1056

SCCS/PWB

User’s Manual

L. E. Bonanni
A. L. Glasser

November 1977

Bell Telephone Laboratorie§, Incorporated

B.13

Sccs/pwB
User’s Manual

CONTENTS

1. INTRODUCTION .

2. SCCS FOR BEGINNERS
2.1 Terminology 2
2.2 Creating an SCCS File—The *‘admin’ Command
2.3 Retrieving a File—The *‘get”” Command 2
2.4 Recording Changes—The ‘‘delta” Command 3
2.5 More about the “‘get” Command 4
2.6 The “*help” command 3

3. HOW DELTAS ARE NUMBERED
4. SCCS COMMAND CONVENTIONS

5. SCCS COMMANDS
51 get 8
delta 14
- admin 16

prt 17
help 18
rmdel 18
chghist 13
what 19
scesdiff 19
5.10 comb 19

6. SCCS FILES .
6.1 Protection 20
6.2 Format 21
6.3 Auditing 21

REFERENCES

e a yn it it B
(Vo 2 . RN I« (WD, -y OV 3)

2

~N O W

Sccs/pwB User’s Manual

L. E. Bonanni

Bell Laboratories
Piscataway, New Jersey 08854

A. L. Glasser

Bell Laboratories
Hoimdel, New Jersey 07733

ABSTRACT

The Source Code Control Systam (sccs) is a system for controiling changes to files of text

" (typically, the source code and documentation of software systems). It provides facilities for
storing, updating, and retrieving any version of a file of text, for controlling updating
privileges to that file, for identifying the version of a retrieved file. and for recording who
made each change, when and where it was mada. and why. ScCs is a coilection of programs
that run under the PWB/UNIX® time-sharing system.

This document, together with the Pwarvviy User’s Manual (4], is a complete user’s guide to
Version 4 of sccs, and supersedes all previous versions of the sCCs/PWB manual; it covers
the following topics:

How to get started with SCCs.
The version numbering scheme.
Basic information needed for day-to-day use of sCCS commands including a discussion of
the more useful arguments.

e Protection and auditing of sccs files, including the dxﬁ'erences between the use of sccs
by individual users on one hand, and groups of users on the other.

. Neither the implementation of sccs nor the installation procedure for sccs are described
here. '

1. INTRODUCTION

The Source Code Control System (sccs) is a collection of pws/UNIX {1] commands that help individu-
als or projects control and account for changes to files of text (typically, the source code and documen-
tation of software systems). It is convenient to conceive of SCCs as a custodian of files; it allows
retrieval of particular versions of the files, administers changes to them, controls updating privileges to
them, and records who made each change, when and where it was made, and why. This is important in
environments in which programs and documentation undergo frequent changes (because of mainte-
nance and/or enhancement work), inasmuch as it is sometimes desirable to regenerate the version of a
program or document as it was before changes were applied to it. Obviously, this could be done by
keeping copies (on paper or other media), but this quickly becomes unmanageable and wasteful as the
number of programs and documents increases. SCCS provides an attractive solution because it stores on
disk the original file and, whenever changes are made to it, stores only the cfianges; each set of changes
is called a “‘delta.”

This document, together with the Pwawnixy User's Manual (4], is a complete user’s guide to Version 4
of sccs. This manual contains the following sections:

o Sccs for Beginners: How to make an sccs file, how to update it, and how to retrieve a version
thereof.

e How Deltas Are Numbered: How versions of sCCs files are numbered and named.

o Sccs Command Convenrtions: Conventions and rules generally applicable to ali sccs commands.

e Sccs Commands: Explanation of all sccs commands, with discussions of the more useful arguments.

* UNIX is a Trademark of Bell Laboratories.

2.

o Sccs Files: Protection, format, and auditing of sccs files. including a discussion of the differences
between using SCCS as an individual and using it as a member of a group or project. The roie of a
‘‘project SCCS administrator’” is introduced.

2. SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a PWB/UNIX system. create files, and use the text
editor {2,3]. A number of terminai-session fragments are presented below. All of them should be
tried: the best way to learn SCCS is to use it.

To supplement the material in this manual. the detailed sccs command descriptions (appearing in
alphabetical order in Section I of [4]) should be consulted. Section 5 below contains a list of all the
sccs commands. For the time being, however, only basic concepts will be discussed.

2.1 Terminology

Each sccs file is composed of one or more sets of changes applied to the null (empty) version of the
file, with each set of changes usually depending on all previous sets. Each set of changes is called a
‘“‘delta’ and is assigned a name, called the Sccs [Dentification string (SID), composed of at most four
components, only the first two of which will concern us for now; these are the ‘‘release’ and ‘‘level”
numbers, separated by a period. Hence, the first delta is called “*1.1”", the second “1.2”°, the third
*“1.3", etc. The release number can also be changed (usually. this indicates a major change to the file)
as discussed below.

Each delta of an sccs file defines a particular version of the file. For example. delta 1.5 defines version
1.5 of the sccs file, obtained by applying to the null (empty) version of the file the changes that consti-
tute deltas 1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

2.2 Creating an SCCS File—The *“‘admin’ Command

.-

Consider, for example, a file called “‘lang’” that contains a list of programming languages:

c
pl/i
fortran
cobol
algol

We wish 10 give custody of this file to sccs. The following admin command (which is used 10 adminis-
ter sccs files) creates an sccs file and initializes delta 1.1 from the file *‘lang”: :

admin —ilang s.lang

All sccs files musr have names that begin with “‘s.”, hence, *‘s.lang’’. The —i keyletter, together with
its value “‘lang’’, indicates that admin is to create a new sCCs file and /nitialize it with the contents of the
file ““lang™. This initial version is a set of changes applied to the null sccs file; it is delta 1.1.

The admin command replies:
No id keywords (cm7)

This is a warning message (which may also be issued by other SCCS commands) that is to be ignored for
the purposes of this section. Its significance is described in Section 5.1 below.

The file ‘‘lang” should be removed (because it can be easily reconstructed by using the ger command,
below): :

rm lang
2.3 Retrieving a File=The *‘get”” Command
The command:
get s.lang
causes the creation (retrieval) of the latest version of file **s.lang”, and prints the following messages:

1.1
S lines
No id keywords (cm7)

This means that ger retrieved version 1.1 of the file, which is made up of 3 lines of text. The ratrieved
text is placed in a file whose name is formed by deleting the **s.”” prefix from the name of the sccs file:
hence, the file “‘lang™ is created.

The above ger command simply creates the file *‘lang™ read-only, and keeps no information whatsoever
regarding its creation. On the other hand, in order to be able to subsequently apply changes to an sCCS
file with the defra command (see below), the ger command must be informed of your intention to do
so. This is done as follows: '

get - s.lang

The —e keyletter causes ger to create a file “‘lang’ for both reading and writing (so that it may be
edited) and places certain information about the SCCs file in another new file. called the p-file, that will
be read by the defra command. The ger command prints the same messagss as before, 2xcapt that the
warning message is not issued.

The file “*lang™ may now be changed, for example, by:

ed lang
27
Sa
snobol
ratfor
w
41
q
2.4 Recording Changes--The ‘‘deita’’ Command

In order to record within the sccs file the changes that have been applied io “‘lang’’, exascute:
delta s.lang

Delra prompts with:
comments?

the response to which should be a description of why the changes were made; for example:
comments? added more languages .

Delta then reads the p-file, and determines what changes were made to the file *‘lang™. It does this by
doing its own ger to retrieve the original version, and by applying diff(I)! to the original version and the
edited version.

When this process is complete, at which point the changes to “‘lang™ have been stored in “'s.lang’”’,
delta oucputs:

No id keywords (cm7)
1.2

2 inserted

0 deleted

5 unchanged

The number *¢1.2" is the name of the delta just created, and the next three lines of output refer to the
number of lines in the file *‘s.lang”.

1. All references of the form name(,V) refer 10 item name in section .V of the PWB/UNIX User's Manuai [4].

2.5 More about the ‘*get’’ Command
As we have seen:
get s.lang

retrieves the latest version (now 1.2) of the file *‘s.lang’. This is done by starting with the original
version of the file and successively applying deltas (the changes) in order, until all have been applied.

For our example, the following commands are all equivalent:
get s.lang
get —rl s.lang
get —rl.2 s.lang

The numbers following the —r keyletter are SIDs (see Section 2.1 above). Note that omitting the level
number of the SID (as in the second example above) is equivalent to specifying the highest level number
that exists within the specified release. Thus, the second command requests the retrieval of the latest
version in release 1. namely 1.2. The third command specifically requests the retrieval of a particular
version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indicated by
changing the release number (first component of the SID) of the delta being made. Since normal,
automatic. numbering of deltas proceeds by incrementing the level number (second component of the
SID), we must indicate to SCCS that we wish to change the release number. This is done with the ger
command: -

get —e —r12 s.lang

- Because release 2 does not exist, ger retrieves the latest version before release 2, it also interpre:s this as
a request to change the release number of the delta we wish to create to 2, thereby causing it to be
named 2.1, rather than 1.3. This information is conveyed to deita via the p-file. Ger then outputs:

1.2
7 lines

indicating the retrieval of version 1.2. If the file is now edited, for example. by:

ed lang
41
/cobol/d
w
35
q
and delra executed:

delta s.lang
comments? deleted cobol from list of languages

we will see, by delra’s output, that version 2.1 is indeed created:

No id keywords (cm7)
2.1

0 inserted

1 deleted

6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be created in
a similar manner. This process may be continued as desired.

2.6 The *““help” command

If the command:
get abc

is executed, the following message will be output:
ERROR [abc]: not an SCCS file (col) .

The string ““col™ is a code for the diagnostic message. and may be used to obtain a fuller 2xplanation
of that message by use of the /4elp command:

help col
This produces the following output:

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.”.

Thus, kelp is a useful command to use whenever there is any doubt about the meaning of an SCCS mes-
sage. Fuller explanations of almost ail SCCS messages may be found in this manner.

3. HOW DELTAS ARE NUMBERED

[t is convenient to conceive of the deltas appliad to an sccs file as the nodes of a tree, in which the root
is the initial version of the file. The root delta (node) is normally named ““1.1"" and successor deltas
(nodes) are named ‘“‘1.2"", *‘1.3"", etc. The components of the names of the deltas are called the
“release’” and the ‘level’” numbers. respectively. Thus, normal naming of successor deltas procee

_ by incrementing the level number, which is performed automatically by SCCs whenever a delta is made.
In addition, the user may wish to change the refease number when making 2 delta, to indicate that a-
major change is being made. When this is done, the release number also applies to all successor deltas,
uniess specifically changed again. Thus, the evolution of a particular file may be represented as in

Figure 1.
7\ 7\ N\ N\
Oo—CO——C0O0—CO—C0——=0
1.1 1.2 1.3 1.4 2.1 2.2

Releasa 1 Relaase 2

Figure 1. Evolution of an Sccs File

Such a structure may be termed the ‘‘trunk’ of the SCCs tree. It represents the normal sequenrial
development of an sccs file, in which changes that are part of any given delta are dependent upon a//
the preceding deltas. .

However, there are situations in which it is necessary to cause a branching in the tree, in that changes
applied as part of a given delta are nor dependent upon ail previous deltas. As an example, consider a
program which is in production use at version 1.3, and for which development work on release 2 is
already in progress. Thus, release 2 may already have some deitas, precisely as shown in Figure 1.
Assume that a production user reports a problem in version 1.3, and that the nature of the problem is
such that it cannot wait to be repaired in release 2. The changes necessary to repair the trouble will be
applied as a deita to version 1.3 (the version in production use). This creates a new version that will
then be released to the user, but will x#or affect the changes being applied for release 2 (i.e., deltas 1.4,
2.1, 2.2, etc.).

The new deita is a node on a “*branch” of the tree, and its name consists of four components, namely,
the release and level numbers, as with trunk deltas, plus the “‘branch’” and “‘sequence’ numbers, as
follows:

retease.level.branch.sequence

-6-

The branch number is assigned to each branch that is a descendant of a particular trunk deita, with the
first such branch being 1, the next one 2, and so on. The seguence number is assigned, in order, to
each delta on a particular branch. Thus, 1.3.1.2 identifies the second delta of the first branch that
derives from delta 1.3. This is shown in Figure 2.

1.3.1.2
Branch 1

1.1 1.2 1.3 1.4 2.1 2.2

Figure 2. Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree: the naming of the resulting deltas
proceads in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk deitas con-
tain exactly two components, and the names of branch deltas contain exactly four components.
Second, the first two components of the name of branch deltas are always those of the ancesiral trunk
delta, and the branch component is assigned in the order of creation of the branch, independently of its
location relative to the trunk delta. Thus. a branch delta may always be identified as such from its
name. Although the ancestrai trunk delta may be identified from the branch delta’s name, it is nor pos-
sible to determine the enrire path leading from the trunk delta to the branch delta. For example, if
delta 1.3 has one branch emanating from it, all deltas on that branch will be named 1.3.1.n If a delta
on this branch then has another branch emanating from i, all deltas on the new branch will be named
1.3.2.n (see Figure 3). The only information that may be derived from the name of delta 1.3.2.2 is
that it is the chronologically second delta on the chronologically second branch whose rrunk ancestor is
delta 1.3. In particular, it is nor possible to determine from the name of deita 1.3.2.2 all of the deltas
between it and its trunk ancestor (1.3).

1.3.1.2
Branch 1

Branch 2
\ 1.3.1.1 Uf\
1.3.2.1 1.3.2.2
o—0 Q
\N \/ o/ o/
1.1 1.2 1.3 14 2.1 2.2

Figure 3. Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree struc-
tures. Although this capability has been provided for certain specialized uses, it is strongly recom-
mended that the sccs tree be kept as simple as possible, because comprehension of its structure
becomes extremely difficult as the tree becomes more complex.

4. SCCS COMMAND CONVENTIONS

This section discusses the conventions and rules that apply to SCCS commands. These rules and con-.
venations are generally applicable to all SCCS commands, except as indicated below. SCCS commands
accept two types of argumenis: keylerrer arguments and file arguments.

-7-

Keyletrer arguments (hereafter called simply *‘keyletters’”) begin with a minus sign (—), followed by a
lower-case alphabetic character, and, in some cases, followed by a value. These keylettars control the
execution of the command to which they are supplied.

File arguments (which may be names of files and/or directories) specify the file(s) that the given sccs
command is to process; naming a directory is equivalent to naming a// the sCCs files within the direc-
tory. Non-sccs files and unreadable? files in the named directories are siiently ignored.

In general, fiie arguments may »or begin with a minus sign. However, if the name *“~"" (a2 lone minus
sign) is specified as an argument to a command, the command reads the standard input for lines and
takes each line as the name of an sccs file to be processed. The standard input is read until end-of-file.
This feature is often used in pipelines (4] with, for example, the find(I) or s(I) commands. Again,
names of non-sccs files and of unreadable files are silently ignored.

All keyletters specified for a given command apply to a/f file arguments of that command. All
keyletters are processed before any file arguments, with the result that the placament of keylettars is
arbitrary (i.e., keyletters may be interspersed with file arguments). File arguments. however, are pro-
cessed left to right.

Somewhat different argument conventions apply to the kelp, whar, and scesdiff commands (see Sections
5.5, 3.8. and 5.9).

Certain actions of various SCCS commands are controiled by flags appearing in sccs files. Some of these
flags are discussed below. For a complete description of all such flags, see admin(l).

The distinction between the real user and the effective user of a PWB/UNIX system is of concern in dis-
cussing various actions of sCCS commands. For the present, it is assumed that both the real user and
the effective user are one and the same (i.e., the user who is logged into a PWB/UNIX system): this sub-
‘ject is further discussed in Section 6.1.

All sccs commands that modify an sccs file do so by writing a temporary copy, called the x-file, which
ensures that the sccs file will not be damaged should processing terminate abnormally. The name of
the x-file is formed by replacing the **s.” of the sccs file name with **x.””. When processing is com-
plete, the old sccs file is removed and the x-file is renamed to be the sccs file. The x-file is created in
the directory containing the sccs file, is given the same mode (see chmod(I)) as the sccs file, and is
owned by the effective user. -

To prevent simultaneous updates to an sccs file, commands that modify sccs files create a lock-file,
called the =-file, whose name is formed by replacing the ¢‘s.”” of the sccs file name with **z.”". The :-
file contains the process number (1] of the command that creates it, and its existence is an indication to
other commands that that sccs file is being updated. Thus, other commands that modify sccs files will
not process an SCCs file if the corresponding =-file exists. The :z-file is created with mode 444 (read-
only) in the directory containing the sCCs file, and is owned by the effective user. This file exists only
for the duration of the execution of the command that creates it. In general, users can ignore x-files
and z-files; they may be useful in the event of system crashes or similar situations.

Sccs commands produce diagnostics (on the diagnostic output [3]) of the form:
ERROR [name-of-file-being-processed]: message text (code)

The code in parentheses may be used as an argument to the Aelp command (see Section 5.5) to obtain a
further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the sCCS command to terminate process-
ing of thar file and to proceed with the next file, in order, if more than one file has been named.
5. SCCS COMMANDS

This section describes the major features of all the sccs commands. Detailed descriptions of the com-
mands and of all their arguments are given in [4], and should be consuited for further information.
The discussion below covers only the more common arguments of the various SCCS commands.

2. Because of permission modes (see chmod(])).

-8-

Because the commands ger and delra are the most frequently used, they are presented first. The other
commands follow in approximate order of importance.

The following is a summary of all the sccs commands and of their major functions:
get Retrieves versions of sccs files.
delta Applies changes (deltas) to the text of sCCs files. i.e.. creates new versions.
admin Creates sccs files and applies changes to parameters of sccs files.

prt Formats and prints portions of sccs files.

help Gives explanations of diagnostic messages.

rmdel Removes a delta from an sccs file; allows the removal of deltas that were created by mis-
take.

chghist Changes the commentary associated with a delta.

what Searches any Pwe/UNIX file(s) for all occurrences of a special pattern and prints out what
follows it; is useful in finding identifying information inserted by the ger command.

scesdiff Shows the differences between any two versions of an sccs file.

comb Combines two or more consecutive deltas of an sccs file into a single delta; often
reduces the size of the sccs file.

5.1 get

The ger command creates a text file that contains a particular version of an sccs file. The particular
version is retrieved by beginning with the initial version, and then applying deltas, in order, until the
desired version is obtained. The created file is called the g-file; its name is formed by removing the
*s.”” from the sccs file name. The g-file is created in the current directory [1] and is owned by the real
user. The mode assigned to the g-file depends on how the ger command is invoked, as discussed below.

-

The most common invocation of geris:
get s.abc

which normally retrieves the latest version on the trunk of the sccs file tree, and produces (for exam-
ple) on the standard output [5):

1.3
67 lines
No id keywords (cm7)

which indicates that:

1. Version 1.3 of file “*s.abc” was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text. ,
3. No ID keywords were substituted in the file (see Section 5.1.1 for a discussion of ID keywords).

The generated g-file (file “‘abc™) is given mode 444 (read-only), since this particular way of invoking
ger is intended to produce g-files only for inspection, compilation, etc., and nor for editing (i.e., nor for
making deltas).

In the case of several file arguments (or directory-name arguments), similar information is given for
each file processed, but the sccs file name precedes it. For example:

get s.abc s.def

produces:

s.abc:

1.3

67 lines-

No id keywords (cm7)

s.def:

1.7

85 lines

No id keywords (cm7)

J.1.1 Ip Keywords

In generating a g-file to be used for compilation, it is useful and informative to record the date and time
of creation, the version retrieved, the module’s name, etc., within the g-file, so as to have this informa-
. tion appear in a ioad module when one is eventually created. Sccs provides a convenient mechanism
for doing this automatically. [dentification (1D) keywords appearing anywhere in the generated file are
repiaced by appropriate values according to the definitions of these (D kevwords. The format of an D
keyword is an upper-case letter enclosed by percent signs (%). For example:

%1%

is defined as the ID keyword that is replaced by the sID of the retrieved version of a file. Similarly.
%H% is defined as the 1D keyword for the curreat date (in the form “mm/dd/yy’"), and %M% is
defined as the name of the g-file. Thus, executing ger on an sccs file that contains the PL/I declaration:

DCL ID CHAR(100) VAR INIT("%M% %I% %H%");
gives (for exampie) the following:
DCL ID CHAR(100) VAR INIT("MODNAME 2.3 07/07/77°);
When no (D keywords are substituted by ger, phe following message is issued:
No id keywords (cm?7) :

This message is normally treated as a warning by ger, although the presence of the i flag in the sccs file
causes it to be treated as an error (see Section 5.2 for further information).

For a complete list of the approximately twenty ID keywords provided, see ger(I).
J.1.2 Rerrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default version of an sccs file.
Normally, the default version is the most recent delta of the highest-numbered release on the trunk of
the sccs file tree. However, if the sccs file being processed has a d (default sip) flag, the siD specified
as the value of this flag is used as a default. The default sID is interpreted in exactly the same way as
the value supplied with the —r keyletter of ger.

The —r keyletter is used to specify an sSID to be retrieved, in which case the d (default sip) flag (if any)
is ignored. For exampie:

get —rl.3 s.abc
retrieves version 1.3 of file "‘s.abc", and produces (for example) on the standard output:

1.3
64 lines

A branch deita may be retrieved similarly:
get —rl.5.2.3 s.abc
which produces (for example) on the standard output:

1.5.2.3
234 lines

When a two- or four-component SID is specified as a value for the —r kevletter (as above) and the

- 10 -

particuiar version does not exist in the sccs file, an error message results. Omission of the level
number, as in:

get —r3 s.abc

causes retrieval of the rrunk delta with the highest level number within the given release, if the given
release exists. Thus. the above command might output:

3.7

213 lines
If the given release does not exist, ger retrieves the rrunk delta with the highest level number within the
highest-numbered existing release that is lower than the given reiease. For example, assuming release

9 does not exist in file *‘s.abc’’, and that release 7 is actually the highest-numbered release below 9,
execution of: .

get —r9 s.abc
might produce:

7.6

420 lines

which indicates that trunk delta 7.6 is the latest version of file ‘‘s.abc’ below release 9. Similarly,
omission of the sequence number, as in:

get —rd.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given branch, if it
exists. (If the given branch does not exist, an error message results.) This might result in the follow-
ing output:

4.3.2.8
. 89 lines .

The =t keyletter is used to retrieve the latest (*'top’”) version in a particular release (i.e.. when no ~r
keyletter is supplied, or when its value is simply a release number). The latest version is defined as
that delta which was produced most recently, independent of its location on the sccs file tree. Thus, if
the most recent delta in release 3 is 3.5.

get —r13 —t s.abc
might produce:

3.5

59 lines
However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same command
might produce:

3.2.1.5
46 lines

3.1.3 Rerrieval with Intent 10 Make a Delta

Specification of the —e keyletter to the ger command is an indication of the intent to make a delta, and,
as such, its use is restricted. The presence of this keyletter causes ger to:

1. Check the wuser list (which is the list of /ogin names of users allowed to make deltas (see Section
6.2)) to determine if the login name of the user executing ger is on that list. Note that a nul/
(empty) user list behaves as if it contained a// possible login names.

2. Check that the release (R) of the version being retrieved satisfies the relation:

floor £ R < ceiling

to determine if the release being accessed is a protected release. The floor and ceiling are specified
as flags in the sccs file.

el -

A failure of either condition causes the processing of that sccs file to terminate.

If the above checks succeed, the —e keyletter causes.the creation of a g-file in the current directory
with mode 644 (readable by everyone, writable only by the owner) owned by the real user. If a wrirable
g-file already exists, ger terminates with an error. This is to prevent inadvertent destruction of a g-file
that already exists and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are nor substituted by ger when the —e keyletter is specified.
because the generated g-file is to be subsequently used to create another deita, and replacement of D
keywords would cause them to be permanently changed within the sccs file. In view of this, ger does
not need to check for the presence of (D keywords within the g-file, 5o that the message:

No id keywords (cm7)
is never output when ger is invoked with the —e keyletter.

In addition, the —e keyletter causes the creation (or updating) of a p-file, which is used to pass infor-
mation to the defra command (see Section 3.1.4).

The following is an example of the use of the —e keyletter:
get -—¢ s.abc
which producss (for example) on the standard output:

1.3
67 lines

If the —r and/or =t keyletters are used together with the —e keyletter, the version ratrieved for edit-
ing is as specified by the —r and/or —t keyletters.

The keyletters —i and —x may be used to specify a list (see ger(I) for the syntax of such a list) of del-
tas to be incfuded and excluded, respectively, by ger. Including a delta means forcing the changes that
constitute the particular delta to be inciuded in the retrieved version. This is useful if one wants to
apply the same changes to more than one version of the sccs file. Excluding a delta means forcing it to
be not applied. This may be used to undo, in the version of the sccs file to be crearad, the 2fects of a
previous delta. Whenever deltas are included or excluded, ger checks for possible interference between
such deltas and those deltas that are normally used in retrieving the particular version of the sccs file.
(Two deltas can interfere, for example, when 2ach one changes the same line of the retrieved g-file.)
Any interference is indicated by a warmning that shows the range of lines within the retrieved g-file in
which the problem may exist. The user is expected to examine the g-file to determine whether a prob-
lem actually exists, and to take whatever corrective measures (if any) are deemed necessary (e.g., edit
the file).

W The —i and —X keyletters should be used with extreme care.

The -~k keyletter is provided to facilitate regeneration of a g-file that may have been accidentally
removed or ruined subsequent to the execution of ger with the —e kevletter, or to simply generate a g-
Jfile in which the replacement of iD keywords has been suppressed. Thus, a z-file generated by the <=k
keyletter is identical to one produced by ger executed with the —e keyletter. However, no processing
related to the p-file takes place. .

3.1.4 The p-file and Concurrent Deltas

The ability to retrieve different versions of an sccs file allows a number of deltas to be ‘‘in progress’’ at
any given time. This means that a number of ger commands with the —e keyletter may be executed on
the same file, provided that no two executions retrieve the same version nor lead to the subsequent
creation of the same version by defta.

The p-file (which is created by the ger command invoked with the —e keyletter) is named by replacing
the “*s.” in the sccs file name with *‘p.””. It is created in the directory containing the sccs file, is given
mode 644 (readable by everyone, writable only by the owner), and is owned by the effective user. The
p-file contains the following information for each delta that is still ““in progress’":3

3. Other information may be present. but is not of concern here. See ger(l) for further discussion.

.12 -

o The sID of the retrieved version.
e The SID that will be given to the new delta when it is created.
e The login name of the real user executing ger.

The first execution of “‘get —e™ causes the creation of the p-file for the corresponding sccCs file. Subse-
quent executions only updare the p-file by inserting a. line containing the above information. Before
inserting this line, however, ger checks that:

o No entry already in the p-file specifies as already retrieved the SID of the version to be retrieved.
o That the new (‘‘to-be-created’’) SID is not already specified as such in the p-file.

If both checks succeed. the user is informed that other deltas are in progress, and processing continues.
If either check fails, an error message results. It is important to note that the various executions of ger
should be carried out from different directories. Otherwise, only the first execution will succeed, since
subsequent executions would attempt to over-write a wrirable g-file, which is an sccs error condition. In
practice, such muitiple executions are performed by different users,* so that this problem does not
arise, since each user normaily has a different working directory [5).

Table 1 shows, for the most useful cases, what version of an sccs file is retrieved by ger, as well as the
sID of the version 10 be eventually created by delra, as a function of the siD specified to ger.

3.1.5 Keylerters That Affect Ourput

Specification of the —p keyletter causes ger to write the retrieved text to the standard output, rather
than to a g-file. In addition, all output normally directed to the standard output (such as the SID of the
version retrieved and the number of lines retrieved) is directed instead to the diagnostic output. This
may be used, for example, to create g-files with arbitrary names:

get —p s.abc > arbitrary-filename

The —p keyletter is particularly useful when used with the “*!"’ or “‘S” arguments of the PWB/UNIX
send(I) command. For example:

send MOD=s.abc REL=3 compile
if file “*‘compile™ contains:

//plicomp job job-card-information
//stepl exec plicke

//pli.sysin dd =

s

“lget —p —rREL MOD

/*

//

will send the highest level of release 3 of file “‘s.abc’. Note that the line **~—s"", which causes send(I)
to make ID keyword substitutions before detecting and interpreting control lines, is necessary if send(I)
is to substitute “‘s.ab¢’* for MOD and *‘3”* for REL in the line “~!get -—p —rREL MOD”.

The —s keyletter suppresses all output that is normaliy directed to the standard output. Thus, the SID
of the retrieved version, the number of lines retrieved, etc., are not output. This does not, however,
affect messages to the diagnostic output. This keyletter is used to prevent non-diagnostic messages
from appearing on the user’s terminal, and is often used in conjunction with the —p keyletter to
“pipe’’ the output of ger, as in:

get —p —s s.abc | nroff

The —g keyletter is supplied to suppress the actual retrieval of the text of a version of the sccs file.
This may be useful in a number of ways. For example, to verify the exisience of a particular sID in an
sces file, one may execute:

get —g —r4.3 s.abc

4. See Section 6.1 for a discussion of how different users are permitied 10 use SCCS commands on the same files.

(s

-13 -

TABLE 1. Determination of New SID

SID of Delra

Case SID -b Key{erter Otl@r Slp
Specified™ Usedt Conditions Rerrieved 0 be Created
1. nones no R defaults to mR mR.mL mR.(mL+ 1)
2. nones yas R defaults to mR mR.mL mR.mL.(mB+1).1
3 R no R > mR mR.mL R.13
4 R no R= mR mR.mL mR.(mL+ 1)
) R ves R > mR mR.mL mR.mL.(mB+1).1
6 R ves R= mR mR.mL mR.mL.(mB+ 1).1
7. R - RS mRand hR.mL*™ hR.mL.(mB+1).1
Trunk successor
3 R - in release > R R.mL R.mL.(mB+1).1
_ _ ___and R exists N _
9. R.L - 1o No trunk successor R.L RAL+1)
10 R.L ves No trunk successor R.L R.L.(mB+1).1
unk succe: T
1. RL - Truni s e R.L R.L.(mB=1).1
12. R.L.B no No branch successor R.L.B.mS R.L.B.(mS+ 1)
13. R.L.B yes No branch successor R.L.B.mS R.L.(mB+1).1
14. R.L.B.S no No branch successor R.L.B.S R.L.BAS+1)
15. R.L.B.S yes No branch succassor R.L.B.S R.L.(mB+).l
_16. R.L.B.S - Branch successor R.L.B.S R.L.(mB+1).1

* R, L™, B™, and S’ are the "‘release’. “lavel™, “"branch™. and "‘sequence’ components of the SID. respectively:
“m” means “‘maximum’. Thus, for exampie. “R.mL’™ means “‘the maximum level number within release R
“R.L.(mB+ 13.1'" means “the first sequence number on the new branch (i.e.. maximum branch number plus 1) of lavai L
within release R™. Note that if the SID specified is of the form “R.L™. “"R.L.B", or "R.L.B.S™, cach of the specified
components st Xist.

* The —=b keyletter is ffective only if the b {lag (see admin(1)) is present in the file. [n this abie. an entry of **—"" means
“irrelevant’’.

¢ This case applies if the d (default SID) flag is nor present in the file. If the d flag is present in the file. then the SID
obtained from the d flag is interpreted as if it had been specified on the command line. Thus, one of the other cases in this
table applies.

§ This case is used to force the creation of the sirsr delta in a new release.
** *hR" is the highest exisung release that is lower than the specified, nonexistent, release R.

This outputs the given siD if it exists in the sccs file, or it generates an error message. if it does not.
Another use of the —g keyletter is in regenerating a p-file that may have been accidentally destroyed:

get =—¢ -—g s.abc

The —I keyletter causes the creation of an /-file, which is named by replacing the “s.”” of the sccs file
name with *“1.”. This file is created in the current directory, with mode 444 (read-only), and is owned
by the real user. It contains a table (whose format is described in ger(I)) showing which deltas were
used in constructing a particular version of the sccs file. For example:

get —r2.3 -l s.abc

generates an /-file showing which deltas were applied to retrieve version 2.3 of the sccs file. Specifying
a valfue of **p’’ with the =1 keyletter, as in:

get —Alp —12.3 s.abc

causes the generated output 1o be written to the standard output rather than to the /~file. Note that the
=g keyletter may be used with the =1 keyletter to suppress the actual retrieval of the text.

-14-

The —m keyletter is of use in identifying, line by line, the changes applied to an sccs file.
Specification of this keyletter causes each line of the generated g-file to be preceded by the SID of the
delta that caused that line to be inserted. The SID is separated from the text of the line by a tab charac-
ter.

The —n keyletter causes each line of the generated g-file to be preceded by the value of the %M% ID
kevword (see Section 5.1.1) and a tab character. The —n kevletter is most often used in a pipeline with
grep(l). For example, to find, in the latest version of each SCCs file in a directory, all lines that match a
given pattern, the following may be executed:

get —p —n -—s directory | grep pattern

If both the —m and —n Keyletters are specified, each line of the generated g-file is preceded by the
value of the %M% ID keyword and a tab (this is the effect of the —n keyletter), followed by the line in
the format produced by the —m keyletter. Because use of the —m keyletter and/or the —n keyletter
causes the contents of the g-file to be modified, such a g-file must nor be used for creating a delta.
Therefore, neither the —m Kkeyietter nor the —n Keyletter may be specified together with the —e
kevletter.

See ger(I) for a full description of additional ger keyletters.
5.2 delta

The delta command is used to incorporate the changes made to a g-file into the corresponding sccs file,
i.e., to create a delta, and, therefore, a new version of the file.

Invocation of the deftra command requires the existence of a p-file (see Sections 5.1.3 and 5.1.4). Dela
examines the p-file to verify the presence of an entry containing the user's login name. If none is
found, an error message results. Delra also performs the same permission checks that ger performs
when invoked with the —e keyletter. If all checks are successful, delra determines what has been
changed in the g-file, by comparing it (via diff(I)) with its own, temporary copy of the g-file as it was
before editing. This temporary copy of the g-file is called the d-file (its name is formed by replacing the
*s.”" of the sccs file name with *'d.”’) and is obtained by performing an internal ger at the SID specified
in the p-file entry.

The required p-file entry is the one containing the login name of the user executing defia, because the
user who retrieved the g-file must be the one who will create the delta. However, if the login name of
the user appears in more than one entry (i.e., the same user executed ger with the —e keyletter more
than once on the same sccs file), the —r keyletter must be used with delta to specify the SID that is to
be used by the internal ger to obtain the d-file. The SID specified must, of course, appear in one of the
entries in the p-file; this entry is the one used to obtain the SID of the delta to be created.

In practice, the most common invocation of delra is:
delta s.abc

which prompts on the standard output (but only if it is a terminal):
comments? '

to which the user replies with a description of why the delta is being made, terminating the reply with a
newline character. The user’s response may be up to 512 characters long, with newlines nor intended to
terminate the response escaped by “\".

If the sccs file has a v flag, dela first prompts with:
MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a terminal.) The
standard input is then read for MR’ numbers, separated by bianks and/or tabs, terminated in the same
manner as the response to the prompt ‘‘comments?’’.

5. In a tightly controlied environment. it is expected that deltas are created only as a result of some trouble report. change
request. trouble ticket. eic. (collectively called here Modification Requests, or MRs) and that it is desirable or necessary to
record such MR number(s) within each delta.

(1%

-15-

The —y and/or —m keyletters are used to supply the commentary (comments and MR aumbers,
respectively) on the command line, rather than through the standard input. For example:

delta —y"descriptive comment" —m"mrnuml mraoum2" s.abe

In this case, the corresponding prompts are not printad. and the standard input is not read. The —m
keyletter is allowed only if the sccs file has a v flag. These keyletters are useful when delra is executed
from within a Shell procedure (see sh(l)).

The commentary (comments and/or MR numbers). whether solicited by deita or supplied via
keyletters, is recorded as part of the entry for the delta being created, and applies to a//sccs files pro-
cessed by the same invocation of deita. This implies that if delra is invoked with more than one file
argument, and the first file named has a v flag, all files named must have this flag. Similarly, if the first
file named does not have this flag, then none of the files named may have it. Any file that does not
conform to these rules is not processed.

When processing is complete, defra outputs (on the standard output) the SID of the created delta
(obrtained from the p-file entry) and the counts of lines inserted, deleted, and left unchanged by the
delta. Thus, a typical output might be:

1.4

14 inserted

7 deieted

345 unchanged

It is possible that the counts of lines reported as inserted, deleted. or unchanged by defta do not agree
with the user’'s perception of the changes applied to the g-file. The reason for this is that there usually
are a number of ways to describe a set of such changes, especially if lines are moved around in the g-
file, and defia is likely to find a description that diffars from the user’s perception. However, the rotal
number of lines of the new deita (the number inserted plus the number left unchanged) shouid agres
with the number of lines in the edited g-file.

If, in the process of making a delta, defra finds no D keywords in the edited g-file, the message:
No id keywords (cm7) -

is issued after the prompts for commentary, but before any other output. This indicates that any iD
keywords that may have existed in the sccs file have been replaced by their values, or deleted during
the editing process. This could be caused by creating a delta from a g-file that was created by a ger
without the —e keyletter (recall that (D keywords are replaced by ger in that case), or by accidentally
deleting or changing the [D keywords during the editing of the g-file. Another possibility is that the file
may never have had any ID keywords. In any case, it is left up to the user to determine what remedial
action is necessary, but the deita is made, unless there is an i flag in the SCCs file, indicating that this
shouid be treated as a fatal error. In this last case, the delta is not created.

After processing of an sccs file is complete, the corresponding p-file entry is removed from the p-file.s
If there is only one entry in the p-file, then the p-file itself is removed.

In addition, delta removes the edited g-file, unless the —n keyletter is specified. Thus:
delta —n s.abc
will keep the g-file upon completion of processing.

The —s (“silent’’) keyletter suppresses all output that is normally directed to the standard output,
other than the prompts ‘“‘comments?”’ and “MRs?”’. Thus, use of the —s keyletter together with the
-y keyletter (and possibly, the —m keyletter) causes defta neither to read the standard input nor to
write the standard output.

6. All updates to the p-file are made to a temporary copy, the gsife, whose use is similar o the use of the x.file, which is
descnibed in Section 4 above.

- 16 -

The differences between the g-file and the d-file (see above), which constitute the delta, may be printed
on the standard ouiput by using the ~p keyletter. The format of this output is similar to that produced
by dif (D).

5.3 admin

The admin command is used to adminster Sccs files, that is. to create new sccCs files and to change
parameters of existing ones. When an sccs file is created, its parameters are initialized by use of
keyletters or are assigned default values if no keyletters are supplied. The same keyletters are used to
change the parameters of existing files.

Two keyletters are supplied for use in conjunction with detecting and corré_cting ‘‘corrupted’’ sccs files,
and are discussed in Section 6.3 below.

Newly-created sccs files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the sccs file may use the admin command
upon that file.

3.3.1 Creation of Sccs Files
An sccs file may be created by executing the command:
admin -—ifirst s.abc

in which the value (*‘first”’) of the —i keyletter specifies the name of a file from which the text of the
initial delta of the sccs file **s.abc’” is to be taken. Omission of the value of the =i keyletter indicates
that admin is to read the standard input for the text of the initial delta. Thus, the command:

admin —i s.abc < first

is equivalent to the previous example. If the text of the initial delta does not contain ID keywords, the
message: :

No id keywords (cm7) -

is issued by admin as a warning. However, if the same invocation of the command also sets the i flag
(not to be confused with the —i keyletter), the message is treated as an error and the sccs file is not
created. Only one SCCs file may be created at a time using the —1i keyletter.

When an sccs file is created, the release number assigned to its first delta is normally ‘1>, and its level
number is always *‘1’". Thus, the first delta of an sccs file is normally “1.1”. The —r keyletter is
used to specify the release number to be assigned to the first delta. Thus:

admin ~ifirst —r3 s.abc

indicates that the first delta should be named ‘3.1 rather than ““1.1”°. Because this keyletter is only
meaningful in creating the first delta, its use is only permitted with the =i keyletter,

3.3.2 Initialization and Modification of SCCS File Parameters

The portion of the sccs file reserved for descriprive text (see Section 6.2) may be initialized or changed
through the use of the =t keyletter. The descriptive text is intended as a summary of the contents and
purpose of the sccs file, although its contents may be arbitrary, and it may be arbitrarily long.

When an sccs file is being created and the —t keyletter is supplied, it must be followed by the name of
a file from which the descriptive text is to be taken. For example, the command:

admin ~—ifirst —tdesc s.abc
specifies that the descriptive text is to be taken from file *‘desc”.

When processing an existing sccs file, the —t keyletter specifies that the descriptive text (if any)
currently in the file is 10 be replaced with the text in the named file. Thus:

admin =-tdesc s.abc

)

.17 -

specifies that the descriptive text of the sccs file is to be replaced by the contents of *“‘desc’; omission
of the file name after the =t kayletter as in:

admin =t s.abc
causes the removal of the descriptive text from the sccs file.

The flags (see Section 6.2) of an sccs file may be initialized, changed, or deleted through the use of the
—f and —=d keyletters. respectively. The flags of an sccs file are used to direct certain actions of the
various commands. See admin(I) for a description of all the flags. For example, the v flag specifies
that delra is to prompt for Modification Request (MR) numbers, and the d (default siD) flag specifies
the default version of the sccs file to be retrieved by the ger command. The —f keyletter is used to set
a flag and, possibly, to set its value. For example:

admin =ifirst —fv —{mmodname s.abc

sets the v flag and the m (moduie name) flag. The value ‘‘modname’ specified for the m flag is the
value that the ger command will use to replace the %M% (D keyword. (In the absence of the m flag,
the name of the g-file is used as the replacement for the %M% ID keyword.) Note that several —f
keyletters may be supplied on a single invocation of admin, and that —{ kevletters may be supplied
whether the command is creating a new SCCs file or processing an existing one.

The —d keyletter is used to delet2 a flag from an sccs file, and may only be specified when processing
an existing file. As an example, the command:

admin --dm s.abc

removes the m flag from the sccs file. Several —d keyletters may be supplied on a single invocation of
admin, and may be intermixed with —{ keyletters.

Sccs files contain a list (user list) of login names of users who are allowed to create deltas (see Sections
5.1.3 and 6.2). This list is empty by default, which implies that anyone may create deltas. To add login
names to the list, the —-a keyletter is used. For example:

admin —axyz -awql s.abc

adds the login names “*xyz”” and ‘‘wql’” to the list. The —a keyletter may be used whether admin is
creating a new SCCs file or processing an existing one, and may appear several times. The —e keyletter
is used in an analogous manner if one wishes to remove (‘“‘erase’’) login names from the list.

5.4 prt

Prt is used to format and print on the standard output all or parts of an sccs file (see Section 6.2), pre-
.ceded by the file’s name. The portions of the file to be printed are selected by specifying certain
keyletters, which, together with the output formats they generate, are fully described in pre(I). This
section only describes briefly the —d, —u, =f, and =t keyletters, which are sufficient to print all of the
more interesting portions of an sccs file. '

The -d keyletter is used to print the defta rable of an sccs file. The delta table is that portion of the
file that contains information relevant to the creation of each deita of the file, namely the siD of the
delta, the date and time of creation, the /ogin name of the creator, and the numbers of lines inserted.
deleted, and unchanged by the deita. The commentary that is entered when a deita is created is also
part of the delta table. Thus, executing the command:

prt —=d s.abc

provides a history of the evolution of the sccs file. In the absence of any keyletters, the —d keyletter
is assumed. .

The —u keyletter is used to print the user lisz. The —f keyletter causes the printing of all the flags of
the sccs file. The —t keyletter is used to print the descriprive rexr of the sccs file (see Section 6.2); this
could be used. for example, to generaie a complete set of file summaries, by executing:

prt —t sccs

in which ‘“‘sccs’ is the name of a directory containing the sccs files.

.18 -

Although prr makes the examination of sccs files convenient, other PWB/UNIX commands (e.g., ed(I),
grep(1)) can be used to create customized print commands in the form of Shell procedures.

5.5 help

The help command prints explanations of scCs commands and of messages that these commands may
print. Arguments to help, zero or more of which may be supplied. are simply the names of SCCs com-
mands or the code numbers that appear in parentheses after SCCS messages. If no argument is given,
help prompts for one. Help has no concept of keylerter arguments or file arguments. Explanatory infor-
mation related to an argument, if it exists, is printed on the standard output. If no information is
found, an error message is printed. Note that each argument is processed independently, and an error
resulting from one argument will nor terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:
heip ge5 rmdel
produces:

ges:

"nonexistent sid"

The specified sid does not exist in the
given file.

Check for typos.

rmdel:
rmdel —rSID name ...

5.6 rmdel

The rmdel command is provided to allow remova/ of a delta from an sccs file, though its use should be
reserved for those cases in which incorrect, global changes were made a part of the delta to be
removed.

The delta to be removed must be a ““leaf™ delta. That is, it must be the latest (most recently created)
delta on its branch or on the trunk of the sccs file tree. In Figure 3, only deltas 1.3.1.2, 1.3.2.2, and
2.2 can be removed: once they are removed, then deltas 1.3.2.1 and 2.1 can be removed, and so on.

To be allowed 1o remove a delta, the effective user must have write permission in the directory contain-
ing the sccs file. In addition, the real user must either be the one who created the delta being
removed, or be the owner of the sccs file and its directory.

The —r keyletter, which is mandatory, is used to specify the complere SID of the delta to be removed
(i.e., it must have two components for a trunk delta, and four components for a branch delta). Thus:

rmdel —-r2.3 s.abc

specifies the removal of (trunk) delta *‘2.3>* of the sccs file. Before removal of the delta, rmdel checks
that the release number (R) of the given SID satisfies the relation:

floor € R < ceiling

In addition, the login name of the user must appear in the file’s user list, or the user list must be empty.
If these conditions are not satisfied, processing is terminated, and the delta is not removed. After the
specified delta has been removed, its type indicator in the delta rable of the sccs file (see Section 6.2) is
changed from “D”* (for “‘delta’”) 1o “R” (for ‘‘removed”’).

5.7 chghist

The chghist command is used to change a delta’s commentary that was supplied when that delta was
created. Its invocation is analogous to that of the rmdel command, except that the deita to be processed
is nor required to be a leaf delta. For example:

chghist —r3.4 s.abc
specifies that the commentary of delta *‘3.4™ of the SCCs file is to be changed.

(Y

»

- 19 -

The new commentary is solicited by chghisr in the manner of the de/ra command. The old commentary
associated with the specified delta is kept, but it is preceded bv a comment line indicating that it has
been changed (i.e., superseded), and the new commentary is entered ahead of this comment line. The
‘“‘inserted’” comment line records the login name of the user executing chghist and the time of its exe-
cution.

5.8 what

The whar command is used to find identifying information within any PWB/UNIX file whose name is
given as an argument to what. Directory names and a name of ““—'" (a lone minus sign) are nror
treated specially, as they are by other SCCS commands, and no keylerrers are acceptaed by the command.

Whar searches the given file(s) for all occurrences of the string “*@(#)”’, which is the replacement for
the %Z% D keyword (see ger(I)), and prints (on the standard output) what follows that string until the
first double quote ("), greater than (>), newline, or (non-printing) NUL character. Thus, for exam-
ple, if the sccs file “*s.prog.c” (which is a C program). contains the following line (the %M and %I%
ID keywords were defined in Section 5.1.1):

char id{] "%Z%%M%:%I%";
and then the command:
get —r3.4 s.prog.c

is executed, and finally the resulting g-file is compiled to produce '“prog.0’’ and “‘a.out’’. then the com-
mand:

what prog.c prog.o a.out
produces:

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by whar need not be mserted via an ID keyword of ger; it may be inserted in any
convenient manner.

5.9 sccsdiff

The scesdiff command determines (and prints on the siandard output) the differences between two
specified versions of one or more sccs files. The versions to be compared are specified by using the -t
keyletter, whose format is the same as for the ger command. The two versions musr be specified as the
first two arguments to this command in the order in which they were created. i.e., the older version is
specified first. Any following keyletters are interpreted as arguments to the pr(I) command (which
actually prints the differences) and must appear before any file names. Sccs files to be processed are
named last. Directory names and a name of ‘*—"" (a lone minus sign) are nor acceptable to scesdiff.

The differences are printed in the form generated by diff(I). The following is an example of the invo-
cation of sccsdiff?

seesdiff -~3.4 —r35.6 s.abc
5.10 comb

Comb generates a Shell procedure (see sh(1)) which attempts to reconstruct the named sccs files so that
the reconstructed files are smaller than the ongmals The generated Shell procedure is written on the
standard output.

Named sccs files are reconstructed by discarding unwanted deltas and combining specified other deltas.
The intended use is for those sccs files that contain deltas that are so old that they are no longer use-
ful. It is nor recommended that comb be used as a matter of routine: its use should be restricted to a
very small number of times in the life of an sccs file.

-20 -

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of ancestor
deltas necessary 1o preserve the ‘‘shape’” of the sccs file tree. The effect of this is to eliminate ‘*mid-
die” deltas on the trunk and on all branches of the tree. Thus, in Figure 3, deltas 1.2, 1.3.2.1, 1.4,
and 2.1 would be eliminated. Some of the keyletters are summarized as follows:

The —p keyletter specifies the oldest delta that is to be preserved in the reconstruction. All older del-
tas are discarded.

The —c keyletter specifies a lisr (see ger(I) for the syntax of such a list) of deltas to be preserved. All
other deltas are discarded.

The —s keyletter causes the generation of a Shell procedure, which, when run, produces. only a report
summarizing the percentage space (if any) 1o be saved by reconstructing each named sccs file. It-is
recommended that comb be run with this keyletter (in addition to any others desired) before any actual
reconstructions.

It should be noted that the Shell procedure generated by combd is nor guaranteed to save any space. In
fact. it is possible for the reconstructed file to be /arger than the original. Note. too. that the shape of
the sccs file tree may be altered by the reconstruction process.

6. SCCS FILES

This section discusses several topics that must be considered before exiensive use is made of sccs.
These topics deal with the protection mechanisms relied upon by SCCs. the format of sCCs files, and the
recommended procedures for auditing scCs files.

6.1 Protection

Sccs relies on the capabiiities of the PWB/UNIX operating system for most of the protection mechanisms
required to prevent unauthorized changes to sccs files (i.e., changes made by non-scCs commands).
The only protection features provided directly by SCCs are the release floor and ceiling flags, and the user
list (see Section 3.1.3).

New sccs files created by the admin command are given mode 444 (read only). It is recommended that
this mode nor be changed. as it prevents any direct modification of the files by non-scCs commands. It
is further recommended that the directories containing sccs files be gwen mode 755, which allows only
the owner of the directory to madify its contents.

Sccs files should be kept in directories that contain only sCcs files and any temporary files created by
sccs commands. This simplifies protection and auditing of sccs files (see Section 6.3). The contents
of directories should correspond to convenient logical groupings. e.g., sub-systems of a large project.

Sces files must have onily ore link (name). The reason for this is that those commands that modify
sccs files do so by creating a temporary copy of the file (called the x-file. see Section 4) and, upon com-
pletion of processing, remove the old file and rename the x-file. If the old file has more than one link,
removing it and renaming the x-file would break the link. Rather than process such files, sccs com-
mands produce an error message. All SCCs files musr have names that begin with *'s.”.

When only one user (or a group of users who share the same PWB/UNIX user identification number—
user ID—see passwd(I)) uses sccs. the real and effective user IDs are the same, and that user ID owns
the directories containing sccs files. In addition, when several users share the same user ID (even
though they may have different /ogin names), all such users have identical file permissions. Therefore.
sccs may be used directly by any one of these users, without any preliminary preparation.

However. there are situations (for example, in large software development projects) in which it is not
practical 1o give the same user ID to all users of SCCS. In these cases, one user (equivalently, one user
ID) must be chosen as the ‘‘owner™ of the sccs files and be the one who will *‘administer” them (e.g.,
by using the admin command). This user is termed the SCCS administraror for that project. Because
other users of SCCS do not have the same privileges and permissions as the SCCS administrator, they are
not able to execute directly those commands that require write permission in the directory containing
the sccs files. Therefore, a project-dependent program is required to provide an interface :0 the gey,
delia, and. il desired, rmdel and chghist commands.

221 -

The interface program must be owned by the scCs administrator, and must have the
set user [D on execution bit on (see chmod(I)), so that the effective user (D is the user D of the adminis-
trator. This program'’s function is to invoke the desired scCs command and to cause it to inkerir the
privileges of the interface program for the duration of that command’s execution. In this manner, the
owner of an sccs file can modify it at will. Other users whose login names are in the wuser /ist for that
file (but who are nor its owners) are given the necessary permissions only for the duration of the execu-
tion of the interface program. and are thus able to modify the sccs files only through the use of defra
and, possibly, rmdel and chghist. The project-dependent interface program. as its name implies, must be
custom-built for each project.

6.2 Format
Sccs files are composed of lines of ASCII text’ arranged in six parts, as follows:
Checksum A line containing the ‘“‘fogical’ sum of all the characters of the file (nor including
this checksum itself).
Delta Tabie Information about each delta. such as its type, its SiD, date and time of creation,

and commentary.

User Names List of login names of users who are allowed to modify the file by adding or
removing deltas. ‘

Flags Indicators that control certain actions of various SCCS commands.

Descriptive Text Arbitrary text provided by the user: usually a summary of the conten:s and pur-
pose of the file.

Body Actual text that is being administered by SCCS. intarmixed with internal sccs con-
trol lines.

Detailed information about the con.tems of the various sections of the file may be found in scesfife{V);
the checksum is the only portion of the file which is of interest below.

It is important to note that because sCCs files are asci files, they may be processed by various
PWB/UNIX commands. such as ed(I), grep(l), and car(l). This is very convenient in those instances in
which an sccs file must be modified manually (e.g., when the time and date of a delta was recorded
incorrectly because the system clock was set incorrectly), or when it is desired to simply ‘‘look’” at the
file. :

w» Extreme care should be exercised when modifying SCCS files with non-SCCS commands.
6.3 Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an sccs file. or por-
tions of it (i.e., one or more ‘‘blocks’”) can be destroyed. ScCs commands (like most PWa/UNIX com-
mands) issue an error message when a file does not exist. In addition, SCCS commands use the check-
sum stored in the sCcs file to determine whether a file has been corrupred since it was last accessed (pos-
sibly by having lost one or more blocks, or by having been modified with, for example, ed(I)). No
sccs command will process a corrupted sccs file except the admin command with the —h or =z
keyletters, as described below.

It is recommended that sccs files be audited (checked) for possible corruptions on a regular basis. The
simplest and fastest way to perform an audit is to execute the admin command with the —~h Keyletter
on all sccs files:

admin —h s.filel s.file2 ...
or
admin -h directoryl directory2 ...

7. Versions of SCCS up 10 and including Version 3 used non-ASCII files. Therefore, files created by earlier versions of SCCS
are incompatible with Version ¢ of SCCS.

-22-

If the new checksum of any file is not equal to the checksum in the first line of that file, the message:
corrupted file (co6)

is produced for that file. This process continues until all the files have been examined. When examin-
ing directories (as in the second example above), the process just described will not detec: missing files.
A simple way to detect whether any files are missing from a directory is to periodically execute the /s(I)
command on that directory. and compare the outputs of the most current and the previous executions.
Any file whose name appears in the previous output but not in the current one has been removed by
some means.

Whenever a file has been corrupted. the manner in which the file is restored depends upon the extent
of the corruption. If damage is extensive, the best solution is to contact the local PWB/UNIX operations
group to request a restoral of the file from a backup copy. In the case of minor damage, repair through
use of the editor ed(I) may be possible. In the latter case, after such repair, the following command
must be executed:

admin -z s.flle

The purpose of this is to recompute the checksum to bring it into agreement with the actual contents of
the file. After this command is executed on a file, any corruption which may have existed in tha! file
will no longer be detectable.

REFERENCES

[1] Ritchie, D. M.. and Thompson, K. The UNix Time-Sharing System. Comm. ACM 17(7):365-
- 75, July 1974.

[2] Kernighan. B. W. Un~ix for Beginners. Bell Laboratories, 1973.
[3] Kernighan, B. W. A Tutorial Introduction to the UNIx Text Editor. Bell Laboratories. 1973.

[4] Doiotta. T. A., Haight, R. C.. and Piskorik, E. M., eds. Pwsnix User's Manual— Edition 1.0.
Bell Laboratories. May 1977.

(5] Kernighar, B. W., and Riichie, D. M. UNix Programming. Bell Laboratories, 1973.

)

