () goto 10

are not replaced by a combined test such as if (p.or.q) since Struct cannot determine whether it
is safe to evaluate q when p is true (in general this is undecidabie). The tests could be com-
bined if Ratfor specified evaluation of logical expressions from left to right.

The structuring aigorithm used by Struct is not limited to producing the control con-
structs currently implemented. Other constructs could be added easily. The usefulness of pro-
posed new control structures could be lested by using Struct to demonstrate their application in
existing programs. Different ways of writing the same program could be compared by adding
options to select the control constructs to be generated. In fact, Struct has been used for some
experimentation of this sort.

8. Using Struct.
Struct is implemented on UNIX. The command format is

struct [-s] [-in] [<cn] [-v] [-en] file

where n is a nonnegaiive integer. The Fortran program specified by file is translated into a
structured program, writlen on the standard output. The optional flags may appear in any ord-
er and are interpreted as follows:

- If this flag is set, input is cxpected 10 be in standard Fortran card format, i.e. comments
are specified by a ¢, C, or * in column 1, and continuation lines are specified by a
nonzero, nonblank character in column 6. If the flag is not present, input is expected to
be in free format. i.e. comments are specified by a c, C, or * in column 1, and continua-
tion lines are specified by an & as the first nonblank character on the line.

-2 Make the nonzerv integer # the lowest valued fabel in the output program. If the flag is
not present, the default value is 10. ‘

-~ Increment successive labels in the output program by the nonzero integer n. If the flag is
not present, the default value is 10.

-v If this flag is set, the then and else parts of if else statements are interchanged and the
predicate is negated.

<7 If n is 0, code appears in a loop only if it can lead to an iteration of the loop (Principle 2).
If nis greater than zero, Struct modifies Principle 2 by allowing certain segments of code
10 appear within a loop even when they do not lead (o an iteration of the loop. The cri-
leria are that the segment must be one of several exits from the iterating code of the
loop. must be reachable directly from only one other statement, and must be "small
enough”. "Small enough" means that the current estimate of the number of statements in
the segment must be at most # (when this flag is used by Struct, the precise number of
statements o be used for the segment hasn’t been determined). Values of n under 10
are suggested. If this flag is not present, the default value is 0.

MH’].?T].—B. S. Ba Bo S- Bakel’
Att. S

Relerences
Apoendix

[AU]
[ANS66]
[ANS69]

[ANS71]
(AM]

[BAK]
(BAL74]
[BAL7S5]
(BJ]

(BS]
[co0]
(DDH]

(DUJ]
[HU74]

[HU72]
[KER]
[KF]
(KNI
[KOS]

(PKTI

-11 -

References

A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and Combiling, Vol. Il
- Compiling, Prentice-Hall, Englewood Cliffs, N.J., 1973.

American National Standard Fortran, American National Standards Institute, New,
York, N.Y., 1966.

Clarifications of Fortran Standards - Initial Progress, Comm. ACM 12 (1969), 289-
294, '

Clarifications of Fortran Standards - Second Report, Comm. ACM 14 (1971), 628-642.

E. Ashcroft and Z. Manna, Translating program schemas to while-schemas, SIAM J.
Comput. 4,2 (1975), 125-146

B. S. Baker. An algorithm for structuring progfams. 10 be presented at the ACM
Symposium on Principles of Programming Languages, January, 1976.

G. de Balbine. Better man power utilization using automatic restructuring, Caine,
Farber & Gordon, Inc., 1974.

G. de Balbine, Using the Fortran structuring engine, Proc. of Comp. Sci. and Siai.: 8ih
Ann. Symp. on the Interface, Los Angeles (1975), 297-305.

C. Bohm and G. Jacopini, Flow diagrams, Turing machines and languages with only
two formation rules, Comm. ACM 9 (1966), 366-371.

J. Bruno and K. Steiglitz. The expression of algorithms by charts, JACM 19 (1972),
517-525.

D. C. Cooper, Bohm and Jacopini's reduction of flow charts, Comm. ACM 10
(1967),463.

0O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, New York, 1972.

E. W. Dijkstra. Goto statement considered harmful, Comm. ACM 11(1968), 147-148.

M. S. Hecht and-J. D. Ultman, Characterizations of reducible flowgraphs, JACM 21,3
(1974), 367-375.

M. S. Hecht and J. D. Ullman. Flow graph reducibility. S/4M J. Comput. | (1972),
188-202. :

B.W. Kernighan, Ratfor - a preprocessor for a rational Fortran, Software Practice and
Experience 5,4 (1975), 395-406.

D. E. Knuth and R. W. Floyd, Notes on avoiding "go te" stalements, /nfor. Proc.
Letters 1 (1971), 23-31. '

D.E. Knuth, Structured programming with goto statements, 4CM Comp. Surveys 6.4
(1974), 261-302.

S. R. Kosaraju, Analysis of structured programs, J. Comp. Sys. Sci. 9.3 (1974), 232-
254,

W. W. Peterson, T. Kasami, and N. Tokura, On the capabilities of while, repeat and
exit statements, Comm. ACM 16 (1973), 503-512.

R

-12-

Appendix

; A Forlran’subroutine (from R. C. Singleton, Algorithm 347, an efficient algorithm for sorting
with minimal storage, Comm. ACM 12,3 (1969), p. 186):

m=m-1
if(m.eq. 0) return
i=il(m)
j=in(m)

subroutine sort(a,ii,jj) 70
¢ sorts array a into increasing order
¢ from a(ii) to a(ij)

- dimension a(1),iu(16),il(16)

N

20.

30

40

50

60

integer at,tt

m=1

i=ii

i=ii

if (i..ge.j) goto 70
k=i

ij =-(+i)/2

t = a(ij)

if (a(i) .le. t) goto 20
a(ij) = a(i)

a(i) =t

t=a(ij)

I=j

if (a(j) .ge. 1) goto 40
a(ij) = a@

a) =1t

t = a(ij)

if (a(i) .le. t) goto 40
a(ij) = a(i)

a(i) =t

t = a(ij)

goto 40

a(l) = a(k)

a(k) = tt

1=1-1

if (a(D) .gt. t) goto 40
tt = a(l)

k=k+1

if (a(k) .1t. t) goto 50
if (k .le. 1) goto 30
if (1-i .le. j~K) goto 60
ilm)= i

iulm) = |1

i=k

m=m+1

goto 80

illm) = k

iw(mr=j

=l

m=m+1

goto 80

100

if (j-i .ge. 11) goto 10
if (i .eq. ii) goto S
j=i-1

=i+l

if (i .eq. j) goto 70

t = a(i+1)

if (a(i) .le. t) goto 90
k=i

a(k+1) = a(k)

k = k-1

if (t .1t. a(k)) goto 100

akk+1) =t
goto 90
end

The preceding program as structured by Struct:

subroutine sort(a,ii,j)

.# sorts array a into increasing order

from a(ii) to a(jj)
dimension a(1),iu(16),11(16)
integer a,t,tt
m=1
i=ii
i=ib
repeat

{irGa<p
go to 10
repeat
{m = m-1
if (m===0)
return
i=il(m)
j = iw(m)
whi{le (-i>=11)

10 k=i
ij = (+D/2
t = a(ij)
if (a(i)>1)
{a(ij) = a(i)
ai) =t
t = a(ij)

1=j
if (a()<?t)
{a(ij} = a(j)
aj)=1t
t = a(ij)
if (a(i)>1)
{a(ip) = a®
ai)=t
t = a(ij)
}.
|
repeat
I=11
if (a)<=t)
{tt=a())
repeat
{k = k+1
if (a(k)>=t)
| break
if (k>0
break
a(l) = a(k)
’a{k) = tt

if (I-i <=j-k)
{ilm) =k
iu(m) = j
i=l
;n = m+l

else
{ilm) = i
iu(m) =1
i=k
m = m+l1
}

}

if (i==ii) -

break

i=i-l
repeat

)

return
end

}

{i=i+1
if (i==j)
break

= ga(i+1)

i (a()>1)

k=i
repeat
{a(k+1) = a(k)
k = k-1
if (t>=a(k))
break

ak+1l) =t
)
}

_.‘. g _%,

)

