M | | U7

Bell Laboratorics ~ Cover Sheet for Technical Memorandum

The mformation comtamed herein is for the use of emplovees of Bell Laboratories and is not for publicanon. (See GEI 13.9-3)
Title- Proposal for UNIX Interprocess Communication . Date- March 17, 1976

TM- 76-8234-4
Other Keywords-

-Au(hor o Location Extension Charging Case- 49170-210
R. B. Brandt MH 2D-428 3669 Filing Case- 40952-001

ABSTRACT

As the community of UNIX users has grown, so has the need for new or
improved operating system services and features. One such requirement has
been the need for improved techniques for the exchange of data and timing sig-
nals between processes. This memorandum provides the functional design
specifications for a comprehensive set of interprocess communication enhance-
ments to the UNIX operating system.

These features include:

- extension to semaphores 10 allow a choice between the lock-unlock type
and the P-V counting type.

system symbol table 1o associate a name with a value.

messages to allow the exchange of smail amounts of data between
processes. :

events to facilitate the passing of user defined timing signals.

shared memory to permit cooperating processes to share physical
memory. '

. Pages Text 18 Other O Total 18
No. Figures 0 . No. Tables 0 No. Refs. 0 ~

. E-1932-U (6-73) ' SEL REVERSE SIDE FOR DISTRIBUTION LIST

Bell Laboratories

subject: Proposal for UNIX Interprocess Communication date: March 17, 1976
Case- 49170-210 -- File- 40952-001 .
: from: R. B. Brandt

T™: 76-8234-4

MEMORANDUM FOR FILE .

lntroductibn

As the number of UNIX users has grown in recent years, so also has the need for new or im-
proved operating sysiem services and features. Not the least of these new requirements has
been the need for different techniques for the exchange of timing signals and data between
processes (interprocess communication). In fact, many users have locally modified their systems
already in order to provide additional capabilities in this area. In response to this need, a
comprehensive set of interprocess communication facilities has been designed for incorporation
in the UNIX Support Group’s standard version of the UNIX operating system. These enhance-
ments include an extension to the semaphore facility that is already available and the addition
of a system symbol table, messages, events, and shared memory. The purpose of this
memorandum is to provide the functional design specifications for these new features.

Why Interprocess Communication?

Before proceeding to describe the new interprocess communication features, a brief explanation
of the motivation for their implementation is in order. As is well known, UNIX is a general
purpose, interactive operating system. In the time-sharing environment, most user processes
tend to be relatively short-lived; a process is created, in response 10 a user’s command, to ac-
complish some specific short-term task (e.g. list a file or make a directory). Once initiated, the
process usually has little, if any, need to communicate with other processes and it may be des-
troyed at the completion of its work with no ill effects. If the task to be accomplished is
sufficiently large or complex, a series of processes may be required to complete it. This can
usually be accommodated by not spawning any process of the series until the preceding one has
completed its work and been terminated (e.g. compile and link a program). In these situations,
intermediate results are usually passed on to succeeding processes by writing them to some
temporary file. In such a task-oriented environment, there is little need for any of the more ex-
otic forms of communication between processes. ' ' .

However, there are instances where a process is acting as a monitor, continuously waiting for
some event(s) to occur and performing work only when stimulatéd by the occurrence of the
event(s). Such processes tend to remain in the system for long periods of time and typically re-
quire little, if any, user guidance once they have been initiated. Examples of such transaction-
oriented processes in UNIX are init, update, and the various daemons. The technique of having a
monitoring process run continuously is more expeditious than spawning a new process each
time the awaited event or transaction occurs. A number of the applications that are being
developed using UNIX as the base operating system have what might be called rietworks of
processes of this nature. For example, an overseer process, in a manner somewhat analogous
to the shell's handling of commands, may receive and decode transactions and pass them on to
any one of a number of other processes. Which process is chosen as recipient is determined by

what further action is required to complete the transaction. This receiving process, in turn,
may be capablc of only partially processing the wransaction, so it may have to be passed on to
yet another process in the network. In such situations, the currently available techniques for
interprocess communication have not proven to be sufficient for various reasons.

A1 present there are four principal facilities available and commonly used in UNIX for interpro-
cess communication: arguments (o exec, pipes, signals, and semaphores. The passing of data to
another process via arguments in an exec system call is restrictive because of the limited
amount of data that may be passed (maximum of 512 bytes) and because it is essentially a one
shot proposition. This does not satisfy the requirement of many users that processes be able to
converse with one another.

Pipes, on the other hand, are a very convenient method of linking together a series of com-
mands (i.e. processes). However, since they are one way and use the file system as the medi-
um of communication, pipes have not been wholly satisfactory as a general solution of the data
exchange problem. The most commonly voiced objections 1o pipes relate primarily to their
speed and their impracticality for networks of processes.

Often the data that is to be exchanged is actually nothing more than notification that an event
has occurred (a timing signal). The UNIX signal facility was designed for this type of data ex-
change. However, signals are used primarily by the operating system to advise processes of ex-
ceptional condilions that require attention (e.g. quit, illegal instruction, floating point excep-
tion). The default action taken by the system on behalf of a process that has received a signal
is to terminate the process. Partly because of this underlying philosophy about signal handling
and partly to avoid, or, at least, to minimize, vulnerability to future operating system
modifications, users have been understandably reluctant to adopt signals as a general technigue
for timing signal exchange.

Semaphores have only recently .been .made available in UNIX and have proven gquite useful to
those applications that require a locking and unlocking capability for critical resources. In the
absence of any other general facility, some applications also use semaphores for the exchange of
timing signals. Although semaphores are useful for solving some timing problems, they are not
terribly well suited for many of the data exchange problems with which applications are con-
fronted. ‘

In summation, UNIX users may be loosely categorized as either time-sharing oriented or sup-
port system oriented. The former group has been reasonably content with the interprocess
communication facilities already available in UNIX. The latter has, however, -because of the
nature of their application, been much more concerned with the problems of process synchroni-
zation and data exchange.

Overview of New Features

As previously stated, the interprocess communication features designed consist of a system
symbol table, messages, events, shared memory, and an extension to semaphores. In addition,
a process will be able to determine more readily the system’s process identification (the proces-
sid) of its parent. Lest the reader suddenly become engulfed in a sea of design details, a brief
overview of each of these new features will be given.

Semaphores. One version of semaphores has already been incorporated in the standard UNIX
system. In this implementation, the semaphore merely acts as a simple lock, as it may be in
only one of two states: locked or unlocked. This is useful for ensuring that critical resources
are used by processes in a single thread fashion. For some synchronization problems, such as
the reader-writer problem, the counting version of semaphores (P-V) is more suitable. Here
the semaphore acts as a counter for a resource, indicating how many are available (e.g. filled in-
put buffers). Therefore, the semaphore facility will be extended to include this function. The
user may choose the way the semaphore is to be manipulated by the system.

~»

Svstem Symbol Table. Almost all forms of interprocess communication rely on processes know-
ing to whom they wish to communicate. Processes are not known to UNIX by name; rather,
they are assigned a unique processid by the system when they are created. Since the user has
virtually no control over assignment of processids, it may be difficult for a process to determine
the identification of another process. This is especiaily true if the processes are not directly re-
lated (parent-child). The system symbol table enables a process to post its logical name (e.g.
"xyz") and processid on a system bulletin board for other processes to read. Further, since
there is no restriction that the symbol's value be a processid, a process is free to associate a
symbol with any value that may be meaningful to other interested processes.

Parent Process ldentification. When a process spawns another via the fork system call, it is ad-
vised of the processid of the newly created process. THe addition of the parent processid
feature completes the parent-child identification circle, as it enables a, process to easily deter-
mine its parent’s identification. '
Messages. The message facility permits a process to transmit smail (say, up to 100 words)
amounts of data to another existing process. Messages that are sent (o a process are placed in
its message queue in order of arrival. The sending process may then continue to execute, if it
so desires, without waiting for the recipient to actually receive the message. The receiving pro-
cess must explicitly request a message before it will actually receive one. It is then given the
first message in its message queue.

Events. The event facility was designed to facilitate the exchange of timing signals (process syn-
chronization). Processes are free to define their own meaning to eight event flags. An addi-
tional eight event flags are reserved for use by the operaling system. A receiving process pro-
vides a mask to indicate those events in which it is interested, and it may either wait for one of
those events 1o occur or may continue to execute after stipulating a function that is to be given
control ‘when one occurs. '

Shared Memory. This facility enables a process to share a portion of its physical address space
with one or more other processes. Thus, processes using this feature will be able to transfer
data to one another very rapidly. The operating system’s only responsibility in providing this
service is to set up the process's segmentation registers in a way that makes the overlap possi-
ble. The processes sharing memory must work out their own synchronization protocol; this
may entail use of one of the other interprocess communication facilities.

Philosophy and Constraints

As with other endeavors of this type, a certain underlying philosophy guided many of the
design decisions. In addition, there are considerations and pressures from user projects that had
to be recognized and taken into account. An explanation of some of the more prominent con-
straints and philosophical points will help to illustrate why some things were done the way they
were.

Each of the interprocess communication facilities is viewed as, if you will, a dynamically allocat-
able resource. That is, a process must declare its intent to use a particular feature before it may
avail itself of . the service. This is not a foreign concept to UNIX; a process must, for example,
open a file before it may read it. There are, of course, resources in UNIX that are provided to
a process without it taking any explicit action (e.g. use of standard file descriptors for terminal
170). but such resources are usually those that are essential for the proper execution of most
processes. For those features that have both a sending process and a receiving process, the bur-
den of declaration is placed on the receiver. This affords a process at least some control over its
own destiny, as it prevents a talkative process from disrupting the solitude of one that would
prefer to remain deaf.

As with other resources, one must consider the question of protection. Processes that have
successfully established a line of communication to one another are, in theory at least,
coopcrating with one another. It is virtually impossible for the operaling system to even at-
tempt to determine the significance of their communiques and enforce any restrictions on con-
tent. The system can only ensure that communications are carried out in an orderly fashion ac-
cording to the prescribed rules. What the system can do to afford some degree of protection,
however, is to allow a process 1o designate the group of processes with which it is willing to
communicate. This is especially necessary in the time-sharing environment, where the user

_should be protected from the whims of another user’s process that is either malicious or insane.

However, even for applications that are less time-sharing oriented, where the likelihood of a
malicious process is greatly diminished, it is prudent to limit a process's sphere of influence as a
hedge against the possibility that it may go beserk. Therefore, at the time a process declares its

* inten! to receive communications via a certain facility, it must stipulate the class of processes

that may communicate with it using that facility. At present there are only three such group-

- ings: processes with the same userid, processes with the same groupid, or any process (i.e. no

protection desired).

User impact has influenced these designs, especially with respect to semaphores. Different
users have stated different requirements for interprocess communication facilities, and, in gen-
eral, the intersection of these requirements was used as a point of departure in the design work.
Not only these current, but also anticipated, requirements were taken into account as work pro-
gressed. An effort was exerted to make the resulting facilities upward compatible with features
already implemented locally. When these features are actually implemented, a similar effort
will be made to minimize the impact on existing operating system code. Thus, users not re-
quiring a particular feature should be able to remove it with a minimal amount of effort.
Although such practices are not encouraged, one must understand that for some systems, espe-
cially those on 11/40s, the operating system’s memory requirement is a limiting factor.

Functional Descriptions

Each of the interprocess communication facilities will be described separately, and each descrip-
tion will be broken into a synopsis of operation, a description of the assembler interface, a
description of the C interface, and rules governing the facility’s use. The purpose of this docu-
ment is to present only the functional specifications for these new features, so scrupulous care
will be taken to avoid discussion of implementation details.

1. Semaphores

1.1. Synopsis

* There are two flavors of semaphores: the lock-unlock version and the P-V (counting) version.

Each semaphore, regardless of its type, is‘identified by a unique semaphore number. However,
unlike open file descriptors, this number is unvarying across processes (i.e. known system
wide). Each process wishing to use a particular semaphore must explicitly allocate it before it
may be used. The type (lock-unlock or P-V) and scope (the class of process that may also allo-
cate and use the semaphore) of a semaphore are determined on its initial allocation by a pro-
cess. These definitions remain in effect as long as the semaphore is allocated to any process.
Any subsequent process attempting to allocate the semaphore must be in the proper process
class and must specify the same usage before it is granted permission to use the semaphore. If
a process does not specify a semaphore number in its aliocation request (i.e. a non-specific allo-
cation), the system will choose an unallocated semaphore from its pool, assign the requested
usage and scope, and advise the process of the semaphore number. Other processes would then
allocate the semaphore by spgcifyi'ﬁg this number (i.e. specific requests). This is the technique
that would typically be used by users in a time-sharing environment, as it eliminates the neces-
sity of hard-coding semaphore numbers in programs. The initial allocation of a semaphore may

N

also be accomplished by making a specific request. Since there is the chance that the same
semaphore number may have been aiready aliccated by another user, this type of initial alloca-
tion should only be done in a controlled environment where semaphore numbers are preas-
signed. When a semaphore is no longer needed by a process, it may be freed (deallocated).
All of a process’s semaphores are automatically freed when the process terminates. A sema-
phore that is no longer allocated to any process is returned to the system’s semaphore pool for
future. alloeation. . '

A lock-unlock semaphore is useful for such things as enforcing serial usage of a critical
resource. A process wishing to utilize the resource locks the semaphore to indicate that it is in
use. This locked state is indicated by the processid of the locking process. Other processes at-
tempting to set the lock are put to sleep (roadblocked) until the original process relinquishes
the resource by uniocking the semaphore. One of the waiting processés is then awakened and
the semaphore is locked in its behaif. Besides the basic lock and unlock actions on the sema-
phore, there is also a conditional lock feature. If the semaphore is in the unlocked state, then it
is locked for the process. However, if the semaphore is already locked, the requesting process
is not roadblocked and the system returns control to the process with no further action. This
version of semaphores is currently available.

The producer-consumer problem is one application of the P-V counting semaphores. Here the
semaphore acts as a counter, which is incremented by one by the V operation and decremented
by one by the P operation. The counter is never allowed to become negative, however. A pro-
cess attempting a P operation when the semaphore is zero is roadblocked until another process
does a V operation, which not only increments the counter, but also awakens any processes
waiting for it to become positive. A conditional P operation is also available, analogous to the
conditional lock available with lock-unlock semaphores. The semaphore is decremented if it
was positive, but if it was zero, it is not decremented; in either case, the process is not road-
blocked. :

1.2. Assembler Interface
Call.

lock =62.; not in assembler
sys lock; function; flag ,
The low byte of the argument function specifies the request type. The permissible values for
this argument are as follows. :
0 The semaphore is locked in behalf of the cailing process. If
the semaphore is already locked, the process is put to sleep
until it is unlocked.

1 The semaphore is unlocked and any process that is waiting
for it to be unlocked is awakened. _

2 The semaphore is locked if it is not already so. The process
is not roadblocked if the semaphore is already locked.

3 The semaphore’s value is decremented by one if it is posi-

tive. However, if the value is zero, the process is road-
blocked until it becomes positive, at which time the process
is awakened and the semaphore is decremented. (P opera-
tion)

4 The semaphore’s value is incremented by one. Any
processes that are roadblocked because of a zero semaphore
value are awakened. (V operation)

5 The semaphore’s value is decremented by one, but never
below zero. The process is not roadblocked if the semaphore
wis zero. (Test operation)

6 A semaphore is allocated to the process. The high byte of
Junction indicates the semaphore’s usage and scope. A value
of 0, 1, or 2 allocates a lock-unlock semaphore with a scope
of anyone, same userid only, or same groupid only, respec-
tively. Similarly, a value of 3, 4, or 5 allocates a P-V sema-
phore with a scope of anyone, same userid only, or same
groupid only, respectively.

7 The semaphore is freed.

The flag argument designates the semaphore number of the semaphore in question. In sema-
phore allocation requests a negative value for flag implies that an available semaphore from the
system’s pool.is to be chosen and allocated. A negative value for flag in deallocation requests
indicates that all of the semaphores allocated to the process are to be freed.

Returns. 1f an error occurs, regardless of the request type, the error bit (c-bit) is set and r0
contains: the appropriate error number. The contents of 10 after successful calls depends on the
action requested: the semaphore’s previous value for lock, unlock, conditional lock, P, V, and
conditional P operations; the number of the allocated semaphore for allocation requests; and
zero for deallocation requests.

1.3. C interface
Calls.

allocsem (number, value)
int pumber, value;

The allocsem function -allocates semaphore number to the invoking process. If mumber is -1, then
an available semaphore is selected from the system’s pool. The argument valve is used to speci-
fy the semaphore’s usage and scope. If valve is 0, 1, or 2, then the semaphore is of lock-unlock
type and is assigned a scope of any process (i.e. no restriction), same userid only, or same
groupid only, respectively. Likewise, if this argument is 3, 4, or 5, the semaphore is of P-V
type and is given a scope of any process, same userid only, or same groupid only, respectively.

freesem(number)
int number;

The deallocation of a semaphore is accomplished through the freesem function. The semaphore
to be freed is designated by the value of number. If number is -1, then all of the semaphores al-
located to the process are freed. . :

lock(number)

unlock(number) -

tiock (number)

int number;

The lock, unlock, and tlock functions operate only on a semaphore of the lock-unlock type. As
the names imply, these functions lock, unlock, and conditionally lock, respectively, the sema-
- phore designated by number. The semaphore must have been previously allocated by the pro-
. cess (see the special note below regarding aliocation).

P T AR

. ‘ p{number)
v(number)
test (number)
int number;

The p. v, and test functions may be used only in conjunction with semaphores:of P-V type.
They perform the P operation, V operation, and conditional P operation, respectively, on the
semaphore designated by number. The semaphore in question must have already been allocated
to the process (see the special note below regarding allocation). o

Special Note. In order to effect upward compatibility for applications already using ‘semaphores
and yet still provide for dynamic allccation of scmaphores for time-sharing use, a special capa-
bility will be included in the C library functions. In particular, if a lock, unlock, tlock, p, v, or
test function is invoked without the semaphore having previously been allocated by .the process,

then the function will first attempt to allocate the semaphore before performing jhie: requested
operation. The semaphore will be assigned the appropriate usage and a scope of any ‘process.

Returns. All of the C library semaphore functions will return a -1 if an error accurs, and the
external variable errno will contain the appropriate error number. For successful calis, the lock.
unlock, tlock, p. v, and fest functions return the previous value of the semaphore. The allocsem
function returns the number of the allocated semaphore when successful, while freesem always
feturns zero on success. '

1.4. Raules of the Road

A semaphore operation (lock, uniock. tlock, p. v. of test) is permitted only on 2 previously allo-
cated semaphore of the same type (except as indicated in the special note above). Thus, lock-
unlock is not allowed on a P-V type semaphore, and vi;e versa. '

The use and scope of a semaphore are established on the first allocation of it by a process. Sub-
sequent processes attempting to allocate the semaphore must conform to these initial condi-
tions, which remain in effect as long as the semaphore is allocated to any process. A sema-

phore returns to the free semaphore pool when it has been freed by all the processes that ailo-
cated it.

The effective userid or groupid is used to determine access permission to a semaphore. Supef-
user may, of course, allocate any semaphore, as long as the declared usage remains consistent.

A freesem(-1) is implicit upon termination of a process. A lock-unlock semaphore being freed ~
by the process that has it locked is first unlocked. '

Allocated semaphores are inhe_rited acros8 fork, but not across exec.

A process roadblocked on a semaphore will sleep at a positive software priority, so-that signals
(and events) may still be captured.. o

The number of semaphores that any one process may allocate will be: limiied to some reason-
able value (say, four or five).. - . o ~

2. System Symbol Table

2.1, Synopsis

The system symboi table permits a process o associate a word (16 bits) of data with a name °
(symbol). Othcr processes then inquiring about the name are advised of its value. A typical
use of this facility is to connect a process’s name with its processid, so that other processes may
learn its system identity in order to make use of other forms of interprocess communication.
At the time a process enters a name in the symbol table (posts the name), it must designate the
scope of the name. This scope not only delineates the class of processes that may inquire about
the symbol (the name's access permission), but also serves as a modifier to the name. For ex- . ’

ample, a process might post the name "xyz" with a userid level scope. Later, another user's
process may post the same name, also with a userid level scope. This results in two distinct en-
tries in the symbol table for the name "xyz". Another process belonging to the first user might
then request information about "xyz" at the userid level. There is no ambiguity as o which
"xyz" is being refcrenced. The assignment of a scope to a posted symbol is essential in a time-
sharing environment in order to protect users that may happen to choose the same symbol.

A symbol may bc removed from the symbol table at any time, but only by the process that first
posted it. Once a symbol has been entered in the table, its value may be altered by simply
reentering it with the new value. Since the symbol is perceived as being defined across the
class of processes designated by its scope, any process in that class has access permission and is
free to alter its value.-

2.2. Assembler Interface
Call.

symbol = 33.; not in assembler

sys symbol; function; symptr E
The low byte of the argument finction specifies what type of operation is desired. There are
only three permissible values for this argument.

0 The symbol is entered in the symbol table and assigned the
value specified in 0. If the symbol (with the same scope) al-
ready exists in the table, then its value is changed to that given
in r0.

1 The symbol is removed from the symbol table.
2 The value of the symbol is returned to the caller.

For each of these three operations, the scope of the symbol is indicated by the high byte of
Sunction. As explained, this eliminates any ambiguity about identification of like names. The
allowable scopes are 0 for system-wide (all processes), 1 for same userid only, and 2 for same
groupid only. .

The argument symptr is a pointer to the symbol in question. The symbol itself is a null ter-
minated string of not more than eight characters.

Returns. If any request is unsuccessful, then the error bit (c-blt) is set and r0 contains the ap-
propriate error number. After a successful call, r0 is zero when a symbol is being entered or re-

moved from the table. If the request is to determine a symbol’s value, that value is returned in
0. .

2.3. C Interface

Calls. In each C library function, a scope argument of 0 implies system-wide, 1 implies across
same userid only, and 2 implies across same groupid only.

setname (strptr, value, scope)
char *strptr;
int value, scope;

The setname function causes the null terminated string addressed by strptr to be entered in the
symbol table with the value valie. The symbol’s length may not exceed eight characters. The .
scope of this symbol is determined by scope. If the symbol (with the same scope) already ex-
ists, then its value is altered to value. .

rmname (strptr, scope)

char *strptr:

int scope;
Removal of the symbol addressed by strpir is accomplished with the rmname function. The
symbol’s scope is determined by the scope argument.

nameval(strptr, &value, scope)
char *strptr;
int value, scope;

The value of the symbol addressed by strpir is determined and placed in the word value by the
nameval function. “As before, the argument scope specifies the scope of the requested symbol.

Returns. For all of these functions, a return of -1 indicates an error; the error number is placed
in the external variable errno. All of the functions return a zero on Success.

2.4. Rules of the Road

Only the process that first posts a symbol may remove it from the symbol table. However, any
process with appropriate access permission may alter its value.

When a process terminates, all of the symbols that it actually entered in the symbol table are
removed.

There is a limit on the number of symbols that any one process may enter in the table.
The actual ownership of a symbol. is not inherited across fork or exec.

Only the super-user may give a symbol system wide scope.

The effective userid and groupid will be used to determine access permission and scope.

3. Parent Processid

3.1. Synopsis

When a new process is created with fork, the parent process is advised of the child’s processid.
The addition of a facility to obtain the parent processid compietes the circle, as processes have a
convenient way to determine their parent’s identity. It should be pointed out that the init pro-
cess, which is always processid 1, adopts all orphaned children in the system. Thus, a process
can determine its true parent’s processid only if the parent is still living.

3.2. Assembler Interface
Call. '

getppid = 26.; not in assembler

sys getppid .
Returns. The processid of the parent process is returned in r0. This call can "never” fail,
although in a sick system the processid returned may not be accurate.

3.3. C Interface
Call.

getppid()

Return. The processid of the parent processid is returned. This value may not be accurate if
the system is sick.

3.4. Rules of the Road |

There are no special considerations regarding this call except that user processes should be cog-
nizant of the fact that they are adopted by init when their parent dies.

4. Messages

4.1. Synopsis ;

The message facility enables a process to pass small amounts of data (say, less than a hundred
words) to another process. Messages exceeding the maximum allowable length must be sent
incrementally. In order to send a message, the sender must know the processid of the reci-
pient. The message may bc sent only if the receiving process has explicitly expressed a willing-
ness 1o accept messages. The implication is, of course, that a message may not be sent to a
non-existent process. When a process enables message reception for itself, it stipulates the
class of processes that may send it messages. Any process within that group is then free to
send it a message, which is placed at the end of its message queue. The sending process is then
at liberty to continue execution, if it so wishes.

Messages are actually passed to the receiving process only at its request. When it does ask for a
message, the first one in its message queue is removed and placed in the designated buffer. If
there are no messages in the queue, the process is roadblocked until one is sent. Alternately,
there is a conditional receive message operation. In this case, the receiver is given the first
message in the message queue if the queue is not empty, but is not roadblocked if it is empty.
Whether or not message reception is done conditionally, the process is allowed to indicate that
it wants a message only if it was sent by some particular process. A receiving process may dis-
able message reception at any time. When this is done, no further messages may be sent to it,
and any unreceived messages on its queue are discarded.

Notice that at least three distinct actions are required before a message may be transferred from
_a buffer in process A to one in process B. First, process B must declare that it is willing to re-
ceive messages. Until this has been done, process A is not permitted to send it a message.
However, once this is done, process A may send a message, which is placed on process B's
message queue. There is no guarantee that process B will ever learn the contents. The final
step required is for process B to request a message, which causes it to be placed in B’s buffer.

4.2. Assembler Interface
Call.

msg = 39.; not in assembler

sys msg; function; buffer; size; pid
The low byte of the argument fimction is used to indicate the request type. Permissible values
are as follows.

0 The reception of messages is enabied for the calling process.
Until this is done, no messages may be sent to the process.
The high byte of function specifiés the class of processes that
may send messages to the caller: 0 for anyone (no restriction),
1 for same userid only, and 2 for same groupid only.

pE

11

1 Message reception is disdbled. Any unreccived messages still
on the messagé queue are flushed.

2 A message is sent to the designated process.

3 The first message in the queue (or, the first message from a
designated process) is placed in the caller’s buffer. If the queue
is empty (or, devoid of messages from the indicated process).
the calling process’s execution is suspended until a suitable
message is placed on the queue.

4 A message is removed from the queue and passed to the calling
process as described above. However, if no suitable message is
in the queue, the process is not roadblocked.

The argument buffer is a pointer to the user’s message buffer from whence the message will be
taken or placed, depending on whether the process is sending or receiving a message.

For a sending process, the argument size specifies the length of the message. If this exceeds the
system’s maximum allowable length, the message is not sent. For a receiving process, size
specifies the length of the message buffer addressed by buffer. If size is less than the message’s
actual length, the message is truncated to size.

When a message is being sent, the argument pid must contain the processid of the destination
process. However, when a process is receiving a message, pid should be the address of a word.
If the contents of that word are -1, then the first message in the queue will be given to the pro-
cess, regardless of the sender’s identity. Any value other than -1 is taken to be a processid; the
first message from that process is retrieved. In either case, if a message is successfully placed in
the user’s buffer, this word is filled in with the processid of the sender.

The arguments buffer, size, and pid are not used in requests to enable or disable message recep-
tion.

Returns. For unsuccessful calls, the error bit (c-bit) is set and r0 contains the appropriate error
number. For successful message enable and disable requests, r0 is always zero. When a mes-
sage is sent, received, or conditionally received, r0 is used to indicate the number of bytes actu-
ally sent or received. In addition, when a message is received, whether conditionally or not,
the word addressed by pid contains the processid of the sending process.

4.3. C Interface
Calls..

msgenab{permission)

int permission,
The msgenab function enables message reception for a process. No messages may be sent to it
before this is done. The argument permission delineates the class of processes that will be al-
lowed to send messages to this process: 0 for anyone (no restriction), 1 for. same userid only,
and 2 for same groupid only.

msgdisab()

The msgdisab function disables message reception and clears the message queue of any unre-
ceived messages.

msgsend(buffer, size, topid)
char *buffer;
int size, topid;

12

The transmission of a message to an existing process that has enabled message reception is ac-
complished with the msgsend function. A message of length size is taken from byffer and placed
on the message qucue of process ropid.

msgrecv (buffer, maxsize, &frompid)

char *buffer;

int maxsize, frompid;
A process requests a message from its queue with the msgrecy function. If frompid is -1, a mes-
sage from any sender is desired; otherwise, this argument indicates the processid of the only ac-
ceptable sender. The first message in the queue (or, the first message from the indicated pro-
cess) is placed in buffer. Maxsize specifies the length of this message buffer; longer messages
are truncated. If there is not a suitable message in the queue, the process is roadblocked until
one is sent. In any case, when a message is finally returned to the calling process, frompid con-
tains the processid of the sender.

msgtest (buffer, maxsize, &frompid)
char *bufier;
int maxsize, frompid;

The msgrest function performs like the msgrecy function, except that the process’s execution is
not suspended if a satisfactory message is not already on the queue.

Special Note. The question of whether or not to include a timing facility in the msgrecv function
has been subject to a certain amount of controversy. The recent addition of alarm and pause to
the UNIX programmer’s repertoire has made asynchronous timing much more convenient than
in the past. Therefore, users wishing to limit the sleep time that is possible in msgrecv should
utilize the alarm-pause facility.

Returns. All of these C functions return a -1 on error, with the external variable errno contain-

ing the error number. The msgenab and msgdisab functions return zero when successful, while
the msgsend, msgrecv, and msgtest functions return the number of bytes sent or received, as ap-

propriate. In addition, the argument frompid in the msgrecv and msgtest functions contains the .

processid of the message’s sender.

4.4. Rules of the Road

A process may not send a message to a non-existent process, to a process that has not enabled
message reception, or to a process that has enabled messages, but has not included the sender
in the class of processes eligible to send it messages.

Super-user may send messages to any process that has enabied message reception.
T he effective userid and groupid will be used to determine if a process is eligible to send a mes-
'sage to another.

It is erroneous for a receiving process to wait for a message (msgrecv) from a non-existent or
zombie process.

Message disabling (msgdisab) is implicit when a process terminates. Any unreceived messages
on the message queue.are flushed when a process disables message reception.

When a message being placed in a receiver’s buffer exceeds the buffer size (maxsize), it will be
truncated. A special case of this is that a process may request a zero length message which
causes the first message in the queue to be flushed.

There is a system imposed limitation on the maximum allowable message length and the max-
imum number of unreceived messages that may reside in 2 message queue. .

13

When a process is roadblocked for a message, it sleeps at positive priority, so that signals (and
events) may be captured in a timely fashion.

-

A process’s message queue is not inherited across fork or exec.

A process may send a message to itself if it is so inclined, but it may not wait for a message
from itself.

5. Events

S.1. Synopsis

The event facility permils processes to exchange user defined timing signals. The actual
mechanics of sending an event signal are similar to sending a message, insofar as the sending
process is concerned. The sender specifies an eight bit event pattern and the processid of the
target process. Logically, each bit in the pattern is viewed as representing some event that is
meaningful to the sender and receiver. Before an event may be sent, however, the receiving
process must have enabled event reception and included the sender in the class of processes
that are eligible to send it events. Assuming that these prerequisites are met, the event pattern
is ored with the recipient’s event word. The sender is then at liberty to continue execution.

There are two courses of action available to a process that has already enabled event reception
and wishes to determine when a particular event occurs. It may choose to wait for one or more
significant events, in which case it invokes the appropriate system call and indicates the awaited
event(s) by providing an event mask. The mask is nothing more than a bit map of the
event(s) in which it is interested. If the process’s event word has already been posted with one
of the desired events (that is, if the oring of the event word and event mask is not zero), the
process continues execution. However, if none of the necessary events have been posted, the
process is roadblocked until one of them occurs. The other option available to the process is to
catch significant events asynchronously. To do this, the process specifies a mask and the ad-
dress of a function in the user’s process. The process then continues execution, but when one
of the desired events occurs, control is given to the indicated function. This allows processes to
catch events in a manner analogous to the way a signal is caught. .

Each process that enables events has an event word for the posting of events by other
processes. The low eight bits of that word are available to the process for defining its own
events. The remaining eight bits are reserved for system defined events. At present there are
only two such events: death of a child process and receipt of a message on the message queue.
“The techniques described for learning of event occurrence are the same for both the user
defined and the system defined events.

5.2. Assembler Interface.
Call.

event = 40.; not in assembler
sys event; function; pattern; addr

The low byte of the argument function determines the event request type. The permissible
values are as follows.

0 Event reception is enabled for the calling process. No events
may be posted for the process until this is done. The high byte
of function designates the class of processes that may post
events for this process: 0 for anyone (no restriction), 1 for
same userid only, and 2 for same groupid only.

14

1 Event reception for the process is disabled. No more events
for this process may be posted, and any pending events are lost.

2 The event pattern specified is sent to the designated process.

The execution of the process is suspended until one of the
events indicated in the event mask is posted. If one has al-
ready occurred, return is immediate.

4 A function and event mask are defined to the system. The
process is then free to continue execution. When one of the
designated events is posted, the user’s event handling function
is given control.

The contents of the argument pattern depend on what operation is being requested. When
sending an event, the low byte of this argument is the event pattern being sent. When a pro-
cess is calching events, cither synchronously or asynchronously, this argument contains the
event mask that informs-the system of which events are of interest.

Likewise, the contents of addr depend on the context of the system call. When sending an
event, this argument contains the processid of the destination process. If the request is to
define an event catching function, addr specifies the address of that function.

The argument partern is not used when enabling or disabling events. The argument addr is not
used when enabling or disabling events or when waiting for a significant event 1o happen.

Retwrns. If any request is unsuccessful, then the error bit (c-bit) is set, and r0 contains the er-
ror number. When the operations of enabling or disabling events or sending an event are suc-
cessful, r0 is always zero. When an event is awaited and occurs, r0 contains the event word.
The address of the previously defined event handling function (zero if there was none) is re-
turned in r0 when such a function is being defined.

Special Notes. When a significant event is detected synchronously (the await event operation),
the complete contents of the event word are returned to the process (in r0) and the event word
and event mask are cleared. It is left as an exercise for the user to determine which particular
event(s) in the mask occurred.

In asynchronous event detection, the complete contents of the event word are made available
to the event catching function by placing them on the user’s stack. The return from the func-
tion is accomplished by popping this word from the stack and executing a RTI instruction.
Catching an event asynchronously clears the event word, event mask, and the address of the
event catching routine. The function must be redeclared if future events are to be caught asyn-
chronously.

5.3. C Interface
Calls.

enabev(permission)

int permission;
Event reception is enabled by the enabev function. No events may be sent to the process be-
fore this is done. The permission stipulates who is eligible to send events to this process: 0 for
anyone, 1 for same userid only, and 2 for same groupid only.

disabev()

The disabev function disables event reception for the invoking process. All pending events are
lost.

15

sendev(topid, event)

int topid, event:
The event pattern specified in the low byte of event is sent to process fopid. The receiving pro-
cess must have previously enabled event reception and included the sender in the class of
processes eligible to send it events.

await(mask)

int mask;
The calling process is roadblocked until one of the events specified in mask occurs. Return is
immediate if one has already been posted. Processes wishing 1o limit the length of their sleep
should avail themselves of the alarm and pause facilities that are now available on standard
UNIX. ;

event{mask, func)
int mask, (*func)();

The function evenr defines the address of a function firnc that is to receive control when one of
the events indicated in mask is posted. This call must be reissued after a significant event oc-
curs if future events are also to be caught asynchronously. The complete contents of the event
word are passed to the event handling function func as an argument:

func(eventword)
int eventword;

Returns. A -1 (not just negative) return from any of these functions indicates an error; the er-
ror number is contained in the external variable errno. A return of zero from the enabev, disa-
bev, or sendev functions indicates success. The awair function returns the complete contents of
the event word. For the event function, the address of the previously defined event handling
function (zero if none) is returned on success (this function fails if event processing has not
been enabled).

5.4. Rules of the Road

A process may not send events to a process that has not enabled them or included the sender
in the class of processes to which it is willing to listen.

Super-user may send events to any process that has enabled them.
The effective userid and groupid are used to determine if a process may send events to another.

A disabev is implicit when a process terminates. Thus, events may not be senat to non-existent
processes.

Event processing is not inherited across fork or exec.

If a process is catching both signals and events asynchronously and both occur, the signal han-
dling takes precedence. ' : :

If an event function is followed by an await function, the effect of the former is negated.

Waiting for a significant event to occur (await) is done at a positive priority, so that signals sent
to the process may be caught in a timely fashion.

16

6. Shared Memory

6.1. Synopsis

The shared memory facility allows cooperating processes 10 share portions of physical memory.
This is the fastest method of data exchange between processcs. Each shared memory segment
requires a hardware segmentation register. Thus, if the user process does not have separate in-
struction (1) and data (D) spaces. at most six segments may be shared. The maximum seg-
ment length is 4K words. Synchronization of processes sharing memory is left as an exercise
for the user; other interprocess communication facilities, such as semaphores or events, may be
utilized for this purpose.

The first step in establishing a shared memory segment is the allocation of the segment. This
allocation is done by only one of the cooperating processes. The process is advised of the seg-
ment descriptor assigned to the segment by the system: all other processes wishing to share the
segment then reference this descriptor when making their requests to share the memory. It
may be noted in passing that the segment descriptor is in no way related to the actual segmen-
tation register used to establish access to the segment. Two permissions are associated with
each segment when it is allocated: a software permission and a hardware permission. The form-
er, as with other interprocess communication facilities, delineates the class of processes that are
allowed to share the segment. The latter is the actual permission used in the hardware segmen-
tation register when a sharing process establishes access. These permissions are no access, read
only, or read/write. The system always chooses a process’s first available segmentation register
when setting up a shared memory segment; the user has no direct control over register choice.

Once the segment is allocated, other processes may request sharing. Access to all or just a por-
tion of the segment may be requested. Thus, it i5 possible to subdivide a shared memory seg-
ment in such a manner that processes are hardware protected from encroachment by other
processes using another portion of the same segment.

Both permissions associated with a shared memory segment remain in effect throughout the
segment’s existence, even if it has been freed by the original allocator. The shared segment it-
self exists as long as any process is attached to it; once it is deallocated by all sharing processes,
the memory is returned to the system for reallocation.

6.2. Assembler Interface
Cali,

maus = 49.; not in assembler
sys maus; function; ptraddr; size; arg4

The low byte of the argument function is used to specify the request type. The permissible
values are as follows. ;

0 A shared memory segment of the requested size is allocated
and assigned the indicated.permissions. The high byte of finc-
tion stipulates the class of users that may share the allocated
segment. The software permissions are 0 for anyone (no res-
triction), 1 for same userid only, and 2 for same groupid only.

1 The shared memory segment whose segment descriptor is con-
tained in r0 is disassociated (freed) from the caliing process.

2 The process’s segmentation registers are set up so that a seg-
ment previously allocated by another process may be accessed.
The desired segment’s descriptor must be in r0. Of course, the
requesting process must have the proper software permission
before this is done.

.

~

~

17

The virtual address to be used by the process in accessing the shared segment is placed in the
word addressed by the prraddr argument.

The size argument is used, when initially allocating a shared memory segment, to specnfy the
length, in bytes, of the segment. The system will round this up to a multiple of 64 bytes il it is
not already so. When requesting access to a previously allocated segment, size indicates how
much of the segment is to be made accessible to the process.

Argd’s use depends on the request type. When a segment is initially being allocated, it is used
to specify the hardware access permission that will be given to other processes that use the seg-
ment: 0 for no access, 2 for read only, and 6 for read/write. If, on the other hand, the request
is to establish access to a previously allocated segment, arg4 indicates the offset, in bytes,
within the segment where access is to begin.

The arguments ptraddr, size, and argd4 are ignored when the invoking process's request is for
disassociation with a segment.

It should be noted that when a shared segment connection is established for a process, the actu-
al access granted may be somewhat at odds with the requested offset and size. In particular, be-
cause the segmentation registers only permit access to memory in 64 byte multiples, the value
for argd (offset) and size may need to be rounded, respectively, down and up, so that the
desired portion of the segment is enclosed.

Returns. For unsuccessful requests, the error bit {c-bit) is set and the error number is in rO If
the request is for initial allocation of a segment, the segment’s descriptor is returned in 0. In
successful requests to share a previously allocated segment or to free a shared segment, zero is
returned in r0.

6.3. C Interface
Calls.

getmem(&ptr, size, hwperm, swperm)
char *ptr;
int size, hwperm, swperm;

A shareable segment size bytes long is allocated by using the genmem function. The actual
length of the segment is size rounded to the next 64 byte multiple. Size may not exceed 8192
bytes. The virtual address that is to be used in referencing this memory is placed in ptr. Only
processes that are in the class defined by swperm may share this memory. The permissible
classes are 0 for anyone (no restriction), ! for same userid only, and 2 for same groupid only.
Other processes sharing this segment will be assigned the hardware access permission stated in
hwperm: 0 for no access, 2 for read only, or 6 for read/write.

freemem (segd)
int segd;

The invoking process disassociates itself from the shared memory segment with descriptor segd.

sharemem (&ptr, segd, offset, size)
char *ptr;
int segd, offset, size;

A process gains access to the previously allocated shared memory segment segd by using the
sharemem function. If access is granted, the variable ptr will contain the virtual address to be
used in accessing the segment. The process will have access to size bytes of the segment, start-
ing at offser within it. In actuality, because of PDP-11 architecture, access will start at offser
rounded down to a 64 byte boundary, and will extend to offser+size rounded up to a 64 byte
boundary.

RS

- e—

crm e - e

- ..

-~

18

Rewrns. A return of -1 from any of these functions indiciate failure; the crror number is con-
tained in the external variable errno. The gemmem function returns the segment descriptor of
the allocaled segment when successful, while freemem and sharemem return zero.

6.4. Rules of the Road .
All of a process’s shared segments are freed when the process terminates.

It is erroneous to attempt 10 allocate a shared segment larger than 8192 bytes. Likewise, in at-
tempting to share a segment, gffser+size may not exceed the segment’s length.

Shared segments are inherited across fork, but not across exec.
The first available segmentation register is used when a process allocates or shares a segment.

The allocator of a shared memory segment is given read/write permission to it. Other sharing.

processes are given the hardware access permission stipulated by the allocator.

Super-user is given access permission to share any segment. The hardware permission for the
segment may not be overridden, however. ‘

1

Conclusion

A functional description for a set of UNIX interprocess communication facilities has been
presented. The actual implementation and testing is, of course, the next step. Any UNIX pro-
ject that would like to acquire and test a prerelease version of any (or all) of these new features

on a friendly user basis is encouraged to contact the author.
A . ;
)’k“w(_‘m

. B. Brandt

MH-8234-rbb-roff

!

(R

