I

Bell Laboratories

-~ '
subject: = UNIX System Call cate: September 16, 1976

Measurements
from: C. D. Perez

T. M. Raleigh
MF-76-8234-079

YY=8234~4

MEMORANDUM FOR FILE LAUTENGACH, DEBOR,
PY2a121
SUSJECT MATCH

Introduction

Tnis memorandum is the first of a series which will
deal with fundamental measurements of the UNIX operating
system on the PDP-11 line of computers. A description 1is
given of system calls and some of their pasiC measurements.

overview

The purpose of the set of measurements described in
this memorandum is to explore in detail the overhead in-
curred in making a system call under UNIX and to obtain
some information on the raw processing speed of the current
PDP 11 line of processors (11740, 11/45 and 11/70).

Since the time to execute various system calls 1is on
the order of tens or nundreds of microseconds, a facility
tor measurement that had a high resolution was needaed to ob-
tain the data we desired. A trace tool designed by T.k.
Raleigh provided the ability to record time stamped events

~in a nmanner similar to the trace facilities available on
larger time sharing systems. When used with the KWl1-2 pro-

_grammable clock, time stamps accurate to 10 microseconds
were obtained. 1In addition, a data reduction program called

. £sm was written to reduce the data and produce formatted
listings and statistical information. '

Using the trace as our basic measurement tool, an an-
vironment was created on each of the processors studied
that attempted to minimize the number of perturbations of

a measurements. Unibus interference was the chief problem and
. this could only be minimized, not eliminated, pecause of the
. architecture of the PDP-11.

To conduct the experiment, several system calls were
selected which do not require any scarce resources and hence
do not need to roadblock until the resource is available.
This eliminated any haruware configuration problems such as

disk rotational speed and seek time, number of processes
sharing a resource, etc. System calls whose execution time
is a function of these variables will be studied subseguent-
ly. The calls chosen were essentially CPU bouna, and were
expected to give similar results across the three machines
studied. Prior to the experiment, the trace facility was
calibrated by determining now long it took to record a time
stamped event and this information was available to correct
the data.

Besides inforination on relative processor speeds, we
expected to obtain a measure of the minimum system cail
time, the amount of overhead for each argument that must be
passed as part of a system call, -the amount of overhead in-
curred in context switching as results of the measurements.
It 1is the relative costs of time that constitute the impor-
tant information gleaned from this experiment and not the
absolute execution times for each system calli. AS new
features are added to tne system or existing ones are
enhanced, these times may change slightly.

Measurement Tools

A trace facility has peen designed and implemented for
the UNIX operating system by T.M.Raleigh of the UNIX Support
Group (USG). This tool was used for the measurements that
are descriked in this memoranaum. The steps involved in the
insertion of the trace into the operating system are sup-
plied as Attachment A. Documentation of the trace tooli is
provided as Attachment B; a brief overview is gaiven here.

The trace software is capable of recording time stamped
events that a user embeds either in his program or within
" the operating system. The programmable clock is used ac a
100KHz rate so that time stamps with 10 usec. granularity
can be recorded. Internal buffers (three were usea in this
experiment) collect data. When buffers are fiilea they are
written onto an output device of the user’s choice. CTommun-
ication with trace both to activate it and to recoru data is
done by means of the event subroutine call. By judiciously
placing calls to event around specific activities, the time
to accomplish them (i.e. the time between event calis) can
be determined. Besides being a subroutine within the
‘operating system, event is also a system call so that accu-
rate measurements of user program activities can also ove ob-
tained.

Fsm is an interactive reduction program for aigesting
the raw data collected by the trace mechanism. Fsm can pe
used in an editor mode to examine and print the aata or it
can be used to build finite state machine models to perform
statistical analysis on the raw data. Trace is a relatively
new tool; this is the first use of the fsm program. The ex-
periment afforaed an opportunity to evaluate their behavior,

refining or debugging as the needs of each experiment
directed it. Initial tests were made on each computer to
arrive at a very accurate measurement of the time to execute
an event system call both from a user program ana a system
module. System probes (calls to event) were appliea at aany
points until every expenditure of time around the oraiginal
calls could be explained.

Test Systems

Each of the tests in this experiment was run on three
different PDP-11 computers. In summary, the test configura-
tions were,

1. Dept. 8234°s PDP-11/45 with 80K words of memory, a
KW11-P clock, an RP0O3 moving head disk containing the
root file system, an RF11 fixed head disk used for
swapping and an RKO5 moving head disk which was used t>
recora the trace data.

2. Dept. 8234°s PDP-11/70 with 128K words of memory, a
KW11-P <clock, an kS04 fixed heaa disk for a root file
system, an RPO4 moving head disk which contained the
user file systems and a TU16 magnetic tape drive for
recording trace data.

3. Dept. 1481°s PDP-11/40 with 40K of memory, a Kwli-P
clock with the root file system on an RK03 moving head
disk and the swap area on an RF11 fixed heaa disk.
Data was collected on a TM11 magnetic tape.

Although both the 11/70 anu the 11/45 are eguippea with
floating point hardware, tests were made on each system con-
figured with and without that feature to define the addi-
tional overhead in context switching. The three computers
will be used for subsequent tests with variations in confi-
guration only as a particular experiment requires it.

Programmable Clock Problems

The trace mechanism uses the programmable c¢lock to
produce event entries with 10 usec. resolution. Before any
data collection was done, the clocks (KW11-P) on each
machine were checked for accuracy against external time
sources (time of day) and against 1line frequency clocks
(KW11-L) on nearby systems. For example, the KWw11-P clock
on the 11/45 system was checked against the 1line freguency
clock of the 11/70 which in turn had been calibratea against
the time of day. Our calibration procedure showed that the
KW11-P clock sold by DEC had some serious design flaws which
caused large time drifts when the programmable mode was
used. These problems were caused by deficiencies in the os-
cillator circuitry and by a race condition that occurs in
the interrupt regquest circuitry on the KW11-P board. This

was a known problem by DEC engineers and redesignea clocks
were obtained for our measurements. The 11/40 system used
for these experiments had no provision for a programmable
clock, so it was outfitted to accept that device temporari-
ly.:

Environment

In order to minimize any perturbation in the data being
recorded, a quiet system was constructed. We define a quiet
system to be a single user system where care has been exer-
cised to insure that there are no daemons or other processes
running and that there is no unessential device in the sys-
tem generating interrupts. The object was. to minimize
Unibus activity. Because of the architecture of the ¢2DP-11
processor, speed can be influenced by actavity on the
Unibus. Figure 1 illustrates the problems which a Unibus
architecture poses. Here it is shown that the entire system
is organized around the Unibus with a bus arbitration unit
determining when a device is allowed to use a cycle on the
Unibus. The Unibus is allocated to a device for only one
cycle (for simplicity assume a cycle to be 1 usec.) in order
to complete a transfer. The result is that all of the dev-
ices on the bus (including the processor) compete for Unibus
cycles; therefore the activity of one device may delay the
operation of another. The chief source of contention is
between the processor and devices to obtain cycles on the
Unibus to access memory. As an example, consider the pro-
cessor and a disk on the Unibus. The processor needs Unibus
cycles to fetch instructions and operate from memory while
the disk needs Unibus cycles to transfer data to or from
memory. The processor and disk, however, request these cy-
Ccles at different rates. The disk requires Unibus cycles
only at the rate at which it transfers them to or from the
disk surface. (This is a slight simplification since disks
have a silo for buffering data in transit from the bus to
the disk surface; when the silo is not full, it can make re-
quests at the same speed as the processor.) 1f the device
is, for example, an RKO5 disk, the transfer speed 1s 11.1
usec. and if we assume that the processor makes memory re-
quests at 1 usec. intervals, then it can be seen that on the
average every 11 cycles the disk will steal a Unibus cycle.
Thus, in terms of the amount of time it would take the pro-
cessor to execute a given set of instructions, the time will
be lengthened by 1/11.5 or about 8.7% whenever the disk is
" making a transfer. (During the time that any positioning
operations are in progress, there are no disk transfers be-
ing made.)

Thus, any DMA I/0 that occurs will lengthen the CPU
time to execute a given set of instructions. This experi-
ment included only system calls not involving any I/0; how-
ever, the trace facility outputs trace data onto a device
when its internal buffers are full. Therefore, the very

fact that measurement data is being recorded results in the
data being perturbed. Fortunately, at most one 1I/0 opera-
tion is done for every 63 trace points that are recorded. A
trace buffer containing 63 trace points is 512 bytes (256
words) long so that it 1s possible to estimate the effects
of this interference. The effects differ with the speed of
each device as will pe illustrated by wusing the KKO05 and
RPO4 disk drives as examples. The interval over which
Unibus interference occurs for each device is tne amount of
time that it takes to transfer 256 words.

RK0O5 - 256%*11.1
RPO4 - 256%2.5

2.840 nms
6400 ms.

(This is not stri®tly corract because, as mentioned earlier,
when the silo is empty, a faster transfer rate occurs until
the silo is full.) It can oe seen that for a fixed number of
probes recorded over an interval, there will be a large
number of probes with small perturbation when recording on
RK05°s, while there will be a small number of probes with
large perturbation when recording on kP04°s. It should be
emphasized that Unibus interference occurs only while I/0 is
occurring and that I/0 only occurs for a small fraction of
the time that the trace is active. By recording many itera-
tions of the same measurement in one test, the average value
recorded will be close to the true value.

In addition to the perturpations introduced oy cycle
stealing on the Unibus, there are also perturbations intro-
duced by the system software. In particular, the pasic tim-
ing of the operating system (supplied by the system clock)
causes the system to look for other processes to run at the
end of each time quantum. Any measurements must take into
account the fact that the operating system may have inter-
vened to perform some of its housekeeping tunctions in
between the recording of two trace points. These interven-
tions are however more easily extracted by requiring that
trace points be added to system software to indicate where
the system has intervenea. 1In this way, data wnich has been
perturbed because of the normal operation of the system can
be removed from consideration. For the tests comprising
this experiment (with the exception of the tests on the
event call itself), two probes (events) were placed within
the operating system. One was aaded to the clock ainterrrupt
handler which supplies all of the system’s timing; the other
was inserted in the context switching function withan the,
system. Other probes could have been added to account for,
I70 from the user terminal and I/O from the trace process
itself, however, these were considered to occur at a low
enough frequency for the idea to be discarded.

The measurement results aiscussed later in this
memorandum have had the data for interference from the sys-
tem software culled, however, no attempt has been made to

correct the data for Unibus interference. This was done Le-
cause we were reluctant to transform the raw aata and be-
cause each test recorded a large number of repetitions of
the same data so that perturbations were smoothea out in the
results. We have, however, presented two sets of numbers
for the system call times that are summarized below. The
first is the result of examining the data py hand and
represents an effort to obtain median values. The second
numbers are the mean value and standard deviation supplied
by the reauction program after the data had been corrected.

. System Calls

Before presenting the details of the experiment, some-

background information on tne composition of system calls
will be given. UNIX uses the TRAP instruction (SIS pseudo-
operation in assembly language) to allow programs to make
system calls. The basic form of a system call in assembly
language is of the form shown for the read system call.

read = 24,
: mov $argl,r0
sys read
arg2: s
arg3: H

where the sys read is assembled as the TRAP instruction with
a specific System Entry Point Table number (24.). 1Ihe read
system call passes three arguments to the system. It shoula
be noted that one of the arguments is passed in register r0
while space for the other two arguments 1s assembled
directly after the TRAP instruction. The operating system
adjusts the program counter after the system call is satis-
fied so that the user program begins executing at the first
instruction after the last argument. The format aescribed
above is wused for making a direct system call. The direct

system call, however, does not allow the user to write reen-
trant programs because the number of arguments passea to the

system is usually variable and therefore must be set up just

before the call. To solve this problem there is an inairect
system call which has the following format,

indirect = 0.
«text
mov $argil,r0
sys indirect

rd;
.data
read = 24,
rd:

sys read
argl:

arg3: ;

Note that the indirect form uses a copy of the direct =zform
which is assembled in the data area of the program. This
means that there will be more overhead in executing an in-
direct system call, however, this is overshaaowed by the
fact that one can write reentrant programs using the
indirect system format. All of the C library interfaces to
system calls are reentrant. C uses the indirect system call
for system calls that reguire more than one argument (read,
write, etc.) and the direct system call for system calls
that require zero or one argument (getuid, getgia, etc.).
From the above description, it can be seen that, aside from
the amount of system software that must be executed to
satisfy a system call, there will also be differences
between system calls based on the numper of arguments that
must be passed. The way that the operating system handles
system calls will be described in order to show what meas

urements are necessary.

Executing the TKRAP instruction causes a trap into the
operating system (Kernel space) which saves tne user’s re-
gisters. (Although there are two sets of general purpose
registers on 11/45 and 11/70 processors, UNIX uses only one
set to be compatible with 11/40°s. As a consequence the re-
gisters must be saved on every system call.) If a processor
has floating point hardware, then the floating point regis-
ters must be saved on every system call from a C program.
The next step in making a sytem call is to determine whether
a direct or indirect system call 1s being made. For
indirect system calls, the address of the real system call
template must be fetchea from the user’s aadress space.
Once all of the arguments to the system call have been
copied into the operating system, the function within the
operating system that satisfies the system call can - be in-
voked. Finally, the registers are restored aua any return
value or error indication is passed to the user. The float-
ing point registers can also be restored. Note that in sys-
tems with floating point hardware, the floating point regis-~
ters are saved and restored whether or not the user is exe-
cuting program using that feature.

The Experiment

I. The first set of tests attempted to aetermine the
amount of time to make a direct system call and how much aa-
ditional time it takes to make an indirect system call. To
measure these dJdifferences, dummy system functions were
created and appropriate C library interfaces were written
for them. These interfaces differed in the number of argu-
ments to be passed to the system making it possible to test
a direct system call as well as indirect calls of up to four
arguments.

II. The second series of measurements sought to vali-
date the data collected about basic system call times. The

following system calls were chosen because they regquire no
other resources than the CPU to be executed.

dup time
getgid times
getpid alarm
getuid signal
csw setuid
kill setgid
nice stime

The gtty- system call was also tested even though it was
dependent on the speed of the line interface to which the
character device is attached. The execution time for each
of one hundred iterations was recorded per system call with
the exception of the dup call which was tested in groups of
twelve. A system limitation allows a process to have a max-
imum of 15 files open at any one time. Since there were al-
ready three files open, the recording program was forced to
close twelve files before continuing.

Several of the system calls required super-user permission
in order to be executed; they were tested apart in a program
that had super-user pernussions. Each system call was test-
ed on systems configurea for floating point and non floating
point processors.

III. A third measurement was made to determine how
long it takes to make a subroutine call. Because the sub-
routine save/restore sequence represents a small enough
amount of code a hand computation of the expectea wvalues
could be made and compared with measured values. Since the
granularity of the recording time is only 10 usec. whach is
of the same order as the length of time for the saves/restore
sequence, the measurement was done in two ways. A single
call to an empty subroutine in a user program was enclosed
between event calls; ten repetitions of this composed the
first measurement. For a second sample, one hundred con-
secutive calls to the empty subroutine were enclosed in a
single set of event calls. One hundred iterations of each
of these methods composed a complete test.

Analysis

The first system call to be examined by trace was the
event call itself. 1Its cost in time was vital as a correc-
tion factor for all other measurements. Because event may
be inserted in user programs and system code, it was meas-
ured in each of these ways. The results of the tests appear
in Figure 2, and are comparable to the data from subsequent
measurements for a system call passing two arguments.

From the material available prior to test execution, it

was expected that the overall performance of the 11/70 would
be approximately twice as fast as that of the 11/45. It was
not known how far the 11/40 would 1lag behind the 11745,
although it was known that the Memory Management Unit of the
11740 was slower than the same unit on the 11/45. The ex-
periment produced evidence that the 11/70 performed 47% fas-
ter than the 11/45 (i.e. the 11/70 processor is about twice
as fast as the 11/45) while the 11/40 is 29% slower than the
11/45,

By means of the tests repeated on both the floating
point and non-floating point configurations of the same
machines, it was determined that a saving of 140 usec. in
context saving time results on the 11/70 (per system call),
while a saving of 170 usec. 1is experienced on the 11/45,
when -these machines are configured without floating point
hardware. :

The results of experiment I appear as Figure 3 of this
memorandum. As expected, the data displays a constant in-
crease of time with the passing of each added argument.
That increment may be approximated as 95 usec., 70usec., and
30 usec. for the 11/40, 11/45 and 11/70 respectively. Be-
cause the latter two figures represent systems with floating
point, corrections to a non-floating point environment ap-
pear in parenthesis in Figure 3, so that comparisons can be
readily made.

The result of the basic system call tests can be found
in Figures 4 and 5 for floating point and non-floating point
processors. It is possible to conclude that, as a rule of
thumb, a direct system call takes an minimum of 520, 450,
and 220 usec. on 11740, 11/45, 11/70 processors respective-
ly. For floating point hardware, that figure increases by
170 (11/45) or 140 (11/70) . usec., and an additional 95
(11740), 706 (11/45), and 30 (11/70) usec. for each addition-
al argument passed in the system call. From Figure 3, it
can be estimated that there is a noticeable difference
between a direct and an indirect system call when only one
argument (in r0) is passed.

As a calibration test, the time to save and restore re-
gisters in a C subroutine call was determined by adding the
instruction times of each of the lines of code found in the
subroutine "csv" and "cret® and the amount of time to invoke
them. From such a calculation one might expect the save-
restore sequence to take 17, 35, and 37 usec. on the 11/70,
11745, and 11/40 processors. The experiment performed to
verify this expectation provided results that are remarkaply
close. That data is presented as Figure 6. '

conclusion

Basic system call measurements were taken of the UNIX
Operating System in this experiment. The result of the ef-
fort was to lay a foundation. The absolute values of the
measurements are not as useful as the relative value of the
same measurement on the three processors, or as the measures
of the floating point save and restore or argument fetching.
We expect that measurements maae of more complex system
calls that have dependencies or other variables can be veri-
fied by having a prior knowledge of these basic timaings. It
is expected that this data would not vary greatly with sub-
sequent software changes. The information will provide for
useful comparisons with new DEC processors.

The trace tool is available for those interestea in do-
ing timing studies of their own. The UNIX user community
will be kept informed of tne results of measurements ef-
forts, and are invited to submit ideas or requests for fu-
ture tests. We are grateful to D. J. Sidor of Lept. 1481
for the permission to use the 11/40, and for his .cooperation
during the testing period.

C é" /))'h/
C.D. Perez

T

T.M., Ralei
MH-8234~-CDP-nroff

Copy (with att.) to
Dept. 8234 Members
UNOS

G. L. Baldwin

J. W. Bowra

B. N. Dickman

A. S. Hall

H. S. London

D. M. Ritchie

D. J. Sidor
K.Thompson

——

The following

Attachment A

System Modifications

source modules must be changed or added to a

UNIX system to install the trace facility.

trace.c -

event.s -

sysent.c -

main.c -

clock.c =

trace.h =

Its object module must be added in a 1load to
build the UNIX.

This is the library interface for the event sys-
tem call and must be incorporated into “libc.a’
as the C library interface to event.

An entry point for the event system call must be
added to the System Entry Point Table; it has
arbitrarily been chosen to be 63.

requires a single line addition to allow the
trace process to be spawned at the appropriate
time.

requires minor additions of code to allow for
selecting the programmable clock instead of the
line frequency clock.

Similar to other system headers, it contains
global definitions used by the trace modules.
It is also a convenient place to define any
software probes that are to be placed in system
routines.

aAttachment B

evproc

CALL
evproc ()

RETURNS
None.

SYNOPSIS

During UNIX initialization the event process is created,
readied, and placed in a dormant state until summoned for
dumping data onto an output device. :

DESCRIPTION

A call to trace.crs/einit is made for buffer initialization.
In addition to the version number and memory size normally
printed when UNIX is booted, the message "hi" appears on the
console indicating that a trace system is operative. Evproc
then becomes a continuously running process locked in
memory. Its function is to determine when a buffer is full,
and to initiate I/0 on that buffer. The following steps
describe the operation of evproc. The process sleeps until
the trace is turned on by the user. It then 1lies dJdormant
until a buffer is filled and should be written onto the out-
put device, at which time evproc is awakened ana a call is
made to trace.cs/evwrite to start the output from the full
buffer. After a buffer is written, the pointer "e_iop" used
during writing is moved to the next unit in the ring of out-
put buffers. If a write error occurs while dumping a
buffer, then trace.c/evproc terminates the trace by calling
trace.cs/evsig. Evproc repeats these steps indefinitely un-
til the trace is turned off, at which time it roadblocks un-
til the trace is reactivated.

einit

CALL
einit ()

RETURNS
None. -

SYNOPSIS

Initialize the specified number of buffers for internal col-
lection of event trace data.

DESCRIPTION

The number of buffers specified by NEBUF (usually 2 or
more), are circularly 1linked with each buffer’s status

marked as free (E_FREE). "Bufp" designates the buffer for
depositing event data; "e_iop" designates which buffer will
be the next one dumped. Both pointers are initially aimed
at the first buffer. Record size is set at 512,

evwrite

CALL
evwrite (addr)
struct eb *addr;

RETURNS
None.

SYNOPSIS _
.A buffer of event trace data is written onto the output dev-
ice.

DESCRIPTION

Whenever the trace is opened for writing onto the beginning
of a file, the offset pointer to the output device is set to
the head of the file. A non-zero block number is passed
along with the ' buffer address to trace.c/evphys. If that
call returned a non-zero value, the event signal is set to
deactivate the trace, and sets the status to indicate an er-
ror. 1In every case the event count in the buffer being
written is reset to 0, the output device block pointer is
incremented, the number of missed events is reset to 0, and
the buffer just written is marked free.

evphys
CALL
evphys (blkno,coreaddr)

RETURNS
Contents of "b_flags".

SYNOPSIS

Starts I/0 on a buffer of trace data and forces the trace process
to wait until the I/0 is completed.

DESCRIPTION

After raising the processor’s priority to 6, the value of
b_flags is set to indicate that the buffer header is busy
and is being used to write data. The first argument to
evphys is the logical block number on the output device, and
the second is the address of the buffer to be written. The
major and minor device number of the output device are then

inserted in the buffer header. The device strategy routine
is called to queue the request and the trace process road-
blocks until I/0 is completed. At that time the processor’s
priority is reset to zero and if any errors occurred auring
I/0, a nonzero value is returned by evphys.

evsig

CALL
evsig ()

RETURNS
None.

SYNOPSIS
Transmits termination request to the trace process.

DESCRIPTION

Evsig dumps partially filled buffers and performs any other
reinitialization that is necessary when the trace is ter-
minated. 1Its first step is to insure that no more events
can be recorded, by taking the trace process out 2f the run-
ning state (e_state is set to EREADY or ECLOSE). For any
partially full buffers that have not been written onto the
output device, a call is made to trace.c/evwrite to start
I70 on the buffer. When all buffers are written out, the
event signal, "e_sig" is reset to zero. If the e_reg £flag
indicates that the output device should be closed (when the
trace is stopped), the device close routine is called and
the e_req flag is reset to zero.

evcom

CALL
evcom ()

RETURNS
None.

SYNOPSIS '
Iwplements the user interface to the event trace.

DESCRIPTION

The event system call within a user process controls the
operation of the trace facility. If the first of two argu-
ments is outside the valid range of 1-127, a system error is
posted (EAGAIN) and the system call returns an error indica-
tion to the user. An argument of "1" is reserved for com-
municating contol information to the trace process. In such
a case, the second argument may indicate the following ac-
tions:

open - activate the trace facility;

continue - reactivate the trace without seeking back to

the beginning of the output file;

close - deactivate the trace without seeking to the be-

ginning of the output file;

end - terminate the trace;

stat - provide the current status of the trace process.
Checks are made to determine that 1) the process making the
event call is either the owner of the trace process or
super-user; 2) the call is not an "open" or I'continue" re-
quest if the trace is already active; 3) an attempt is not
made to close the trace if it is already closed. For any of
these situations a system error is posted (EAGAIN) and an
error indication is returned to the user. The "“open" re-
quest results in initializing the event status flag to 0,
setting the request flag to cause a seek to the beginning of
the output file, and providing that future output will
overwrite any data already written on the output device. It
also initializes the pointer to the first availakle position
in the output buffer for receiving data. For the "continue"
option, the request indicator allows for future output to be
appended to the existing output and the same process infor-
mation is copied. A "close" request sets the reguest flag
to indicate that future output will be appended to existing
data and the event signal is set to "quit®. For an "end"
request, the event request flag is set to indicate a "close"®
with terminate, the "kill" signal is placed in "e_sig", and
the trace process is awakened in order to deactivate the
trace facility. For a "stat" argument, the value found in
e_stat is returned to the controlling process. For "open",
"close", "continue" or "end" a call is made to trace.c/evrun
to set the process status.

When the first argument is not "1", a user event is to be
recorded. A call is made to trace.c/event, passing the two
arguments supplied by the user. The first argument is modi-
fied by adding 128 to the event number, so that during sub-
sequent analysis , the source of the event call can be
determined as a user program or the operating system.

event

CALL

event (nos,arq)
int nos;

int arg;

RETURNS
0 if the trace is turned off, 1 if successful recording

takes place, otherwise -1.

SYNOPSIS
Records an event in a buffer.

DESCRIPTION

If the trace process is not ready to collect data, a return
is made, The processor’s priority is saved before raising
it to level 6. This is done to lock out interrupts, thereby
preventing an interrupt handler from attempting to record an
event in the midst of another. Pointers are set to the
correct buffer and offset for the next record to be wratten.
If the buffer is found to be full,

a) a flag (E_SIO) is set to indicate that the bufter

should be dumped;

b) the trace process is awakened by simulating the

slp.c/wakeup function;

c) the buffer pointer is moved to the next buffer.
If that buffer is free, pointers for writing are reposi-
tioned and pre-writing initialization is repeated; otherwise
this attempt to write a record is marked, the former priori-
ty is replaced and a return occurs.

When an unfilled buffer is located, a time stamp is con-
structed from the system clock, and identifying arguments
are written into the record along with the process id of the
process that requested the event to be recordea, or the pro-
cess that was running when the event was recoraed. -
counter of recorded events is incremented, a pointer is po-
sitioned to the next available recording space in the buffer
and the processor’s priority is returned to its former
value.

evrun

CALL
evrun (e_evprocp)

RETURNS
None.

SYNOPSIS

Makes the trace process ready to run.

DESCRIPTION

A wakeup is simulated by setting the event that the trace

process 1is roadblocked on to zero and changing the state of
the trace process (p_stat) to SRUN (ready).

T 2anb1a

S3JIA30 VNG SNBINN A8 ONITV31S J10AD

N4
. oS
S3719A2 SNAINN Iv._ 033dS ¥IISNVNL TI «
L [[[[1 1 [1 [] 4 [{ } 1 { , [1 [[N [l (]] [1 [1 1 [l]
1) |) |] 1] 4 1§] 1 4 1 1 1 v]] 1§ 1 § \ | 1] | §] 1} 1}) ¢ 1
-ndo

3JIA30
VIWa

333dS Y34SNVYL

: AYOWIW ndd

oS

SNBINN

((

’ : 1
e D R § et e ol &,&.#12?.#»..‘ | s bR Sl s U .y [. go o e

11/40 11/45 11/70
Sys user | sys user | sys user

nfpp | 220 1340 | 150 870 | 77 420

fpp 150 1040 | 77 560

Figure 2

Event Call Timing (usec.)

11/40 11/45 11/70
subr Med Mean SD Med Mean SD Med Mean SD
D{(r0+0args) 520 549 153 615(445) 616 5 | 360(220) 367 43
1(r0+larg) 790 812 52 800(630) 861 161 | 420(280) 436 70
1(r0R2args) 890 909 53 870(700) 904 84 | 470(330) 481 13
1(r0+3args) 980 1005 52 940(770) 1005 169 | 500(360) 523 21
1(r0+4args) 1080 1106 60 | 1005(835) 1069 169 | 520(380) 524 16

Figure 3

Direct vs. Indirect System Call Timing (usec.)

"

)

{
N

System 11/40 11/45 11/70

subr Med Mean SD | Med Mean SD [Med Mean SD
alarm 540 582 157 480 488 34 | 220 244 82
csw 510 521 29 | 460 477 115 | 220 216 8
dup 790 838 60 680 679 39 | 320 323 22
ggid 520 545 45 460 495 156 | 220 228 53
gpid 520 537 44 460 471 43 | 230 236 52
guid 530 564 155 460 465 25 | 220 241 77
gtty(s) 1310 1381 227 | 1010 1049 177 | 560 578 55
gtty(m) | 1310 1366 196 | 1200 1209 58 | 600 594 32
kill 880 942 219 720 725 33 | 380 379 12
nice 550 567 44 480 500 112 | 240 249 61
time 560 584 49 490 506 118 | 230 242 53
tmes 1320 1346 66 | 1020 1028 47 | 520 527 15
sig 970 993 55 770 779 41 | 390 396 56
stme 800 849 97 | 530 554 74 | 290 305 54
sgid 810 918 246 540 580 157 | 270 291 91
suid 720 764 196 480 493 53 | 260 269 64

(s) - single user
(m) - multi-user
Figure 4

System Call Timing (usec.) - nofpp

System 11/40 11/45 11/70

subr Med Mean SD | Med Mean SD | Med Mean SD
alarm 630 640 31 | 350 363 17
getcsw 610 620 38 | 310 318 14
dup 830 826 37 460- 455 26
ggid 620 653 171 | 350 357 53
gpid 620 636 121 | 330 345 56
guid 620 643 122 | 340 350 56
gtty(s) 1180 1177 32 | 730 732 17
gtty(m) 1390 1414 146 | 720 717 45
kill 870 896 110 | 490 516 34
nice 640 651 108 | 350 374 82
time 650 655 43 | 350 362 56
tmes 1180 1197 138 | 660 653 58
sig 930 972 207 | 500 507 18
stme 700 715 116 | 420 424 13
sgid 700 720 109 | 430 435 61
suid 650 666 118 | 380 386 16

(s) - single user
(m) - multi-user
Figure §

System Call Timing - fpp

3

11/40 11/45 11/70
Med Mean SD | Med Mean SD | Med Mean SD
64 64 2 37 37 1 18 18)
Figure 6

Subrouline Overhead Timing (usec.)

