//CST

@ Bell Laboratories ~ Cover Sheet for Technical Memorandum

The information conained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)

Title-

An Interactive Control Language for SIM Date- June 28, 1976

T™- 76-1271-8

Other Keywords-

Author Location Extension Charging Case- 39919
L. L. Cherry MH 2C-516 6067 Filing Case- 39919-12
ABSTRACT

An interactive control language to be.used in conjunction with the com-
puter simulation language SIM [1] is now available on the UNIX operating sys-
tem. The control language provides an easy way for the user to run a simulator
from the terminal, setting and inspecting memory and registers as the simula-
tion progresses. The simulator may be single-stepped or run in a loop until
some condition is met. The control language is useful both for checking out a
simulator and debugging a program written to run on the simulated machine.
Among the features included in the control language are subroutining, selective
execution and both command and binary file input.

The control language will be made available under GCOS on request.
This paper is intended to be a reference manual and assumes familiarity with
SIM.

Pages Text 4
No. Figures 0

Other 5 Total 9
No.-Tables 0 No. Refs. 1

E-1932-U (6-73)

SEE REVERSE SIDE FOR DISTRIBUTION LIST

BELL TELEPHONE LABORATORIES, INC.

COMPLETE MEMORANDUM TG
CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOK

EACH ADDITIONAL FILING

CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

<AHO,ALFKED V
<BAKER, BRENDA 5
<BECKEK,RICHARD A
BROWN,W STANLEY
+CERMAK,I A
+CHAPPELL,S G
<CHEN, STEPHEN
<CHERRY ,LORINDA L
+CHOW,W F
<FLEISCHER,H I
<FRASEK,A G
<GOLDSTEIN,A JAY
<GRAHAM,R L
<GUTHEKY,S B
<HAMILTON, PATRICIA A
HAMMING,R W
+HANNAY,N B
+HAWKINS, RICHARD B
<JOHNSON, STEPHEN C
<KEESE,W M
+KEPLEY,GARRY D
<KERNIGHAN, BRIAN W
<LUDERER, GOTTFKIED W R
<MARANZANO,J F
<MARKY, GERALDINE A
+MC DONALD,H S
<MC GILL,R
MCILROY,M DOUGLAS
MORGAN, SAMUEL P
<OSSANNA,J F,JR
PINSON,ELLIOT N
*PRIM,R C
<RALEIGH,T M
<RIDDLE,GUY G
<SCHLEGEL,C T
+SCHWARTZ,W C
+SIMONE,C F
TERRY,M E
+THOMAS,LEE C
<THOMSON, MAJA-L1SA
+VLACK, DAVID
KWALFOKD, ROBERT B
CYAMIN, ELAINE E
43 NAMES

COVER SHEET ONLY TO

+ NAMED BY AUTBOR

> CITED AS REFERENCE

COVER SHEET ONLY TO
CORRESPONDENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING
CASE

ACKERMAN,A FRANK
AHERN,P L

AHRENS, RAINER B
ALBERTS, BARBARA A
ALCALAY,D
ALEXANDER,E J
ALLEN, JRMES K
ALLISON,C E,JR
ALT, DOROTHY L
AMITAY,N
AMORY , ROBERT W
AMOSS ,JOHN J
AMRON, IKVING
AMSTER, S J
ANDERSON, KATHRYN J
ANDERSON, L G
ANTOLICK,DAVID R
ARMSTRONG,D B
ARNOLD, GEOKSE W
ARNOLD, S L
ARNOLD, THOMAS F
ARTHURS, E
ARTIS,H P

ATAL, BISHNU §
BACCASH, JEANNE M
BACKUS,C F,SR
BALDWIN,GEORGE L
BASEIL, RICHARD J
BATTAGLIA, FRANCES
BAUER, HELEN A
BAUER, STEPHEN M
BAUGH,C R

BAYER,D L

BEL BRUNO, KATHLEEN A
BERGLAND,G D
BERNSTELN, DANIELLE R
BERNSTEIN, L
BERRYMAN,R D
BERTH,R P
BEYER , JEAN-DAVID
BIANCHI,M H
BICKFORD, NEIL B
BILOWOS,R M
BIRCHALL,R H
BIREN,IRMA B
BISHOP, VERONICA L
BLAZIER,S D
BLEICHER, E
BLINN,J C

BLUE, JAMES L
BLUM, MARION
BODEN,F J
BOHACEK, P K
BOLSKY,MORRIS I
BONANNI,L E

< REQUESTED BY READER

DISTRIBUTION
(REFER GE1 13.9-3)

COVER SHEET ONLY TO

BOURNE, STEFHEN R
BOWEN,F W
BOWERS,JERRY L
BOWRA ,JAMES W
BOWYER,L RaY

<BOYCE,w M

BOYLE,W S
BRANDT,KICHARD 3
BRANTLEY,JOAN T
BREEN,x S,JR
BREILANU,JUHN R
BRONZO,JOSEFh &
BROWNLUW,D L
BROWN,C W
BROWN,JAMES W
BROWN,W R
BUCHANAN,D N E
BULFER,A F
BURGESS, JOBN T,JK
BURNETTE,W A

<BURNETT, DAVID §

BUTLETT, DARKELs L
BYRNE, EDWARD R

<BZOWY,D

CALLAHAN,R L
CANADAY, KUDU H
CANNON,T b
CARDOZA, WAYNE M
CARRAN,JUHN H
CARR,DAVID C
CASPERS, BAKBARA L
CATO,H &
CAVINESS,JOHN D
CHAFPEE,N F
CHAMBERS,B C

<CHAMBE«KS,J M

CHANG, HERBERT Y
CHEE, T

CHENG, CHENG-WEN
CHEN, E

CHIANG,T C
CHODROW, i1 M
CHRIST,C W,JK
CLAYTON,D P
CLOUTIEK,J
CLYMER,J €
COBEN, RCBERT o
COREN, HARVEY
COXE, ESTHER U
COLE,LOUIS M
COLE,MARILYN O
COLLINS,J P
COLLUM,D JOHN
COLSON,J S,JR
COMMRADE,GERALDINE
CONNERS, RONALL R
COOK, ROBEKT W
COOK,T J
COOPER,ARTHUR E
COPP,DAVID k
COREY,D A

COVER SHEET ONLY TO

CORNELL,R G
COSTANTIND,BASIL B
COSTELLO,PETER E
COSTUN,W P
CRAGUN, DONALD W
CKRANE,R P
CROWE ,MARSARET ¥
CRUME,L L
CUNNINGHAN,S J,JR
CUTLER,C CHAPIN
DAVIDSON,CHARLES LEWIS
DAVIS,D R
DAV1S,R DREW
DE GRAAF,D A
DE JAGER,D S
DE PAOLA,THELMA T
DZERING,PATRICIA &
+DENENBERG, CHARLOTTE G
DEKMOND,FAITH L
DESENDORF,JUDITH L
DEUTSCH ,DAVID N
DEVLIN,N V
DI PIETRO,R §
DICKMAN, BERNARD N
DIMMICK,JAMES O
DOLAN,MARIE T
DOLOTTA,T A
DONNELLY, MARGARET M
DONOFRI1Q,LOUIS,J
DOWDEN, DOUGLAS C
DOWDEN, IRIS S
DOWD,P G
DRAKE, LILLIAN
DRECHSLER,R C
DREIZLER,H K
DRISCOLL,P J
DRUMMOND,R E
D”ANDREA,LOUISE A
DSTEFAN,D J
DWYER,T J
EDELSON,DAVID
EDMUNDS,T W
EHLINGER,JAMES C
EIGEN,D J
EITELBACH,DAVID L
ELDREDGE, BARBAKA D
ELLIOTT,RUBY J
ELY,T C
EMEKSON, ROBERT §
ERRICHIELLO,PHILIP M
ESSERMAN,ALAN R
ESTES,VIRGINIA DANIELLE
ESTOCK,RICHRRD G
ESTVANDER,R A
EVENSON,E K
EVERETT,W W
FABISCHE,M P
FASCIANO,V
FEDER,J
FELDMAN, STUART 1
FELS,ALLEN M

(NAMES WITHOUT PREFIX

WERE SELECTED USING THE AUTHOR®S SUBJECT OR ORSANIZATIONAL SPECIFICATION AS GIVEN BELOW)

MERCURY SPECLFLCATION. saeucoaseossanansoresssssossssssssssssssssssesssnssssassaasessssasssosasssssesssttosssuosnssssassossonnassssf/y

COMPLETE MEMO TOQ:
127-80p

COVER SHEET TQ:

+ 12=-DIR 13-DIR

COHART

COMPUTER HARDWARE RELIABILITY,

127

TESTING AND SIMULATION

=
COPLMP = COMPUTER MICROPROGRAMMING LANGUAGES AND PROCESSORS
&

UNPL#¢

UNIX/PROGRAMMING LANGUAGES

TM-76-1271%8

COVER SHEET ONLY TO

FELTON,WILLIAM A
FERIDUN,K K
FERREK, NANCY L
FETTERMAN,C H
FETITE,C J
FISCHER,HERBERT B
FLANDRENA,R
FLEMING,J W
FLUER, ZACHARY C
FLYNN, MARY L
FOLEY,G

FONG,K T

FONTENOT ,SHARON M
FORTNEY ,V J
FOUGHT,B T
FOUNTOUKIDIS, A
FOWLER,C F

FOX,A

FOX,PHYLLIS A
FOY,J C

FRANCIS, SAMUEL H
FRANK, AMALIE J
FRANK,H GREGORY
FRANK, RUDOLPH J
FRANZ ,ANN M
FREEBURG,JAMES R
FREEDMAN, MARVIN I
FREEMAN,K G
FREEMAN,R DON
FRENCH,WILLIAM G

FRIEDENSON, ROBERT A

FROST,E BORNELL
FULTON,A W
GALLANT R J
GALVIN,MICHAEL F
GANNON,T F
GARCIA,R F
SATES,G W
GAY,FRANCIS A
GEERS,T J,JR
GELBER, CHERON L
GEPNER, JAMES R
GERGOWITZ,E B
GEYLING,F T
GIBB, KENNETH R
GIBSON,B T,JR
GILBERT,G W
<GILLETTE, DEAN
GILLON,ALEX C
GILMER,G H
GIMPEL,J F
GINSBERG,N
GITHENS,J A
GLASER,W A
GLASSER,ALAN L
GLUCK,F G
<GNANADESIKAN,R
GODWIN,R E
GOFTZ,FRANK M
GOGUEN,N H
GOLABEK,RUTH T

732 TOTAL

TM~76-1271-8
TOTAL PAGES 10

CHERRY,4 L
MBE 2C516

PLEARL: SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE

NO ENVELOPL WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER
SHEET TO THt COMPLETE COPY.

IF COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS
REQUESI TO THE CORRESPONDENCE FILES.

TO GET A COMPLETE COPY:

1. BE SURE YOUR CORKECT ADDRESS 1S5 GIVEN ON THE OTHER SIDE.
2. FOLD THIS SHEET IN EALF WITH THIS SIDE OUT AND STAPLE.
3. CIRCLE THE ADDRESS AT RIGHT. USE NO ENVELOPE.

Bell Laboratories

Subject: An Interactive Control Language for SIM date: June 28, 1976
Case- 39919 -- File- 39919-12
from: L. L. Cherry

™: 76-1271-8

MEMORANDUM FOR FILE

1. Introduction -

An interactive control language to be used with the computer simulator language SIM (1]
is now available under the UNIX operating system. The control language is useful both for
checking out a simulator and debugging a program written to run on the simulated machine.

SIM is a language: and compiler designed to ease the task of writing computer and
microprocessor simulators. The SIM source language is used to define registers and memory
and to name parts of registers. These SIM variable definitions appear at the beginning of the
SIM machine description and may be set or retrieved with the interactive controller. The
machine operations or cycles are defined as SIM functions which may be executed by the con-
troller.

To create an interactive simulator the user first writes the machine description in the SIM
language. The machine description is then compiled to produce a C program. This C program
is the source for the simulator functions. If the C program is compiled and loaded with the
control language an interactive simulator results. The same SIM output may be compiled and
loaded with a user supplied main program or a SIM supplied main program to produce a nonin-
teractive simuilator.

2. SIM Register and Array Input

SIM variables defined in the beginning of the program may be loaded with a control
language statement of the form:

variable = value
or
variable <— value

where value may be a number, a variable or an array element. Numbers preceded by 0 are con-
sidered octal. The operators = and <- are equivalent.

Array elements may be loaded with the statement
variable [valuel = value ;
or
variable [value] <~ value
Several array elements may be loaded with a statement of the form:

variable [value} {value,,value,, . . . , value,};

Here variable [value] is loaded with value,, register [value+1] with value,, etc.

The control statements to initialize the MAC-8 simulator described in Appendix 1 could
be:

sp = 0100;

=0

pc = 040;
mem[pc]{0305,020,0306,040,0};

Here the stack pointer is set to 0100, the first 32 byte section of memory is defined as the regis-
ter block, the program counter is set to 040 and a small program is loaded into memory starting
at 040.

The simulator’s memory array may also be loaded from a binary file. This method should
be used if the program to be simulated has been assembled. Since assemblers usually put a
header before the assembled code, the command

seek offset filename ;

may be used to skip this header. offSet is the number of host machine words to be skipped
from the beginning of the file. +offser causes seek to skip offser words from the current posi-
tion of the read pointer in the file. offSeb indicates the count is in bytes instead of words.
offset may be either decimal or octal but must be a positive number. The command to load an
array with the contents of the file is

read number register [value) filename

where number words (or bytes) are read into register starting at register [value]. As described
above number may be decimal or octal and a trailing b indicates bytes. read loads one host
machine word (or byte) per array element.

If the program in the previous example has been assembled into file prog which has an 8
word header, the commands to load it into memory would be

seek 8 prog ;
read 5b mem/(pc] prog ;
Note that this file must be read in bytes to get memory loaded properly. Because read loads
one word (or byte) per array element and the MAC-8 memory is byte-oriented, reading words

would cause every other byte to be loaded rather than every byte.

3. SIM Register Output
Registers and array elements can be inspected simply by typing a list of their names,

separated by , and ending in ;. The output is in octal and there is one line of output per line of
input. The command to print the values of pc, p and mem|[0] is

pc, rp, mem[0];
the output will be

pc = 040 rp = 0 mem[0] = 0305

4. Functions

The simulator that is created by SIM defines machine cycles as functions. These func-
tions may be executed with a control command of the form

function()

The controller also allows for local functions, i.e., functions containing controller commands.
Local functions are defined by

function () {statement list}

and are called in the same manner as SIM functions.
The definition of a local function, run, that calls execute and dump is

run() { execute();
} dump();

Local functions may be printed with the /ist command as follows:
list function,, functiony - - * |

5. Loops

The control language provides for both while and do-while loops. The while loop has the
form :

while(value cond value) statement,
or
while(value cond value) | statement list)

where value is a variable, number or array element and cond is one of the conditional operators
<, >, <=, >= =01 ==, The substatement or statement list is executed repeatedly until
the condition is (or becomes) false. The test is performed before each execution. The compar-
ison is done as though all variables were long integers without sign extension. Care should be
taken in testing for negativity.

The do-while loop has the form
do {statement list} while (value cond value);

The do-while is essentially the same as the while except that the test is performed after execu-
tion.

An additional control aid for loops is the every statement which has the form
every (number) statement
or
every (number) {statement list}

The substatement or statement list is executed every number™ time thru the loop.

The commands to run the SIM function execute until the program counter is greater than
or equal to 050, executing function dump every 3™ time thru the loop are

do {
execute();
every(3) dump();
} while (pc < 050);

6. Controlier Input

The controller normally takes its input from the standard input. The input command al-
lows control commands to come from a file. The command is

input file

Succeeding input is taken from fil. When an end-of-file is reached the controller switches back
to the standard input. The input command is useful for doing standard initialization that is
desired for each simulation run.

7. Usage
On UNIX the command

sim file.sim
produces the source for the simulator on file.d. The command
simcc file

compiles file.d and loads it with the controller, leaving an executable interactive simulator in
a.out. _
To produce a non-interactive simulator using either the SIM supplied main program or a
user supplied main program the command becomes

simec — file
¥ Uy
MH-1271-LLC L. L. Cherry
Attachments
References

Appendix 1

Reference

{11 L. L. Cherry, SIM, a language for simulating compwers. TM-76-1271-2.

Appendix 1
% /* MAC-8 simulator */
. /* op-codes */
#define ON 1
#define OFF 0
#define MOVE 020
#define MOVE16 030
#tdefine ADD 025
#define ADDI16 035
#define INCRDECR 0
#define COMPL 1
#define BRANCH 013
long signext();
%
%mem[1024] <0:7> /* memory */
%rp<0:15> /* register pointer */
%sp<0:15> /* stack pointer */
%pc<0:15> /* program counter */
%cr<0:7> /* condition register */

%neg = cr<0:0>
%zero = cr<1:1>
Shovfl = cr<2:2>
Y%carry = cr<3:3>
%ones = ¢r<5:5>
%odd = cr<6:6>
%flag = cr<7:7>
%ir<0:7>
%op = ir<0:4>
%mode = ir<5:7>
%mmode = ir<6:7>
%opl = iIr<5:5>
%ind = mode<0:0>
%twobytes = op<1:1>
%ds<0:7>
%d = ds<0:3>
O%s = ds<4:7>
%t16<0:15>
%sc<0:15>
%dst<0:15>
Y%wr<0:16>
Y%er<0:15>
%tmode <0:2>
%]lexecute

ir <— meml{pcl;

ds <— memlipc+1];

pc =+ 2,
decode (op) {
MOVE.:
MOVEI1S6:
tmode <-— mode;
getsc(); getdst();
WI <— sC:

/* flags */

/* instruction register */

/* source and destination byte */

/* temporary addressing register */
/* simulator temporary registers */

decode (twobytes) {
OFF: neg <— wr<9:9>;
odd <— wr<16:16>;

0: zero <— 1;
10: zero <— 0,
0377:0nes <— 1;
i0377: ones <— 0;

ON: neg <— wr<l:1>;

zero <— 0;
} (wr<1:16> == 0) => zero <— |;
putdst();
ADD:
ADDI16:

tmode <— mode;
getsc(); getdst();
wr <— s¢ + dst;
setcond();
putdst();

S: tmode < mmode;
decode (op1){
INCRDECR: getdst();

decode(s<0:0>){
OFF: wr <— wr + s
ON: wr <— wr +(s l 0177760);

setcond();
putdst();
COMPL: getdst()
wr <— —~dst;
setcond();
putdst();

)
BRANCH: decode(mmode) {

0: pc <— memlpc]:ds; /* branch immediate */

1: pc<—pc+ s:gnext(ds) /* branch relative */

2 er<—rp +(<< 1) /* branch on register bit */
sc <— memler+1] :: ‘memler];
wr <— 1 << (15 — d);
decode(sc & wr){
10: pc <— pc + signext(mem/(pcl);
(}): pc=+ 1,

3 er<—rp+ (s<< 1) /* branch on memory bit */
sc <— memler+1}: :mem(er];
sc <— meml/scl;
wr <— 1 << (15 = d);
decode(sc & wr){
10: pc <— pc + signext(mem[pcl);
(}): pc =+ 1;

}

%2dump
%0getsc /* routine to put source value in s¢
see Appendix 2 for meanings of codes */
er <— 1p + (s << 1);
decode(s, mode,twobytes){
[0,14],[0,3],0FF: sc <— memler];

[0,14],[0,3],ON:

{0,14],5: sc <— memler+1}::memler];

{0,14],7: s¢ <— mem(er+1)::memler};
decode (twobytes) {

OFF: wr = sc + 1;
ON: wr = sc + 2;

memler] <— wr<9:16>,
memfer+1] <— wr<1:8>;
15,10,3],0FF: sc <— memlpcl;

pc =+ 1;

15,[0,3],0ON:

15,5: sc <— memipc+1]::memlipcl;

. pc =+ 2;

{0,14],4:

{0,14]),6: sc <— memler+1}::memler] + signext(meml(pcl);
pc =+ 1;

15,4:

15,6: sc <— sp + signext(meml[pcl);
pc =+ 1;

)

(ind == ON) => decode(twobytes)
OFF: sc ‘<~ memlsc];
ON: sc <— meml[sc+1]::memf(sc};

%0getdst /* routine to put destination value in dst
leaving destination address in t16
see Appendix 2 for meanings of codes */
116 <— rp + (d << 1);
decode(d,tmode, twobytes){

[0,15],0,0FF:
[0,151,5,7),0FF: dst <— mem/(t16];
{0,15),0,0N: .
fo0,151,[5,7],ON:
[0,14],1:
{0,15],3: dst <— mem|t16+1]::memlt16];
15.1: dst <— memlpc+1]::mem{pcl;
pc =+ 2;
[0,14],2:
[0,14],4: dst <— memt16+1)::mem[t16] + signext(mem{pcl);
pc =+ 1;
15,2:
15,4: wr <— sp + signext(mem/(pcl);
pc =<+ 1;
(tmode >= 2 && tmode <= 4)=>{-
t16 <— dst;
decode (twobytes) {

OFF: dst <— mem|t16];
?N: dst <~ memI[t16+1]:meml(t16];

%0putdst /* put wr in destination address */
mem|tl6] <— wr<9:16>;
(twobytes == ON) => mem[t16+1] <— wr<1:8>;
(tmode == 3) => |
er <— 1p + (d << 1);

decode (twobytes) {
OFF: t16 =+ 1;
?N: tl6 =+ 2;

memler] <— t16<8:15>,
memler+1} <— t16<0:7>;

%0Q0setcond /* set condition codes from wr */
ovfl <— 0;
decode (twobytes) {
OFF: neg <— wr<9:9>;
((sc<8:8> == dst<8:8>) && (sc<8:8> != wr<9:9>)) => ovl <— 1;
carry <— wr<8:8>;
decode(wr<9:16>){
0: zero <— 1;
10: zero <— 0
0377: ones <— 1;
50377: ones <— 0;

odd <— wr<16:16>;
ON: neg <— wr<l:1>;

decode(wr<1:16>){

0: zero <— I

10: zero <— 0;

}
((sc<0:0> == dst<0:0>) && (sc<0:0> != wr<1:1>)) => ovil <— 1;
carry <— wr<0:0>;

%%

long signaxt(byte)

long byte; {
if (byte & 0200)return(byte | 0177400L);
return(byte);

dump({
/* print registers */

