= - //03

-~ | :
Bell Laboratories ~ Cover Sheet for Technical Memorandum

- The information contained herein is for the use of employees of Bell Laboratories and 1s not for publication. (See GF! 13.9-3)

Title- An Algorithm for Structuring Flowgraphs Date- May 14, 1976

T™M- 76-1271-3
Other Keywords- Structured Programming

~
Author Location i Extension Charging Case- 39199
Brenda S. Baker MH 2C-514 6503 Filing Case- 39199-11

ABSTRACT

This paper describes an algorithm which transforms a flowgraph into a
program containing if then else and repeat (do forever) statements. The pro-
gram appears natural because these statements are used according to common
programming practices. Goto statements are generated when no other available

p—_— control construct describes the flow of control. Several theorems are presented
to show that the program generated by the algorithm has desirable properties.

The algorithm has been implemented in a program called Struct, which
has been described in a separate memorandum. Struct rewrites Fortran pro-
grams using constructs such as while, repeat, and if then else statements. The
resulting programs are dramatically more readable than their Fortran counter-

parts.
~ :
-~~~
=~ Pages Text 20 Other 5 Total 25
No. Figures 2 No. Tables 0 No. Refs. 18
E-1932-U (6-73) SEL REVERSE SIDE FOR DISTRIBUTION LIST

May 14, 1976

BELL TELEPBONE LABORATORIES, INC.

COMPLETE MEMORANDUM TO
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR

EACH ADDITIONAL FILING

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

>AHO,ALFRED V
<BAKER, BRENDA S
<BECKER,KICHARD A
<CHEN, STEPHEN
<CHERRY,LORINDA L
<FLEISCHER,H I
<FRASER,A4 G
<GOLDSTEIN,A JAY
<GRAHAM,R L
<GUTHERY,S B
<HAMILTON,PATRICIA A
<HANNAY,N B
<JOHNSON, STEPHEN C
<KEESE,W M
<KERNIGHAN, 3RIAN W
<LUDERER,GOTTFRIED W R
<MARANZANO,J F
<MARKY,GERALDINE A
+MC DONALD,H S
<MC GILL,R
<MORGAN, SAMUEL P
<0SSANNA,J FpJdR
+PRIM,R C
<RALEIGH,T M
<RIDDLE,GUY G
<SCHLEGEL,C T
<THOMSON,MAJA-LISA
<WALFORD,ROBERT B
<YAMIN, ELAINE E

29 NAMES

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING
CASE

ACKERMAN,A FRANK
AHRENS ,HAINER B
ALCALAY,D

AMORY , ROBERT W
AMRON, IRVING
ANDERSON, KATHRYN J
ANDERSON,L G
ANDERSON, MILTON M
ARNDT,DENNIS L

+ NAMED BY AUTHOR

> CITED AS REFERENCE

COVER SHEET ONLY TO

ARNOLD, GEORGE W
ARNOLD, S L
ARNOLD, THOMAS F
ATAL, BISHNU S
BASEIL, RICHARD J
BAUER, HELEN A
BAUGH,C R
BERGLAND,G D
BERNSTEIN, L
BEYER,JEAN-DAVID
BIANCHI,M H
BICKFORD,NEIL B
BILOWOS,R M
BIRCHALL,R d
BIREN,IRMA B
BISHOP, VERONICA L
BLINN,J C
BLUM, MARION
BLZ,JOE
BODEN,F J
BONANNI,L E
BOURNE, STEPHEN R
BOWERS,JERRY L
BOWYER, L RAY
BOYCE,W M
BROEK,H W
BROWN,W R
<BROWN,W STANLEY
BULFER,A F
BUSCH, KENNETH J
BUTLER,D E
BYRNE, EDWARD R
<BZOWY,D
CABLE,GORDON G,JR
CALDWELL,W NEAL
<CANADAY,RUDD H
CARK, BARBKA L
CASPERS, BARBARA E
CAVINESS,JOHN D
CHAI,D T
CHAMBERS, B C
CHAMBERS,J M
CHAPPELL,S G
CHEN, E
CHRIST,C W,JR
CLAYTON,D P
COATES, KAREN E
COBEN, ROBERT M
<COLE,LOUIS M
COLE, MARILYN O
COLTON, JOHN R
CONRNERS, RONALD R
COOK, ROBERT W
COOPER,ARTHUR E
COPP, DAVID H
CORNELL,R G
CRAGUN, DONALD W
CRAWFORD,JOHN R
CRUME,L L
DAVIDSON,CHARLES LEWIS
DAVIS,R DREW
DE GRAAF,D A

< REQUESTED BY READEK

.

DISTRIBUTION
(KEFEK GEI 13.9-3)

COVER SHEET ONLY TO

DESENDORF, JUDITE L
DEUTSCH, DAVID N
DI GIACOMOD,J &
DICKMAN, EEKNARD N
DIETZEL,K KOBEKI
DIMMICK,JAHES ©
DOLOTTA,T &
DONNELLY, MAKRGARET #
DOWDEN, LOUGLAS 2
DKAKE, LILLIAN
DRISCOLL, ¥ J

D* ANDREA,LUULSE A
DWYER,T J
EIGEN,D J
EITELBACH, DAVID L
ELLIOTT,6 L
ELY,T C
ESSERMAN, ALAN i
ESTOCK,RICHARD &
EVENSON, £ K
EVERHART,J R
FABISCH,M P
FARGO,G A,JR
FEDER,J
FELS,ALLEN M
FISCHER, HERBERT B
FLANDRENA, R
FORTNEY,V J
FOUGHT,E T
FOUNTOUKIDIS, A
FOX, PHYLLIS A
POY,J C

FRANK, AMALIE J
FRANK, KUDOLPE J
FREEMAN,K G
FROST,H BONNELL
FULTON,A W
GALLANT,R J
GARCIA,R F
GAREY, MICHALL R
<GATES,G W

GAY, FRANCLS A
GEPNER,JAMES K
GEYLING,} T
.GIBB, KENNE1HE R
<GILLETTE, DELN
GIMPEL,J ¥
GITHENS,J A
GLASSER, ALAN L
GLUCK,F 5
<GNANADESLKAN, R
GOLABEK, RUTH I
<GORMAN,J E
GORTON, L R
GRAVEMAN, K F
GRAYSON,C F,JR
GUIDI,PIER V
HAFER,Z H
HAHN,JAMES k,Jk
HAIGHT,k C
HALL,ANDKEW 0, JK
HALL,MILTON $,JR

COVER SHEET ONLY TO

HALL,WILLIAM S
HAMILTON,LINDA L
HANNAH,JUDY R

<HARKNESS,CAROL J

HARRISON,N
HARTMAN,W H
HARUTA, X
HAUSE,A DICKSON

<HAWKINS,DONALD T

HAWKINS ,RICHARD B
HEKBST, ROBERT T
ASRGENHAN,C B
HERMAN, KENNETH M
HEROLD,J W

YESS, MILTON S
HOLTMAN,JAMES P
HONIG,W L
HORNBACH, THOMAS S
HOWARD, PHYLLIS A
BUYT,WILLIAM F

HO, JENNY
HUNNICUTT,C F
HUPKA , FLORENCE

<HYMAN, BRUCE

IZRLEY,W H
IFFLAND,FREDERICK C
IPPOLITI,O D
IRVINZ, ¥ M
IVIE,EVAN L
JACKOWSKI,D J
JACOBS,H S

<JENSEN, PAUL D

JESSOP,W H
JOHNSON,D S

<JUDICE,C N

JULESZ, BELA

<KAlSER,J F

KANE,J RICHARD
KANE,JOHN M
KAPLAN, FRANK
KAPLAN,MICHRAEL M
KAUFMAN,LARRY S
KAYEL,R G

KFELLY,L J
KeMP,CHARLES W
KZNNEDY ,ROBERT A
KERR,HOWARD A
KZRTZ,D R
KILLMEk,JOHN C,JR
KLAPMAN,RICHARD N
KLEBER,J J
KNUDSEN,DONALD B
KORNEGAY,R L
KuS#AN, ROBERT A
KREIDER ,DANIEL M

LAUTENBACH, DEBOKAH A

LAYTON,H J,JR
LESSEK,P V
LEVINSON, EDWARD
LeWIS,C P
LICWINKO,J S
LIEBERT,T A

(NAMES WITHOUT PREFIX

WERE SELECTED USING THE AUTHOR®S SUBJECT OR ORGANIZATIONAL SPECIFICATICN AS GIVEN BELOW)

Y

TM-76-1271-3

COVER SHEET ONLY TO

LINDERMAN,JOBN P
LIND,R O

LIN,S

<LOGAN, ELVIRA G
LOIKITS.E A
LOMUTO, N

LOoYD,D G
LUTZ,KENNETH J

<LYCKLAMA A NYEROLT, H

LYONsS,TERRY G
MADDEN, DOL.OREE M
MAHLER,GLENN R
MALCOLM,J A
MALLOWS, COLIN L
MARSH, MERFILL
MASEEY,J R

MATULIONIS, PATRICIA R

MAUNSELL,H J
MC CABE,P S
MC CUNE,R F
MC FOWEN,J R
MC GOMEGAL,CAROL A

MC LAUGHLIN, CHARLES D

MC MULLEN,E C
MC RAE,JERM E
MC SKIMIN,J R
<MC TIGUE,GERALD ©

MCCULLOUGH,RICHARD H

MCILROY,M DOUGLAS
MENIST,DAVID B
MENNINGER,R E
METZ,R F
MEYERS,MICHAEL N
MEYER,D E
MILLEK, ALAN H
MILLER,GERALD L
MILLEK,STEVEN G
MILLS, ARLINE D
MILLS, CRAIG A
MILNE,D C
MOLINELLI,JORN J
MOLTA,J W
MORGAN,DENNIS J
MORRIS, ROFPERT
MOKR, PHILLIP L
MUHA, RALPH
<MUSA,JOHN D
NAU,CARL DAVID
NEHRLICH,W R
NELSON,D P
NELSON,L H
NELSON,NILS~-PFETER
<NINKE,WILLIAM H
RORTON,H O
NOWITZ,D A
O SHEA,W T
OBEREK,ERIC
OLSEN,RONALD G
OPFERMAN,D C
ORCHARD,R A
O°NEIL,F J
0° SULLIVAN,JOHN A

397 TOTAL

~

”~

o~

MERCURY SPECIFICATION..ceccsctacscssnsssceseansesomsosrsssssccnnsoscsssccsonseressoacseccsncsscsnssrcresssscnccccacencccntscnsctnssee

COMPLETE MEMO TO:
127-sup

COVER SHEET TO:

12-DIR 13-DiIR

127

COPLSP = SPECIAL-PURPOSE COMPUTER PROSRAMMING LANGUAGES AND PROCESSORS

COTC#

= COMPUTING/THEORY/SURVEY PAPERS ONLY

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
2. FOLD THIS SHEET IN HALF WITE THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT.

USE NO ENVELOPE.

BAKEK,B §

MH 2C514

TM-76-1271-3
TOTAL PAGES

26

PLEAGLE SEND A CUMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE

NO ENVELOPE WILL BE NEELED IF YOU SIMPLY STAPLE THIS COVER
SHEET TO THE COMPLETE- COPY.
iF COPIES ARE NO LONGEK AVAILABLE PLEASE FORWARD THIS

REQUEST TC THE CORRESPORDENCE FILES.

~

a

o

BELL TELEPHONE LABORATORIES, INC.

COVER SHEET ONLY TO

OWENS, GENE L
PARKER,JAMES C,JK
PASCHBURG, RICHARD d
PECK,W DOUGLAS
PENNINO,THOMAS P
PETERSON, RALPH W
PETERSON,T G
PFISTER,R G
PILCH,J P
PILLA,M A
<PINSON,ELLIOT N
PIRZ,FRANK C
PITTS,C J
POLLAK,H O
POLONSKY, IVAN P
POLUCKI,S R
PRICE,R
QUINN,MARGARET E
RAACK,G A
RABINER,L R
<RAFSKY,L C

REED,S C

REGO,R A
REHERT,ALLEN F
REID,R E,JR
RHODES, STEVE
KICHARDS,GARY F
RIDDLEBERGER,C O
RIGAL,E X
RINALDY,E A
ROBERTS ,ALLEN W
ROBERTS,CHARLES 5
ROCHKIND, M
ROCHKIND, MARC J
KODRIGUEZ, ERNESTO J
ROEDIGER,GARY A
ROEHRIG,R S°
ROOME,W D
RGSENBLUM, M J
ROSLER, LAWRENCE
ROSS,B H

ROVEGNO, HELEN D
RYDER, JONATHAN L
SAAD, 4 W

SAND, DOUGLAS S
SATZ,LAWRENCE R
SCHATZEL,R
SCHONBRUN, STANLEY
SCHRASS ,JOHN J
SCHREIBER,A L
SCHROEDER, MANFRED R
<SCHWENKER, JOHN E
<SCRIBNER,N M
SEAGREN,M K
SEARS,E R
SEERY,JUDITH B
SEKINO,W T
SEMMELMAN,C L
SEREN,R J
SHANK,JERE C
SHANK,R A

SHAO,T S
SHARMA,D K
SHICHMAN, HAROLD
SHIPLEY,EDWARD N
SHOKTER,J W
SILVERBERG,MICHAEL H
SINGH,R P
SINOWITZ,NORMAN R
SLANA,M F
SLAUGh,JOHN H
<SLOANE,N J A
SMITH, DALE W
SMITH,R MCKEE
SO,H C

SPIRES,R J
SPRING,PETER G
STANZIONE,DAN C
STEIGERWALT,R A
STEVENSON,D E
STONE, RICHARD C,JR
STROHECKER,CARY A
STUBBLEFIELD,R W
<STUCK,B W
<STURMAN,JOEL N

COVER SHEET ONLY TO

STUTZKE,MARION E
SWANSON, RONALD H
TAGUE, BERKLEY A
TAIT,G RODNEY
TAMMARU, ENN
TANG, ¥

TARRANT,S R
TARTARONE, STUART A
THOMAS, PHYLLIS J
THOMPSON, K
TRACY, CAROLINE E

<TUKEY,JOHN W

TUTELMAN,DAVID M
USAS,ALAN M
VOGEL,DENNIS R
VOGEL,GERALD C
VI{SSOTSKY,V A
WAGNER, BRUCE D
WAGNER,DAVID JON
WALSH,THOMAS J
WANDZILAK, PHILIP D
WARNER,JACK L
WASSERMAN, ZELDA
WATKINS,G T,4TH
WATSON,D S
WEBBER, SUSAN A
WEZBER, THOMAS A
WEHR, LARRY A
WEISS,C D
WEZLLNER,G J,JR
WEST,T R
WEXELBLAT,R L
WEYTHMAN, JAMES E
WdIPPLE,JOHN H
Wid{ITEHEAD, LONNIE D,JR
WILLIAMS,JOHN G
WILLIAMS,R D
WILSON,D E
WILSON,J H

<WILSON,M P

WOLFE, ROBERT M
WOODRUFF, JOHN L
YACOBELLIS,ROBERT H
YAFFEY,C L
YAMIN, 4
YATES,G H
YEN,T C
YOUNGS,E A
2280, T J
2ISLIS, PAUL M
ZYSHUAN,G 1

397 NAMES

DISTRILUTION CONTINUED
(REFER GE1 13.9-3)

T™M-76=-1271-3

Bell Laboratories

Subicct: An Algorithm for Structuring Flowgraphs date: May 14, 1976
Casc- 39199 -- File- 39199.11 from: Brenda S. Baker
™: 76-1271-3

MEMORANDUM FOR FILE

1. Introduction

Structured programming emphasizes programming language constructs such as while
loops. until loops, and if then else statements. Properly used. these constructs make oc-
currences of loops and branching of control clear. They are preferable to goto stalements.
which tend to obscure the flow of control and make programs hard to understand [DDH, DU
This paper describes an algorithm which transforms a flowgraph into a program written using
repeat (do forever) and if then else statements. The goal of the algorithm is to produce under-
standable programs, rather than to avoid the use of goto statements entirely. Goto statements
are generated when there is no better way to describe the flow of control.

A number of techniques for eliminating goto statements from programs have been previ-
ously published [AM. BJ. BS. COO, KF, KOS, PKT]. These include adding control variables,
copying code, creating subroutines, and adding exira levels of repeat statements in conjunction
with multi-level break statements. Each of these methods may be appropriate in some cases.
However, these technigues do not necessarily produce clear flow of control {KN]. Rather than
try to determine when these techniques are appropriate. the algorithm of this paper does not
use them.

Instead, the structuring algorithm is based on some principles aboul how repeat and if
then else statements should be used for best readability. The structuring algorithm and these
principles evolved together. That is. applving earlier versions of the algorithm led to
refinements of the principles which led in turn to refinements in the algorithm. The principles
are discussed at length in [BAK]. A program which satisfies the principles is called properly
nested. In a properly nested progrum, repeats reflect iteration in the program, and if then else
statements reflect branching and merging of control in a reasonable way. The algorithm
ransforms a flowgraph into a properly nested program. in which the predicates and straight
line code statements are the same as those of the flowgraph in both number and execution ord-
er. In general, the program may contain goto statements. However. the goto statements
occur only where no other available control construct describes the flow of control.

Section 2 introduces flowgraphs and a simple structured language SL. Some simple ideas
concerning the use of repeat and if then else statements are discussed in Section 3 as motiva-
tion for the algorithm. Section 4 describes the aigorithm as restricted to "reducible” flowgraphs,
i.e. flowgraphs in which euch loop can be entered in only one place. The algorithm is extended
in Secuion S to include irreducible flowgraphs. Section 6 proves that the algorithm produces a
properly nested program. Section 7 applies some results from {BAK] concerning properly nest-
ed programs to show that any properly nested program for a flowgraph must be similar in form
to the one generated by the algorithm. Moreover. if a flowgraph has a properly nested program
with no gote statements. the algorithm generates one.

Section 8 discusses briefly the application of the algorithm (o structuring real programs.
The algorithm has been implemented in a program called Struer [BAK75], which translates For-
tran programs into Ratfor [KER], an extended Fortran language which includes constructs such
as if then else and while. The structured programs gencrated by Struct are much more read-
able than their Fortran counterparts. 1tis usually not obvious that they are mechanically gen-
crated, since the structuring principles cause them to imitate common programming practice.
An cxample of a program structured by Struct is included in Appendix B.

De Balbine [BAL74, BAL75] has written a program called the "structuring engine” which
also claims to structure Fortran. His algorithm has not been published for comparison with the
algorithm of this paper. However, the published output from the structuring engine appears to
follow some ol the same basic principles as the algorithm of this paper. A major difference is
that the structuring engine avoids goto statements by creating a kind of argumentless subrou-
tinc. It is not clear from the published examples that the artificially crealed subroutines im-
prove rcadability.

The structuring algorithm presented in this paper is proposed as a tool for the mainte-
nance of Fortran programs. One of the problems in dealing with Fortran programs is that the
lack of convenient control structures makes programs hard 1o understand. Extended Fortran
languages such as Ratfor have been developed so thal new programs may be written using con-
venient control structures and translated by a preprocessor lo Fortran for compilation. But
many existing programs were written in Fortran without the benefit of preprocessors. Thesc
programs become dramatically more understandable when they are structured mechanically.
Therefore, modification and debugging of these programs is facilitated by structuring.

2. Definitions.

This section defines a simple structured language SL. the execution order of SL pro-
grams, and flowgraphs.

SL contains optionally labelled statements ol the following lforms:
(1) straight line code (sle) statements (i.c. assignment, read. wrile, elc.),
(2) stop.
(3) goto L., where L is a lubel,

(4) if (p) then {S1] else [S2}, where S1 and 82 arc (possibly null) sequences of optionally la-
belled SL statements, and p is a predicate,

(5) repeat {S}, where S is a non-null sequence of optionally labelled SL statements.
(6) break (i), where i is a positive integer,*
(7) next(i), where i is a positive integer.*

An SL program is a nonnull sequence of SL statements, such that each label in a goto state-
ment labels exactly one statement in the program. Henceforth, program means SL program,
except where otherwise noted.

Goto, next(i), stop, and break (i) statements are referred to as branching statements: oth-
er statements are nonbranching statements. Associated with a program is an "exit" which is
reached when a stop is executed, or when control reaches the bottom of the program. Two
statements are ar the same level of nesting if neither is enclosed in another statement, or if the
sume statement is the smallest statement enclosing each one. The exit of the program is out-
side all levels of nesting by definition. The innermost repeat (if any) enclosing a stalement is

*Muliilevel break and next statements are included because they happen 1o be casily identificd by the struc-
turing algorithm. They are not fundamental to the algorithm: the algorithm has been implemented in struer
with nice results using only single level break and next statements.

—~——

its lirst enclosing repeat. For i> 1, the Ilh enclosing repeat is the repeat (if any) enclosing the
(r—1D)st enclosing repeat.

Statements of types 1-4 are interpreted in the standard way. Repeat {S) causes the se-
quence S to be iterated until a step is executed, or until a goto, break (i), or next(i) (i greater
than 1) causes a jump out of the repeat statement. Break (i) causes a jump to the stalement
following the ith enclosing repeat statement. Next(i) causes a jump to the next iteration of the
ith enclosing repeat stalement, that is, it is cquivalent to goto L, where L is a label added Gf
necessary) to the ith enclosing repeat.

For simplicity, no elseless if then statcment is provided, but its equivalent is oblained by
a null else clause. Also, more complex constructs such as while and until are not provided
since they can be expressed in terms of repeat, if then else, and break. For simplicity, return
is not included: it may be treated like stop (but separately) during structuring.

A flowgraph is a direcled graph with labelled nodes and arcs representing flow of control
between nodes. Euach node is either a straight line code (sle) node with one outarc, an exit
node with no outares, or an if node, with a "true" outarc and a "false” outarc. A flowgraph has
exuctly one exit node, and there is a path to it from every node in the flowgraph. One node of
the flowgraph is designated as the start node.

An SL program is flowgraphabie if every loop (created by means of repeat and/or goto
statements) includes either an sle or if statement. The possible computations performed by a
flowgraphable program / are determined by the flow of control between slc and if statements
and the exit of the program. This flow of control is described by a flowgraph COMPUTE (P)
which is obtained as follows from . For each sle or if statement in P, there is a corresponding
node in COMPUTE(P). In addition, there is a single exit node which represents the exit of
the program. There is an arc from node p to node ¢ if control can puss from statement pto g
without pussing through any other if or sle statement. The start node of COMPUTE(P) is the
node which corresponds to the first sle or if statement reached upon executing the program, or
the exit node if the exit of the program is reuched before any sle or if statement is executed.

Two flowgraphable SL programs P, and P, are equivalemt it COMPU TEW)=
COMPUTE(P,). Note that this is a stronger statement than merely requiring that the sct of
exceution paths be the sume. Il one program has two copies ol an sle statement whilc the oth-
er has only one, the programs may have identical sets of execution paths but are not cquivalent
by this definition. This delinition of equivalence was chosen because the algorithm of this pa-
per does not copy code.

A Nowgraphable SL program Pis a structuring of a flowgraph G it G=COMPUTE (P).

A loopin a flowgraph G is a path which begins and ends at the same node and includes at
least one arc. A cvele is a loop in which only the first node (which is the same as the last
node) occurs twice.

Finally, a flowgraph is reducible if every cycle in it can be entered in exactly one place, i.e
there is a node p in each cycle such that every path from the start node must reach p before
any other node in the cycle. A program 7’ is reducible it COMPUTLE (P) is reducible. Accord-
ing to Knuth[KN]}, most programs are reducible. The structuring of reducible lowgraphs is dis-
cussed in the next two sections. Irreducible flowgraphs (i.e. flowgraphs which are not reduci-
ble) are treated in Section 5.

3. Basic requirements for the algorithm

The goal of this paper is to present an algorithm which generates readable structured pro-
grams from flowgraphs. The first step in developing the algorithm is to determine some basic
properties a program must have 10 be readable. To keep the discussion simple, this section as-
sumes that the programs of interest are reducible. The ideas discussed in this section arc gen-
eralized in [BAK] as a set of principles for the use of repeat and if then else statements in
(reducible or irrequcible) programs. These principles are listed in their general form in Section
6.

First, repeat statements must reflect iteration in the program. Obviously, programs such
as the following should not be allowed.

repeat
{s=1
stop
)

But the following program is also poor because it gives the impression that the whole program
can be iterated.

repeat

L if (p)
1 code segment

stop

\

i

else
[x = f(x)

}

The iteration in this program is better represented by the following version.

repeat
{ if (p)
{ break(1)
]
]
else
[x = f(x)

\
I

code segment
stop

Thus a basic requirement is that every statement within a repeat should lead to an iteration of

the repeat.

Each if then else statement should reflect branching and merging of flow of control in the
program. In particular, a goto statement should not jump into the middle of a then or else
clause. Also, a statement should appear within a clause if it can be reached only from the
clause and is within the innermost repeat (if any) containing the clause. In particular, of the
following examples, (a) is reasonable, while (b) and (c) are not.

(a) if (p) then
{li=1
H
else
{i=2
)
y = £()
stop

(b) if (p) then
: [i=1
| goto 10
else
{ i=2
10 y = £(j)
;

stop

(c) if (p) then

1
10 y = §(§)

The above discussion is sufficient as a base from which to develop the algorithm. Obvi-
ously, the algorithm makes further decisions about the use of control constructs.

4. The structuring algorithm

This section presents the algorithm for structuring flowgraphs. To keep discussion simple,
this section assumes that the input flowgraph is reducible. The next section discusses adapta-
tions to the algorithm which enable it to handle irreducible programs in a reasonable way.

The input to the structuring algorithm is a flowgraph G in which every node is reached by
a path from the start node. The first step in structuring G is to locate the loops in G. Loops
are identified from a spanning tree which is constructed by a depth first search [HU74]. The
depth first search proceeds as follows.

Begin by visiling the start node of G and setting NUM 1o the number of nodes in the
flowgraph. When visiting a node m, do the following:

If node m has an arc 10 a node p not already visited, make p a child of m in the spanning
tree, and visit p next. Otherwise, number m with NUM, decrement NUM by 1, and re-
turn to visit the parent of m (if it exists) again.

A back arc is an arc from a node to itself or from a descendant 10 an ancestor in the spanning
tree: other arcs are forward arcs. If (p.q) is a back arc and p#=gq. there is a path from ¢ to p
consisting of edges from parent to child in the tree. This path and the back arc form a cycle in
G. Each node entered by one or more back arcs will become the first statement within a repeat
in the final program.

Let L be a list of the nodes of the graph ordered by the numbering assigned during the
depth first search. This list will be used to ensure that all gotos in the final program flow down-
ward on the page. Note that an arc (p.¢) is a back arc if and only if ¢ appears before p in L.
- Also, if (p.g) is a back arc, there is a path from ¢ to p which includes only nodes between g and
. pin L. ' :

Example. A flowgraph and the numbering of nodes produced by a depth first search are illus-
trated in Figure 1.

start Al = == ~=3B2

\ »HS- - =19 exit
vy.-
G1°

Figure 1. A flowgraph G and the numbering associaled with the depth first search, which traverses
“true” (left) urcs before “fulsc™ (right) arcs. Dashes indicate arcs in the spanning tree. The list

L=A.B.C.E.D.F.G.H.I.

At this point, the nodes which will become the first statements within repeats have been
determined. In particular, they are the nodes entered by back arcs. This information is encod-
ed in the flowgraph as follows. For each node n entered by a back arc. add a single repeat node
p- Replace each arc (¢.n1) by an arc (¢.p). and add an arc (p.n). Insert the repeat node p im-
mediately before » in L. Call the new graph the extension of G, EXT(G). The start node of
EXT(G) is defined 10 be the first node of L, which may be a repeat node rather than the start
node of G.

Note that the addition of the new nodes does not change the ordering of the nodes al-
ready in L. The definition of back are is extended 0 £YT(G) by defining an are (pg) in
EATEGY 1w be o baek are il ¢ precedes pin 1.

Example. Figure 2 shows the graph £V 7 (G) generated from the graph (ol Figure 1.

start J > A —>B

N
NGéH—-—)I exit .

Vigure 2. The gruph EXT(() generited from the graph G of Figure 1. The list
L=JA.B.CLED.FG.II

A repeat node pis the ficad of all loops and cycles which include p but no nodes preceding
pin Lo Al pis the head of a loop containing ¢, and p=Z¢, ¢ is in a foop il headed by g In the
linal program. the repeat statement corresponding to p will contain the statements correspond-
ing (0 nodes in loop tails headed by p. For each node ¢, the algorithm determines /114D (g),
which is the repeat node which will correspond to the smallest repeat cnclosing ¢ in the final
program. In particular, of the repeat nodes which are heads of loops containing ¢, HEAD(q) is
the closest one preceding ¢ in L. If no such node exists., HEAD(¢) is undefined. For con-
venienee, il /1EAD(g) is undefined, all nodes are said to be in the "loop tail" headed by
HE 1D), and this "loop tail” is considered Lo be the entire program. Also, if //EAD(p) and
114D) arc undefined, HEAD(p)= HEAD (¢) by delinition. Note that for a repeat node p.
HEAD(p) is either a different repeat node or is undefined. The repeat corresponding to p will
be nested within the repeat corresponding to H#EAD(p) in the final program.

Example. For the graph of Figure 2. //EAD(A)=HEAD(B)=J. For all other nodes p,
HEAD(p) is undefined.

To produce code from EXYT7(G). the algorithm needs to know which statements are reachable
from which others. For example, for the graph of Figure 2, it needs 1o know that nodes / and
(; can be reuached through both branches of (', so that neither / nor ¢ should be placed within
a clause of €.

Such branching and merging of control can be described by dommators in the Nowgraph
IAUL Node p dommates node ¢ if every path from the start node to node ¢ must pass through

node p. Node pis the immediate dominator of node ¢ if no other dominator of ¢ lies "closer" 10
¢ {that is, i cvery dominator of ¢ other than palso dominates p). Every node in the Nowgraph
exeept the start node is dominated by at least one node. the start node. Morcover, every node
except the start node has an immediate dominator. Lot DOM (p) denote the immediate domi-
nator of p,

Example. The dominators of the nodes in the graph of Figure 2 are as follows: DOM(J) is
undcelined, DOM(1)=J, DOM(B)=A. DOM(C)=8B, DOM (1)=1{, and the immediate domina-
tor of the other nodes is (.

For each node p, 17EAD and DOM are used to obtain a set FOLLOW (p) specifying nodes
which belong "after” p at the same level of nesting as p. For each if node p, define

FOLLOW (p)={q|q is entered by 2 or more forward arcs, p=DOM (¢), and
HEAD (p)=HEAD (¢))

lor cach repeat node p, define
FOLLOW (p)={q|HEAD(q)=HEAD(p) and DOM(q) is in a loop tail headed by p).

For cach sle node p, define

FOLLOW (p)={q|HHEAD(¢)=HEAD (p) and P=DOM (¢)).

Note that the sets FOLLOW (p) are pairwise disjoint, for all nodes p.

Every node is in & FOLLOW set except for the nodes which will correspond o the first
statements at cach level of nesting. Intuitively, FOLLOW (p) is the set of nonbranching state-
ments reachable from p which must follow £ at the same level of nesting as .

Example. For the graph of Vigure 2. FOLLOW sets are as follows. FOLLOW ()={C},
FOLLOWCD={B], FOLLOW (C)={F.G.01), FOLLOW (I1)=[1}, and all other FOLLOW sels
are emply.

A recursive procedurc getform generates the basic form of the structured program. That
is, getform delermines the nesting and order of nonbranching statements. Branching state-
ments are added later. Getform is called on the start node of EXT(G).

»

getform(n)
| if (n is an sic node) then
print the straight line code
else if (n is a repeat node with arc to nede q) then
{ print("repeat{")
call test(q)
| print("]")
else if (n is an if node with predicate r and a "true” arc to
node p and a "faise" arc to node q) then
| print("if (r) then {")
if (the "true” arc is a forward arc) then call test(p)
print ("} else |")
if (the “false” arc is a forward arc) then call test(q)
} print("}") ’
for each member q of FOLLOW (1) in order of appearance in L
call getform(q)

test(q)
{ if (q is not in any FOLLOW set) then

call getform(q)
]
]

Since the FOLLOW sets are pairwise disjoint, getform is called exactly once on each node in
EXT((U). The output from getform is called PF(G). the "program form" generated from G.

Example. getform generates the following from the graph of Figure 2:

repeat
{ A
if (B) then |}
else {}
1
i
if (C) then
{ if (D) then {}
else {)
)
else
{ if (E) then |}
‘ else {}
]

F
G
H

The above procedure is responsible for ensuring that the final program has the properties
discussed in the preceding section.

=10 -

The second part of the algorithm adds branching statements to PF(G) to represent the
flow of control in EXT(G). Some decisions must be made at this point as Lo how 10 use
branching statements. Obviously, a branching statement should not be used if deleting it does
not alter the flow of control. Branching statements are not needed in certain places in PF ()
because. the flow of control is already correct. The first part of the algorithm guarantees that
the first statement within a repeat is the node entered by an arc from the repeat, and that the
lirst statement within a clause of an if statement is the node entered by the appropriate arc of
the if. Thus, it remains 10 add branching statements (o correct the flow of control out ol some
sle statements and empty if clauses.

The simplest way of correcting the flow of control in PF(G) is to find every sle state-
ment and every empty if clause which passes control 10 the wrong point, and add appropriate
branching statements to correct the flow of control. However, it is desirable to make the algo-
rithm somewhat more sophisticated, so that it can generate code such as the following.

if (p)
i=1
}
else
(i

]
break (1)

The simple strategy mentioned above would put a break statement in each clause, rather than
the single break statement after the if statement. Instead, a reasonable convention is to place a
branching statement after any statement /such that control can pass out of the statement 10 ox-
actly one nonbranching statement ¢, and ¢ is not reached automatically without a branching
statement. The following definition is used by the algorithm 10 identify such statements. For
each node pin EXT(G), deline REACH (p) 10 be the sel consisting of all nodes ¢ entered by
ares from p or from nodes corresponding o stalements nested within p. such that ¢ does not
correspond 10 p or Lo a statement nested within p. (For this definition, recall that the exit node
corresponds to the exit of the progam which has been defined to be outside all levels of nesting
of statements.)

Example. For the graph G of Figure 2 and the code PF(G) of the preceding example., REACTH
sets are defined as follows: REACH(A)=|B), REACH(B)=|J.C. REACH(C)={F.¢).
REACH(D)= REACH(E)= {F.G), REACH(F)= REACH(G)= {11}, REACH(H)={1},
REACH ()=, REACH(J)={C).

Define a branching statement to be redundant if it passes control to the same statement
which would be reached from that point if the branching statement were deleted.

Branching statements are added to the program recursively from outer levels of nesting 1o
inner levels by calling the procedure addbranch(PF(G).G).

<11 -

addbranch(F,G) /*Fisa program minus branching Statements, G s a flowgraph */
{ compute REACH (p) for every nede p
if (F contains no nonbranching statements) then
add a statement "stop” to F
else
{ let p denote the first non

branching statement inF
call fixcontrol (p)

fixcontrol (p)
| if (REACH (p) contains a single node r) then
add the statement choeosebranch(p,r) after r unless
this statement would be redundant

if (p is a repeat statement whose body begins with a statement q) then
call fixcontrol (q)

else if (p is an if statement) then
[for each clause of p

{ if (the clause is empty) then

add the statement choosebranch (p,r) to the clause
unless this statement would be redundant
else if (the clause begins with a statement q) then
call fixcontrol (¢)
[
]
if (p is not the last nonbranching statement
at its level of nesting) then
call fixcontrol(q), where q

is the next nonbranching statement at
this level of nesting

choosebranch(p.r) /* select a branching statement to
| let n be the number of

for each i from 1 to n

{if (placing "break (i)" after p would pass control to r) then
return ("break (i)")

pass control from p to r */
repeat statements enclosing p

|
’

for each i from 1 ¢o n

if (ris the ith repeat enclosing p) then
return("next(i)")
if (r is the exit node) then
return("stop")
if (r has ne label) then

label r with a abe} L distinct from

all labels already in the program
return("goto L"), where L is the label of r
}

-12-

Note that the procedure choosebranch imposes a precedence order upon the possible branching
statements which might be used at each point. This precedence order has the desirable proper-
ty that it ensures that every branching stalement is reachable in the program (see Lemma 3).
This is not true for all precedence orders. For example, if break (i) is preferred to break (), i
> j. unrcachable break statements may be generated. Therefore, the algorithm allows break
statements to jump to other break statements.

When the above procedure is applied 1o the program form PF(G) generated by the first
part of the algorithm, the resulting program is called .1LG (G).

Example. For the flowgraph G of Figure 1. ALG(G * is the following.

repeat
{ A
if (B) then {}
else
{ break (1)
)
}
if (C) then
{ if (D)
{ goto 10
!
else {}
|
]
else :
[if (E) then |{}
else
{ goto 10

)
|
F
goto 20
10 G

20 H
stop

This example is not an impressive example ol a structured program. It was chosen because its
peculiarities illustrate most parts of the structuring algorithm.

5. Structuring irreducible flowgraphs

Since the decision has been made in this paper not to copy code, a program generated
from an irreducible flowgraph must contain a goto inlo one or more repeat statements. There-
fore, the problem is to find a reasonable way o treat goto statements which jump into repeat
statements. The choice made here is to try 1o make the program well-structured at a local lev-
el. In particular, the algorithm pretends that cach loop is entered at only one point, structures
the program accordingly, and adjusts the final flow of control to put the jumps into loops back
in. Thus, the algorithm can generate a program of the following form.

. $-‘

.13 -

if (p) then { goto 10 |

else {}
repeat
{ if(@then(j=1)
else
{
10 j =2

]
if (r) then {stop |
else {}

This program contains an ugly jump into an else clausc. However, this program is better struc-
tured within the repeat than the following program. in which the jump into the else clause is
avoided at the expense of an extra gote statement.

if (p) then {goto 10 }
else {}
repeat
{ if (q) then
' ti=1t
goto 20
}
else {}
10 j =2
20 if (r) then {stop }
else {}

A large example of an irreducible program generated by Struct appears in Appendix B.

The way the algorithm “pretends” that the flowgraph is reducible is to construct a reduci-
ble lowgraph REDUCE(EXT(G)) from the flowgraph EXT(G). and calculate dominators from
this reducible graph rather than from EXT(G).

Intwitively, the algorithm pretends that each arc entering a loop at a point other than its
- head enters the head instead. Let REDUCE(EXT(()) be a flowgraph obtained as follows from
EXT(G). U (p.q) is an arc, p=HEAD(¢), and p is not in a loop tail headed by HEAD (q).
the arc (p.q) is replaced in REDUCE(EXT(G)) by an arc (p.r), where ris the first repeat
node in L which is the head of a loop containing ¢ but not the head of any loop containing p.
The resulting graph REDUCE(EXT(G)) is reducible. Node p R-dominates node q if p dom-
inates ¢ in REDUCE(EXT(G)). Note that a repeat node p R-dominates each node in a loop
tail headed by p. For each node p, RDOM (p) is defined to be the immediate dominator of pin
the graph REDUCE(EXT(G)). Define an arc (p.q) in REDUCE(EXT(G)) to be a forward arc
if p<yq.

The description of the algorithm in Section 4 must be modified for the general case by us-
ing R-dominators rather than dominators in EXT(G). Also, in defining FOLLOW (p) for an if
node p, the reference to forward arcs must be to forward arcs in REDUCE(EXT(G)) rather
than to forward arcs in EXT(G). Note that if EXT(G) is reducible,
REDUCE(EXT(G))=EXT(G). Therefore, this general form of the algorithm behaves the
same on reducible flowgraphs as the basic algorithm of the preceding section.

- 14 -

6. Properties of ALG(G)

This section proves that the general algorithm of Section 5 produces a structuring of G,
and that this program ALG (G) has reasonable properties.

Theorem 1. 4LG(G) is a structuring of G.

Proof. The procedure fixcontrol guarantees that flow of control in ALG(G) between if, slc,
and repeat stalements and the exit of the program corresponds to EXT(G). Since every loop in
EXT(G) includes an ske or if statement, ALG(G) is flowgraphable and COMPUTE(ALG(G))
is defined. The flow of control between slc and if statements and the exit of ALG(G) is ob-
tained from EXT(G) by applying the inverse of the transformation which generated £EXT(G)
from G. Thus, G=COMPUTE(ALG(G)). and ALG(G) is a structuring of G. O

Section 3 discussed how repeat and if then else statements should be used in reducible
programs. These ideas are generalized in [BAK] as a set of principles for the use of repeat and
if then else statements in a program (reducible or irreducible). It will be shown that 4LG(G)
satisfies these principles.

The principles are divided into two parts: proper use of repeat statements, and proper use
of if then else siatements.

A program uses repeat staiements properly if it has the following properties:

(1) If a nonbranching statement ¢ is nested within a repeat statement p, there is an execution
path which passes from p to ¢ and back 10 p without leaving the body of p.

(2) The first statement within a repeat is an slc or if statement and is reached only from the
repeat.

(3) A repeat siatement can be entered without first entering its body.

(4) Control can pass to a lexically preceding part of the program only from within the body of
a repeat to the repeat.

A program P uses if siatements properly if the following conditions are satisfied:

(1) if gote L occurs and is not within a then or else clause containing L, then the goto is also
outside the innermost repeat containing L.

(2) If a nonbranching statement rin P is nested within the innermost repeat containing an if
statement p, and is not within the then (else) clause of p, then r is reachable either from
the “false” ("true") branch of p or from a nonbranching statement =p which is nested
within the repeat but not nested within the clause or within r.

A program is well-formed if it is flowgraphable and every nonbranching statement is acces-
sible from the start of the program. A program is properly nested if it is well-formed and uses
both repeat and if then else statements properly.

In order 10 prove that ALG(G) is properly nested, two technical lemmas are needed.
Their proofs appear in Appendix A.

The first lemma describes the behavior of the procedure getform. If getform(q) is called
during the recursive execution of getform(p), p is called a g-ancestor of ¢, and ¢ is called a g-
descendani of p.

Lemma 1. A node ¢ is a g-descendant of a node p if and only if p R-dominates ¢ and ¢ is in a
loop tail headed by HEAD (p).

Lemma 2. If (r.5) is a back arc in EXT(G), then s is a repeat node and r is nested within s in
ALG(G). If (r.s) is a forward arc in EXT(G), then either s is nested within r or s is after 7 in
ALG(G).

Theorem 2. ALG(G) is properly nested.

Proof. From the proof of Theorem 1. ALG(G) is a structuring of G. Since the flow of control
between nonbranching statements and the exit of the program is represented by EXT(G), and
every node in G is accessible from the start node, 4ALG(G) is weli-formed.

Next, it is shown that ALG(G) uses repeat statements properly.

(1) First, it is shown that a node p is nested within a repeat statement r if and only if pis in a
loop tail headed by r. .
Let ¢ be the node entered by an arc from r in EXT(G). 1t is straightforward to
show that ¢ is in a loop tail headed by r and ¢ is nested within r.
. Now consider any node p, p#q'and p=r. If pis nested within r, pis a g-descendant
of ¢. By Lemma 1, pis in a loop tail headed by HEAD (¢q). On the other hand, if p
is in a loop tail headed by HEAD(q) =r, r R-dominates p. Since r R-dominates p
and the only outarc of r enters ¢, ¢ R-dominates p. By Lemma 1, pis a g-
descendant of ¢, and p is nested within r.

Now, control can never jump out of r and back in without passing through a nonbranching
statement. Thus, for each statement within the hody of r, there is an execution path from
r to the statement and back to r, such that the path never passes outside of r.

(2) As a result of the construction of EXT(G) from G, the first statement within a repeat is
an sle or if statement and is reached only from the repeat.

(3) From the depth first search and the construction of EXT(G), it follows that a repeat node
can be reached in EXT(() without passing through any node in a loop tail headed by the
repeat. By part (1) of this proof, the repeat can be entered without first passing through
any nonbranching statement nested within the repeat. Since a goto can jump only to a
nonbranching statement. the repeat can be enicred without first entering the body of the
repeat.

(4) If control passes upward in the program to a statlement other than an enclosing repeat, it
does so via a gote statement. So suppose a goto statement s jumps (0 a statement r above
s or o a statement r enclosing s. By definition of fixcontrol, r is a nonbranching state-
ment.

By (2), s is not the first statement within a repeat. Suppose s is the first statement within

a clause of an if statement p. Then there is an arc from pto rin EXT(G). By Lemma 2,

this arc is a back arc and r is a repeat enclosing p and s,

Suppose s follows a statement p at the same level of nesting. Then ris in REACH((p) and

there is an arc from p or a node nested within p to r. By definition of REACH sets, r is

not nested within pand r=p. By Lemma 2, this arc is a back arc and r is a repeat enclos-

ing pand s.

Thus, control can flow to a lexically preceding point in the program only to an enclosing -
repeat.

- 16 -

Next, it is shown that ALG(G) uses if statements properly.

(5) Let p be an if statement with a "true" ("false") arc to ¢. Suppose the then (else) clause
contains a statement r labelled with L. Suppose gote L occurs within the innermost re-
peat enclosing p but outside this clause. The gote corresponds to an arc (v,r) such that u
is outside the clause but within the innermost repeat enclosing p. By part(1) of this
proof, « is in a loop tail headed by HEAD(p). Lemma 2 implies that the arc is not a back
arc. If r=gq, either the arc (p.q) is a back arc or ris in a FOLLOW set. In the former
case, Lemma 2 implies that p is nested within r, and in the latter case getform guarantees
that r is not nested within the clause. So r=¢. Now, u is not a g-descendant of ¢. By
Lemma 1, » is not R-dominated by ¢. Since w is in a loop tail headed by
HEAD(q)=HEAD(p), neither is . By Lemma 1, ris not a g-descendant of g, contradict-
ing the fact that ris in the clause.

(6) Let p be an if statement with a "true” (“false”) arc to g. If ¢ is not in the then (else)
clause, getform implies that ¢ is in a FOLLOW sel or the arc is a back arc, and that the
clause contains no nonbranching statements. Thus, either ¢ is not in the innermost re-
peat enclosing p. or ¢ is reached from the "false” ("true") branch of p, or ¢is reached
from another nonbranching statement not in the clause.

Now consider a node r#¢. Suppose r is within the innermost repeat enclosing p but not
within the then (else) clause. If ¢ is not within the clause, the clause contains no non-
branching statements and r is reached from a statement outside the clause or from the
"false” ("true”) arc of p. So assume ¢ is within the clause. By part (1) of this proof and
Lemma 1, ris not R-dominated by ¢. Since every nonbranching statement within the
clause is R-dominated by ¢, r is reached from the "faise” ("true") branch of p or from a
nonbranching statement which is within the innermost repeat enclosing p but is not within
the clause. O

Corollary. If gote L occurs in ALG(G), then the statement labelled L occurs after the goto
statement.

Proof. The corollary follows from part (4) of the above proof and the fact that the algorithm
generates a next in preference to a goto statement which jumps to an enclosing repeat. O

Finally, it is shown that every statement in 4LG(G) is reachable. This justifies the com-
ments in Section 4 after the procedure choosebranch.

Lemma 3. Every statement is reachable from the start of the ALG(G).

Proof. Since G is a flowgraph in which every node is entered by a path from the start node,
and G=COMPUTE(ALG(G)), every nonbranching statement in 4LG(G) is reachable from
the start of the program.

Next, it is shown that every branching statement is reachable from the start of the program or
from a nonbranching statement lexically preceding it in the program. Let p be any branching
statement within ALG(G). If pis the first statement in the program. it is reachable from the
start of the program. If pis the first statement within any other level of nesting, it is reachable
from the statement enclosing it. Otherwise, p follows a nonbranching statement. The following
argument shows that every branching statement which follows a nonbranching statement r is
reachable from r or from a statement nested within r.

()

-17-

For each statement p, define LEX(p) as follows. If pis followed at the same level of
nesting by a statement ¢, g=LEX(p). Otherwise, if £ is the last statement within a clause
of an if statement ¢, LEX())=LEX (¢). Otherwise, if p is the last statement within o re-
peat statement g, LEX(p)=q. If pis the last staitement in the program LEX (p) is the exil
ol the program.

Deline the target of a branching statement 1o be the first nobranching statement reached
upon exceeuting it. -

Next, it is shown that if ris an if statement and {g}=REACH(r), then lg1=REACH(5),
where s is the last nonbranching statement (0 oceur at the outermost level within r. Since
P is well-formed, the exit of the program is reachable from s, and REACH (s) is not emp-
ty. Morcover, every member of REACIH (s) is outside r (for either it is below both s and
r, or by Theorem 2. part(2) it is a repeat containing both s and). Therefore,
REACH(s)=REACH (r).

Now, it is shown by induction that il a branching statement pis LLX (r) for a nonbranch-
ing statement r, and the target of p is is the unique member of REACH (), then pis
reached from r or from a statement nested within r. The induction is based on the
number of levels of nesting within p. For the basis, note that if ris an slc statement,
then LLX(r) is reached from r. Suppose that the assertion holds whenever r has at most
k levels of nesting. Now suppose that r has A+ levels. If ris a repeat, p is reached by
break from within r because ‘its target is in REACH (r) and lower levels of break state-
ments are generaled in preference to higher levels. So suppose r is an if statement. Con-
sider the else clause of r. If the clause is null. LEX(r) is reached from r. Otherwise. It »
be the last statement within the clause. If sis a branching statement, its target must be in
REACH(r), implying that its target is the same as the target of p, and s is redundant.
Therefore, sis a nonbranching statement. Since REACIH (s) is nonempty, RLEACH ()=
REACHr). Also, LEX(s)= LEX(r) =p. By the induction hypothesis, p is reached
from ror from within .

Finally, suppose a branching statement p follows a nonbranching statement r at the same
level of nesting. By the definition of fixcontrol, the turget of p is the unique member ol
REACH(r). By the preceding paragraph, p is reached from r or from a statement nested
within r.
From above, every nonbranching statement is reachable from the start of the program. Since
cach branching statement is reachable from the start of the program, from a nonbranching
statement, or from a branching statement above it in ALG (), every branching statement is
reachable from the start of the program. O

7. Properties of properly nested programs

This section quotes some results concerning proper nesting which show that any properly
nested structuring of a flowgraph (; must be similar to ALG(G). Moreover, if has a properly
nested structuring with no goto statements, ALG(G) has no goto statements.

In a program with proper nesting, the nesting of statements can be characterized as lol-
lows.

Al

Theorem 3 [BAK]. If P\ and P, are equivalent properly nested reducible programs, then they
are identical in the number of occurrences of each nonbranching statement and in how the non-
brunching statements are nested within each other, but not necessarily in the order of non-
branching statements at each level of nesting.

- 18-

Note that this theorem does not state that /°; and P, are identical in the order of non-
branching statements at each level of nesting. In fact, the order of stalements is not uniquely
determined. For example, consider the lollowing code.

il (p) then
| if (@) then | goto 10]
else {}

else
{ if (r) then | goto 10 |
else {}

x =1

goto 20
10 x=2
20y = f(x)

This segment could be rewritien by exchanging x = 2 with x = 1 and moving the goto staic-
ments 10 the else clauses.

However, there is no flexibility in order when no goto statements occur.

Theorem 4 [BAK]. If P, and P, are equivalent properly nested programs with no goto slate-
ments, then 7, and P, are identical in how nonbranching statements are nested and in the ord-
cr ol nonbranching statements at each level of nesting.

The following theorem shows that A4LG (G) generates a properly nested program with no
goto slatcments whenever this is possible.

Theorem 5. Lcet P be a properly nested program. The following statements arc equivalent:
(1) P has an equivalent properly nested program with no goto stalcments.

(2) Pis reducible, and for each repeat or if statement p, al most one statement outside of p
but within the innermost repeat enclosing p can be reached from p or from within p.

(3} ALG(COMPUTE(P)) is a properly nested program with no goto statements equivalent to

P
Proof.
(1=>2)

Let P’ be a properly nested program equivalent to P with no goto statements. The lack of
goto statements implies that P'is reducible.

Let p be any repeat or if statement. At most one stalement within the innermost repeat
(il any) enclosing p can be reached from p or from within p without a goto, since control
must pass out of an if or repeat through the bottom.

(2=>3)

For each nonbranching statement p, let R (p) denote the unique nonbranching statement
outside of p but within the innermost repeat enclosing p which can be reached from por
from within p, if such a statement exists. Apply the algorithm to COMPUTE(P) to ob-
tain a properly nested program P. By Theorem 3, P, and P, are identical in the nesting
of nonbranching statements but not necessarily in the ordering of statlements at each level

-19-

of nesting.

Suppose p is a nonbranching statement. The following argument shows that if
FOLLOW (p) is nonempty, then R (p) is defined and is the unique member of
FOLLOW (p).

Let s be the least member of FOLLOW »). Since sis reachable, s is entered by a
forward arc from a node « Now, s is dominated by p and HEAD (s)=HEAD(p).
Therefore, either r=p or ¢ is dominated by p. Also, fis in a loop tail headed by
HEAD(p). Either 1=p or by Lemma 1, tis a g-descendant of p. By Lemma 2, ¢t
precedes s or ¢ encloses s in the program. Thus, either /=p or tis nested within D,
implying s=R (p). '

Now, suppose that FOLLOW (p) has another member ¢, ¢=R (p). By definition,
the immediate dominator of ¢ is p or is nested within p. But R(p) must be a closer
dominator to q than p or any node nested within p. Therefore, no such q exists.

Define LEX(p) as in the proof of Lemma 3. It is shown that R (p)=LEX(p) whenever
R (p) is defined. The proof is by induction on the number of levels enclosing p. Assume
that the assertion holds for all statements (if any) enclosing p.

If pis the last nonbranching statement at its level of nesting, and R (p) is defined,
then R (p) is below p within the innermost repeat (if any) enclosing p and is not the
exit of the program. Therefore, p’is enclosed by an if statement ¢ such that
R(1)=R(p). By the induction hypothesis, LEX(t)=R (r). Thus,
LEX(p)=LEX(1)=R (p).

Otherwise, let ¢ be the next nonbranching statement after P at the same level of
nesting. Since each FOLLOW set has at most one member, ¢ is in FOLLOW (p),
implying ¢=R (p). Thus, no branching statement follows p and ¢g=LEX (p).

Now, suppose a goto statement & with target ¢ occurs in the program. Either g follows a
nonbranching statement p or is the first statement within a clause of an if statement p. If
¢ is within the innermost repeat enclosing p, the above argument implies that g=LEX (p)
contradicting the existence of the goto. If ¢ is not within the innermost repeat containing
p, then g=LEX (r) for some repeat r enclosing p. Thus, cheosebranch generates a break
in preference to the goto, contradicting the existence of the goto. Therefore, no goto oc-
curs in the program. :

3=>1)
Trivial. O

The results in this section suggest that 4LG(G) cannot be greatly improved upon within
the context of properly nested programs and the limitations imposed by the definition of struc-
turing. The way in which branching statements are used could be modified without losing the
desirable properties described in this section and Section 6. It is possible that restricted use of
code copying, creating subroutines, or creation of control variables might improve upon
ALG(G) in some cases, if the definition of "structuring” is relaxed to allow these operations.
Such extensions of the algorithm are left for further research.

8. Applying the algorithm

The algorithm has been implemented in a program called Struct, which rewrites Fortran
programs in Ratfor[KER). The basic algorithm is extended in Struct to generate (optional) ad-
ditional constructs such as while loops and a form of case statement. Predicates are negated by
Struct when necessary for the generation of if then statements. Ratfor has only single-level
break and next statements. Therefore, Struct chooscs its branching statements by a modified
version of choosebranch. Appendix B contains an example of a Fortran program and the Rat-

-20 -

for program generated from it by Struct.

The mechanically structured versions of programs are easier to understand than their
Fortran counterparts, sometimes dramatically so. Their natural appearance indicates that the
structuring principles describe reasonable programming practices. A more extensive discussion
of Struct and its success in structuring Fortran appears in [BAK75].

It is expected that Struct will be a useful tool in the maintenance of existing programs.
New programs may be written in Ratfor, while existing Fortran programs may be structured
into Ratfor for greater ease of modification and debugging.

Acknowledgements

The.author wishes to thank A. V. Aho, R. A. Becker, S. C. Johnson, B. W. Kernighan, and M.

D. Mcliroy for many helpful comments about drafts of this paper.

Brenda S. Baker
MH-1271-bsb
Attachments: References, Appendices A and B
References :

{AU] A. V. Aho and J. D. Ullman, The Theory of Parsing, Transiation, and Compiling, Vol.
11 - Compiling, Prentice-Hall, Englewood Cliffs, N.J., 1973.

[AM] E. Ashcroft and Z. Manna, Translating program schemas to while-schemas, SIAM J.
on Comp. 4,2 (1975), 125-146.

[BAK75] B.S. Baker, Struct, a program which structures Fortran, TM 75-1271-12.
[BAK] = B. S. Baker, Automatic structuring of programs, in preparation.

[BAL74] G. de Balbine, Better man power utilization using automatic restructuring, Caine,
Farber & Gordon, Inc., 1974.

[BAL75] G. de Balbine, Using the Fortran structuring engine, Proc. of Comp. Sci. and Stat.:
8th Ann. Symp. on the Interface, Los Angeles (1975), 297-305.

[BJ] C. Bohm and G. Jacopini, Flow diagrams, Turing machines and languages with only
two formation rules, Comm. ACM 9 (1966), 366-371.
[BS] J. Bruno and K. Steiglitz, The expression of algorithms by charts, J. ACM /9

(1966),366-371.

[COO0] D. C. Cooper, Bohm and Jacopini’s reduction of flow charts, Comm. ACM 10
(1967),463.

[DDH] 0O.-]. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, New York, 1972.

(D1} E. W. Dijkstra, Goto statement considered harmful, Comm. ACM 11 (1968), 147-
148.

[HU74] M. S. Hecht_and J. D. Uliman, Characterizations of reducible flowgraphs, J. ACM
21,3 (1974), 367-375.

[HU72] M. S. Hecht and J. D. Uliman, Flow graph reducibility, SIAM J. Comput. 1 (1972),
188-202.

-21-

{KER] B. W. Kernighan, Ratfor - a preprocessor for a rational Fortran, Software Practice and
Experience 5.4 (1975). 395-406.

(KF] D. E. Knuth and R. W. Floyd. Notes on avoiding "go to" statements. /nfor. Proc.
Letters 1 (1971), 23-31.
[KN] D. E. Knuth, Structured programming with goto statements, ACM Comp. Surveys 6,4

(1974), 261-302.

[KOS] S. R. Kosaraju, Analysis of structured programs, J. Comp. Sys. Sci. 9,3 (1974), 232-
254,

[PKT] W. W. Peterson, T. Kasami, and N. Tokura, On the capabilities of while, repeat and
exit statements, Comm. ACM 16 (1973), 503-512.

Appendix A

This appendix contains the proofs of Lemmas 2 and 3. In order to prove them, another
technical lemma is needed to relate REDUCE(EXT(G)) to EXT(G) when G is irreducible.
The following lemma is trivially true if G is reducible.

Lemma A.
(i) 1If u R-dominates v, then u <v.

(i) If (rs) is an arc in EXT(G) which is replaced by.an arc (r,t) in REDUCE(EXT(G)),
s#Z1, then r <t <s.

Proof. The following assertion, referred to as Assertion A, is helpful in the proofs of (i) and
(iD).

Suppose p is not a repeat node, p is in a loop headed by r, and r has an arc to s in
EXT(G). Either p=s or p is a descendant of s in the spanning tree generated by the
depth first search.

This assertion is easily proved from the fact that a back arc passes from a descendant to an
ancestor in the spanning tree.

(i) Each path from the start node to vin REDUCE (EXT(G)) contains every R-dominator of
v. Therefore, it suffices to show that there is a path from the start node to v in
REDUCE(EXT(G)) in which each node other than vis <v.

If vis a repeat node, let s be the node entered by an arc from v, otherwise, let s=v, In G,
there is a path start'=p0,....p,,=s in which each arc passes from parent to child in the span-
ning tree identified by the depth first search. Since all these arcs are forward arcs, each
Pi<pivi. In EXT(G), some edges (p;,p,,,) may be replaced by edges (p..0). (t,p,,)) in
which ¢ is a repeat node and p, << Pi+i- Call the new path P. By Assertion A, P’ con-
tains every repeat heading a loop tail containing s. Thus, v is on the path whether or not
v=s. It is easy to show that this path is also a path in REDUCE(EX T(G)).

(ii) Let u be the node entered by an arc from ¢ If sis a repeat node, let w be the node en-
tered by an arc from s, otherwise, let w=s. Then u immediately follows ¢ in L, and either
s=w or w immediately follows sin L. Since tis the head of a loop tail containing s, 1 <s.
Suppose by way of contradiction that t<r. Then u <r, and u is last visited after r is last
visited during the depth first search.

If u is also first visited before r is first visited during the search, then r is a descendant of
u in the spanning tree. But then, there is a path from u to r to w which includes no node
<u. Since wis in a loop tail headed by ¢ there is a path in G from wto u not including
any node <u. Consequently, £X7T(G) has a path from ¢ to r and from r to ¢ not including

-22-

any node <t Thus, ris in a loop tail headed by 1, and (r.s) is not replaced by (r.r) in
REDUCE(EXT(G)), contradicting the initial condition on r.

Therefore, u is first visited after r. But then, the arc (r,w) is searched before ¢ is
searched, and w is not a descendant of 1, contradicting Assertion A. O

Lemma 1. A node ¢ is a g-descendant of a node p if and only if p R-dominates ¢ and g is in a loop tail
headed by HEAD (p).

Proof.

(=>) If g is a g-descendant of p, there is a sequence p=py,p,.....p,=q such that for each i,
getform(p;,)) is called during the outermost level of getferm(p;). Suppose n=l, i.e.
getform(q) is called during the outermost level of getform(p). Either ¢ is in
FOLLOW (p) or qis not in any FOLLOW set and is entered by an arc from p.

In the former case, HEAD(q)=HEAD(p) by definition. If p is an if node or sle
node, p=RDOM(q) by definition of FOLLOW sets. If p is a repeat node,
RDOM(q) is in a loop tail headed by p and p R-dominates RDOM (q). By transi-
tivity, p R-dominates g.

In the latter case, ¢ is entered by only one forward arc in REDUCE(EXT(G)). If ¢
is entered by a back arc (s,g) in REDUCE(EXT(G)), (s,q) is also a back arc in
EXT(G) by Lemma A. Consequently, s is in a loop tail headed by g, and ¢q R-
dominates s. Therefore, back arcs need not be considered in finding RDOM (q).
Since the only forward arc entering g is (p,q), p=RDOM (q). Moreover, since q is
not in the FOLLOW set of any repeat node, ¢ is in a loop tail headed by
HEAD(RDOM (q))=HEAD (p).

The proof is completed for n>1 by applying the above argument inductively and noting
the transitivity of the dominance relation and containment in loops.

(<=) Suppose node p R-dominates g and ¢ is in a loop tail headed by HEAD(p). The R-
dominance relation provides a sequence p=r....r,=q such that for each j<n,
ri=RDOM(r;,)). Obtain a subsequence p=s,,...,5,=¢ by deleting each r; such that ¢ is

- not in a loop tail headed by HEAD(r;). Obviously, se=p and s,,=¢. By transitivity, each -
s; R-dominates s;,,, for j=0,...,m—1.

Consider any s;, 1<i<m, for which HEAD(S,) is defined. Since the loop headed by
HEAD(s;) is entered only through HEAD(s;) in REDUCE(EXT(G)), HEAD(s,) must be
a closer R-dominator to ¢ than any other R-dominator ¢ of ¢ not in this loop, i.e. 1 R-
dominates HEAD(s;)). Therefore, if s;_, is not in a loop tail headed by HEAD(s,),
s,.1=HEAD(s;). Moreover, s,,; is in a loop tail headed by HEAD(s,). For otherwise,
both s, and s;,; R-dominate g, implying that s,,, R-dominates HEAD(s;). But this con-
tradicts the fact that HEAD (s;) R-dominates s, which R-dominates s;,,.

Now, suppose HEAD(s;) = HEAD((s;,,) for some i If HEAD(s;) is undefined, the ine-
quality guarantees that HEAD((s;,,) is defined, and by definition, HEAD (s,.,) is in a loop
tail headed by HEAD(s;). If HEAD(s)) is defined, the preceding paragraph implies that
Si+1 is in a loop tail headed by HEAD(s;). Since HEAD(s;) =HEAD(s,.,), s; cannot be in
a loop tail headed by HE4D(s,). By the preceding paragraph, s;=HEAD(s;,;), and s, is a
repeat node. Since ¢ is in a loop tail headed by s;=HEAD(s,,,), the node entered by an
arc from s; cannot have been deleted; this node must be s;,,. Since this node is entered
by no other arcs, s;,; is not in any FOLLOW set and getform(s,,,) is called during
getform (s,).

-23.

Now suppose HEAD(s,)=HEAD(s,,,). If $,# RDOM (s;,,), then s, is a repeat node and
RDOM(s,,,) is in a loop tail headed by s, Therefore, 5,,) is in FOLLOW(s,). On the
other hand, suppose s,=RDOM (s,,,). If Si+1 is entered by two or more forward arcs in
REDUCE(EXT(G)), then s, is an if node and s,,, is in FOLLOW (s,). Otherwise, either
$; is an sle node and s, is in FOLLOW (s,), or 5; is an if node with an arc to s;,, and s,,,
is not in any FOLLOW set. In each case, getform(s,) is called during getform(s,). O

Lemma 2. If (r,s) is a back arc in EXT(G), then sis a repeat node and r is nested wivthin sin
ALG(G). If (r,s) is a forward arc in EXT(G), then either s is nested within r or s is after r in
ALG(G).

Proof. If (r.s5) is a back arc in EXT(G), then s is a repeat node by construction of EXT(G)
and r is in a loop headed by s. By part (1) of the proof of Theorem 2, ris nested within s in
ALG(G).

Suppose (r.s) is a forward arc in EXT(G). By definition, r<s. Since the construction of
EXT(G) eliminates self-loops, r#s. o

If s is a g-descendant of r, then getform(s) is called before getform(r), and either r is nested
within s or s is above r. If ris a g-descendant of s, then s R-dominates r by Lemma 1. By
Lemma A(i), s <r, contradicting the choice of r <s. .

So suppose neither r nor s is a g-descendant of the other. Let ¢ be the "closest” common g-
ancestor of rand s, i.e. there is no g-descendant of r which is a g-ancestor of both rand 5. Let
u be such that getform(t) calls getform(u) and either u=ror ris a g-descendant of . Let v be
such that getform(t) calls getform(v) and either v=sor sis a g-descendant of .

If ris in a loop tail headed by HEAD(s), let z=s. Otherwise, let z be the node such that the
arc (r.s) is replaced in REDUCE(EXT(G)) by an arc (r,z). In the former case, r <s=z since
(r.s) is a forward arc. In the latter case, r <z by Lemma A(ii). The following argument shows
that v==z

Either -=sor z is the head of a loop tail containing s. In the latter case, s is nested within
= by part (1) of the proof of Theorem 2, and sis a g-descendant of z. Either s=vor sis a
g-descendant of v. Thus, either z=vor z is a g-descendant of vor vis a g-descendant of o

If vis a g-descendant of z, so are ¥ and r. By Lemma [, - R-dominates r. By Lemma
A(i), z<r. But from earlier, r <z The contradiction implies that v is not a g-descendant
of =

Suppose z is a g-descendant of v. Then :z is in a loop tail headed by HEAD(v) by part (1)
of the proof of Theorem 2. Moreover, so is . Since r is not a g-descendant of v, Lemma
| implies that v does not R-dominate r. But then the arc (r.z) prevents v from R-
dominating z, which contradicts Lemma 1.

The conclusion is that v=z
Next, it is shown that zis in FOLLOW (1).

Suppose z is not in any FOLLOW set. Then only one forward arc enters z in
REDUCE(EXT(G)) and it originates at +. But (r,z) is also a forward arc entering z in
REDUCE(EXT(G)), and r=t. Consequently, zis in a FOLLOW set. Moreover, it must
be in FOLLOW (¢) in order for getform (z) to be called during getform (t).

By Lemma |, u<r and from above, r <z Either u is nested within ¢ while z follows ¢, or u is
also in FOLLOW(t) and getform(u) is called before getform(z). Therefore, getform(r) is
called before getform(z), and z appears after r in ALG(G). Either s=z or z is the head of a
loop containing s and s is nested within z by part (1) of the proof of Theorem 2. Therefore, s
is after rin ALG{(G). O

Appendix B

A Fortran subroutine {(from R. C. Singleton. Algorithm 347, an efficient algorithm lor sorting

with minimal storage, Comm. ACAM 12,3 (1969), p. 186):

¢ sorts array a into increasing order

subroutine sort(a,ii,jj)

¢ from a(ii) to a(jj)

s
10

20

30
40

50

60

dimension a(1),iu(16),il(16)
integer a,t,tt

m=1

i=ii

i=ii

if (i .ge.j) goto 70

k=i

Cij = G2

= a(ij)
if (a(i) .le. t) goto 20
a(ij) = a(i)
a(i) =t
t=ad(ij)
I=j
if (a(j) .ge. t) goto 40
a(ij) = a(j)
aj) =t
t = alij)
if (a(i) .le. t) goto 40
a(ij) = a(i)
a(i) =t
t = a(ij)
goto 40
a(l) = a(k)
a(k) = tt
| = -1
if (a(l) .gt. t) goto 40
tt = a(l)
k=k+1
if (a(k) .It. t) goto 50
if (k .le. 1) goto 30
if (I-i .le. j-k) goto 60
ilm) = i
iu(m) = |
i=k
m=m+1
goto 80
ilim) = k
iu(m) =j
i=l
m=m+1
goto 80

70

80

90

100

m=m-|

if(m.eq. 0) return
i=il(m)

j=iu(m)

if (-i .ge. 11) goto 10
if (i .eq. ii) goto 5
i=i-1

i=i+l1

if (i .eq. j) goto 70

t = a(i+1)

if (a(i) .le. t) goto 90
k=i

a(k+1) = a(k)

k = k-1

if (t .1t. a(k)) goto 100
a(k+1) =t :
goto 90

end

The preceding program as structured by Struct:

subroutine sort(a,ii,jj)

sorts array a into increasing order

from a(ii) to a(j)
dimension a(1),iu(16),il(16)
integer a,t,tt
m=1

= ii
i=li
repeat
{if (i<
go to 10
repeat
{m = m-1
if (m==0)
return
i = il(m)
j = iu(m)
while (j-i>=11)
{
10 k =i
ij = (+i)72
t = a(ij)
if (a(i) >t)
{ a(ij) = a(i)
a(i) =t
t = a(ij)

=1
if (a(j) <t)
{ a(ij) = a(j)
a(j) =t
t = a(ij)
if (a(i)>1)
{ a(ij) = a(D)
a(i) =t
t = a(ij)

)
repeat
{1=1-1
if (a() <=t)
{tt = a(l)
repeat
[k = k+1

if (a(k) >=t)

break
|
I
if (k>1)
break
a{l) = a(k)
a(k) = tt

if (I-i<=j-k)
{ilm) = k
iu(m) = j
i=1
m = m+1
}
else
{ilm) =i
iu(m) =1
i=k
m=m+1
}
}
if (i==ii)
break
i =il
repeat
{i=i+1
if (i==j)
break
t =a(i+1)
if (a(i)>t)
(k=i
repeat
{ak+1) = a(k)
k = k-1
if (t>=a(k))
break
}

alk+1) =t
}
}
!
}

return
end

