A Tutorial Introduction to ADB

J. F. Maranzano
S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Debugging tools generally provide a wealth of information about the inner
workings of programs. These tools have been available on UNIX? to allow users
to examine ‘‘core’ files that result from aborted programs. A new debugging
program, ADB, provides enhanced capabilities to examine "core” and other pro-
gram files in a variety of formats, run programs with embedded breakpoints and
patch files. .

ADB is an indispensable but complex tool for debugging crashed systems
and/or programs. This document provides an introduction to ADB with exam-
ples of its use. It explains the various formatting options, techniques for
debugging C programs, examples of printing file system information and patch-
ing.

May §, 1977

tUNIX is a Trademark of Bell Laboratories.

“~

\R ¥
!

A Tutorial Intreduction to ADB

J. F. Maranzano
S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

ADB is a new debugging program that is available on UNIX. It provides capabilities to
look at *‘core™ files resulting from aborted programs, print output in a variety of formats, patch
files, and run programs with embedded breakpoints. This document provides examples of the
more useful features of ADB. The reader is expected to be familiar with the basic commands
on UNIXt with the C language, and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invecation
ADB is invoked as:

adb objfile corefile

where objfile is an executable UNIX file and corefile is a core image file. Many times this will
ook like:

adb a.out core
or more simply:
adb

where the defaults are a.our and core respectively. The filename minus (=) means ignore this
argument as in:

adb — core

ADB has requests for examining locations in either file. The ? request examines the
contents of objfile, the / request examines the corefile. The general form of these requests is:
address ? format ”
or

address / format

2.2. Current Address

ADB maintains a current address, calied dot, similar in function to the current pointer in
the UNIX editor. When an address is entered, the current address is set to that location, so
that:

0126?i

tUNIX is a Trademark of Bell Laboratories.

[T ——

-2-

sets dot to octal 126 and prints the instruction at that address. The request:
.,10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address of the last item
printed. When used with the ? or / requests, the current address can be advanced by typing
newline; it can be decremented by typing .

Addresses are represented by expressions. Expressions are made up from decimal, octal,
and hexadecimal integers, and symbols from the program under test. These may be combined
with the operators +, —, *, % (integer division), & (bitwise and), | (bitwise inclusive or), #
(round up to the next multiple), and ~ (not). (All arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB will recog-
nize both forms.

2.3. Formats

To print data, a user specifies a collection of letters and characters that describe the format
of the printout. Formats are "remembered” in the sense that typing a request without one will
cause the new printout to appear in the previous format. The following are the most commonly
used format letters.

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
PDP 11 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot

e RN O N O

(Format letters are also available for "long" values, for example, ‘D’ for long decimal, and ‘F
for double floating point.) For other formats see the ADB manual. :

2.4. General Request Meanings
The general form of a request is:

address,count command modifter

which sets ‘dot’ to address and executes the command count times.
The following table illustrates some general ADB command meanings:

Command Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot”
Breakpoint control
Miscellaneous requests
Request separator

Escape to shell

g~

- v GO oo

ADB catches signals, so a user cannot use 2 quit signal to exit from ADB. The request 3q
or $Q (or cntl-D) must be used to exit from ADB.

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a common error
made by C programmers. The object of the program is to change the lower case "t" to upper
case in the string pointed to by charp and then write the character string to the file indicated by
argument 1. The bug shown is that the character "T" is stored in the pointer charp instead of
the string pointed to by charp. Executing the program produces a core file because of an out of
bounds memory reference.

ADB is invoked by:
adb a.out core
The first debugging request:
S .

is used to give a C backtrace through the subroutines called. As shown in Figure 2 only one
function (main) was called and the arguments arge and argv have octal values 02 and 0177762
respectively. Both of these values look reasonable; 02 = two arguments, 0177762 = address
on stack of parameter vector.

The next request:

§C

is used to give a C backtrace plus an interpretation of all the local variables in each function
and their values in octal. The vaiue of the variable cc looks incorrect since cc was declared as a
character.

The next request:
$r
prints out the registers including the program counter and an interpretation of the instruction at
that location.
The request:

$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.our file is referenced by ?
whereas the map for core file is referenced by /. Furthermore, a good rule of thumb is to use ?
for instructions and / for data when looking at programs. To print out information about the
maps type:

$m

This produces a report of the contents of the maps. More about these maps later.
In our example, it is useful to see the contents of tie string pointed to by charp. This is
done by:
*charp/s

which says use charp as a pointer in the core file and print the information as a character string.
This printout clearly shows that the character buffer was incorrectly overwritten and helps iden-
tify the error. Printing the locations around charp shows that the buffer is unchanged but that
the pointer is destroyed. Using ADB similarly, we ‘could print information about the arguments
to a function. The request:

main.arge/d

prints the decimal core image value of the argument argc in the function main.

~

9

The request:
*main.argv,3/0

prints the octal values of the three consecutive cells pointed to by argv in the function main.
Note that these values are the addresses of the arguments to main. Therefore:

0177770/s
prints the ASCII value of the first argument. Another way to print this value would have been
* /s
The " means ditto which remembers the last address typed, in this case main.argc ; the *
instructs ADB to use the address field of the core file as a pointer.
The request:
.=0

prints the current address (not its contents) in octal which has been set to the address of the
first argument. The current address, dot, is used by ADB to "remember” its current location.
It allows the user to reference locations relative to the current address, for example:

.—10/d

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions £ g and A
until the stack is exhausted and a core image is produced.

Again you can enter the debugger via:
adb

which assumes the names a.out and core for the executable file and core image file respectively.
The request:

$c
will fill a page of backtrace references to f, g, and 4. Figure 4 shows an abbreviated list (typing
DEL will terminate the output and bring you back to ADB request level).
The request:

,58C
prints the five most recent activations.

Notice that each function (fg,4) has a counter of the number of times it was called.
The request:

fent/d

prints the decimal value of the counter for the function f Similarly gent and hcnt could be
printed. To print the value of an automatic variable, for example the decimal value of x in the
last call of the function A, type:

h.x/d

It is currently not possible in the exported version to print stack frames other than the most
recent activation of a function. Therefore, a user can print everything with $C or the
occurrence of a variable in the most recent call of a function. It is possible with the $C request,
however, to print the stack frame starting at some address as address$C.

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into blanks, is
adapted from Software Tools by Kernighan and Plauger, pp. 18-27.

We will run this program under the control of ADB (see Figure 6a) by:
adb a.out —
Breakpoints are set in the program as:
address:b [request]
The requests:

settab+4:b
fopen+4:b
gete+4:b
tabpos+4:b

set breakpoints at the start of these functions. C does not generate statement labels. Therefore
it is currently not possible to plant breakpoints at locations other than function entry points
without a knowledge of the code generated by the C compiler. The above addresses are
entered as symbol+4 so that they will appear in any C backtrace since the first instruction of
each function is a call to the C save routine (csv). Note that some of the functions are from
the C library.

To print the location of breakboims one types:
$b

The display indicates a count field. A breakpoint is bypassed count —] times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint is
encountered. In our example no command fields are present.

By displaying the original instructions at the function serrab we see that the breakpoint is
set after the jsr to the C save routine. We can display the instructions using the ADB request:

settab,5?ia

This request displays five instructions starting at serrab with the addresses of each location
displayed. Another variation is; :

settab,5?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the ? command. In general
when asking for a printout of multiple items, ADB will advance the current address the number
of bytes necessary to satisfy the request; in the above example five instructions were displayed
and the current address was advanced 18 (decimal) bytes.

To run the program one simply types:
r
To delete a breakpoint, for instance the entry to the function sertab, one types:
settab+4:d
To continue execution of the program from the breakpoint type:
H

Once the program has stopped (in this case at the breakpoint for fopen), ADB requests can
be used to display the contents of memory. For example:

$C

to display a stack trace, or:
tabs,3/80

to print three lines of 8 locations each from the array called ‘tabs. By this time (at location
fopen) in the C program, settab has been called and should have set a one in every eighth loca-
tion of tabs.

3.4, Advanced Breakpoint Usage
We continue execution of the program with:

H

See Figure 6b. Gerc is called three times and the contents of the variable ¢ in the function
main are displayed each time. The single character on the left hand edge is the output from the
C program. On the third occurrence of getc the program stops. We can look at the full buffer
of characters by typing:

ibuf+6/20¢c
When we continue the program with:
¢
we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.

Several breakpoints of fabpos will occur until the program has changed the tab into
equivalent blanks. Since we feel that tabpos is working, we can remove the breakpoint at that
location by:

tabpos +4:d
If the program is continued with:
H
" it resumes normal execution after ADB prints the message
a.out:running
The UNIX quit and interrupt signals act on ADB itself rather than on the program being

debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADB and is passed on to the test program if:

K
is typed. This can be useful when testing interrupt handling routines. The signal is not passed
on to the test program if:
O
is typed.

Now let us reset the breakpoint at sertab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+4:b settab,5?ia *
It is also possible to execute the ADB requests for each occurrence of the breakpoint but only

* Owing to a bug in early versions of ADB (inciuding the version distributed in Generic 3 UNIX) these state-
ments must be written as:

settab+4:b settab,5?1a30
gete+4,3:b main.c?C;0
settab+4:b settab,5?ia; ptab/o;0

Note that ;0 will set dot to zero and stop at the breakpoint.

stop after the third occurrence by typing:

getc+4,3:b main.c?C *
This request will print the local variabie ¢ in the function main at each occurrence of the break-
point. The semicolon is used to separate muitiple ADB requests on a single line.

Warning: setting a breakpoint causes the value of dot to be changed; executing the pro-
gram under ADB does not change dot. Therefore:

settab+4:b .,5%ia
fopen+4:b

will print the last thing dot was set to (in the example fopen+4) nor the current location (ser-
tab+4) at which the program is executing.
A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia; ptab/o *

could be entered after typing the above requests.
Now the display of breakpoints:

$b

shows the above request for the serrab breakpoint. When the breakpoint at sertab is encoun-
tered the ADB requests are executed. Note that the focation at setrab+4 has been changed to
plant the breakpoint; all the other locations match their original value.

Using the functions, /; g and h shown in Figure 3, we can follow the execution of each
function by planting non-stopping breakpoints. We call ADB with the executable program of
Figure 3 as follows:

adb ex3 -
Suppose we enter the following breakpoints:

h+4:b hent/d; h.hi/; h.hr/
g+4:b gont/d; e.gi/; g.gr/
f+4:b fent/d; f.fi/; f.fr/

T

Each request line indicates that the variables are printed in decimal (by the specification d).
Since the format is not changed, the d can be left off all but the first request.

The output in Figure 7 illustrates two points. First, the ADB requests in the breakpoint
line are not examined until the program under test is run. That means any errors in those
ADB requests is not detected until run time. At the location of the error ADB stops running
the program.

The second point is the way ADB handles register variables. ADB uses the symbol table
to address variables. Register variables, like f,fr above, have pointers to uninitialized places on
the stack. Therefore the message "symbol not found".

Another way of getting at the data in this example is to print the variables used in the call
as:)
f+4:b fent/d; f.a/; f.b/; f.6/
g+4:b gent/d; g.p/; g.q/; g.gi/
HJ

The operator / was used instead of ? to read values from the core file. The output for each
function, as shown in Figure 7, has the same format. For the function J, for example, it shows
the name and value of the external variable font. It also shows the address on the stack and
value of the variables a, b and £.

.8 -

Notice that the addresses on the stack will continue to decrease until no address space is
left for program execution at which time (after many pages of output) the program under test
aborts. A display with names would be produced by requests like the following:

f+4:b fent/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

In this format the quoted string is printed literally and the d produces a decimal display of the
variables. The results are shown in Figure 7.
3.5. Other Breakpoint Facilities
e Arguments and change of standard input and output are passed to a program as:

:r argl arg2 ... <infile >outfile

This request kills any existing program under test and starts the a.out afresh.

e The program being debugged can be single stepped by:

]

If necessary, this request will start up the program being debugged and stop after executing
the first instruction.

e ADB allows a program to be entered at a specific address by typing:

address:r

® The count field can be used to skip the first » breakpoints as:
JR:r
The request:
,n:e

may also be used for skipping the first » breakpoints when continuing a program.

e A program can be continued at an address different from the breakpoint by:

address:c

e The program being debugged runs as a separate process and can be killed by:
k

4. Maps

UNIX supports several executable file formats. These are used to tell the loader how to
load the program file. File type 407 is the most common and is generated by a C compiler
invocation such as cc pgm.c. A 410 file is produced by a C compiler command of the form cc
-n pgm.c, whereas a 411 file is produced by cc -i pgm.c. ADB interprets these different file for-
mats and provides access to the different segments through a set of maps (see Figure 8). To
print the maps type: ’

$m

In 407 files, both text (instructions) and data are intermixed. This makes it impossible
for ADB to differentiate data from instructions and some of the printed symbolic addresses look
incorrect; for example, printing data addresses as offsets from routines.

In 410 files (shared text), the instructions are separated from data and ?* accesses the
data part of the a.out file. The ?* request tells ADB to use the second part of the map in the
a.out file. Accessing data in the core file shows the data after it was modified by the execution

-9.

of the program. Notice also that the data segment may have grown during program execution.

In 411 files (separated 1 & D space), the instructions and data are also separated. How-
ever, in this case, since data is mapped through a separate set of segmentation registers, the
base of the data segment is also relative to address zero. In this case since the addresses over-
lap it is necessary to use the ?* operator to access the data space of the a.out file. In both 410
and 411 files the corresponding core file does not contain the program text.

Figure 9 shows the display of three maps for the same program linked as a 407, 410, 411
respectively. The b, e, and f fields are used by ADB to map addresses into file addresses. The
"f1" field is the length of the header at the beginning of the file (020 bytes for an a.out file and
02000 bytes for a core file). The "f2" field is the displacement from the beginning of the file to
the data. For a 407 file with mixed text and data this is the same as the length of the header:
for 410 and 411 files this is the length of the header plus the size of the text portion.

The "d" and "e" fields are the starting and ending locations for a segment. Given an
address, A, the location in the file (either a.out or core) is calculated as:

bi<A<el = file address = (A ~bl) +f1
b2< A<e2 => file address = (A—b2) +f2

A user can access locations 'by using the ADB defined variables. The $v request prints the vari-
ables initialized by ADB:

b base address of data segment
d length of the data segment

s length of the stack

t length of the text

m execution type (407,410,411)

In Figure 9 those variables not present are zero. Use can be made of these variables by
expressions such as:

<b

in the address field. Similarly the value of the variable can be changed by an assignment
request such as:

02000>b

that sets b to octal 2000. These variables are useful to know if the file under examination is an
executable or core image file.

ADB reads the header of the core image file to find the values for these variables. If the
second file specified does not seem to be a core file, or if it is missing then the header of the
executable file is used instead.

5. Advanced Usage

It is possible with ADB to combine formatting requests to provide elaborate displays.
Below are several examples.

5.1. Formatted dump
The line:
<b,—1/404"8Cn

prints 4 octal words followed by their ASCII interpretation from the data space of the core
image file. Broken down, the various request pieces mean:

<b The base address of the data segment.

-10 -

<b,—1 Print from the base address to the end of file. A negative count is
used here and elsewhere to loop indefinitely or until some error con-
dition (like end of file) is detected.

The format 404" 8Cn is broken down as follows:

40 Print 4 octal locations.

4° Backup the current address 4 locations (to the original start of the
field).

8C Print 8 consecutive characters using an escape convention; each

character in the range 0 to 037 is printed as @ followed by the
corresponding character in the range 0140 to 0177. An @ is printed
as @@.

n Print a newline.

The request:
<b,<d/404"8Cn

"could have been used instead to allow the printing to stop at the end of the data segment (<d
provides the data segment size in bytes).

The formatting requests can be combined with ADB’s ability to read in a script to produce
a core image dump script. ADB is invoked as:

:_ldl') a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

1208w

40958s

Sv

=3n

$Sm

=3n"C Stack Backtrace’
$C

=3n"C External Variables"
$e

=3n"Registers”

$r

03s

=3n"Data Segment"
<b,~1/80ona

The request 1208w sets the width of the output to 120 characters (normally, the width is
80 characters). ADB attempts to print addresses as:
symbol + offset

The request 40958s increases the maximum permissible offset to the nearest symbolic address
from 255 (default) to 4095. The request = can be used to print literal strings. Thus, headings
are provided in this dump program with requests of the form:

=3n"C Stack Backtrace”

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB
variables (see Figure 8). The request 08s sets the maximum offset for symbol matches to zero

-11 -

thus suppressing the printing of symbolic labels in favor of octal values. Note that this is only
done for the printing of the data segment. The request:

<b,—1/80na
prints a dump from the base of the data segment to the end of file with an octal address field
and eight octal numbers per line.
Figure 11 shows the results of some formatting requests on the C program of Figure 10.

5.2. Directory Dump
As another illustration (Figure 12) consider a set of requests to dump the contents of a
directory (which is made up of an integer inumber foliowed by a 14 character name):

adb dir —
=n8t"Inum"8t"Name"
0,—1? u8tldcn

In this example, the u prints the inumber as an unsigned decimal integer, the 8t means that
ADB will space to the next multiple of 8 on the output line, and the 14c prints the 14 character
file name.

5.3. Ilist Dump

Similarly the contents of the ilist of a file system, (e.g. /dev/src, on UNIX systems distri-
buted by the UNIX Support Group; see UNIX Programmer’s Manual Section V) could be
dumped with the following set of requests:

adb /dev/src —

02000>b

’m <b

<b,~1?"flags"8ton"links,uid,gid"8t3bn",size"8tbrdn" addr'8t8un"times"8t2Y 2na

In this example the value of the base for the map was changed to 02000 (by saying ?m<b)
since that is the start of an ilisr within a file system. An artifice (brd above) was used to print
the 24 bit size field as a byte, a space, and a decimal integer. The last access time and last
modify time are printed with the 2Y operator. Figure 12 shows portions of these requests as
applied to a directory and file system.

5.4. Converting values ‘)
ADB may be used to convert values from one representation to another. For example:

072 = odx
will print
072 58 #3a

which is the octal, decimal and hexadecimal representations of 072 (octal). The format is
remembered so that typing subsequent numbers will print them in the given formats. Charac-
ter values may be converted similarly, for example:

’a’ = co
prints
a 0141

It may also be used to evaluate expressions but be warned that all binary operators have the
same precedence which is lower than that for unary operators.

-12 -

6. Patching

Patching files with ADB is accomplished with the write, w or W, request (which is not like
the ed editor write command). This is often used in conjunction with the /ocate, 1 or L request.
In general, the request syntax for 1 and w are similar as follows: .

?1 value

The request 1 is used to match on two bytes, L is used for four bytes. The request w is used to
write two bytes, whereas W writes four bytes. The value field in either /ocare or write requests
is an expression. Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:
adb —w filel file2

When called with this option, file/ and file2 are created if necessary and opened for both read-
ing and writing.

For example, consider the C program shown in Figure 10. We can change the word
*This" to "The ® in the executable file for this program, ex7, by using the following requests:

adb —w ex7 —
?1°Th’
?W 'The’
The request ?1 starts at dot and stops at the first match of "Th" having set dot to the address of

the location found. Note the use of ? to write to the a.out file. The form ?* would have been
used for a 411 file.

More frequently the request will be typed as:
?21°Th’; ?s

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB
request will set dot to the address of the "Th" characters.

As another example of the utility of the patching facility, consider a C program that has
an internal logic flag. The flag could be set by the user through ADB and the program run.
For example:

adb a.out —

:s argl arg2

flag/w 1

i

The :s request is normally used to single step through a process or start a process in single step
mode. In this case it starts a.our as a subprocess with arguments argl and arg2. If there is a
subprocess running ADB writes to it rather than to the file so the w request causes flag to be
changed in the memory of the subprocess.

7. Anomalies
Below is a list of some strange things that users should be aware of.

1. Function calls and arguments are put on the stack by the C save routine. Putting break-
points at the entry point to routines means that the function appears not to have been
called when the breakpoint occurs.

2. When printing addresses, ADB “uses either text or data symbols from the a.our file. This
sometimes causes unexpected symbol names to be printed with data (e.g. savr5+022).
This does not happen if ? is used for text (instructions) and / for data.

-13-

3. ADB cannot handle C register variables in the most recently activated function.

8. Acknowledgements

The authors are grateful for the thoughtful comments on how to organize this document
from R. B. Brandt, E. N. Pinson and B. A. Tague. D. M. Ritchic made the system changes
necessary to accommodate tracing within ADB. He also participated in discussions during the
writing of ADB. His earlier work with DB and CDB led to many of the features found in ADB.

9. References

1. D. M. Riwchie and K. Thompson, “The UNIX Time-Sharing System,”’ CACM, July,
1974.

2. B. W.Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

3. K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual - 7th Edition, 1978.

4. B. W. Kernighan and P. J. Plauger, Softiware Tools, Addison-Wesley, 1976.

)

Y
L/

-14 -

Figure 1: C program with peinter bug

struct buf |
int fildes;
int nleft;
char *nextp;
char buff[512];
Jbb:

struct buf *obuf’,

char *charp "this is a sentence.”;

main(argc,argv)
int argc;
char **argv;

char cc:

if(arge < 2) |
printf("Input file missing\n");
exit(8):

}

if (fereat(argv(l],obuf)) < 0){
printf("%s : not found\n", argv(1]);
| exit(8);
charp = ‘T";
printf("debug 1 %s\n",charp);
while(cc= *charp++)
putc(ce,obuf);
fllush(obuf):

-15 -

Figure 2: ADB output for C program of Figure 1

a/db a.out core

$c

“main(02,0177762)

$C

“main(02,0177762)
arge: 02
argv: 0177762
cc: 02124

Sr

ps 0170010

pc 0204 “main+0152

sp 0177740

rS 0177752

r4 01

r3 0

r2 0

rl 0

0 0124

“main+0152: mov _obuf,(sp)
Se

savrs: 0

_obuf: 0

_charp: 0124

_errno: 0

_fout: 0

Sm

text map ‘exl’

bl =0 el = 02360
b2 =0 e2 = 02360
data map ‘corel’

bl =0 el = 03500

b2 = 0175400 e2 = 0200000
*charp/s

f1 =020
2 =020

f1 = 02000
f2 = 05500

0124 FTETTTTTTTTTIITI T T T T ITTITT I TTTITTTTTTTTTITTLX

charp/s
_charp: T
_charp+02: this is a sentence.
_charp+026: Input file missing
main.arge/d
0177756: 2
*main.argv/30
0177762: 0177770 0177776 0177777
0177770/s
0177770: a.out
*main.argv/30
0177762: 01777700177776 0177777
*/s
0177770: a.out

=0

0177770

~10/d

0177756: 2

$q

Nh@x&_

~

-16 -

Figure 3: Multiple function C program for stack trace illustration

int fent,gent, hent;
l{a(x.y)
int hi; register int hr;
hi = x+1;
hr = x—-y+1;
hent+ <+
hj:
f(hr,hi);
}
%(P-Q)
int gi; register int gr;
gi = q—p:
gr = q—p+1;
gent+ <+
g
h(gr.gi):
}
fla,b)
R
int fi: register int fr;
fi = a+2°b;
fr = a+b;
fent++
fj:
g(fr.fi);
}
main()
{
f(1,1);

Figure 4: ADB output

adb

$c
~h(04452,04451)
“g(04453,011124)
~f(02,04451)
“h(04450,04447)
“g(04451,011120)
“f(02,04447)
“h(04446,04445)
“g(04447,011114)
“£(02,04445)
“h(04444,04443)
HIT DEL KEY
adb

,58C
“h(04452,04451)

X:

y:
hi:
“2(04453,011124)

p:

q:

gi

gr:
“f(02,04451)

a

b:

fi:

fr:
~h(04450,04447)

X:

y:
hi:

hr:
“g(04451,011120)

p:

a

gi:

gr:
fent/d
_fent:
gent/d
_gent:
hent/d
_hent:

h.x/d
022004:

-17 -

for C program of Figure 3

04452
04451

?

04453
011124

04451
?

02
04451
011124
04453

04450
04447
04451
02
04451
011120
04447
04450
1173
1173
1172

2346

-18 -

Figure 5: C program to decode tabs

#define MAXLINE 80
#define YES 1
#define NO 0

8

#define TABSP
char input(] "data";

char ibuf(518]):
int tabs{]MAXLINE];

main()

{
int col, *ptab;
char c;

ptab = tabs;

settab(ptab); /*Set initial tab stops */

s col = 1;
if(fopen(input,ibuf) < 0) {

printf(*%s : not found\n",input);

exit(8);

}
while((c = getc(ibuf)) !'= ~1) {
switch(c) {
case '\t: /* TAB */

while(tabpos(col) != YES) {
putchar(’); /* put BLANK */
col++ ;

}

break;

case "\n":/*NEWLINE */
putchar(\n');

col = |;

break;
default:

putchar(c);

col++ ;

}

/® Tabpos return YES if col is a tab stop */
tabpos(col)
int col;

if(col > MAXLINE)
return(YES);
else
return(tabs[coll);

)

/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;

int i

for(i = 0; i<= MAXLINE; i++)

(i%TABSP) ? (tabs[i] = NO)

: (tabs(i] = YES);

-19-

Figure 6a: ADB output for C program of Figure 5

adb a.out —
settab+4:b
fopen+4:b
getc+4:b
tabpos +4:b
$b
breakpoints
count bkpt command
1 “tabpos+04
1 _getc+04
1 _fopen+04
1 “settab+04
settab,5%ia
“settab: jsr rs.csv
“settab<+04: tst —(sp)
“settab-+06: cir 0177770(r5)
“settab+012: cmp $0120,0177770(r5)
“settab-+020: bit “settab+076
“settab+022:
settab,5?§
“settab: jsr rs,csv
tst ~(sp)
clr 0177770(rS)
cmp $0120,0177770(r5)
bit “settab+076
ir
a.out: running
breakpoint “settab+04: tst —(sp)
settab-+4:d
e
a.out: running
breakpoint _fopen+04: mov 04(r5),nulstr+-012
sC
_fopen(02302,02472)
“main(01,0177770)
col: 01
c 0
ptab: 03500
tabs,3/80
03500: 01 0 0 0 0 0
01 0 0 0 0 0
01 0 0 0 0 0

[— ¥)

o

~)

e
a.out: running

-20 -

Figure 6b: ADB output for C program of Figure §

breakpoint _getc+04: mov 04(r5).rl
ibuf+6/20¢

__cleanu+0202: This s atest of
©

a.out: running

breakpoint “tabpos+04: cmp $0120,04(r5)
tabpos+4:d

settab+4:b settab,5?ia

settab+4:b settab,5?ia; 0

gete+4,3:b main.c?C; 0

settab+4:b settab,5?ia; ptab/o; 0

sb !

breakpoints

count bkpt command

1 “tabpos+04

3 _getc+04 main.c?C:0

1 _fopen+04

1 “settab+04 settab,5%ia;ptab?0:0
“settab: jsr r3.csv

“settab-+04: bpt
“settab+06: clr 0177770(r5)

“settab+012: cmp $0120,0177770(r5)

“settab+020: blt “settab+076
“settab-+022:

0177766: 0177770

0177744: @'

TO177744: T

h0177744: h

i0177744: i

s0177744: s

-21-

Figure 7: ADB output for C program with breakpoints

add ex3 —
h+4:b hent/d; h.hi/; h.he/
g+4:b gent/d:; g.gi/; g.gr/
f+4:b fent/d; £.8/; £.0x/
7
ex3: running
_fent: 0
0177732: 214
symbol not found
f+4:b fent/d; f.a/; £.b/: 1.6/
g+4:b gent/3d; g.p/; g.q/; g.gi/
h<+4:b hent/d; h.x/; h.y/; h.hi/
©

ex3: running
_fent:
0177746:
0177750:
0177732:
_gent
0177726:
0177730:
0177712
_hent:
0177706:
0177710:
0177672:
_fent:
0177666:
0177670:
0177652:
_gent:
0177646:
0177650:
0177632:
HIT DEL
f+4:b fent/d; f.a/"a = "d; £.b/"b = "d; .6/ = *d
g+4:b gent/d; g.p/"p = "d; g.q/"q = "d; g.gi/"gl = "d
h+4:b hent/d; h.x/"x = "d; h.y/"h = "d; h.hi/*hi = "d
r

ON == O
~—
H

—
H

BN =N W =N =N O N W
Iy Iy

~N
-
E-

ex3: running

_fent: 0
0177746: a=]
0177750: b=
0177732: fi = 214
_gent: 0
0177726: p=2
0177730: q=3
0177712: gi = 214
_hent: 0
0177706: X =2

0177710: yw=]
0177672: hi = 214
_fent: 1
0177666: am=2
0177670: b=3
0177652: fi =214
HIT DEL

$q

-22-

Figure 8: ADB address maps

407 files
a.out hdr text+data
. | - DI
core hdr text+data stack
| Io S | .
410 files (shared text)
a.out hdr text data
| | 0 'I‘I B
core hdr data stack
| .] |
B D S E
411 files (separated I and D space)
a.out hdr text data
I > TI - -
core hdr data stack
I | > [.).....I S EI
The following adb variables are set.
407 410 411
b base of data 0 B 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T

Figure 9: ADB output for maps

adb map407 cored07
$m

text map ‘map407’
bl =0 el
b2 = 0 e2
data map ‘cored07’
bl = 0 el
b2 = 0175400 e2
Sv

variables

d = 0300

m = 0407

s = 02400

$q

adb map410 core410
$m

text map ‘map410’
bl =0 el

b2 = 020000 e2
data map ‘core410’
bl = 020000 el
b2 = 0175400 e2
Sv

variables

b = 020000

d = 0200

m = 0410

s = 02400

t = 0200

$q

adb map411 cored11
$m

text map ‘map4ll’
bl =0 el
b2 =0 e2
datamap ‘core4ll’
bl =20 el
b2 = 0175400 e2
Sv

variables

d = 0200

m = 0411

s = 02400

t = 0200

$q

-23.

= (0256
= 0256

= 0300
= 0200000

= 0200

f1 = 020
f2 = 020

f1 = 02000
2 = 02300

f1 =020

= 020116 f2 = 0220

= (020200 f1 = 02000

= 0200000

= 0200
= 0116

= 0200
= 0200000

f2 = 02200

fl = 020
f2 = 0220

f1 = 02000
2 = 02200

()

-2 -

Figure 10: Simple C program for illustrating formatting and patching

char strl[] "This.is a character string";

int one i;

int number 456,

long Inum 1234

float fpt 1.25;

char str2[] "This is the second character string";
main()

one = 2;

-25-

Figure 11: ADB output illustrating fancy formats

adb map410 cored10
<b,~1/80na
020000: 0 064124 071551 064440 020163 020141 064143
_str1+016: 061541 062564 020162 072163 064562 063556 0 02
_nhumber:
_number: 0710 0 02322040240 0 064124 071551 064440
_str2+06: 020163 064164 020145 062563 067543 062156 061440
_str2+4-026: 060562 072143 071145 071440 071164 067151 0147 0
savr5+02: 0 0 0 0 0 0 0 0
<b,20/404°8Cn
020000: 0 064124 071551 064440 @'@'This i

020163 020141 064143 071141 s a char

061541 062564 020162 072163 acter st

064562 063556 0 02 ring@'@'@b@°
_number: 0710 0 02322040240 H@a@'@R@d @@

0 064124 071551 064440 @'@This i

020163 064164 020145 062563 s the se

067543 062156 061440 060550 cond cha

060562 072143 071145 071440 racter s

071164 067151 0147 0 trigeR'@‘'@"

0 0 0 0 eeeeeeee

0 0 0 0 eeeeeeee
data address not found
<b,20/404"8t8cna
020000: 0 064124 071551 064440 This i
_str1+06: 020163 020141 064143 071141 s a char
_str1+016: 061541 062564 020162 072163 acter st
_str1+026: 064562 063556 0 02 ring
_number:
_number: 0710 0 02322040240 HR
_fpt+02: 0 064124 071551 064440 This i
_str2+06: 020163 064164 020145 062563 s the se
_str2+016: 067543 062156 061440 060550 cond cha
_str2+026: 060562 072143 071145 071440 racter s
_str2+036: 071164 067151 0147 0 tring
savr5+02: 0 0 0 0
savr5+012: 0 0 0 0
data address not.found
<b,10/2b8t"2¢en
020000: 0 0
_strl: 0124 0150 Th

0151 0163 is

040 0151 i

0163 040 s

0141 040 a

0143 0150 ¢h

0141 0162 ar

0141 0143 ac

0164 0145 te
sQ

071141

060550

()

- 26 -

Figure 12: Directory and inode dumps

adb dir —
=nt"Inode"t' Name"
0,—12utldcn

Inode Name
0: 652 .

82 .

5971 cap.c

5323 cap

0 pp

adb /dev/src —
02000>b
'm<b
new map ‘/dev/src’
bl = 02000 el
b2 =0 e2
Sv
variables
b = 02000 :
<b,—17?"flags"8ton"links,uid,gid" 8¢3bn"size" 8tbrdn"addr’ $t8un"times"8t2Y2na
02000: flags 073145
links,uid,gid 0163 0164 0141
size 0162 10356
addr 28770 8236 25956 27766 25455 8236 25956 25206
times1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

0100000000 f1 =0
0 f2=0

nn

02040: flags 024555
links,uid,gid 012 0163 0164
size 0162 25461
addr 8308 30050 8294 25130 15216 26890 29806 10784
times1976 Aug 17 12:16:511976 Aug 17 12:16:51

02100: flags 05173
links,uid,gid 011 0162 0145
size 0147 29545
addr 25972 8306 28265 8308 25642 15216 2314 25970
times1977 Apr 2 08:58:01 1977 Feb 5 10:21:44

ADB Summary

Command Summary
a) formatted printing

? format print from a.out file according to
Jormat

/ format print from core file according to
Jormat

= formar print the value of dor

?w expr write expression into a.out file

/w expr write expression into core file
?lexpr locate expression in a.out file
b) breakpoint and program control

b set breakpoint at dot

HJ continue running program

d delete breakpoint :
H 4 kill the program being debugged
T run a.out file under ADB control
s single step

¢) miscellaneous printing

$b print current breakpoints

$c C stack trace

Se external variables

St floating registers

$m print ADB segment maps

$q exit from ADB

Sr general registers

Ss set offset for symbol match
Sv print ADB variables

Sw set output line width

d) calling the shell

! call shell to read rest of line

e) assignment to. variables

> name assign dot to variable or register name

‘MM ERAIBO~mAanTE

Format Summary

the value of dot
one byte in octal
one byte as a character
one word in decimal
two words in floating point
PDP 11 instruction
one word in octal
print a newline
print a blank space
a null terminated character string
move to next n space tab
one word as unsigned integer
hexadecimal
date
backup dot
"t print string

Expression Summary
a) expression components

decimal integer e.g. 256

octal integer e.g. 0277

hexadecimal e.g. #ff

symbeols e.g. flag _main main.argc
variables e.g. <b

registers e.g. <pc <rl
(expression) expression grouping

b) dyadic operators

+ add

- subtract

. multiply

% integer division -

& bitwise and

| bitwise or

round up to the next multiple

¢) monadic operators

- not
b contents of location
- integer negate

