/189 o3

PWB/UNIX

" Shell Tutorial

J. R. Mashey

September 1977

Bell Telephone Laboratories, Incorporated

PWB/UNIX Shell Tutorial
CONTENTS

LINTRODUCTION . . . ¢ ¢ ¢ v v o o o o o o o &

2. OVERVIEW OF THE UNIX ENVIRONMENT
2.1 File System 2
2.2 Processes 2

3. SHELL BASICS . . ¢ v ¢ ¢ ¢ ¢ o o o« o o o
3.1 Commands 3
3.2 Redirection of Standard Input and Output 4
3.3 Command Lines ¢
3.4 Generation of Argument Lists 6
3.5 Quoting Mechanisms 6
3.6 Examples 6
3.7 How the Shell Finds Commands 7
3.8 Changing the State of the Sheil and the .profile File 7

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES .
4.1 Invoking the Shell 8
4.2 Passing Arguments to the Shell 8
4.3 Shell Variables 9
4.4 Initialization of Sp and $z by the .path File 10
4.5 Control Structures 11
4.6 Onintr; Interrupt Handling 14
4.7 Special I/0 Redirections 14
4.8 Quoting Revisited 15
4.9 Creation and Organization of Shell Procedures 15

5. MISCELLANEOUS SUPPORTING COMMANDS
5.1 Echo: Simple Qutput 16
5.2 Pump: Shell Data Transfer 16
5.3 Expr: Expression Evaluation 17
5.4 Logname, Logdir, Logtty: Login Data 17

6. EXAMPLES OF SHELL PROCEDURES

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING
7.1 Overall Approach 23
7.2 Approximate Measures of Resource Consumptxon 23
7.3 Efficient Organization 24

ACKNOWLEDGMENTS . . . ¢ ¢« ¢ o o o o o o o o @
REFERENCES . . ¢ ¢« ¢ ¢ ¢ o ¢ o o s o o o s o o

PwB/UNIX Shell Tutorial

J. R. Mashey

Bell Laboratories
Murray Hill, New Jersey 07974

The command language for PWB/UNIX® is a high-level programming language that is an extended ver-
sion of the UNIX Shell. By utilizing the Shell as a programming language, one can eliminate much of
the programming drudgery that often accompanies a large project. Many manual procedures can be
quickly, cheaply, and conveniently automated. Because it is so easy to create ang use Shell procedures,
individual -users and entire projects can customize the general PWB/UNIX environment into one tailored
to their own respective requirements, organizational structure, and terminology.

This paper is actually a combination of several tutorials, as explained in {1}.! Some sections provide a
basic tutorial for relatively new users. Other sections are intended for more experienced users and
introduce them to Shell programming. Finally, some hints on programming techniques and efficiency
are offered for those who make especially heavy use of Shell programming.

The accuracy of this tutorial is guaranteed only for the Shell of pwB/UNIX—Edition 1.0. Other versions
of UNIX have other Shells. Although many of the basic concepts are similar, there exist many
differences in features, especially those used to support Shell programming.

1. INTRODUCTION

In any programming project, some effort is used to build the end product. The remainder is consumed
in building the supporting tools and procedures used to manage and maintain the end product. The
second effort can far exceed the first, especially in larger projects. A good command language can be
an invaluable tool for such projects. If it is a flexible programming language, it can be used to solve
many internal support problems, without requiring compilable programs to be written, debugged, and
maintained; its most important advantage is the ability to get the job done now. For a perspective on
the motivations for using a command language in this way, see [1,2,6].

When users log into a PWB/UNIX system, they communicate with an instance of the Shell that reads
commands typed at the terminal and arranges for their execution. Thus, the Shell’s most important
function is to provide a good interface for human beings. In addition, a sequence of commands may be
preserved for later use by saving them in a file, called a Shell procedure, a command file, or a runcom,
according to local preferences.

Some users need little knowledge of the Shell to do their work; others choose to make heavy use of its
programming features. This tutorial may be read in several different ways, depending on the reader’s
interests. A brief discussion of the PWB/UNIX environment is found in {2}. The discussion in {3} cov-
ers aspects of the Shell that are important for everyone, while all of {4} and most of {5} are mainly of
interest to those who write Shell procedures. A group of annotated Shell procedures is given in {6}.
Finally, a brief discussion of efficiency is offered in {7). This is found in its proper place (the end), and
is intended for those who write especially time-consuming Shell procedures.

Complete beginners should not be reading this tutorial, but should work their way through other avail-
able tutorials first. See (7] for an appropriate plan of study. All the commands mentioned below are
described in Section I of the Pwawnix User's Manual [3], while system calls are described in Section II
and subroutines in Section III thereof.

2. OVERVIEW OF THE UNIX ENVIRONMENT

Full understanding of some later discussions depends on familiarity with PwB/UNIX; [9] is most useful
for that, and it would be helpful to read at least one of [4,5,10]. For completeness, a short overview of
the most relevant concepts is given below.

¢ UNiXisa Tr:ldet.nark/Service Mark of the Beil System.
1. The notation {#} refers to Section » of this tutorial.

2.1 File System

The pws/UNIX file system’s overall structure is that of a rooted tree composed of directories and other
files. A file name is a sequence of characters. A parthname is a sequence of directory names followed by
a file name, each separated from the previous one by a slash (/). If a pathname begins with a **/*’, the
search for the file begins at the root of the entire tree; otherwise, it begins at the user’s current directory
(also known as the working directory). (The first kind of name is often called a fiull pathname because it
is invariant with regard to the user’s current directory.) The user may change the current directory at
any time by using the cd or chdir command. In most cases, a file name and its corresponding pathname
may be used interchangeably. Some sample names are:

R name of the current directory.

. name of the parent directory of the current directory.

/ root directory of the entire file structure.

/bin directory containing most of the frequently-used public commands.

/al/tf/jtb/bin a full pathname typical of multi-person programming projects. This one happens to
be a private directory of commands belonging to person ““jtb”’ in project ‘‘tf*’; *‘al”
is the name of a file system.

bin/umail a name depending on the current directory: it names file “‘umail™ in subdirectory
“bin” of the current directory. If the current directory is ‘/”’, it names
“/bin/umail’*. If the current directory is ‘‘/al/tf/jtb”, it names
*“/al/tf/jtb/bin/umail”.

memox name of a file in the current directory.
2.2 Processes
w» Beginners should skip this section on first reading.

An image is a computer execution environment, including memory image, register values, current
directory, status of open files, information recorded at-login time, and various other items. A process is
the execution of an image; most PWB/UNIX commands execute as separate processes. One process may
spawn another using the fork system call, which duplicates the image of the original (parenr) process.
The new (child) process continues to execute the same program as the parent. The two images are
identical, except that the program can determine whether it is executing as parent or child. The pro-
gram may continue execution of the image or may abandon it by issuing an exec system call, thus ini-
tiating execution of another program. In any case, each process is free to proceed in paralle! with the
other, although the parent quite commonly issues a wait system call to suspend execution until a child
exits.

PROGRAM A FORK WAIT
PROCESS 1 |.--__..___._________-__
PARENT -P—
(ASLEEP) :
PROCESS 2 : |___PROGRAM A EXEC PROGRAM 8 |
CHILD 8 |
EXIT
Figure 1

Figure 1 illustrates these ideas. Program A is executing (as process 1) and wishes to run program B. 1t
““forks” and spawns a child (process 2) that continues to execute program A. The child abandons A4 by
executing B, while the parent goes to sleep uatil the child exits.

-

")

<3-

A child inherits its parent’s open files. This mechanism permits processes to share a common input
stream in various ways. In particular, an open file possesses a pointer that indicates a position in the file
and is modified by various operations. Read and write system calls copy a requested number of bytes
from or to a file, beginning at the position given by the current value of the pointer. As a side effect,
the pointer is incremented by the number of bytes transferred, yielding the effect of sequential 1/0.
Seek can be used to obtain random-access [/O: it sets the pointer to an absolute position within the file,
or to a position offset either from the end of the file or from the current pointer position.

When a process terminates, it can set an eight-bit return code (or exit code) that is available to its
parent. This code is usually used to indicate success or failure.

Signals indicate the occurrence of events that may have some impact on a process. A signal may be
sent to a process by another process, from the keyboard, or by PwB/UNIX itself. For most types of sig-
nals, a process can arrange to be terminated on receipt of a signai, to ignore it completely, or to
“catch” it and take appropriate action {4.6}. For example, an interrupr signal may be sent by depressing
an appropriate key (“‘del”, ‘‘break”, or ‘“‘rubout’’). The action taken depends on the requirements of
the specific program being executed:

o The Shell invokes most commands in such a way that they immediately die when an interrupt is
received. For example, pr normaily dies, allowing the user to terminate unwanted output.

o The Shell itself ignores interrupts when reading from the terminal, because it should continue exe-
cution even when the user terminates a command like pr.

e The editor ed chooses to “‘catch™ interrupts so that it can halt its current action (especially printing)
without terminating completely.

Limiting interprocess communication to a small number of well-defined methods is a great aid to uni-
formity, understandability, and reliability of programs. It encourages the ‘‘packaging’’ of each function
into a small program that is easily connected to other programs, but depends very little on the internal
workings of other programs.

3. SHELL BASICS

The Skell (i.e., the sh command) implements the command language visible to most PWB/UNIX users.
It reads input from a terminal or a file and arranges for the execution of the requested commands. It is
a small program (about forty pages of C code); many of its functions are actually provided by indepen-
dent programs that work with it. It is #or part of the operating system, but is an ordinary user program.
The discussion below is adapted from [10,11].

3.1 Commands

A command is a sequence of non-blank arguments separated by blanks or tabs. The first argument
(numbered zero) specifies the name of the command to be executed; any remaining arguments are
passed as character-strings to the command executed. A command may be as simple as:

who

which prints the login names of logged-in users. The following line requests the pr command to print
files a, b, and c:

prabec

If the first argument names a file that is execurable? and is actually a load module, the Shell (as parent)
spawns a new (child) process that immediately executes that program. If the file is marked executable,
but is neither a load module nor a directory, it is assumed to be a Shell procedure, i.e., a file of ordinary
text containing Shell command lines and possibly lines to be read by other programs. In this case, the
Shell spawns a new instance of itself to read the file and execute the commands included in it. The fol-
lowing command requests that the on-line Pwawnix User's Manual {3) pages for the who and pr com-
mands be printed on the terminal (the man command is actually implemented as a Shell procedure):

man who pr

2. As evidenced by an appropriate set of permission bits associated with that file.

-4. .

From the user’s viewpoint, executable programs and Shell procedures are invoked in exactly the same
way. The Shell determines which impilementation has been used, rather than requiring the user to do
so. This preserves the uniformity of invocation and the ease of changing the implementation choice for
a give? co}mmand. The actions of the Shell in executing any of these commands are illustrated in Fig-
ure 1 {2.2}.

3.2 Rediréction of Standard Input and Output

When a command begins execution, it usually expects that three files are already open, a *‘standard
input™, a “‘standard output’, and a “diagnostic output”. When the user’s original Shell is started, all
three have already been opened to the user’s terminal. A child process normally inherits these files
from its parent. The Shell permits them to be redirected elsewhere before control is passed to an
invoked command.

An argument to the Shell of the form “ <file’” or “>file’ opens the specified file as standard input or
output, respectively. An argument of the form *‘> >file’” opens the standard output to the end of the
file, thus providing a way to append data to it. In either output case, the Shell creates the file if it did
not already exist. The following appends to file “‘log” the list of users who are logged in:

who >>log

In general, most commands neither know nor care whether their input (output) is coming from (going
to) a terminal or file. Thus, commands can be used conveniently in many different contexts. A few
commands vary their actions depending on the nature of their input or output, either for efficiency’s
sake, or to avoid useless actions (such as attempting random-access 1/0 on a terminal).

Redirection of the diagnostic 6utput is discussed in {4.7.3).
3.3 Command Lines

A sequence of commands separated by *|” (or *“~*’) make up a pipeline. Each command is run as a
separate process connected to its neighbor(s) by pipes, i.e., the output of each command (except the last
one) becomes the input of the next command in line. A filtler is a command that reads its input,
transforms it in some way, then writes it as output. A pipeline normally consists of a series of filters.
Although the processes in a pipeline are permitted to execute in parallel, they are synchronized to the
extent that each program needs to read the output of its predecessor. Many commands operate on indi-
vidual lines of text, reading a line, processing it, writing it, and looping back for more input. Some
must read larger amounts of data before producing output; sort is an example of the extreme case that
requires all input to be read before any output is produced.

The following is an example of a typical pipeline: nroff is a text formatter whose output may contain
reverse line motions; co/ converts these motions to a form that can be printed on a terminal lacking
reverse motion capability; reform is used here to speed printing by converting the (tab-less) output of
col to an equivalent one containing horizontal tab characters. The flag *“—~mm’’ indicates one of the
more-commonly used formatting options, and *‘text” is the name of the file to be formatted:

nroff ~mm text | col | reform

Figure 2 shows the sequence of actions that set up this pipeline. Not shown are actions by the Shell
that create pipes and manipulate open files, causing the commands to be tied together correctly.

A command line consists of zero or more pipelines separated by semicolons or ampersands. If the last
command in a pipeline is terminated by a semicolon (;) or a new-line character, the Shell waits for the
command to finish before continuing to read command lines. It does nor wait if the pipeline is ter-
minated by an ampersand (&); both sequential and asynchronous execution are thus allowed. An asyn-
chronous pipeline continues execution until it terminates voluntarily, or until its processes are killed.
The first example below executes who, waits for it to terminate, and then executes date; the second
invokes both commands in order, but does not wait for either one to ﬁmsh Figure 3 shows the actions
of the Shell involved in executing these examples:

who >log; date
who >log& date&

SH FORK FORK . FORK WAIT WAIT WAIT
Y ’- (ASLEEP) .N l- (ASLEEP) H (ASLEEP) ?
. EXEC : ; REFORM |
| REFORM : T 1
: : EXIT
3 EXEC : coL i
coL : }
: EXIT
2 EXEC NROFF i
NROFF i
EXIT
Figure 2
SH FORK WAIT FORK WAIT
1 D D AFS T TN D T WD G wEy ----~-—-%
(ASLEEP) (ASLEEP) :
; EXEC WHO EXEC DATE '
123 | WHO DATE |
EXIT EXIT
SH FORK FORK (FREE TO DO OTHER COMMANDS)
! \ 4
EXEC DATE |
3 DATE i
EXIT
WHO
2 EXEC |
X WHO I
EXIT

Figure 3

More typical uses of *‘&™ include off-line printing, background compilation, and generation of jobs to
be sent to other computers. For example:

nohup cc prog.c&
You continue working while the C compiler runs in background.

A command terminated by “&™ is immune to interrupts, but it is wise to make it immune to hang-ups

as well. The nohup command is used for this purpose. Without nohup, if you hang up while cc (the C
compiler) is still executing, cc will be killed and your output will disappear.

w The “&" operator should be used with restraint, especially on heavily-loaded systems. Other users will
not consider you a good citizen if you start up a large number of simultaneous, asynchronous processes

without a compelling reason for doing so.

A simple command in a pipeline may be replaced by a command line enclosed in parentheses **()""; in
this case, another instance of the Shell is spawned to execute the commands so enclosed. This action is

-6-

helpful in combining the output of several sequentially executed commands into a stream to be pro-
cessed by a pipeline. The following line prints two separate documents in a way similar to that shown
in a previous example:

(nroff —mm textl; nroff —mm text2) | col | reform
34 Genex:ation of Argument Lists

Many command arguments are names of files. When certain characters are found in an argument, they
cause replacement of that argument by a sorted list of zero or more file names obtained by pattern-
matching on the contents of a directory. Most characters match themselves. The *“?°" matches any one
character; the ‘‘s*’ matches any string of any characters (other than */*), including the null string.
Enclosing a set of characters within square brackets *‘[...]” causes the construct to match any one
character in that set. Inside square brackets, a pair of characters separated by *“~"" includes in the set
all characters lexically within the inclusive range of that pair.

For example, “‘+™ matches all files in the current directory, ‘‘+tmpe" matches all names containing
“tmp”, “[a—f]+"’ matches all files whose names begin with “‘a” through *‘f”, **.c” matches all files
ending in *“.c”, and *“/al/tf/bin/?"’ matches all single-character names found in *‘/al/tf/bin’’. This
capability saves much typing, and more importantly, makes it possible to organize information as large
collections of small files that are named in disciplined ways.

"

Pattern-matching has several restrictions. If the first character of a file name is ‘“.”, it can be matched
only by an argument that begins with ‘., Pattern-matching is currently restricted to the last com-
ponent in a pathname—the string ‘‘/al/tf/+* is legal, but the string *‘/al/=/bin’’ is not. Pattern-
matching does not apply to the name of the invoked command (i.e., argument number 0).

3.5 Quoting Mechanisms

If a character has a special meaning to the Shell, that meaning may be removed by preceding the char-
acter with a back-slash (\); the *“\"* acts as an escape and disappears. A *‘\” followed by a new-line
character is treated as a blank, permitting continuation of commands on additional input lines. A
sequence of characters enclosed in single quotes (°...") is taken literally—*‘what you see is what you
get’”’. The beginner should use single quotes in most instances. Double quotes ("...") are required in
a few cases, primarily inside Shell procedures. Double quotes hide the significance of most special
characters, but allow substitution of Shell arguments and variables; see {4.8} for further details.

3.6 Examples

The following examples illustrate the variety of effects that can be obtained by combining a few com-
mands in the ways described above. It may be heipful to try these examples at a terminal;

e who
Print (on the terminal) the list of logged-in users.

e who >>log)
Append the list of logged-in users to the end of file “log™.

e who | we —l
Print the number of logged-in users. (The argument to we is “‘minus ell™.)

e who | iDl'
Print a paginated list. of logged-in users.

e who | sort
Print an alphabetized list of logged-in users.

e who | grep pw
Print the list of logged-in users whose login names contain “‘pw”’.

e who | grep pw | sort | pr
Print an alphabetized, paginated list of logged-in users whose names contain “‘pw"".

3. Be warned that square brackets are also used below in an entirely different sense: in descriptions of commands, they indicate
that the enclosed argument is optional.

~/

-~

e (date; who | we —=I) >>log
Append (to ““log’’) the current date followed by the count of logged-in users.

e who | sed 's/ .+//" | sort | uniq —d
Print only the login names of all users who are logged in more than once.

The who command does not &y irself provide options to yield all these results—they are obtained by
combining it with other commands. The kinds of operations illustrated above may be used in other cir-
cumstances; who just serves as the data source in these examples. As an exercise, replace ‘““who |** by
““</etc/passwd” in the above examples to see how a file can be used as a data source in the same way.

3.7 How the Shell Finds Commands

The Shell normally searches for commands in a way that permits them to be found in three distinct
locations in the file structure. The Shell first attempts to use the command name as given; if this fails,
it prepends the string ‘‘/bin/*’ to the name, and, finally, *“/ust/bin/>. The effect is to search, in order,
the curreat directory, “‘/bin”, and *‘/ust/bin’’. For example, the pr and man commands are actually
located in files **/bin/pr’ and ‘‘/usr/bin/man’, respectively. A more complex pathname may be
given, either to locate a file refative to the user’s current directory, or to access a command via an abso-
lute pathname. If a command name as given contains a **/>* (e.g., ““/bin/sort” or *../cmd™), the
prepending is nor performed. Instead, a single attempt is made to execute the unmodified command
name.

This mechanism gives the user a convenient way to execute public commands and commands in or
‘“‘near” the current directory, as well as the ability to execute any accessible command regardless of its

" location in the file structure. Because the current directory is usually searched first, anyone can possess

a private version of a public command without interfering with other users. Similarly, the creation of a
new public command will not affect a user who already has a private command with the same name.
This mechanism may be overridden {4.4}.

3.8 Chgnging the State of the Shell and the .profile File

The state of a given instance of the Shell may be altered in various ways. The following commands are
used more often at the terminal than in Shell procedures.

The cd command (or its synonym chdir) changes the current directory of the Shell to the one specified.
This can (and should) be used to change to a convenient place in the directory structure; cd is often
combined with *“()” to cause a sub-Shell to change to a different directory and execute some com-
mands, without affecting the original Shell. The first sequence below extracts the component files of
the archive file **/al/tf/q.a’’ and places them in whatever directory is the current one; the second
places them in directory *‘/al/tf":

ar x /al/tf/q.a
(cd /al/tfy ar x q.a)

The opt command sets various flags in the Shell. For example, “‘opt —p prompt-str’’ changes the
Shell’s interactive prompt sequence from “% * to prompt-str* Typing ‘“‘opt —v’* causes the Shell to
enter verbose mode, in which it prints each command line before executing it {4.1}. Try this at the ter-
minal to see how the Shell scans arguments. The output can be turned off by typing *‘opt +v’.

The login command causes the Shell to execute the login program directly, permitting a new login
without re-dialing. A related command is su, which permits you to act with someone else’s access per-
missions without making you login again.

Wait causes the Shell to suspend execution until all of its child processes have terminated. It is used to
assure termination of asynchronous processes.

When you login or use su, the Shell is invoked to read your commands, but if your current directory
contains a file named ‘‘.profile’’, the Shell reads it before reading commands from your terminal;
“.profile”” often contains commands that set tab stops and terminal delays, read mail, etc. See
s profile” in {6}.

4. The default prombx string % *° is inconvenient for certain disptay (CrT) terminals.

-8- ' .

4. USING THE SHELL AS A COMMAND: SHELL PROCEDURES
4.1 Invoking the Shell |
The Shell is an ordinary command and may be invoked in the same way as other commands:

sh file [args] A new instance of the Shell is explicitly invoked to read file. Arguments, if any,
can be manipulated as described in {4.2).

sh —v file [args] This is equivalent to putting “‘opt —v** at the beginning of file. Each command
line in file is printed before it is executed, thus tracing the progress of execution.
This is an important debugging aid.

file [args] If file is marked executable, and is neither a directory nor a load module, the

effect is that of ‘‘sh file [args 1™, except that file may be found by the search
procedure described in {3.7].

4.2 Passing Arguments to the Shell

When a command line is scanned, any character sequence of the form $» is replaced by the nth argu-
ment to the Shell, counting the name of the file being read as $0. This notation permits direct refer-
ence to the file name and up to 9 arguments. Additional arguments can be processed using the shifi
command. It shifts arguments to the left; i.e., the value of $1 is thrown away, $2 replaces $1, $3
replaces $2, etc.; the rightmost argument becomes null. For example, consider the (executable) file
“ripple” below. Echo writes its arguments to the standard output; if, exit, and goro are discussed later,
but perform fairly obvious functions.® The form "$1" is used rather than ‘$1° because it is the value of
the first argument that is desired, rather than the literal two-character string “‘$1°":

: loop

if "$1" = "" exit

echo $1 32 33 $4 $5 $6 $7 S8 39
shift

goto loop

If the file were invoked by “‘ripple a b ¢”, it would print:

abe¢
be¢
c

The “shift n" form of shift has no effect on the argunients to the left of the nth argument; the nth
argument is discarded, and the higher-numbered ones shifted. Thus, “shift” is equivalent to ‘“‘shift 1"
(as is “‘shift 0”").

The notation 3+ causes substitution of a/l current arguments except $0. Thus, the echo line in the *‘rip-
ple” example above could be written in a better way as:

echo $+

These two echo commands are not equivalent: the first prints at most nine arguments; the second prints
all its arguments. The S+ notation is more concise and is less error-prone. One obvious application is
in passing an arbitrary number of arguments to the nroff text formatter:

aroff —=h —rT1 =T450 —mm S»

It is important to understand the sequence of actions used by the Shell in substituting arguments.
First, the Shell reads one line of input, making all substitutions in a single pass; no rescanning is per-
formed. Second, the Shell parses the resulting line. Third, the Shell executes all of the commands in
that line. Thus, it is impossible for a command in a line to affect the argument values substituted into
that same line. For example, the following sequence prints the same value twice, because the shifi has
no effect on the line in which it appears:

echo $1; shift; echo S1

5. Much better ways of coding this procedure are shown later. Lines that begin with **:>* are labels and/or comments [4.5.1}.

. ‘vl

()

~—

»

.‘ -9.

On the other hand, the next sequence prints the first argument, followed by the second:

echo $1
shift
echo $1

4.3 Shell ‘Variables

The Shell provides 26 string variables, Sa through Sz. Those in the range Sa through Sm are initialized
to null strings at the beginning of execution and are never modified except by explicit user request.
Some variables in the range Sn through Sz have specific initial values and may possibly be changed
implicitly by the Shell during execution. A variable is assigned a value as follows:

= letter [argl [arg2]]

If argl is given, its value is assigned to the variable corresponding to letrer. If two arguments are given,
and if arg! is a null string, the value of arg2 is assigned to the variable, permitting a convenient default
mechanism. If neither arg! nor arg2 are given, a single line is read from the standard input, and the
resulting string (with the new-line character, if any, removed) is assigned to the variable.

The following are examples of simple assignments. You may omit quotes around the arguments if you
are sure that they contain no special characters:

= 3 "$I"
m b “sssss’
= ¢ /usr/news/.mail

The procedure below illustrates the use of a default argument. If an argument is given, ‘mail is read
from it. Otherwise, mail is read from *‘/usr/news/.mail’*;

= 3 "$1" /ust/news/.mail
mail —f $a
The ‘=" command is often used to capture the output of a program. For exampie, date writes the
current time and date to its standard output. The following line saves this value in $d:
date | = d
This works just as well in longer pipelines. The following saves in $a the number of logged-in users:
who | we =1 | = a

Another use is in the writing of interactive Shell procedures. The following example is part of a pro-
cedure to ask the user what kind of terminal is being used, so that tabs and delays can be set and other
useful actions taken. The ‘‘</dev/tty” indicates a redirection of the standard input to the user termi-
nal; it is nor seen as an argument to ‘‘="", but rather causes the variable to be set to the next line typed
by the user:

echo ‘terminal?”
= 3 </dev/tty

Several variables are currently assigned special meanings:

$n records the number of arguments passed to the Shell, not counting the name of the Shell pro-
cedure itself. Thus, *‘sh file argl arg2 arg3™ sets Sn to 3. Its primary use is in checking for the
required number of arguments:

if $n —it 2 then
echo ‘two or more args required”; exit
endif

Shift never changes the value of Sa.

$p permits alteration of the ordered list of directory pathnames used when searching for commands.
It contains a sequence of directory names (separated by colons) that are to be used as search
prefixes, ordered from left to right. The current directory is indicated by a null string.

-10 -

(]

By default, Sp is initialized to a value producing the effect described in {3.7): **:/bin:/ust/bin™. A
user could possess a personal directory of commands (say, /al/tf/jtb/bin) and cause it to be
searched before the other three directories by using:

= p /al/tf/jtb/bin::/bin:/usr/bin

$r gives the value of the return code of the command most recently executed by the Shell. It is a
string of digits; most commands return *‘0*’ to indicate successful completion. For example, the
‘=" command returns 0’ if two arguments are given and the first is not null, or if a line is
actually read from the input. When the Shell terminates, it returns the current value of Sr as its
own return code.

$s s initialized to the name of the user’s login directory, i.e., the directory that becomes the current:

directory upon completion of a login (e.g., **/al/tf/jtb’’). Using this variable helps one to keep
full pathnames out of Shell procedures. This is of great benefit when pathnames are changed,
either to balance disk loads or to reflect administrative changes.

$t is initialized to the user’s terminal identification, a single letter or digit. The terminal can be
manipulated using the file name ‘/dev/ttySt” or just “‘/dev/tty’ alone. The latter is a generic
name for the user’s terminal.

8w s initialized to the first component of S$s, i.e., it is the name of the file system (such as *‘/al™) in
' which the login directory is located. Like Ss, it is used to avoid pathname dependencies, but is
more useful than Ss for projects involving many users.

$z s initialized to “/bin/sh™. The command named by Sz is the one that actuaily reads the Shell
procedures invoked implicitly. The user can alter the choice of the Shell by overriding this value
{4.4). This facility is very useful when there are several different Shells in a system. This may
occur because different groups of users want different Shells, or when a new Shell is being tested.

In addition to the above variables, the following read-only variable is provided:

$3 contains a 5-digit number that is the unique process number of the current Shell. Its most com-
mon use is in generating unique names for temporary files. Unlike many other systems,
PWB/UNIX provides no separate mechanism for the automatic creation and deletion of temporary
files: a file exists until it is explicitly removed. Temporary files are generally undesirable objects:
the PWB/UNIX pipe mechanism is far superior for many applications. However, the need for
uniquely-named temporary files does occur, especially for multi-user database applications. The
following example of S8 usage also illustrates the helpful practice of creating temporary files in a
directory used only for that purpose:

Is >8s/tmp/S$

... commands (some of which use $s/tmp/38)
¢ ‘clean up at end’

Jm 3$s/tmp/S$

4.4 Initialization of Sp and $z by the .path File

The user may request automatic initialization of each Shell’'s $p (and $z) by creating a file named
*.path™ in the login directory. The first (or only) line should be of the form shown for Sp {4.3). If
present, the second line should be the full pathname of a Shell. Every instance of the Shell looks for
that “‘.path’ file and initializes its own Sp (and $z) from it, if ‘.path™ exists. Otherwise,
**:/bin:/ust/bin’" and **/bin/sh’’ are the values used, respectively. Thus, the *‘.path’’ information is
available to all of the user’s Shells, but changing Sp or Sz in one Shell does nor affect these variables in
other Shells. In addition, *‘.path™ is used in a consistent way by commands that must search for other
commands, such as nohup, nice, and rime.® This facility is heavily used in large projects. because it
simplifies the sharing of procedures, and can be quickly altered to adapt to changes in organizational
requirements.

6. If-you plan to write such a command, investigate the pexec subroutine, which combines the search and execution code.

N

®)

()

-11-

4.5 Control Structures

The Shell provides several commands that implement a variety of control structures. These commands
are presented here in order of increasing complexity. See {6} for examples of these commands in the
context of complete Shell procedures.

wr Several of the control commands must not be “‘hidden’’ on command lines (e.g., behind semi-colons *‘;"):
else end endif endsw if switch while
Other control commands may be *“‘hidden"":
break breaksw continue exit goto next

4.5.1 Labels and Goto. The command *:” is recognized by the Shell, but is then treated as a nuil
operation. One use of “:” is to define a label to act as a target for goto. Another use is to begin a
comment line. However, it is a good idea to place comments in quotes {3.5} if they contain any charac-
ters that have a special meaning to the Shell, because the line is actually parsed, not just ignored. Using
*‘goto label” causes the following actions:

e A seek is performed to move the read pointer to the beginning of the command file.

e The file is scanned from the beginning, searching for *‘: label™, either alone on a line, or followed
by a blank or tab.

o The read pointer is made to point at the line affer the labeled line.

Thus, the only effect of goro is the adjustment of the Shell’s file read pointer to cause the Shell to
resume interpreting commands starting at the line following the labeled line. Invoking goro with an
undefined label causes termination of the procedure {4.5.5).

X Avoid the “‘goto’" —future versions of the Shell are not expected to allow it.
4.5.2 If: Simple Conditional.
if conditional-expression command [args]

Whenever the conditional-expression is found to be true, if executes the command (via the exec system
call), passing the arguments to it. Whenever the conditional-expression is false, if merely exits.

The following primaries can be used to construct the conditional-expression:

—=r file true if the named file exists and is readable by the user.

-w file true if the named file exists and is writable by the user.

-5 file true if the named file exists and has a size greater than zero.

-d file true if the named file is a directory.

~f file . true if the named file is an ordinary file.

sl = s2 true if strings s/ and s2 are identical. .

sl '= s2 true if strings s/ and s2 are nor identical.

nl —eq n2 true if the integers n/ and n2 are algebraically equal. Other algebraic comparisons are

"

indicated by “_ne"’ “'—gt", u_gen' u_un’ aﬂd u_le .

{ command } the command is executed; a return code of 0 (yes, zero!) is considered rrue, any other
value is considered false. Most commands return (to indicate successful completion.

These primaries may be combined with the following operators:
! unary negation operator.

-3 binary logical and operator.
-0 binary logical or operator; it has lower precedence than **—a’’.
(expr) ‘parentheses for grouping. They must be escaped to remove their significance to the

Shell. In the absence of parentheses, evaluation proceeds from left to right.

te

-12-

All of the operators, flags, and values are separate arguments to jf; and must be separated by blanks.
You must be careful to make sure that an argument actually appears and can be parsed correctly:

if "$1" = "" echo missing argument
if 081 = 0 echo missing argument
if 081" = 0 echo missing argument

The first example guards against the possibility that $1 is omitted, null, or has embedded blanks; the
second guards against the possibility that $1 has a value that causes parsing problems (such as “‘-—r’"),
or that it is omitted or null; the third guards against all these problems. The following is dangerous:

if $1 = "" echo missing argument

because it would cause a syntax error in any of the above cases. Substitution of variables and argu-
ments occurs effectively before parsing; thus, for example, if $1 were nuil, then after substitution the
line would read:

if = "" echo missing argument

In this case, $1 without quotes yields no argument at all (on the other hand, "$1" would have yielded
an argument whose value is the null string). It is generally desirable to quote arguments (with double
quotes—see 3.5}), especially when they might possibly contain blanks or other characters that have a
special meaning to the Shell. Examples of the use of if can be found in {6).

4.5.3 If—then—else—endif: Structured Conditional. A more general (and much more readable) form of
if can be used:

if conditional-expression then
... COmmands -

else ‘
... commands

endif

The else and the commands following it may be omitted. It is legal to nest if commands, but there
must be an endif to match every then. '

When if is called with a command, using the form of {4.5.2}, it acts as described there, deciding
whether or not to execute the supplied command. When called with rhen instead of another command,
if simply exits on a true, allowing the Shell to read and interpret the immediately following lines. On a
false, if reads the file until it finds the next unmatched else or endif, thus skipping it and any other inter-
vening lines. Else reads to the next unmatched endjf Endif is a null command.

These commands work together in a way that produces the appearance of a familiar control structure,
although they do little but adjust the Shell’s read pointer. Be warned that this implementation tech-
nique does not do a good job of diagnosing extra, missing, or hidden if, else, or endjf commands {4.5); if
you suspect that there are such extra or missing commands, ‘‘opt —v'’ often helps (3.8.4.1}.

4.5.4 Switch—breaksw—endsw: Multi-way Branch. The switch command manipulates the input file in a
way quite similar to iff It is modeled on the *‘switch™ statement of the C language [8], and like it, pro-
vides an efficient multi-way branch:

switch value
: labell

... commands
: label2

.«. cOmmands

.
.

¢ default
.++ commands
endsw

> 1

Switch reads the input until it finds:

e a statement label that matches value. The label may contain special characters as described in {3.4};
the method of matching is identical. A few of the many possible labels that could be used to match
the value ‘‘thing.c” are:

thing.c s, te - 2999779

e default used as a statement label (optional).
¢ the next unmatched endsw command.

Again, from the Sheil’s viewpoint, the only effect of switch is to adjust the read pointer so that the Shell
effectively skips over part of the procedure, and then continues executing commands following the
chosen label or endsw. For examples, see *“.profile’’ and ““fsplit” in {6}.

Value is obtained from an argument or from a variable; if the label defaulr is present, it must be the last
label in the list; it indicates a default action to be taken if value matches none of the preceding labels.
The switch construct may be nested; labels enclosed by interior switch-endsw pairs are ignored during the
execution of switch. Breaksw reads the input until the next unmatched endsw and is used to end the
sequence of commands associated with a label. Endsw is a null command like endif.

4.5.5 End-of-file and Exit. When the Shell reaches the end-of-file, it terminates execution, returning
to its parent the return code found in Sr. The exit command simply seeks to the end-of-file and
returns, setting the return code to the value of its argument, 1f any. Thus, a procedure can be ter-
minated *‘normally”™ by using exit 0.

4.5.6 While—break—continue—end: Looping. A while-end pair delimits a loop. Break can be used to
terminate execution of such a loop. Continue requests the execution of the next iteration of the loop:

while conditional-expression
... commands
end

While evaluates the conditional-expression, which is similar to that of if {4.5.2). If the conditional-
expression is true, while does nothing, permitting the following lines to be read and interpreted. If the
conditional-expression is false, the input file is searched for a matching end, and command interpreta-
tion resumes with the next line. While-end groupings may be nested to a depth of three.

While treats a single, non-null argument as true and a single null argument or lack of arguments as false.
This is convenient for the simple case that handles one argument per iteration:

while "$1"
Do something with $1.
shift

end

Break terminates execution of the smallest enclosing while-end group, causing execution to resume after
‘the nearest following unmatched end. Exit from n levels is obtained by writing n break commands on
the same line:

break; break;....

Continue causes execution to resume at the preceding while, i.e., the one that begins the smallest loop
containing the continue.

4.5.7 Conditional Operators || and &&. These operators enforce left-to-right execution of commands.
In the line “cmdl || cmd2”, cmdl is executed and its return code examined. Only if it failed (exit
code non-zero) is cmd2 executed. It is thus a more terse notation for:

cmdl

if Sr —ne 0 then
cmd2

endif

(U]

-14 -

The “&&” operator yields the inverse test: in “‘cmdl && cmd2’’, the second command is executed

only if the first succeeds (exit code zero). In the sequence below, each command is executed in order, -

until one fails:
cmdl && cmd2 && cmd3 && ... && cmdn
See ““fsplit”® and *‘writemail” in {6} for examples.

4.5.8 Next: Transfer to Another File. The command ‘“‘next name” causes the Shell to abandon the
current input and begin reading file name. Nex: with no arguments causes the Shell to read from the
terminal. By creating a file that initializes Shell variables, then typing ‘‘next file’* at the terminal, any-
one can have a simple shorthand for setting a number of Shell variables with little typing. See “nx’ in

{6]. ‘
4.6 Onintr: Interrupt Handling

As noted in (2.2}, a program may choose to ‘‘catch’’ an interrupt from the terminal, ignore it com-
pletely, or be terminated by it. Shell procedures can use onintr to obtain the same effects:

onintr [label]

l”

Onintr takes several forms: ‘‘onintr label” yields the effect of ‘“‘goto label’® on receipt of an interrupt;
‘‘onintr™ alone causes normal action to be restored, so that the process terminates on the next inter-
rupt; ‘‘onintr -’ causes interrupts to be ignored completely, not only by the Shell, but also by any
commands invoked by it.

The most frequent use of onintr is to make sure that temporary files are removed at the end of a pro-
cedure. The example at the end of {4.3} typically would be written as:

onintr clean
Is >8$s/tmp/3$
... commands
: clean
rm Ss/tmp/SS

When “‘onintr label’ is used, interrupts are effective at the time when the label is reached; it is often
desirable to insert another onintr following the label. Even so, there may be a short ‘‘window’ when
the user can accidentally kill the procedure by causing repeated interrupts in quick succession.

4.7 Special 1/0 Redirections

As noted in {3.2), when the Shell is invoked it expects to inherit from its parent an open standard input
(file descriptor 0), standard output (file descriptor 1), and diagnostic output (file descriptor 2). Each of
these is initially connected to the terminal.

4.7.1 Standard Input. When the Shell is invoked to read a command file, it saves the old standard
input (in an invisible place), then opens the command file as the new standard input. The fact that
commands inherit the new standard input is convenient for commands that read in-line data (editor
scripts, etc.) not read by the Shell. However, this mechanism prevents a Shell procedure from acting as
a filter or from reading the old standard input in the way that most C programs do. The Shell solves
this problem by permitting the notation **<-—-"" to allow a command to take its input from the old
standard input, which the Shell has previously saved.’

Note that ““</dev/tty” and **<—-="" usually have equivalent effects in a procedure invoked directly
from the terminal. The effects differ in a procedure invoked from within another procedure, unless the
first procedure takes care to invoke the second with “<—~-"". In any case, *“<—=""is to be preferred
beial.}nse it can be used to read from a file or a pipe and is thus more general. See *‘fsplit’’ and ‘‘lower™
in {6}.)

7. The notation *‘—="" arises from the concept of “‘standard input once removed'*, because many PwB/UNIX commands accept
“«" in place of a filc name to indicate that the current standard input should be read. This choice makes it impossible to
redirect input from a file named **==". Fortunately, file names almost never begin with **~'", because many communds
expect **~"" to signal a flag of some sort. '

e/

-15-

4.7.2 Standard Output. The use of **>/dev/tty” redirects output to the terminal, even if used in the
middle of a pipeline. Shell procedures that act as filters sometimes need to do this. The redirection
“>/dev/null’’ causes the standard output of a command to be thrown into a bottomless pit (presum-
ably to feed the wumpus—see wump(VI)). This is used when you want to execute a command for its
side-effects, but do not want to be bothered by its output.

4.7.3 Diagnostic Ourput. Most commands direct diagnostics to file descriptor 2 to make sure that they
do not get lost down pipelines. Some situations require that this output go to some place other than
the terminal. For example, a long-running procedure may be started, and then the terminal is hung up.
In this case, it is helpful to save diagnostics in a file. A deficiency of the current Shell is the lack of
syntax for redirecting the diagnostic output. The separate command f42 performs the required services:

fd2 [+] [—file] [——file] command arguments ...

The “+” flag causes diagnostic output to be merged into the standard output. The second option
writes that output to file; the third appends it to file. If the file name is omitted in the second or third
cases, ‘‘msg.out’ is used. If no flag is given, ‘“‘~msg.out” is assumed.

4.8 Quoting Revisited

The main problem with quoting conventions is the need to treat “$* and *‘\” in ways flexible enough
for convenient use with arguments and variables, but simple enough to be understandabie, easy to
implement, and unobtrusive in simple cases. In this respect, the current version of the Shell is far
from elegant, but is reasonable in practice. The rules are:

e Inside single quotes, every character stands for itself without exception. A single quete is noy, itself,
allowed within single quotes.

o Inside double quotes, *\S" and *‘\"* stand for the characters “S”’ and **"”, respectively, but with all
special meaning removed. All other characters, other than a pair of characters the first of which is
an unescaped *‘$”, behave exactly as they do within single quotes, including a **\"* not followed by a
0‘3,’ or a ‘GH”. .

o Inside double quotes and outside either kind of quotes, any two-character sequence whose first charac-
ter is an unescaped “‘S™ is replaced by the value of the corresponding Shell argument or variable;
any variable that has no value (such as “‘$:™) is replaced by a nuil string.

e Ourside either kind of quotes, any two-character sequence whose first character is a *“\™ is replaced
by the second character of that sequence, but with any special meaning removed.

4.9 Creation and Organization of Shell Procedures

A Shell procedure can be created in two simple steps. The first is that of building an ordinary text file.
The second is that of changing the mode of the file to make it execurable, thus permitting it to be
invoked by ‘“‘name args”, rather than ‘“‘sh name args’’. The second step may be omitted for a pro-
cedure to be used once or twice and then discarded, but is recommended for longer-lived ones.

Here is the entire input needed to set up a simple procedure (the executable part of *‘draft” in {6)):

ed
a
aroff —rC3 —T450—12 —mm $»

w draft
q
chmod 755 draft

It may then be invoked as ‘‘draft filel file2”. If the Shell procedure *‘draft” were thus created in a
directory whose name appears in the user’s “‘.path™ file, the user could change working directories and
still invoke the *‘draft™ command.

Shell procedures may be created dynamically. A procedure may generate a file of commands. invoke
another instance of the Shell 1o execute that file, then remove it. An alternate approach is that of using
next to make the current Shell execute the new file, allowing use of existing Shell variables and avoid-
ing the spawning of an additional process for another Shell. In some cases, the need for a temporary
file may be eliminated by using the Shell in a pipeline.

-16 - b

Many users prefer to write Shell procedures instead of C programs. First, it is easy to create and main-
tain a Shell procedure because it is only an ordinary file of text. Second, it has no corresponding object
program that must be generated and maintained. Third. it is easy to create a procedure ‘“‘on the fly”,
use it a few times, then remove it. Finally, because Shell procedures are usually short in length, writ-
ten in a high-level programming language, and kept only in their source-language form, they are gen-
erally easy to find, understand, and modify.

By convention, directories of commands and/or Shell procedures are usually named ‘‘bin”. Most
groups of users sharing common interests have one or more “bin" directories set up to hold common
procedures. Some users have ‘‘.path’ files that list several such directories. Although you can have a
number of such directories, it is unwise to go overboard—it may become difficult to keep track of your
environment, and efficiency may suffer {7.3).

S§. MISCELLANEOUS SUPPORTING COMMANDS

.Shell procedures can make use of almost any command. The commands described in this section are
either used especially frequently in Shell procedures, or are explicitly designed for such use.

5.1 Echo: Simple Output

The echo command, invoked as ‘“‘echo [args 1", copies its arguments to the standard output, each fol-
lowed by a single space, except the last argument, which is followed by a new-line; often, it is used to
prompt the user for input, to issue diagnostics in Shell procedures, or to add a few lines to an output
stream in the middle of a pipeline. Another use is to verify the argument list generation process (as in
{3.4])) before issuing a command that does something drastic. The command “‘Is”* is often replaced by
‘‘echo =»’’ because the latter is faster and prints fewer lines of output.

Echo recognizes several escape sequences. A ‘‘\n” yields a new-line character. Echo normally appends
a new-line character to its last argument; a *‘\c” is used to suppress that new-line character. The follow-
ing prompts the user for input and allows input to be typed on the same line as the prompt:

echo ‘enter name: \c¢’
= a </dev/tty

Echo also recognizes an octal escape sequence for any character, whether printabie or not.
5.2 Pump: Shell Data Transfer

Pump is a filter that copies its standard input to its standard output with possible substitution of Shell
arguments and variables:

pump [= subchar]] [+] [eofstr]

Pump reads input until an end-of-file, or until it finds eofsir alone on a line. The default eofsrr is ™.
Normally, Shell arguments and variables are substituted in the data Stream. The flag *“—"" suppresses
all substitution, while the form “—subchar’ causes subchar 10 be used as the indicator character for
substitution of Shell variables and arguments, instead of *‘S’’. Escaping is handled as in strings
enclosed by double quotes—the indicator character may be hidden by preceding it with **\"". The *‘+™
flag causes all leading tab characters in the input to pump to be eliminated; this permits that input to be
indented for readability. A common use of pump is to get Shell variables into editor scripts—see
“edfind™ in {6}, for example. Because editor scripts may use “*$"* for other purposes, readability may
be improved by using a subchar such as “%’":

o’

()

- -17-

‘in file $1, change every instance of $2 to $3°
‘then delete all lines consisting only of $4°

if —r "S1° then

pump =% + | ed S1

s oo

. &/%2/s//%3/g
g/ ~%43/d
w
!
else
echo "$1: cannot open”
endif

Pump is often used to copy a few lines to another file:

pump > >logfile
here is S1

and here is $2 on a separate line
!

5.3 Expr: Expression Evaluation

Expr supports arithmetic and logical operations on integers, and PL/I-like *‘substr”, “‘length’, and
“index’® operators for string manipulation. It evaluates a single expression and writes the resuit to the
standard output, typicaily piped into *“="" to be assigned to a variable. Typical examples are:

: ‘increment Sa’
exor $a+ 1| =2a

: ‘put 3rd through last characters of $1 into Sb’
: ‘expr substr abcde 3 1000 returns cde (1000 is just a big number)”
expr substr "S1" 3 1000 | = b

: ‘obtain length of S$1°
expr length "S1" | = ¢

The most common uses of expr are in counting for loops and in using “‘substr’® to pick apart strings.
5.4 Logname, Logdir, Logtty: Login Data

When a user logs in, he or she supplies a login name and a password. The login program searches the
password file for that /ogin name and obtains the name of the program to be executed by the user (nor-
mally the Shell), the directory to be made the current directory, and also a userid, a value ranging from
0 to 255. Most UNIX protection and identification mechanisms utilize the last item. Limiting the
number of distinct users to 256 is no problem for most UNIX systems, but the original PWB/UNIX instal-
lation currently supports more than 1,000 users. However, it is not necessary to provide a distinct
userid for every user. Project-oriented groups of users often choose to share one or two userids, in
order to ease the problems caused by personnel absences, and also to ease the manipulation of shared
files.® Although the members of such groups do not generally worry about being protected from each
other, they need to be identified as distinct individuals by some programs, i.e., those that tag inter-user
messages with user names or log the name of the user making a change to a source program.
PWB/UNIX records the login name instead of discarding it after login. The logname command writes this
name to the standard output, allowing it to be captured in a Shell variable. It can then be used to per-
mit only selected users to execute a procedure, or can be included in logging information:

logname | = u
(echo "Su updated files on \c"; date) > >projectlog

The logdir and logrny commands are used in the same way as logname; they' produce the same values as
the initial values of Ss and St, respectively {4.3}.

8. Although some groups started by using one userid per person. it was discovered that these users often shared a single
password. Thus, the possession of separate userids was considered more of a hindrance than a help.

-18 -

6. EXAMPLES OF SHELL PROCEDURES

W Some examples in this section may be quite difficult for beginners. For ease of reference, the examples
are arranged alphabetically by name.

.profile:

‘.profile (automatically invoked on login) asks for terminal type,’
: ‘reads a line from terminal, loops until a known type’
‘(or empty line) is entered, sets terminal options appropriately,’
‘asks for new directory name and changes to it, if one is given,
: ‘and then, if file nx exists, transfers to it
while 1
echo ‘terminal:\c’
= a </dev/tty

switch "$a"
: ‘DASI450
: 450
stty cr2; tabs +t450; break
: ‘GSI/DASI300°
s gst
: 300
stty cr2; tabs; break
: "HP264X’
s hp
stty cr0 nl0; tabs +thp; break
: "TI 700
s ti

stty —tabs nil crl; break
: default
if 0"%a" = 0 break
echo "Sa? try 450,gsi,hp,ti"
endsw
end
echo "cd \¢"
= b </dev/tty
if "Sb" 1= "" then
cd $b
endif
if —r nx then
' next nx
endif

Note: Break is used instead of breaksw in the above example to terminate the while loop, not just the
switch construct.

copypairs:

‘copypairs filel file2 ...
: ‘copy filel to file2, file3 to filed, ...
while "$2"
cp S1 $2
shift; shift
end
if 0"$1" '= 0 echo ‘odd number of arguments’

Note: Remember that *‘shift; shift’ is nor the same as “‘shift 2. See next example for use of “‘shift
2",

copyto:

distinctl:

Note:

«19-

: ‘copyto dir file ...

: ‘copy argument files to dir, making sure that at least’
: ‘two arguments exist, that dir is a directory, and that’
:. ‘each additional argument is a readable file’

if Sn =it 2 then

echo ‘usage: copyto directory file ..."; exit
endif
if ! =d S$1 then

echo "$1 is not a directory”; exit

endif
while "$2"
if ! =r $2 then
echo "$2 not readable”
else
cp $2 31
endif
shift 2
end
“distinctl’

‘reads standard input, reports list of identifiers that’
“differ only in case, giving lower case form of each’
tr —cs "[A-Z][a~2][0-9]" "[\012+]" <—— | sort —u | tr ‘[A-Z] ‘[a—z]’ | sort | uniq —d

This procedure is an example of the kind of process that is created by the ‘“‘left-to-right> con-
struction of a long pipeline. It may not be immediately obvious how this works. The
translates all characters except letters and digits into new-line characters, and then ‘‘squeezes
out” repeated new-line characters. This leaves each identifier (in this case, any contiguous
sequence of letters and digits) on a separate line. Sorr sorts the lines and emits only one line
from any sequence of one or more repeated lines. The next t converts everything to lower
case, so that identifiers differing only in case become identical. The output is sorted again to
bring such duplicates together. The unig —d prints once only those lines that occur more than
once, yielding the desired list.

e eo oo

The process of building such a pipeline uses the fact that pipes and files can usually be inter-
changed; the two lines below are equivalent, assuming that sufficient disk space is available:

cmdl | emd2 | cmd3 _
cmdl >tmpl; <tmpl cmd2 >tmp2; <tmp2 cmd3; rm tmp{l-3]

Starting with a file of test data and working from left to right, each command is run taking its
input from the previous file and putting its output in the next file. The final output file is then
examined to make sure that it contains the expected result. The goal is to create a series of
transformations that will convert the input to the desired output. As an exercise, try to mimic
“distinct]l” with such a step-by-step process, using a file of test data containing:

ABC:DEF/DEF
ABCl ABC
Abc abc

Although pipelines can give a concise notation for complex processes, exercise some restraint
lest you succumb to the *‘one-line syndrome’’ sometimes found among users of especially con-
cise languages. This syndrome often yields incomprehensible code.-

distinct2:

Note:

Note:

edfind:

Note:

edlast:

-20-

: ‘distinct2’
: ‘reads standard input, reports sorted list of identifiers that differ’
H ‘in case only, listing all such distinct identifiers’

onintr cleanup
tr —cs ‘[A-Z][a—z][0-9)" "D\012s)° <——] sort —u | tee t1$S | tr "[A-Z]" ‘[a—z]’ >1288
pr -5 ~t —=I1 —m t1S$ 238 | sort +1 >t383
‘third argument to pr in above line is "minus ell one™
sort t38S >1t4S8
uniq —u —1 t38$ | sort | comm =23 t48S — | sort +1
¢ cleanup
rm t?$$

This procedure is similar to the previous one, but provides more explicit information. As an
exercise, work through this procedure in the way described above. The commands used here
(plus grep and sed) form the basis for many ‘‘data stream’ operations.

‘draft file ...

pnnts the draft (~rC3) of a document on a DASI450 terminal in 12—pitch’
‘using PWB/MM’

oroff —rC3 —T450—12 —mm 8+

Users often write this kind of procedure for convenience in dealing with commands that require
the use of many distinct flags that cannot be given default values that are reasonable for all (or
even most) users.

‘edfind file arg’

‘find the last occurrence in file of a line that maiches arg,’

‘then print 3 lines (the one before, the line itself, and the one after)’
pump | ed — 81 ’

78275—,4+p

[

ee o0 oo

This illustrates the typical practice of using pump to substitute Shell variables into ed scripts.

: ‘edlast file’
T ‘prints the last line of file, then deletes that line’
ed — 81
$p
$d
w
q
echo done

Note:

This procedure illustrates the effects of a command that reads input from a file shared with the
Shell.

et

()

()

o~

fsplit:

Note:

-21-

“fsplit filel file2"
‘read standard input and split it into three parts:’
‘append any line containing at least one letter to filel, any line’
‘containing digits but no letters to file2, and throw the rest away’
=]0;=j0
while 1
= 3 <=~ || break
expr $i + 1] =i
switch "$a"
: »[A-Za~z]+
echo "$a" >>S$1; breaksw
: »[0=9]«
echo "$a" >>8$2; breaksw
: default
expr $j + 1| = j

endsw
end
echo "8i lines read, $j thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The break terminates the
loop only when ‘‘="" encounters an end-of-file.

wr Don't use the Shell to read a liné at a time unless you must—it can be grotesquely slow {7.2.1}.

loop:

Note:

lower:

‘loop arg ...

‘one or more command lines’

‘endloop’

‘execute the group of command lines once for each argument,’
‘substituting each argument as $1 in the command lines’
onintr cleanup

echo ‘while "S$1" >tmp$S

pump — + endloop <=— >>tmpS$

echo ‘shift \n end” >>tmpS$

next tmp$3; rm tmp3S3

s+ cleanup

rm tmp33

-

se o8 ae se oo

Such a procedure is typically used from a terminal to repeat some commands for a list of argu-
ments. It creates a temporary file that sandwiches user input between a while and shift-end. It
then transfers to that file. For example, all files in the current directory could be copied to
‘place’ by:

loop »

_cp 81 place
echo S1 copied
endloop

‘lower’

‘reads standard input, converts it to lower case, writes to standard output’
‘can thus be used in a pipeline if desired

tr ‘[A-Z)" ‘[a-z]" <—-

e os e

Note: This is the most common type of use for ** <—="",

mkfiles:

D

-2

‘mkfiles prefix [number]
: ‘makes number (default = 5) files, named prefixl, prefix2, ...’
=3 "32" §
= i]
while $i ~le Sa

cp /dev/null $1Si

expr $i + 1] =i

end
null:
: ‘null file ...
: ‘create each of the named files as an empty file’
wl'ule "$1"
cp /dev/null $1
shift
end
nx:
: ‘next nx’
: ‘asks for module name, initializes variables to useful values,’
: ‘prints variables. Note that variables are set within the invoking Shell,’
: ‘so nx can be invoked only from terminal or from .profile’
= 3 /sys/source/sl
= b /usr/man/manl
echo "m: \¢"
= m </dev/ity
= g "get —e s.Sm; ed Sm"”
= d "delta s.Sm"
pump
a: Sa b: $b
d: 8 g Sg m: Sm
1
next
phone:
: ‘phone initials”
: ‘prints the phone number(s) of person with given initials’
echo ‘inits ext home’
grep wASIn
abc 1234 9992345
def 2234 583-2245
ghi 3342 988-1010
Xyz 4567 555-1234
writemail:
: ‘writemail message user’
: ‘if that user is logged in, write message on terminal;
‘otherwise, mail it to that user’
echo "$1" | (write "$2" || mail "$2")
Note: Replacing ‘‘echo™ above by “‘pump . <-—-" writes or mails the standard input, in the same

way as the mail command.

.l

s ' -23-

7. EFFECTIVE AND EFFICIENT SHELL PROGRAMMING
7.1 Overall Approach

This section outlines strategies for writing ‘‘efficient” Shell procedures, i.e., ones that do not waste
resources -unreasonably in accomplishing their purposes. In the author’s opinion, the primary reason
for choosing the Shell procedure as the implementation method is to achieve a desired result at a
minimum human cost. Emphasis should always be placed on simplicity, clarity, and readability, but
efficiency can also be gained through awareness of a few design strategies. In many cases, an effective
redesign of an existing procedure improves its efficiency by reducing its size, and often increases its
comprehensibility. In any case, one should not worry about optimizing procedures unless they are
intolerably slow or are known to consume a lot of resources.

The same kind of iteration cycle should be applied to Shell procedures as to other programs: write code,
measure it, and optimize only the few important parts. The user should become familiar with the time
command, which can be used to measure both entire procedures and parts thereof. Its use is strongly
recommended; human intuition is notoriously unreliable when used to estimate timings of programs,
even when the style of programming is a familiar one. Each timing test should be run several times,
because the results are easily disturbed by, for instance, variations in system load.

7.2 Approximate Measures of Resource Consumption

7.2.1 Number of Processes Generated. When large numbers of short commands are executed, the
actual execution time of the commands may well be dominated by the overhead of spawning processes.
The cPU overhead per process lies in the range of 0.07 to 0.1 seconds, depending on the specific
hardware configuration. The procedures that incur significant amounts of such overhead are those that
perform much looping, and those that generate command sequences to be interpreted by another Sheil.

If you are worried about efficiency, it is important to know which commands are currently built into the
Shell, and which are not. Here is the alphabetical list of those that are built-in:

: chdir endsw newgrp shift
- continue exit next switch
break else goto onintr test
breaksw end if opt wait
cd endif login pump while

Pump actually executes as a child process, i.e., the Shell does a fork. but no exec; ()’ executes in the
same way. Any command #xot in the above list requires both fork and exec.

The user should always have at least a vague idea of the number of processes generated. In the bulk of
observed procedures, the number of processes spawned (not necessarily simultaneously) can be
described by:

processes = ks*n+¢

where k and ¢ are constants, and »n is the number of procedure arguments, the number of lines in some
input file, the number of entries in some directory, or some other .obvious quantity. Efficiency
improvements are most commonly gained by reducing the value of k, sometimes to zero. Any pro-
cedures whose complexity measures inciude #? terms or higher powers of n are likely to be intolerably
expensive.

As an example, here is an analysis of procedure “‘fsplit’ of {6]. For each iteration of the loop, there is
one expr plus either an echo or another expr. One additional echo is executed at the end. If nis the
number of lines of input, the number of processes is 2*n-+1. On the other hand, the number of
processes in the following (equivalent) procedure is 12, regardless of the number of lines of input:

N

-2 -

fsplit2:

onintr cleanup

= b "[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopqrstuvwxyz]’
cat <—- >tmp33

grep "Sb" tmpS$$ >tmp8S1

grep —v "Sb" tmpSS | grep "[0123456789]" >tmpSS2
cat tmp3S1 >>S1 ; cat tmpS$S2 >>82

we = <tmp3S | = i

wec = <tmp3$1 | = j

we = <tmpS$32 | = k

expr $i — §j - Sk | = a

echo "$i read, Sa thrown away"

: cleanup

rm tmp$$»

This version is often ten times faster than “‘fsplit”, and it is even better for larger input files.

Some types of procedures should not be written using the Shell. For example, if one or more processes
are generated for each character in some file, it is a good indication that the procedure should be rewrit-
ten in C. _

w Shell procedures should not be used to scan or build files a character at a time.

7.2.2 Number of Bytes of Data Accessed. It is worthwhile considering any action that reduces the
number of bytes read or written. This may be important for those procedures whose time is spent pass-
ing data around among a few processes, rather than creating large numbers of short processes. Some
filters shrink their output, others usually increase it. It always pays to put the ‘‘shrinkers’’ first when
the order is irrelevant. Which of the following is likely to be faster?

sort file | grep pattern
grep pattern file | sort

7.2.3 Directory Searches. Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames. Judicious use of ¢d can help

shorten long pathnames and thus reduce the number of directory searches needed. As an exercise, try

the following commands (on a fairly quiet system).’

time sh —c ‘Is =I /usr/bin/* >/dev/null’
time sh —c ‘cd /ust/bin; Is =1 = >/dev/nuill’

7.3 Efficient Organization

7.3.1 Directory Search Order and the .path File. The ‘‘.path” file is a popular and convenient mechan-
ism for organizing and sharing procedures. However, it must be used in a sensible fashion, or the
result may be a great increase in system overhead that occurs in a subtle, but avoidable way.

The process of finding a command involves reading every directory included in every pathname that
precedes the needed pathname in the current Sp variable. As an example, consider the effect of invok-
ing nroff (/usr/bin/nroff) when Sp is *‘:/bin:/usr/bin>. The sequence of directories read is: **.”, **/’,
“/bin’’, ¢/, **/usr’, and ‘“‘/usr/bin", i.e., a total of six directories. A long *‘.path’’ can increase this
number significantly.

The vast majority of command executions are of commands found in **/bin’’ and, to a lesser extent, in
“‘/usr/bin’". Careless “‘.path’ setup may lead to a great deal of unnecessary searching. The following
four examples are ordered trom worst to best (at least with regard to efficiency):

9. You may have to do some reading in the Puwswsiv User's Manual [3] 1o understand exactly what is going on in these
examples.

()

ﬁa*'h*’ -25-

:/al/tf/jtb/bin:/al/tf/bin:/bin:/usr/bin
:/bin:/al/tf/jtb/bin:/al/tf/bins/usr/bin
:/binz/usr/bin:/al/tf/jtb/bin:/al/tf/bin
/binsz/usr/bin:/al/tf/jtb/bins/al/tf/bin

The first one above should be avoided. The others are acceptable—choice among them is dictated by
the rate of change in the set of commands kept in **/bin’* and **/ust/bin".

A procedure that is expensive because it invokes many short-lived commands may often be speeded up
by changing $p to resemble the last of the above four examples.

7.3.2 Good Ways 10 Set up Directories. It is wise to avoid directories that are larger than necessary.
You should be aware of several ‘‘magic sizes’. A directory that contains entries for up to 30 files (plus
the required *“.” and *..”) fits in a single disk block and can be searched very efficiently. One that has
up to 254 entries is still a “small” file; anything larger is usually a disaster when used as a working
directory. It is especially important to keep login directories small, preferably one block at most.

ACENOWLEDGMENTS

The Shell was originally written by K. Thompson; its basic structure has remained unchanged since
then, although many features (and some warts!) have been added. The PWB/UNIX extensions were
added by R. C. Haight, A. L. Glasser, and the author. Some constructs have been derived from similar
ones in the recent Shell written by S. R. Bourne. A number of colleagues provided helpful comments
during the writing of this tutorial, T. A. Dolotta, in addition, provided a great deal of editorial assis-
tance. Finally, many thanks must.go to the PWB/UNIX user community, and especially M. H. Bianchi
and J. T. Burgess, who provided many suggestions and examples.

REFERENCES

(1] Bianchi, M. H., and Wood, J. L. A User’s Viewpoint on the Programmer’s Workbench. Proc.
Second Int. Conf. on Softiware Engineering, pp. 193-99, Oct. 13-15, 1976.

[2] Dolotta, T. A., and Mashey, J. R. An Introduction to the Programmer’s Workbench. Proc.
Second Int. Conf. on Software Engineering, pp. 164-68, Oct. 13-15, 1976.

{31 Dolotta, T. A., Haight, R. C., and Piskorik, E. M., eds. Pws/wNix User’s Manual—Edition 1.0.
Bell Laboratones, May 1977.

[4] Kemighan, B. W., and Plauger, P. J. Software Tools. Proc. First National Conference on Software
Engineering, pp. 8-13 Sept. 11-12, 1975.

[5]1 Kernighan, B. W., and Plauger, P. J. Software Tools. Reading, MA: Addison-Wesley, 1976.

[6] Mashey, J. R. Using a Command Language as a High-Level Programming Language. Proc.
Second Int. Conf. on Software Engineering, pp. 169-76, Oct. 13-15, 1976.

{71 Mashey, J. R. Pws/UNIX Documentation Roadmap.' Bell Laboratories, 1977.
[8] Ritchie, D. M. C Reference Manual. Bell Laboratories, 1977.

[9] Ritchie, D. M., and Thompson, K. The UNix Time-Sharing System. Comm. ACM 17(7):365-
75, July 1974.

[10] Thompson, K. The UNix Command Language. In Structured Programming—Infotech State of the
Art Report, pp. 375-84. Infotech International Limited, Nicholson House, Maidenhead,
Berkshire, England, 1976. :

{11] Thompson, K., and Ritchie, D. M. UNix Programmer's Manuai—Sixth Edition. Bell Laboratories,
May 1975.

