1108

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help secretaries, typists and programmers to make
effective use of the UNIXT facilities for preparing and editing text. It provides
explanations and examples of

® special characters, line addressing and global commands in the editor ed:

® commands for “‘cut and paste’ operations on files and parts of files.
including the mv, c¢p, cat and rm commands, and the r, w, m and t com-
mands of the editor;

® editing scripts and editor-based programs like grep and sed.

Although the treatment is aimed at non-programmers, new users with any
background should find helpful hints on how to get their jobs done more easily.

September 28, 1979

1 UNIX is a Trademark of Bell Laboralories.

Advanced Editing on UNIX

Brian W. Kernighan

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

Although UNIXt provides remarkably
effective tools for tex! editing. that by itself is no
guarantee that everyone will automatically make
the most effective use of them. In particular,
people who are not computer specialists — typ-
ists, secretaries, casual users — often use the
system less effectively than they might.

This document is intended as a seque! 10 A4
Twiorial Introduction 10 the UNIX Texi: Eduor (1],
providing explanations and examples of how 10
edit with less effort. (You should also be fami-
liar with the material in UNIX For Beginners [2].)
Further information on all commands discussed
here can be found in The UNIX Programmer's
Manual [3).

Examples are based on observations of
users and the difficulties they encounter. Topics
covered include special characters in searches
and substitute commands. line addressing. the
global commands. and line moving and copying.
There are also brief discussions of effective use
of related tools, like those for file manipuiation.
and those based on ed, like grep and sed.

A word of caution. There is only one way
to learn to use something, and that is to wse it.
Reading a description is no substitute for trying
something. A paper like this one should give
you ideas about what to try, but until you actu-
ally try something, you will not learn it.

2. SPECIAL CHARACTERS

The editor ed is the primary interface to
the system for many peopie, so il is worthwhile
10 know how to get the most out of ed for the
least effort.

The next few sections will discuss
shortcuts and labor-saving devices. Not all of
these will be instantly useful to any one person,
of course, but a few will be, and the others
should give you ideas to store away for future
use. And as always, until you try these things,

t UNIX is a Trademark of Bell Laboratories.

they will remain theoretical knowledge. not
something you have confidence in.

The List command '}’

ed provides iwo commands for printing the
contents of the lines you're editing. Most people
are familiar with p, in combinations like

1,8p
to print all the lines you're editing. or
s/abc/def/p

to change ‘abc’ to ‘def” on the current line. Less
familiar is the /st command 1 (the letter /7).
which gives slightly more information than p. In
particular. ! makes visible characters that are
normally invisible, such as 1abs and backspucas.
If you list a line that contains some of these. |
will print each 1ab as > and each backspace as
<. This makes it much easier to correct the sort
of typing mistake that inserts extra spaces adju-
cent to tabs. or inserts a backspace followed by a
space.

The | command aiso ‘folds’ long lines for
printing — any line that exceeds 72 characters is
printed on multiple lines; each printed line
except the last is terminated by a backslash \. so
you can tell it was folded. This is useful for
printing long lines on short terminals.

Occasionally the | command will print in a
line a string of numbers preceded by a backslash.
such as \07 or \16. These combinations are used
to make visible characters that normally don’t
print, like form feed or vertical tab or bell. Each
such combination is a- single character. When
you see such characters. be wary — they ma)
have surprising meanings when printed on some
terminals. Often their presence means that your
finger slipped while you were typing. you almost
never want them.

The Substitute Command ‘s’

Most of the next few sections will be taken
up with a discussion of the substitute command
s. Since this is the command for changing the

contents of individual lines, it probably has the
most complexity of any ed command, and the
most potential for effective use.

As the simplest place to begin, recall the
meaning of a trailing g after a substitute com-
mand. With

s/this/that/
and
s/this/that/g

the first one replaces the first ‘this’ on the line
with ‘that’. If there is more than one ‘this' on
the line, the second form with the trailing g
changes afl of them.

Either form of the s command can be fol-
lowed by p or I to ‘print’ or ‘list’ (as described in
the previous section) the contents of the line:

s/this/that/p
s/this/that/|
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things.
Make sure you know what the differences are.

Of course, any s command can be pre-
ceded by one or two ‘line numbers' to specify
that the substitution is to take place on a group
of lines. Thus

1,8s/mispell/ misspell/

changes the first occurrence of ‘mispell’ to
‘misspell’ on every line of the file. But

1,8s/mispell/ misspell/g

changes every occurrence in every line (and this
is more likely to be what you wanted in this par-
ticular case).

You should also notice that if you add 2 p
or | to the end of any of these substitute com-
mands, only the last line that got changed will be
printed, not all the lines. We will talk later about
how to print all the lines that were modified.

The Undo Command ‘u’

Occasionally you will make a substitution
in a line, only to realize 100 late that it was a
ghastly mistake. The ‘undo’ command u lets
you ‘undo’ the last substitution: the last line that
was substituted can be restored to ils previous
state by typing the command

u

The Metacharacter *.’

As you have undoubtedly noticed when
you use ed, certain characters have unexpected
meanings when they occur in the left side of a
substitute command, or in a search for a particu-
lar line. In the next several sections, we will talk
about these special characters, which are ofien
called ‘metacharacters’.

The first one is the period *.". On the lef
side of a substitute command, or in a search with
‘1.0, ' stands for any single character. Thus
the search

I/x.y/

finds any line where.‘x' and 'y’ occur separated
by a single character, as in

x+y

X=y

Xy

Xy
and so on. (We will use to stand for a space
whenever we need to make it visible.)

)

Since '." malches a single character. thal
gives you a way to deal with funny characters
printed by 1. Suppose you have a line that. when
printed with the | command. appears as

th\07is

and you want to get rid of the \07 (which
represents the bell character. by the way).

The most obvious solution is to try
s/\07//

but this will fail. (Try it.) The brute force solu-
tion, which most people would now take. is to
re-type the entire line. This is guaranteed. and is
actually quite a reasonable tactic iff the line in
question isn't too big, but for a very long line.
re-typing is a bore. This is where the metachar-
acter *." comes in handy. Since "\07" really
represents a single character, if we say

s/th.is/this/

the job is done. The *.’ matches the mysierious
characier between the *h' and the ‘i", whawever o
is.

.

Bear in mind that since ‘.
single character, the command
s/ ./

converts the first character on a line into a *."
which very oflen is not what you intended.

maitches any

As is true of many characters in ed. the *.’
has several meanings, depending on its conieat.
This line shows all three:

gy

ae

RI)

The first *." is a line number, the number of the
line we are editing, which is called ‘line dot’.
(We will discuss line dot more in Section 3.) The
second ‘.’ is a metacharacter that matches any
single character on that line. The third ‘.’ is the
only one that really is an honest literal period.
On the right side of a substitution, *.' is not spe-
cial. If you apply this command to the line

Now is the time.
the result will be
©Ow is the time.

which is probably not what you intended.

The Backslash *

Since a period means ‘any character’, the
question naturally arises of what to do when you
really want a period. For example, how do you
convert the line

Now is the time.
into
Now is the time?

The backslash *\' does the job. A backslash
turns off any special meaning that the nexi char-
acter might have; in particular, *\."' converts the
*.” from a *maich anything' into a period. so you
can use it (o replace the period in

Now is the time.
like this:
s/\.//

The pair of characters *\.’ is considered by ed 10
be a single real period.

The backslash can also be used when
searching for lines that contain a special charac-
ter. Suppose you are looking for a line that con-
tains

PP

The search
/.PP/

isn't adequate, for it will find a line like
THE APPLICATION OF ..

because the ‘.’ malches the letter *A’. But if you
say
/\.PP/

you will find only lines that contain *.PP".

The backslash can also be used to turn off
special meanings for characters other than ‘.'.

For example, consider finding a line thai con-
tains a backslash. The search

N/

won't work, because the ‘\' isn't a literal *\", but
instead means that the second ‘/° no longer
delimits the search. But by preceding a backslash
with another one, you can search for a literal
backslash. Thus

A\Y

does work. Similarly, you can search for a for-
ward slash */° with

AV

The backslash turns off the meaning of the
immediately following '/° so that it doesn't ter-
minate the /.../ construction prematurely.

As an exercise, before reading further.
find two substitute commands each of which will
convert the line

\x\\y
into the line

\x\y

Here are several solutions: verify that each
works as advertised.

s/\\\.7/
s/xee/x/
s/ .yly/

A couple of miscellaneous notes about
backslashes and special characters. First. vou
can use any character to delimit the pieces of an
s command: there is nothing sacred about
slashes. (But you must use slashes for conteal
searching.) For instance, in a line that contains a
lot of slashes aiready, like

//exec //sys.fori.go // etc...

you could use a colon as the delimiter — 1o
delete all the slashes, type

s:/:g

Second, if # and @ are your character
erase and line kill characters, you have to type
\# and \@: this is true whether you're 1alking 10
ed or any other program.

When you are adding text with a or i or ¢
backslash is not special, and you should only pul
in one backslash for each one you really want.

The Dollar Sign *$"

The next metacharacter, the '$", stands lor
‘the end of the line'. As its mos: obvious use,
suppose you have the line

Now is the

and you wish to add the word ‘time' to the end.
Use the 3 like this:

s/$/ztime/
to get
Now is the time

Notice that a space is needed before ‘time’ in the
substitute command. or you will get

Now s thetime
As another example. replace the second

comma in the following line with a period
without altering the first:

Now is the time, for all good men,
The command needed is
s/.8/.J

The 3 sign here provides context to make specific
which comma we mean. Without it. of course.
the s command would operate on the first
comma to produce

Now is the time. for all good men.

As another example, 10 convert

Now is the time.
into

Now is the time?
as we did earlier, we can use

s/.8/?/

Like *.’, the *‘$' has multiple meanings
depending on context. In the line

$s/8/8/

the first 'S* refers 10 the last line of the file. the
second refers to the end of that line, and the
third is a literal dollar sign, to be added 10 that
line.

The Circumflex **

The circumflex (or hat or caret) *** stands
for the beginning of the line. For example, sup-
pose you are looking for a line that begins with
‘the’. If you simply say

/the/

you will in all likelihood find several lines that
contain ‘the’ in the middle before arriving at the
one you want. But with

/"the/
you narrow the context, and thus arrive at the

desired one more easily.

The other use of *** is of course to enable
you to insert something at the beginning of a
line:

s/°/-./
places a space at the beginning of the current
line.

Metacharacters can be combined. To
search for a line thal contains oniv the characiers

PP
you can use the command
/"\.PPS/

The Star *+°

Suppose you have a line thal looks like
this:

ext x Y et

where sext stands for lots of text. and there are
some indeterminale number of spaces between
the x and the y. Suppose the job is to replace all
the spaces between x and » by a single space.
The line is 100 long to retype. and there are 00
many spaces 10 count. What now?

This is where the metacharacter '+ comes
in handy. A character followed by a star stands
for as many consecutive occurrences of thut
character as possible. To refer 10 all the spaces
al once, say

s/x sy/x y/

The construction * +' means ‘as many spaces as
possible”. Thus ‘x -y’ means ‘an x. as man
spaces as possible, then a y'.

The swar can be used with any character.
not just space. If the original example was
instead

then all ‘=" signs can be replaced by a single
space with the command

s/x—=sy/x y/

Finally, suppose that the line was
ext x--.---ooaoon-noocoy ext

Can you see what trap lies in wait for the
unwary? If you blindly type

s/x.oy/x.-y/

what will happen? The answer, naturally. is that
it depends. If there are no other x's or y's on
the line, then everything works. but it's blind
luck, not good management. Remember that *.'

——

matches any single character? Then ‘.’ maiches
as many single characters as possible, and unless
you're careful, it can eat up a lot more of the
line than you expected. If the line was, for
example, like this:

[8X! X 16XI Xeeosossecosseeesy [OXI Y {fOXI
then saying

s/x.oy/xcy/
will take everything from the first *x* to the lasr

‘y’, which, in this example, is undoubtedly more
than you wanted.

The solution, of course, is to turn off the
special meaning of *.’ with *\.":

s/x\.ey/x::y/
Now everything works, for *\.*’ means ‘as many
periods as possible’.

There are times when the pattern ‘.*" is
exactly what you want. For example, 1o change

Now is the time for all good men
into
Now is the time.
use ‘.+' 10 eat up everything after the “for™:
s/=for.s/./

There are a couple of additional pitfalls
associated with ‘<" that you should be aware of.
Most notable is the fact that ‘as many as possi-
ble' means zero or more. The fact that zero is a
legitimate possibility is sometimes rather surpris-
ing. For example, if our line contained

fext Xy iext X Yy 1ext

and we said
s/x=y/x-y/

the firs1 ‘xy' matches this pattern. for it consists
of an ‘x°, zero spaces, and a ‘y’. The result is
that the substitute acts on the first ‘xy’, and does
not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to
specify a pattern like

/xa0ey/

which says ‘an x, a space, then as many more
spaces as possible, then a y', in other words, one
or more spaces.

The other startling behavior of *+' is again
related to the fact that zero is a legitimate
number of occurrences of something followed by
a star. The command

s/x=/y/g

when applied to the line
abcdef

produces
yaybycydyeyfy

which is almost certainly not what was intended.
The reason for this behavior is that zero is a
legal number of matches, and there are no x's at
the beginning of the line (so that gets converted
into a ‘y'), nor between the ‘a’ and the ‘b’ (so
that gels converted into a *y’), nor ... and so on.
Make sure you really want zero maiches: if not.
in this case wrile

s/xx+/y/g

*xx+" is one or more x's.

The Brackets *] I

Suppose that you want to delete any
numbers that appear at the beginning of all lines
of a file. You might first think of trying a series
of commands like

1.8s/°1+11
1.8s/72-//
1,8s/°3+4/

and so on, but this is clearly going to take for-
ever if the numbers are at all long. Unless you
want to repeat the commands over and over until
finally all numbers are gone. you must get all the
digits on one pass. This is the purpose of the
brackets [and].

The construction
[0123456789]

matches any single digit — the whole thing is
called a ‘character ciass’. With a character class.
the job is easy. The pattern ‘*{0123456789]-"
matches zero or more digits (an entire number).
s0

1.9s/°10123456789]-//

deletes all digits from the beginning of all lines.

Any characters can appear within a charac-
ter class, and just to confuse the issue there are
essentially no special characters inside the brack-
ets. even the backslash doesn't have a speciul
meaning. To search for special characters., for
example, you can say

/L\S° L/
Within [...], the *[' is not special. To get a ‘]
into a character class, make it the first character.

It’s a8 nuisance 10 have 10 spell out the
digits. so you can abbreviate them as [0—9):

similarly. {a—z] stands for the lower case letters,
and [A—2Z] for upper case.

As a final frill on character classes, you can
specify a class that means ‘none of the following
characters’. This is done by beginning the class
witha *™":

["'0-9]
stands for ‘any character excepr a digit". Thus

you might find the first line that doesn't begin
with a tab or space by a search like

/" (space) (1ab))/

Within a character class, the circumflex has
8 special meaning only if it occurs at the begin-
ning. Just 10 convince yourself, verify that

/'
finds a line that doesn't begin with a circumflex.

The Ampersand ‘&'

The ampersand ‘&’ is used primarily to
save typing. Suppose you have the line

Now is the time
and you want to make it
Now is the best time
Of course you can always say
s/the/the best/

but it seems silly to have o repeat the ‘the".
The "&’ is used to eliminate the repetition. On
the rig/n side of a substitute. the ampersand
means ‘whatever was just matched’, so you can
say

s/the/& best/

and the ‘&’ will stand for ‘the’. Of course this
isn’t much of a saving if the thing maiched is
just *the’, but if it is something truly long or
awful, or if it is something like ‘.' which
maiches a lot of text, you can save some tedious
typing. There is also much less chance of mak-
ing a typing error in the replacement text. For
example, 1o parenthesize a line, regardless of its
length.

s/ o/ (&)/

The ampersand can occur more than once
on the right side:

s/the/& best and & worst/
makes
. Now is the best and the worst time
and

s/ /&7 &Y/
converts the original line into

Now is the time? Now is the time!'

To get a literal ampersand. naturally the
backslash is used to turn off the special meaning:

s/ampersand/\&/

converts the word into the symbol. Notice that
‘&’ is not special on the lef1 side of a substitute.
only on the righs side.

Substituting Newlines

ed provides a facility for splitling 2 single
line into two or more shorter lines by ‘substilul-
ing in a newline’. As the simplest example. sup-
pose a line has golten unmanageably long
because of editing (or merely because it was
unwisely typed). If it looks like

xy

you can break it between the ‘x" and the 'y’ like
this:

s/xy/x\
y/

This is actually a single command. although it is
typed on two lines. Bearing in mind thar '\~
turns off special meanings. it seems relatively
intuitive that a *\" at the end of a line would
make the newline there no longer special.

You can in fact make a single line into
several lines with this same mechanism. As a
large example, consider underlining the word
‘very” in a long line by splitting ‘very' onto a
separate line, and preceding it by the roff or nroff
formatting command *.ul'.

ext fexi

text a very big ftext
The command

s/ ~vesy-/\
al\

very\

/

converts the line into four shorter lines. preced-
ing the word ‘very' by the line “.ul'. and elim-
inating the spaces around the ‘very'. all at the
same time.

When a newline is substituted in. dot is
lef1 pointing at the last line created.

Joining Lines

Lines may also be joined together. but this
is done with the j command instead of 5. Given
the lines

Now is
- the time

and supposing that dot is set o the first of them,
then the command

J
joins them together. No blanks are added. which

is why we carefully showed a blank at the begin-
ning of the second line.

All by itself, a j-command joins line dot to
line dot+1, but any contiguous set of lines can
be joined. Jusi specify the starting and ending
line numbers. For example,

1.8jp

joins ail the lines into one big one and prints it.
(More on line numbers in Section 3.)

Rearranging a Line with\(...\)

(This section should be skipped on first
reading.) Recall that '&' is a shorthand thai
stunds for whalever was matched by the left side
of an s command. In much the same way you
can capture separate pieces of what was malched;
the only difference is that you have to specify on
the lef1 side just what pieces you're interested in.

Suppose. for instance. that you have a file
of lines that consist of names in the form

Smith, A. B.
Jones. C.

and so on. and you want the initials to precede
the name. as in

A. B. Smith
C. Jones

It is possible to do this with a series of editing
commands. but it is tedious and error-prone. (It
is instructive to figure out how it is done,
though.}

The alternative is to ‘tag’ the pieces of the
pattern (in this case, the last name. and the ini-
tials), and then rearrange the pieces. On the lefi
side of a substitution, if part of the pattern is
enclosed between \(and \), whatever maitched
that part is remembered, and avaiiable for use on
the right side. On the right side, the symbol ‘\I"*
refers 10 whatever matched the first \(...\) pair,
*\2" to the second \(...\), and so on.

The command
1.8s/°\ (7, Je\) o N e\IA2::\ 1/

although hard to read, does the job. The first
\(...\) maiches the last name, which is any string
up to the comma; this is referred to on the right
side with '\1". The second \(..\) is whatever
follows the comma and any spaces, and is

referred to as ‘\2".

Of course, with any ediling sequence this
complicated, it's foolhardy to simply run it and
hope. The global commands g and v discussed
in section 4 provide a way for you to print
exactly those lines which were affected by the
substitute command, and thus verify that it did
what you wanted in all cases.

3. LINE ADDRESSING IN THE EDITOR

The next general area we will discuss is
that of line addressing in ed. that is. how you
specify what lines are (0 be affected by editing
commands. We have already used constructions
like

1,.8s/x/y/

to specify a change on all lines. And most users
are long since familiar with using a single new-
line (or return) to print the next line, and with

/thing/

1o find a line that contains ‘thing". Less familiur.
surprisingly enough. is the use of

2thing?

10 scan bachwards for the previous occurrence of
*thing". This is especially handy when you real-
ize that the thing you wanit 1o operate on is buck
up the page from where you are currently edit-
ing.

The slash and question mark are the only
characiers you can use to delimit a contet
search, though you can use essentially any chur-
acter in a substitute command.

Address Arithmetic

The next step is to combine the line
numbers like *.', *'$’, */.../" and *?...7" with *+°
and '—'. Thus

$-1
is a command to print the next 10 last line of the
current file (that is, one line before line *S°).

For example, 1o recall how far you got in a previ-
ous editing session,

$-5.5p

prints the last six lines. (Be sure you understund

why it's six, not five.) If there aren’t sin. of

course, you'll get an error message.
As another example,

l-3.0+3p

prints from three lines before where you are now
(at line dot) 10 three lines after, thus giving vou
a bit of context. By the way, the '+ can be
omitted:

0-3, on
is absolutely identical in meaning.

Another area in which you can save typing
effort in specifying lines is to use *—"'and *+" as
line numbers by themselves.

by itself is a command to move back up one line
in the file. In fact, you can string several minus
signs together 10 move back up that many lines:

moves up three lines, as does *—3'. Thus
-3,+3p
is also identical (0 the examples above.
Since *—" is shorier than ‘.—1', construc-
tions like
-, .s/bad/good/
are useful. This changes ‘bad’ 10 ‘good’ on the
previous line and on the current line.

*+' and *—" can be used in combination
with searches using */.../° and ‘?...7°, and with
*$'. The search .

/thing/ — -

finds the line containing ‘thing’. and positions
you two lines before it.

Repeated Searches
Suppose you ask for the search

/horrible thing/

and when the line is printed you discover that it
isn't the horrible thing that you wanted, so it is
necessary to repeat the search again. You don't
have to re-type the search, for the construction

1

is a shorthand for ‘the previous thing that was
searched for’, whatever it was. This can be
repeated as many times as necessary. You can
also go backwards:

77
searches for the same thing, but in the reverse
direction.

Not only can you repeat the search, but
you can use ‘//’ as the left side of a substitute
command, to mean ‘the most recent pattern’,

/horrible thing/
oo ©d prinis line with ‘horrible thing” ...
s//good/p

To go backwards and change a line, say

77s//good/

Of course, you can still use the ‘& on the right
hand side of a substitute to stand for whalever
got matched:

11sit& &/p

finds the next occurrence of whatever you
searched for last, replaces it by two copies of
itself, then prints the line just 10 verify that it
worked.

Default Line Numbers and the Value of Dot

One of the most effective ways 1o speed up
your editing is always 1o know what lines will be
affecied by a command if you don't specify the
lines it is t0 act on. and on what line you will be
positioned (i.e., the value of dot) when a com-
mand finishes. If you can edit without specifving
unnecessary line numbers. you can save a lot of
typing.

As the most obvious example. if you issue
a search command like

/thing/ ,

you are left pointing at the next line that con-
tains ‘thing". Then no address is required with
commands like s t0 make a substitution on that
line. or p to print it. or 1 to list it, or d to delete
it, or a to append text after it, or ¢ 10 change it.
or i lo insert text before it.

What happens il there was no ‘thing™?
Then you are left right where you were — dot is
unchanged. This is also true if you were sitling
on the only ‘thing’ when you issued the com-
mand. The same rules hold for searches that use
*2...7°%. the only difference is the direction in
which you search.

The delete command d leaves dot pointing
at the line that followed the last deleted line.
When line '3’ gets deleted. however, dot points
at the new line 'S".

The line-changing commands a. ¢ and i by
default all affect the current line — if you give
no line number with them, a appends text after
the current line, ¢ changes the current line. and i
inserts text before the current line.

8, ¢ and i behave identically in one
respect — when you stop appending. changing or
inserting, dot points at the last line entered.
This is exactly what you want for typing and edit-
ing on the fly. For example, you can say

3
e text ...

... botch ... (minor error)
s/botch/correct/ (fix botched line)
a

... more text ...

without specifying any line number for the sub-
stitute command or for the second append com-
mand. Or you can say

.

a
- text ...

... horrible botch ...
c {replace entire line)
... fixed up line ...

(major error)

You should experimeni o determine what
happens if you add »no lines with a, ¢ or i

The r command will read a file into the
text being edited, either at the end il you give no
address, or after the specified line if you do. In
either case, dot points at the last line read in.
Remember that you can even say Ur to read a
file in at the beginning of the text. (You can
also say 0a or 1i to start adding tex! at the begin-
ning.)

The w command writes out the entire file.
If you precede the command by one line
number, that line is writlen, while if you precede
it by two line numbers, that range of lines is
written. The w command does nos change dot:
the current line remains the same. regardless of
what lines are written. This is true even if you
say something like

/"\.AB/./"\.AE/w abstract

which involves a context search.

Since the w command is so easy to use,
you should save what you are editing regularly as
you go along just in case the sysiem crashes, or
in case you do something foolish, like clobbering
what you're editing.

The least intuitive behavior, in a sense, is
that of the s command. The rule is simpie —
you are left sitting on the last line that got
changed. If there were no changes, then dot is
unchanged.

To illustrate, suppose that there are three
lines in the buffer, and you are siiting on the
middle one:

x1
x2
x3

Then the command

-, +s/x/ylp

prinis the third line, which is the last one
changed. But if the three lines had been

x1
y2
y3

and the same command had been issued while
dot pointed at the second line, then the result
would be to change and print only the first line.
and that is where dot would be set.

Semicolon *;*

Searches with */...7° and *?...7" start at the
current line and move forward or backward
respectively until they either find the patiern or
get back to the current line. Sometimes this is
not what is wanted. Suppose, for example. that
the buffer contains lines like this:

ab
be

.

Starting at line 1. one would expect that the
command

/al./olp

prints all the lines from the ‘ab’ to the “bc’
inclusive. Actually this is not what happens.
Both searches (for *a" and for 'b’) start from the
same point, and thus they both find the line that
contains ‘ab'. The result is to print a single line.
Worse. if there had been a line with a *b’ in il
before the ‘ab’ line. then the print command
would be in error, since the second line number
would be less than the first, and it is illegal 10 try
lo print lines in reverse order.

This is because the comma separator for
line numbers doesn't set dot as each address is
processed. each search starts from the same
place. In ed, the semicolon . can be used just
like comma. with the single difference thai use
of a semicolon forces dot to be set at that point
as the line numbers are being evaluated. In
effect. the semicolon ‘moves’ dot. Thus in our
example above, the command

/a/./blp

prints the range of lines from ‘ab’ to ‘be’.
because afier the ‘'a’ is found. dot is set o that
line, and then 'b’ is searched for. starting beyond

that line.

This property is most ofien useful in a
very simple situation. Suppose you want (o find
the second occurrence of ‘thing’. You could say

/thing/
//

but this prints the first occurrence as well as the
second. and is a nuisance when you know very
well that it is only the second onec you're
interested in. The solution is 1o say

/thing/://

This says to find the first occurrence of ‘thing".
set dot to that line, then find the second and
print only that.

Closely related is searching for the second
previous occurrence of something. as in

?something?.??

Printing the third or fourth or ... in either direc-

tion is left as an exercise.

Finally. bear in mind that if you want to
find the first occurrence of something in a file.
starting at an arbitrary place within the file. it is
not sufficient to say

1:/thing/

because this fails if ‘thing' occurs on line 1. But
it is possible 10 say

0:/thing/

{one of the few places where 0 is a legal line
number). for this starts the search at line 1.

Interrupting the Editor

As a final note on what dot gets set 10. you
should be aware that if you hit the interrupt or
delete or rubout or break key while ed is doing a
command. things are put back logether again and
your state is restored as much as possible 10 what
it was before the command began. Nawurally,
some changes are irrevocable — if you are read-
ing or writing a file or making subsltitutions or
deleting lines, these will be stopped in some
clean but unpredicltable siate in the middle
(which is why it is not usually wise to stop
them). Dot may or may not be changed.

Printing is more clear cut. Dot is not
changed uniil the printing is done. Thus if you
print unlil you see an interesting line. then hil
delete, you are nors sitting on that line or even
near it. Dot is lefl where il was when the p com-
mand was started.

-10-

4. GLOBAL COMMANDS

The global commands g and v are used 10
perform one or more editing commands on all
lines that either contain (g} or don't contain {v)
a specified patiern.

As the simplest example. the command
g/UNIX/p

prints all lines that contain the word 'UNIX".
The pattern that goes between the slashes can be
anything that could be used in a line search or in
a substitute command: exactly the same rules
and limitations apply.

As another example. then.

g/ \./p

prints all the formatiing commands in u file
(lines that begin with ".").

The v command is identical 10 2. except
that it operates on those line that do nnr contiin
an occurrence of the pattern. (Don't laok 100
hard for mnemonic significance to the leter "\
So

v/"\./p

prints all the lines that don't begin with *." — the
actual text lines.

The command that follows g or v can be
anything:

g/"\./d

deletes all lines that begin with *.". and
e/°S/d

deletes all empiy lines.

Probubly the most useful command ' that
can follow a global is the substitute command.
for this can be used 10 make a change and prini
each affected line for verification. For example.
we could change the woard “Univ® 10 "UNINS
everywhere, and verify that it really worked. with

2/Unix/s//UNIX/gp

Notice that we used *//° in the substilute com-
mand 10 mean ‘the previous pattern’. in this
case. ‘Unix". The p command is done on every
line that muaiches the pattern. not just those on
which a substitution took place.

The global commund operates by muking
two passes over the file. On the first pass. ull
lines that maich the pattern are marked. On the
second pass. each marked line in turn is exam-
ined, dot is set to that line, and the commund
executed. This means thal it is possible for the
command that follows a g or v 10 use addresses.
sct dot, and so on. quite freeh.

g8/"\.PP/+

prints the line that follows each ‘PP’ command
(the signal for a new paragraph in some format-
ting packages). Remember that ‘+' means ‘one
line past dot’. And

g/topic/?"\.SH?1

searches for each line that contains ‘topic’, scans
backwards until it finds a line that begins ‘.SH'
(a section heading) and prints the line that fol-
lows that. thus showing the section headings
under which ‘topic’ is mentioned. Finally,

g/ \.EQ/+./"\.EN/=p

prints all the lines that lie between lines begin-
ning with ".EQ" and *.EN’ formatting commands.

The g and v commands can also bé pre-
ceded by line numbers, in which case the lines
searched are only those in the range specified.

Multi-line Global Commands

It is possible to do more than one com-
mand under the control of a global command,
although the syniax for expressing the operation
is not especially natural or pleasant. As an
example. suppose the task is to change ‘x’ to 'y’
and ‘2’ 10 ‘b’ on all lines that contain ‘thing'.
Then

g/thing/s/x/y/\
s/a/b/

is sufficient. The *\" signals the g command that
the set of commands continues on the next line;
it terminates on the first line that does not end
with *\". (As a minor blemish, you can't use a
substitute command to insert a newline within a
g command.)

You should watch out for this problem:
the command

g/x/slly/\
s/a/b/

does nor work as you expect. The remembered
pattern is the last pattern that was actually exe-
cuted, so sometimes it will be *x* (as expected).
and sometimes it will be ‘a’ (not expected). You
must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible 10 execute a, ¢ and i
commands under a global command; as with
other multi-line constructions, all that is needed
is to add a *\" at the end of each line except the
last. Thus to add a ‘.af° and ‘.sp' command
before each *.EQ" line, type

«11-

g/ "\ .EQ/i\

.nf\

Sp
There is no need for a final line containing a *.'
to terminate the i command, unless there are
further commands being done under the global.
On the other hand, it does no harm to pul it in
either.

5. CUT AND PASTE WITH UNIX COM-
MANDS

One editing area in which non-
programmers seem not very confident is in what
might be cailed ‘cut and pasie’ operations —
changing the name of a file. making a copy of a
file somewhere else. moving a few lines from
one place to another in a file, inserting one file in
the middle of another, splitting a file into pieces.
and splicing two or more files together.

Yet most of these operations are actually
quite easy. if you keep your wits about vou and
go cauliously. The next several sections talk
about cut and paste. We will begin with the
UNIX commands for moving entire files around.
then discuss ed commands for operating on
pieces of files.

Changing the Name of a File

You have a file named ‘memo’ and vou
want it 10 be called ‘paper’ instead. How is it
done?

The UNIX program that renames files is

called mv (for ‘move’); it ‘moves’ the file from
one name 1o another, like this:

mv memo paper

That's all there is to it: mv from the old name to
the new name.

mv oldname newname

Warning: if there is already a file around with the
new name, its present contents will be silently
clobbered by the information from the other file.
The one exception is that you can't move a file
to itself —

mv x X

is illegal.

Making a Copy of a File

Sometimes whal you want is a copy of a
file — an entirely fresh version. This might be
because you want to work on a file, and yet save
a copy in case something gets fouled up. or just
because you're paranoid.

In any case, the way to do it is with the ¢cp

command. (cp stands for ‘copy’: the system is
big on short command names, which are appreci-
ated by heavy users, but sometimes a strain for
novices.) Suppose you have a file called ‘good’
and you want 10 save a copy before you make
some dramatic editing changes. Choose a name
— ‘savegood’ might be acceptable — then type

cp good savegood

This copies ‘good’ onto ‘savegood’, and you now
have two identical copies of the file ‘good’. (if
‘savegood’ previously contained something. it
gets overwritien.)

Now if you decide at some time that you
want 1o get back to the original state of ‘good’,
you can say

mv savegood good

(if you're not interested in ‘savegood' any
more), or

cp savegood good
if you still want to retain a safe copy.

In summary, mv just renames a file; ¢p
makes a duplicate copy. Both of them clobber
the ‘target’ file if it already exists. so you had
better be sure that's what you want to do before
you do it.

Removing a File

If you decide you are really done with a
file forever, you can remove it with the rm com-
mand:

rm savegood
throws away (irrevocably) the file called
‘savegood’.

Putting Two or More Files Together

The next step is the familiar one of collect-
ing two or more files into one big one. This will
be needed, for example, when the author of a
paper decides that several sections need to be
combined into one. There are several ways (o do
it, of which the cleanest, once you get used to it,
is a program called cat. (Not a// programs have
two-letter names.) cat is short for ‘concatenate’,
which is exactly what we want to do.

Suppose the job is to combine the files
‘filel" and ‘file2’ into a single file called ‘bigfile’.
If you say

cat file

the contents of ‘file’ will get printed on your ter-
minal. If you say

cat filel file2
the contents of ‘filel’ and then the contents of

-12-

‘file2' will both be printed on your terminal. in
that order. So cat combines the files, all right.
but it's not much help to print them on the ter-
minal — we want them in *bigfile’.

Fortunately. there is a way. You can tell
the system that instead of printing on your ter-
minal, you want the same information put in a
file. The way 10 do it is 10 add to the command
line the character > and the name of the file
where you want the output to go. Then you can
say

cat filel file2 >bigfile

and the job is done. (As with cp and mv. you're
putting something into ‘bigfile’, and anvthing
that was already there is destroyed.)

This ability to ‘capwure’ the output of a
program is one of the most useful aspects of the
system. Fortunately it's not limited 1o the cat
program — you can use it with any program that
prints on your terminal. We'll see some more
uses for it in a moment.

Naturally. you can combine several files.
not just two:

cat filel file2 filed ...

collects a whole bunch.

> bigfile

Question: is there any difference between
cp good savegood

and
cat good >savegood

Answer: for most purposes. no. You might rea-
sonably ask why there are two programs in that
case, since cat is obviously all you need. The
answer is that cp will do some other things as
well, which you can investigate for yourself by
reading the manual. For now we'll stick 10 sim-
ple usages.

Adding Something to the End of a File

Sometimes you want (o add one file to the
end of another. We have enough building biocks
now that you can do it. in fact before reading
further it would be valuable if you figured out
how. To be specific, how would you use cp. m»
and/or cat 10 add the file *goodl’ 10 the end of
the file ‘good’?

You could try

cat good goodl >temp
mv temp good

which is probably most direct. You should also

understand why

cat good goodl >good

doesn't work.
‘good’!)

The easy way is 1o use a variant of >,
called >>. In fact, > > is identical to > except
that instead of clobbering the old file, it simply
tacks stuff on at the end. Thus you could say

(Don’t practice with a good

cat goodl > >good

and ‘good!’ is added to the end of ‘good’. (And
if ‘good’ didn't exist, this makes a copy of
‘goodl’ called ‘good’.)

6. CUT AND PASTE WITH THE EDITOR

Now we move on to manipulating pieces
of files — individual lines or groups of lines.
This is another area where new users seem
unsure of themselves.

Filenames

The first step is 1o ensure that you know
the ed commands for reading and writing files.
Of course you can't go very far without knowing
rand w. Equally useful, but less well known. is
the ‘edit’ command e. Within ed, the command

e newfile

says 'l want to edit a new file called new/ile,
without leaving the editor.” The e command dis-
cards whatever you're currently working on and
starts over on newfile. 1t's exacily the same as if
you had quit with the q command. then re-
entered ed with a new file name, except that if
you have a pattern remembered. then a com-
mand like // will still work.

If you enter ed with the command
ed file

ed remembers the name of the file. and any sub-
sequent e, r or w commands that don't contain a
filename will refer to this remembered file. Thus

ed filel

... {editing) ...

w (writes back in filel)

e file2 (edit new file, without leaving editor)
... (editing on file2) ...

w (writes back on file2)

(and so on) does a series of edits on various files
without ever leaving ed and without typing the
name of any file more than once. (As an aside,
if you examine the sequence of commands here,
you can see why many UNIX systems use e as a
synonym for ed.)

You can find out the remembered file
name at any time with the f command; just type
f without a file name. You can also change the
name of the remembered file name with f: a use-
ful sequence is

.13 .-

ed precious
f junk
... (editing) ...

which gets a copy of a precious file, then uses f
to guarantee that a careless w command won't
clobber the original.

Inserting One File into Another

Suppose you have a file called *memo’.
and you want the file called ‘1able" 1o be inserted
just after the reference 1o Table 1. That is. in
‘memo’ somewhere is a line that says

Table | shows that ...

and the data contained in ‘table’ has to go there.
probably so it will be formatted properly by nrofl
or trofl. Now what?

This one is easy. Edit ‘memo’. find "Table
1", and add the file ‘table’ right there:

ed memo

/Table 1/

Table | shows thai ... lresponse from cdl
o lable

The critical line is the last one. As we said ear-
lier, the r command reads a file; here you asked
for it to be read in right after line dot. An r
command without any' address adds lines at the
end. so it is the same as $r.

Writing out Part of a File

The other side of the coin is writing oul
part of the document vou're editing. For exam-
ple, maybe you want to split out into a separate
file that table from the previous example. so it
can be formatled and tested separately. Suppose
that in the file being edited we have

IS
...[llots of stuff]
.TE

which is the way a table is set up for the tbl pro-
gram. To isolate the table in a separaie file
called ‘table’, first find the start of the table (the
“.TS" line), then wrile out the interesting part:

I"\.TS/
TS led prints the tne it found]
«/"\.TE/w 1able

and the job is done. If you are confideni. you
can do it all at once with

/'\.TS/:./"\.TE/w table

The paint is that the w command can write
out a group of lines, instead of the whole file. In
fact, you can write out a single line if you like.
just give one line number instead of two. For

-

exampie, if you have just typed a horribly com-
plicated line and you know that it (or something
like it) is going to be needed later. then save it
— don't re-lype it. In the editor, say

a

...lots of stuff...
...horrible line...
W temp

a

...more stuff...
.

o.F temp

a

...more stuff...

This last example is worth studying, 1o be sure
you appreciate what's going on.

Moving Lines Around

Suppose you want to move a paragraph
from its present position in a paper 0 the end.
How would you do it? As a concrete example.
suppose each paragraph in the paper begins with
the formatting command *.PP". Think about it
and write down the deuails before reading on.

The brute force way (not necessarily bad)
is to write the paragraph onio a temporary file.
delete it from its current position. then read in
the temporary file at the end. Assuming that
you are sitting on the *.PP* command that begins
the paragraph. this is the sequence of commands:

«/"\.PP/=w temp
‘-//_d
Sr temp

That is, from where you are now (*.') until one
line before the next *.PP' (*/"\.PP/=") wrile
onto ‘temp’. Then delete the same lines.
Finally, read ‘temp" at the end.

As we said, that's the brute force way.
The easier way (often) is to use the move com-
mand m that ed provides — it lets you do the
whole set of operations at one crack, without any
temporary file.

The m command is like many other ed
commands in that it lakes up to two line
numbers in front that iell whal lines are to be
affected. 1t is also folfowed by a line number that
tells where the lines are 10 go. Thus

linel, line2 m linel

says to move all the lines between ‘linel" and
‘line2" afier ‘line3’. Naturally, any of ‘linel"
elc.. can be patterns between slashes, 3 signs, or
other ways to specifly lines.

Suppose again that you're siuling at the

-14 -

first line of the paragraph. Then you can say
o/"\.PP/=m$
That's all.

As another example of a frequent opera-
tion. you can reverse the order of two adjucent
lines by moving the first one to after the second.
Suppose that you are positioned at the first.
Then

m+

does it. It says to move line doi (o afier one line
after line dot. If you are positioned on the
second line.

m—-
does the interchange.

As you can see, the m command is more
succinct and direct than writing. deleting and re-
reading. When is bruie force better anyvway?
This is a matier of personal taste — do whal you
have most confidence in. The main difficuliy
with the m command is that il you use patterns
to specify both the lines you are moving and the
target, you have to take care that yvou specify
them properly. or you may well not move the
lines you thought you did. The result of u
botched m command can be a ghastly mess.
Doing the job a step at a time makes it easier for
you to verify at each step that you accomplished
what you wanted 10. It’s also a good idea to
issue a w command before doing anything com-
plicated: then if you goof. it's easy to back up 10
where you were.

Marks

ed provides a facility for marking a line
with a particular name so you can later reference
it by name regardless of its actual line number.
This can be handy for moving lines. and for
keeping track of them as they move. The mark
command is k; the command

kx

marks the current line with the name "x". If a
line number precedes the k. that line is marked.
(The mark name must be a single lower case
letter.) Now you can refer 1o the marked line
with the address

X

Marks are most useful for moving things
around. Find the first line of the block to be
moved, and mark it with @. Then find the last
line and mark it with 5. Now position yoursell
al the place where the stufl is to go and say

‘a,'bm.

Bear in mind that only one line can have a
particular mark name associated with it at any
given time.

Copying Lines

We mentioned earlier the idea of saving a
line that was hard (o type or used often, so as to
cut down on typing time. Of course this could
be more than one line: then the saving is
presumably even greater.

ed provides another command. called t
(for ‘transfer’) for making a copy of a group of
one or more lines at any point. This is often
easier than writing and reading.

The t command is identical 10 the m com-
mand. except that instead of moving lines it sim-
ply duplicates them at the place you named.
Thus

1.818

duplicates the entire contents that you are edijt-
ing. A more common use for t is for creating a
series of lines that differ only slightly. For
example. you can say

.......... X (long line)

1. {make a copy)
s/x/v/ {change it a bit)
1. (make third copy)
s/vliz/ {change it a bit)

and so on.

The Temporary Escape *!*

Sometimes il is convenient (o be able 1o
temporarily escape from the editor to do some
other UNIX command, perhaps one of the file
copy or move commands discussed in section §,
without leaving the editor. The ‘escape’ com-
mand ! provides a way to do this.

If you say
!lany UNIX command

your current editling state is suspended, and the
UNIX command you asked for is executed.
When the command finishes. ed will signal you
by printing another ! at that point you can
resume editing.

You can really do amy UNIX command,
including another ed. (This is quite common, in
fact.) In this case, you can even do another ',

7. SUPPORTING TOOLS

There are several tools and techniques that
go along with the editor, all of which are rela-
lively easy once you know how ed works,

-15.

because they are all based on the editor. In this
section we will give some fairly cursory examples
of these tools. more to indicate their existence
than 10 provide a complete tutorial. More infor-
mation on each can be found in (3].

Grep

Sometimes you want to find ail
occurrences of some word or pattern in a set of
files. to edit them or perhaps just to verify their
presence or absence. It may be possible 10 edit
each file separately and look for the pattern of
interest, but if there are many files this can gel
very tedious. and if the files are really big. it may
be impossible because of limits in ed.

The program grep was invented 1o g2t
around these limilations. The search patterns
that we have described in the paper are ofien
called ‘regular expressions’. and ‘grep” stands for

g/re/p

That describes exactly what grep does — it prints
every line in a set of files thai contains a particu-
lar pattern. Thus

grep ‘thing’ filel file2 filel ...

finds “thing’ wherever it occurs in any of the files
“filel’, *file2", etc. grep also indicates the file in
which the line was found. so you can later edit it
if you like.

The patiern represented by ‘thing" can be
any patiern you can use in the editor. since grep
and ed use exactly the same mechanism for pat-
tern searching. It is wisest always 10 enclose the
pattern in the single quotes "..." if it contains any
non-alphabetic characters. since many such char-
acters also mean something special 10 the UNIX
command interpreter (the ‘shell’). If you don'i
quote them, the command interpreter will ry to
interpret them before grep gets a chance.

There is also a way to find lines that donr
contain a patlern:

grep —v ‘thing' filel file2 ...

finds all lines that don"t contains ‘thing’. The
=¥ must occur in the position shown. Given
grep and grep —v, it is possible 10 do things like
selecting all lines that contain some combination
of patterns. For example, 10 get all lines that
contain ‘x' but not ‘y":

grep x file... | grep —v y

(The notation | is a ‘pipe’, which causes the out-
put of the first command to be used as input 10
the second command; see [2].)

——

Editing Scripts

If a fairly complicated set of editing opera-
tions is 10 be done on a whole set of files, the
easiest thing 1o do is to make up a ‘script’, i.e., a
file that contains the operations you want {0 per-
form, then apply this script to each file in turn.

For example. suppose you want to change
every ‘Unix’ to ‘UNIX" and every ‘Gceos’ 1o
*GCOS" in a large number of files. Then put
into the file *script’ the lines

g/Unix/s//UNIX/g
2/Gceos/s//GCOS/g

w
q

Now vou can say

ed filel <script
ed file2 <script

This causes ed o take its commands from the
prepared script. Notice that the whole job has to
be planned in advance.

And of course by using the UNIX com-
mand interpreter, you can cycle through a set of
files automatically. with varying degrees of ease.

Sed

sed (‘siream editor’) is a version of the
editor with restricted capabilities but which is
capable of processing unlimited amounis of
inpul. Basically sed copies its inpul to its output.
applying one or more editing commands to each
line of input.

As an example, suppose that we want 10
do the ‘Unix' to ‘UNIX’ part of the example
given above, but without rewriting the files.
Then the command

sed 's/Unix/UNIX/g filel file2 ..

applies the command ‘s/Unix/UNIX/g’ to all
lines from ‘filel”, *file2’, elc.. and copies all lines
1o the output. The advaniage of using sed in
such a case is that it can be used with input too
large for ed 10 handle. All the output can be col-
lected in one place, either in a file or perhaps
piped into another program.

If the editing transformation is so compli-
cated that more than one editing command is
needed, commands can be supplied from a file,
or on the command line, with a slighily more
complex syntax. To take commands from a file,
for example,

sed —(cmdfile input—files...

sed has further capabilities, including con-
ditional testing and branching. which we cannol

-16 -

go into here.

Acknowledgement

1 am grateful to Ted Dolouta for his careful
reading and valuable suggestions.

References

{11 Brian W. Kernighan. 4 Tworial [ntraducinm
1o the UNIX Texi Editor. Bell Laboratories
internal memorandum.

(21 Brian W. Kernighan, UN/XY For Begmners.
Bell Laboratories internal memorandum.

3] Ken L. Thompson and Dennis M. Riichie.
The UNIX Programmer’s Manval. Bell
Laboratories.

