/1 9%

Setting Up PWB/UNIX -/ / 50
R. C. Haight ‘

Bell Laboratories
Murray Hill, New Jersey 07974

M. J. Petrella

Bell Laboratories
Piscataway, New Jersey 08854

L. A. Wehr

Bell Laboratories
Murray Hill. New Jersey 07974

1. INTRODUCTION
1.1 Prerequisites

Before attempting to generate a PWB/UNIX*® system, you should understand that a consider-
able knowledge of the attendant documentation is required and assumed. In particular, you
should be very familiar with the following documents:

The UNIX Time-Sharing System
PWB/IUNIX User's Manual

C Reference Manual
Administranve Advice for UNIXITS
PWB/IUNIX Operations Manual

A complete list of pertinent documentation is contained in Documents for PWBIUNIX.
Throughout this document, each reference of the form name(N). where N is a number, refers
to entry name in Section N of the PWRBIUNIX User's Manual.

You must have a basic understanding of the operation of the hardware. This includes the con-
sole panel, the tape drives, and the disk drives. all of which are assumed to have standard -
addresses and interrupt vectors. It is aiso assumed that the hardware works and has been com-
pletely installed. The DEC® diagnostics should have been run to test the configuration, and
vou must have a detailed description of the hardware, including device addresses, interrupt vec-
tors. and bus levels. This information is very important to generate the PWB/UNIX system.

Older versions of PWB/UNIX cannot be correctly updared with a PWB/UNIX Release 2.0 sys-
tem: therefore. the instailation of PWB/UNIX Release 2.0 must be done as an initial load.

1.2 Procedure

PWB/UNIX is distributed on two magnetic tapes, recorded in 9-track format at 800-bpi. Tape]
is essential to the entire procedure, because it contains the initial load program and a copy of
the root file system, as well as a copy of the /usr file system (which contains source and supple-
mental commands). The initial load program will copy the root file system from tape (either a
TUI0 or a TU16) to disk (either an RP03 or an RP06). Note that RP04 and RPO3 drives are
considered to be equivalent to RP06 drives: any differences will be noted explicitly. Once the
root file system has been successfully loaded to disk, PWB/UNIX may be booted and the avail-
able utility programs may then be used to complete the installation. The /usr file system con-
tains information essential to generating a new system that will match your particular hardware
and software environment.

Tape 2 contains the machine-readabie manual pages. as well as the source for selectable subsys-
tems of PWB/UNIX.

* UNIX is a Trademark of Bell Laboratories.

2 Setung Up PWBIUNIX

During updates, the cpio(1) program will not replace any file if its replacement has a
modification time that is less than (i.e.. earlier than) the modification time of the original file.
This can be due to local modifications. In addition, special files are never updated. Further-
more. certain administrative files (e.g.. /erc/passwd, /usrflib/icrontad) are sent with a modification
time of Jan 1, 1970 to ensure that they do not replace their counterparts during updates. Any
file not copied will cause cpio(l) to print a message to that effect. These messages should
always be investigated to ensure that any files not copied were of that type. However, note
that, depending on respective modification times, a locally-modified file may get updated. thus
destroying the local modifications.

There are several difficulties that can anse when installing a PWB/UNIX system. One of the
most common probiems is running out of disk space when performing an update. Should this
occur, the original contents of the file system should be restored from a backup copy and the
contents of the update tape should be read into a spare file system using the cpio(1) program.
Unwanted material can then be removed and the original file system can be updated from this
new file system using the —p option of cpio(1). Modification times of files should aiso be
preserved using the — m option of cpio(1).

2. LOAD PROCEDURES

3.1 Tape 1 Format

Tape | contains five files: a loader, a physical copy of the roor file system. the cpio(1) program.
a cpio structured copy of the roor file system, and a cpio structured copy of the /usr file system.
Roor refers to the directory **/**. which is the root of all the directory trees. The format of this
tape is as follows:

file 1:
record 0: Tape boot loader— 512-bytes:
record 1: Tape boot loader— 512-bytes (same as record 0):

remainder of file I: Initial load program- several 512-byte records.
end-of-file

file 2 root file system (physical)— 5.120-byte records (blocking factor 10):

end-of-file .
file 3: cpio program= 512-byte records:
end-of-file
file 4: root file system (structured in cpio format)— 5,120-byte records:
end-of-file
file 5 Jusr file system (same format as file 4).
end-of-file
The roor (/) file system contains the following directories:
bek: Directory used to mount a backup file system for file restoring.
bin: Public commands; most of what's described in Section 1 of the
PWBIUNIX User's Manual.
dev: Special files, all the devices on the system.
etc: Administrative programs and tables.
lib: Pubiic libraries, parts of the assembier, C cornpiler.
mat: Directory used to mount a file system.
stand: Stand-alone boot programs.
tmp: Directory used for temporary files; shouid be cieaned at reboot.
usr: Directory used to mount the /usr file system: user directories often

kept here also.

Sening Up PWBIUNIX 3

2.2 Initial Load of root

Mount Tape 1 on drive 0 and position it at the load point. Next, bootstrap the tape by reading
either record 0 or record 1 into memory starting at address 0 and start execution at address 0.
This may be accomplished by using a standard DEC ROM bootstrap loader, a special ROM, or
some manual procedure. See romboot(8), rapeboot(8), and 70boot(8).

The tape boot loader will then type “{UNIX tape boot loader’ on the console terminai and read
in and execute the initial load program. The program will then type detailed instructions about
the operation of the program on the console terminal. Next, it will ask what type of disk drive
you have and which drive you plan to use for the copy. The disk controller used must be at the
standard DEC address indicated by the program. However, other disk controllers on your sys-
tem may be at non-standard addresses. You must mount a formatted, error-free pack on the
drive you have indicated. If necessary, use the appropriate DEC diagnostic program to format
the pack. Note that the pack will be written on. Next, the program will ask what type of tape
drive you have and which drive contains Tape 1. Normally, this will be drive 0, but the pro-
gram will work with other drives. Note that the tape is currently positioned correctly after the
end-of-file between the initial load program and the root file system. When everything is ready.
the program will copy the roor file system from the tape to the disk and give instructions for
booting PWB/UNIX. After the copy is complete and you have booted the basic version of
PWB/UNIX. check (using fsck(1M)) the root file system and browse through it.

The file /stand/mmtest is a stand-alone memory mapping diagnostic program. I[f you are not
absolutely sure that DEC FCO (field change order) M8140-R002 has been applied to your PDP
11/70 CPU. standimmtest should be booted and allowed to run at least 20 minutes. To boot this
program, go through the boot procedure, but specify:

Q= stand/ mmitest

PWB/UNIX Release 2.0 comes with optional power-fail recovery. This feature requires that the
power-up and power-down interrupt vectors be 024.

2.3 Update of root

It is very important that the system be running in single-user mode during the update phase. To
update an already existing roor file system. files three and four on Tape 1 will be used. Itis
necessary to first make a copy of .your root file system using volcopv(1M) and then update this
copy. The copy should be made on a separate disk pack using the same section number as your
root file system (always section 0). Also, after the update is completed, check if any of your
local administrative files in the directory /erc need modification. Most of these are mentioned in
Section 4 below.

Mount Tape 1 on drive 0 and position it at the load point. We assume that disk drive 1 is
availabie for making the copy, and that the root file system is on /devirp0. The following pro-
cedure will then make a copy of the roor file system, and then update this copy. Note that
Jdevimtd refers to tape drive 0 but has the side effect of spacing forward to the next end-of-file
(no rewind option). The — B option of cpio specifies that the input is in 5.120-byte records.

volcopy root /dev/rrp0 pknamel /dev/rrpl0 pkname2
mount /dev/cpl0 /bek

The two echoes will position the tape at file 3
echo </dev/mt4; echo </dev/mié

cp /dev/mtd4 /bek/bin/cpio

chmod 755 /bek/bin/cpio

chown bin /beck/bin/cpio

cd /bek

/bek/bin/cpio —idmB </dev/rmt0

cd /

umount /dev/rpl0

4 Serting Up PWBIUNIX

Pkname! and pkname. are the volume names of the source and destination disk packs, respec-
tively. If the new copy is satisfactory, shut down and halt the system. change disk packs, and
reboot the system using the new root.

2.4 File § (/usr) Format

Flle § contains the /usr file system in cpio(1) format (5,120-byte records). The /usr file system
contains commands and files that must be available (mounted) when the sysiem is in multi-user
mode. The file contains the following directories:

adm: Miscellaneous administrative command and data files, including the connect-
time accounting file pacct.

bin: Public commands: an overflow for /bin.

dict: Dictionaries for word processing programs.

games: Various demonstration and instructional programs.

include: Public C language #include files. .

lib: Archive libraries, including the text processing macros: also contains data files
for various programs, such as spef/(1) and cron(1M).

mdec: Hardware bootstrap loaders and programs.

news: Place for all the various system news.

pub: Handy public information, e.g.. table of ASCII characters.

spool: Spool directory for daemons.

sre: Source for commands, libraries. the operating system. etc.

mp: Directory for temporary files: should be cleaned at reboot.

2.5 Initial Load of /usr

Mount a file system (device) as /usr. The ultimate size and location of this file system on a
device is an administrative decision: initially. the following procedure will suffice:

The four echoes will position the tape at file 5
echo </dev/mid

echo </dev/mié

echo </dev/mté

echo </dev/mt4

cd /

mkfs /dev/repl 35000 7 418

For RPO3 disks. the last argument above shouid be 200
labelit /dev/rrpl usr pkname

fsck /dev/crpl

mount /dev/rpl /usr

chmod 755 /usr

cd /usr

cpio —idmB </dev/rmt0

Pkname is the volume name of the pack (e.g.. "*p0001™"). After the copy is complete. check
(using fsck(1M)) the /usr file system and browse through it.

Because /usr must be mounted when the sysiem is in muiri-user mode, the file /erc/rc must be
changed to include the command lines:

mount /dev/rpl /usr
and
umount /dev/rpl

These lines must be inserted at the appropriate places in /erc/rc, as indicated by the comments in
the prototype file. Next, the file /erc/checklist should be changed to include /devirrpl; see also
Ssck(IM), labelit(1M), mkfs(1M). mount{1M).

Sernng Up PWBIUNIX 5

2.6 Update of /usr

It is advisable that the system be running in single-user mode during the update phase. It is also
wise to first make a copy of your /usr file system for backup purposes. Next, mount Tape | on
drive 0 and position it at file 5. The /usr file system must be mounted. The following procedure
will perform the update:

cd /usr
cpio —idmB </dev/rmt0

2.7 Tape 2 (Selectable Items) Format

Tape 2 contains four selectabie subsystems for PWB/UNIX. Additional subsystems may be
added in the future. Any item not desired can simply be skipped. The format of this tape is as
follows:

file 1: manual pages (cpro format)— 5,120-byte records:
end-of-file

file 2: rje software (same format as file 1):

end-of-file .

file 3: graphics software (same format as file 1):
end-of-file

file 4: M2 software (same format as file 1).

end-of-file

A table of contents of this tape may be obtained by using the —t option of cpio(1): after instal-
lation. files and directories deemed useless by the local administrator may be easily removed.
Alternately. only parts of the tape may be extracted using the pattern matching capabilities of
cpiof 1), ’

2.8 Initial Load or Update of Selectable [tems

The initial load and update procedures are essentially the same: the only exception being the
creation of the selectable item dirzctory on the initial load.

Mount Tape 2 on drive 0 and position it at the load point. Make sure that the /usr file system is
mounted. The following procedure will read in the source for each of the selectabie subsys-
tems. If a particular subsystem is not desired. simply skip that file on the tape by executing the
following command:

echo </dev/mt4
The tape can be rewound after any subsystem by specifying /devirmi() instead of /devirmt4.

ed /ust :
mkdir man; chown bin man; chmod 755 man
cd man

cpio —idmB </dev/rmt4

¢d /usr/src/cmd

mkdir re; chown bin rje; chmod 755 fje
cd rie

cpio —idmB </dev/rmi4

6 Semng Up PWBIUNIX

cd /usr/src/cmd

mkdir graf; chown bin graf; chmod 755 graf
cd graf

cpio- —idmB </dev/rmié

cd /ust/sre/cmd

mkdir M2; chown bin M2; chmod 755 M2
cd M2

cpio —idmB </dev/rmt0

After installing the source for the rje, graphics. and M2 subsystems. the software must be builr
and mnsialled. (Only execute the following commands for the subsystems that you have elected
1o take.)

To build and install graphics:

¢d /usr/sre
J/:mkemd graf

To build and install re. select the appropriate ./:mkcmd lines:

cd /usr/src

J:mkemd rje hasp (makes a single hasp system. including send and rjesrat)
J:mkcmd rje hasp2 (makes hasp and hasp2)

J:mkemd rje hasp3 (makes hasp, hasp2, and hasp3)

J:mkemd rje uvac (makes a single uvac system. including send and riestar)
J/:mkemd rje uvac2 (makes uvac and uvac2)

./:mkemd rje uvac3 (makes uvac, uvac2, and uvac3)

The M2 file supplied is only a place holder at this time.
. 2.8.1 UNIVAC Remote Job Entry

UNIVAC rje requires an additional tape to be used on the UNIVAC side of the system. The
UNIVAC rje program is duplicated in the first and second.files of its reiease tape in @COPY.G
format. One should be read into a file called RJEFIL. The documentation on the configuration
skeleton can be obtained by executing:

@DOC RIJEFILE.DOCELM

Exampies of rje configurations are in the file elements CONFIGRTN (for level 35 or higher),
and CONFIGRTNIL32 and CONFIGRTNIL33 (for levels 32 and 33 respectively). A star
stream that will build the rje program. and cull it. is in START/RJEMAK (the account and pro-
ject fields should be modified). A sample rje start stream where the absolute is placed in
RJE=RJE.RJECTL/IPDP is in START/IRJECTL. Other sampie runstreams using the file
SYSSe ABS.RJECTL/PDP are in RJEUI, RJIEU2, and RJEU2 for using the first, second. or third
configured line.

The LINEDATA cards in CONFIGRTN assume the EXEC is configured with 3 lines to a UNIX
system whose CTM and LINE cards specify GB17, GB18. and GAOl respectively, and whose
STATION cards specify a LOCAL station of UNIX01. UNIX02, and UNIXO03 respectively. The
LINEDATA cards in CONFIGRTV/L32 and CONFIGRTN/L33 assume the EXEC is configured
with one line to 2 UNIX system whose LTG ID is ‘'UNXRJE" and whose REMOTE TERMI-
NAL card specifies BPDPOI.

Setng Up PWBILNIX 7

3. CONFIGURATION PLANNING
3.1 PWB/UNIX Configuration

The basic PWB/UNIX operating systems supplied on Tape | support only the console, a disk
controller (disk drive 0), and a tape controller (tape drive 0). The actual configuration of your
system must be described by you. All of the PWB/UNIX operating sysiem source code and
object libraries are in /usrfsrchus. All of the configuration information is kept in the directory
Jusrisrchuslcf, There are only two files that must be changed to reflect your system
configuration, fow.s and conf.c the program config(1M) makes this task relatively simple.

Config requires a system description file and produces the two needed files. The first part of the
system description file lists all of the hardware devices on your system. Next, various system
information is listed. A brief explanation of this information follows (for more details of syn-
tax and structure. see config(1M). and masrer(5)):

o roor— Specifies the device where the root file system is to be found. The device must be a
block device with read/write capability because this device will be mounted read/write as
*/**. Thus. a tape can not be mounted as the roor, but can be mounted as some read-only
file system. Normally. roor is disk drive 0, section 0.

e swap—Specifies the device and blocks that will be used for swapping. Swplo is the first
block number used and nswap indicates how many blocks, starting at swplo. 10 use. Swplo
can not be zero. Typically, systems require approximately 2.000 blocks. Care must be
taken that the swap area specified does not overlap any file system. For example, if sec-
tion 0 is 8.000 blocks long, the roor file sysiem could occupy the first 6.000 blocks and
swap the remaining 2.000 by specifying:)

root rp04 0O
swap rp04 0 6000 2000

o mipe— Specifies where pipes are to be allocated (must be a mounted file system— the root
file svstem is normaily used).

o dump— Specifies the device to be used to dump memory after a system crash. Currently
only the TU10 and TU16 tape drives are supported for this purpose.

e buffers— Specifies how many system buftfers 10 allocate. [n general. you will want as many
buffers as possible without exceeding the sysiem data-space limitations. Normally, buffers
is in the range of 24-50. Each entry requires 512 bytes ouwiside the system address space.
and 26 bytes inside the system.

o sabufs— Specifies how many sysiem addressable buffers to allocate. One buffer is needed
for every mounted file system. Certain /O drivers need such buffers. Normaily. sabu/s is
in the range 10-15: the default value is 8. Each entry requires 540 bytes.

o inodes— Specifies how many inode rable entries to allocate. Each entry represents a unique
open inode. When the table overflows, the warning message '‘Inode table overflow™ wilil
be printed on the console. The table size should be increased if this happens regularly.
The number of entries used depends on the number of active processes. texts. and
mounts. Normally. inodes is in the range of 100-150. Each entry requires 74 bytes.

o files— Specifies how many open-file rable entries to allocate. Each entry represents an open
file. When the table overflows, the warning message “'no file” will be printed on the con-
sole. The table size should be increased if this happens regularly. Normally, files is in the
same range as the number of inodes. Each entry requires 8 bytes.

o mounts— Specifies how many mount rable entries to allocate. Each entry represents a
mountad file system. The roor (/) will aiways be the first entry. When full, the mouni(2)
syscail will return the error EBUSY. Normally. mounts is in the range of 8-16. Each entry
requires 10 bytes. _

o maxproc— Specifies the maximum number of active processes a non-super-user may
spawn. The default value is 25.

o power— Specifies whether to attempt restart after a power failure. A value of 0 indicates
no restart. while a vatue of 1 atiempts power-fail restart. On restart. device drivers are
called. and process 1 (inu) is sent a hangup signal: see inir(8). The defauit value is 0.

3 Senting Up PWBIUNIX

e coremap— Specifies how many entries tc ailocate to the list of free memory. Each entry
represents a contiguous group of 64-byte blocks of free memory. When the list
overflows, due to excessive fragmentation, the sysiem wiil undoubtedly crash in an
unpredictable manner. The number of entries used depends on the number of processes
active, their sizes, and the amount of memory available. Normally, coremap is in the
range of 50-100. Each entry requires 4 bytes. :

e swapmap— Specifies how many entries to allocate to the /ist of free swap blocks. Exactly
like the coremap. except it represents free blocks in the swap area, in 512-byte units.
Each entry requires 4 bytes.

e calls— Specifies how many callout iable entries to allocate. Each entry represents a func-
tion to be invoked at a later time by the clock handler. The time unit is 1/60 of a second.
The callout tabie is used by the terminal handlers 1o provide terminal delays and by vari-
ous other 170 handlers. When the table overflows. the system will crash and print the
panic message ““Timeout table overflow™ on the console. Normally. cafls is in the range
of 30-60. Each entry requires 6 bytes.

e procs— Specifies how many process rable entries 10 allocate. Each entry represents an
active process. The scheduler is always the first entry and inir(8) is always the second
entry. The number of entries depends on the number of terminal lines available and the
number of processes spawned by each user. The average number of processes per user is
in the range of 2-5. When full. the fork(2) syscall will return the error EAGAIN. Nor-
mally. procs is in the range of 50-200. Each entry requires 28 bytes.

e rexts— Specifies how many rexr /able entries to ailocate. Each entry represents an active
read-only text segment. Such programs are created by using the —i or —n option of the
loader /d(1). When the table overflows, the warning message “‘out of text™ is printed on
the console. Normally. rexts is in the range of 25-50. Each entry requires 12 bytes.

o clists= Specifies how many character list buffers to allocate. Each buffer contains up to 24
byies. The buffers are dvnamically linked together to form input and output queues for
the terminal lines and various other slow-speed devices. The average number of buffers
needed per terminal line is in the range of 5-10. When full. input characters from termi-
nals will be lost and not echoed. Normally. c/sss is in the range of 100-300. Each entry
requires 28 bytes.

3.2 PWB/UNIX Generation

Before generating vour firss PWB/UNIX system. you must modify the file called Makerle in the
fusrisrcfursicf directory. This file contains four symbols that are used for system identification:
they initialize the internal wrsname structure (see uname(1), uname(2). and utsname(5)). The
four symbols (which are 8 characters maximum) are as follows:

SYS your system name (e.g.. pwba):

NODE the name by which your system is known on the uucp(1) network (e.g.. pwba):
REL the operating sysiem release (e.g.. PWBJ.0).

VER The current version of the system: this is usuaily four characters indicating

when the system was made (e.g.. 0420 for April 20).

Only the first three symbols need to be modified locally. The VER symbol will be defined
when vou make(l) the system. The name of the executable file produced by the make pro-
cedure will be the concatenation of the SYS and VER symbols. Thus. if SYS is pwba. and you
specify VER as 0420, the executable file will be called pwba0420.

To generate a new PWB/UNIX operating system, follow this general procedure:

Setting Up PWBIUNIX v 9

cd /usr/src/uts/cf
ed dfile
a
[description file as described above)

W

q

config dfile

make VER= version

The system has a finite address space, so that if table sizes or the number of device types are
too large, various error messages will result and the above procedure will only create an a.our
file. In particular, the maximum available data space is 49.152 bytes. The actual data space
requested can be found by using size(1) on a.ouwr and adding the dara and bss segment sizes.
One then reduces the specified values for the various system entries (normally, the number of
buffers) until it all fits. The amount of space in the bss segment used for each entry is indi-
cated in Section 3.] above.

When you are satisfied with the new system, you can test it by the following procedure:

cd /usr/src/uts
cp name /

cod /

rm /unix

in /name /unix
syne

Note that name is the name of the executable file produced by the make procedure. Hait the
processor and reboot unix. Note that this procedure results in two names for the operating sys-
tem object. the generic /unix, and the actual name. say /pwba0420. An old system may be
booted by referring to the actual name. but remember that many programs use the generic
name /unix 1o obtain the name-list of the system.

If the new system does not work. verify that the correct device addresses and interrupt vectors
have been specified. If the wrong interrupt vector and the correct device address have been
specified for a device, the operating system will print the error message ‘‘stray interrupt at
XXX when the device is accessed. where XXX is the correct interrupt vector. If the wrong
device address is specified. the system will crash with a panic trap of type 0 (indicating a
UNIBUS® timeout) when the device is accessed.

3.3 Special Files

A special file must be made for every device on your system. Normally. all speciai files are
located in the directory /dev. Initially. this directory wiil contain:

console console terminal

error ' see err(4)

mem, kmem, nul} see mem(4)

tty see 1v(4)

rpl0~ 7}. rrp{0—7] disk drive 0, sections 0— 7

mt0, rmm0 tape drive 0 (800 bpi)

mtd, rmtd tape drive 0 (800 bpi. no rewind).

There are two types of special files, block and character. This is indicated by the character 4 or
cin the listing produced by /s(1) with the —1 flag.

In addition, each special file has a major device number and a minor device number. The
major device number refers to the device type and is used as an index into either the bdevsw or
cdevsw table in the configuration file conf.c. The minor device number refers to a particular unit
of the device type and is used only by the driver for that type.

10 Serung Up PWBILNIX -

For example. using the following sample portion of a configuration file. a block special file with
major devicé number | and minor device number 0 would refer to the TU10 magtape. drive 0.
while a character special file with major device number | and minor device number 4 would
refer to the DHI1 asynchronous multipiexor. line 4.

int (sbdevsw(]) ()

{

/= 0=/ &hpopen, &hpclose. &hpstrategy., &hptab.

/» 1o/ &mopen. &tmclose. &tmstrategy. &tmiab.

t.

(K3

int (scdevsw{) ()

i

[}

/= 0/ &klopen. &klclose. &kiread. &klwrite. &kisgtty,
/= 1s/ &dhopen. &dhclose, &dhread. &dhwrite. &dhsgtty,
/e 3¢/ &nulidev. &nulldev, &mmread, &mmwrite. &nodev,
J« 3o/ &nodev. &nodev, &nodev. &nodev. &nodev.
/e 4s/ &nodev. &nodev. &nodev. &nodev. &nodev,
/e 53¢/ &nodev. &nodev. &nodev. &nodev. &nodev,
/e 6o/ &mopen. &tmclose. &tmread, &tmwrite, &nodev.
/e 7/ &hpopen. &hpclose, &hpread. &hpwrite, &nodev.
/= 8«/ &nodev. &nodev. &nodev. &nodev. &nodev.
/e 9o/ &nodev. &nodev. &nodev, &nodev. &nodev.
/=10»/ &nodev. &nodev. &nodev. &nodev. &nodev.
/slle/ &nodev. &nodev. &nodev, &nodev. &nodev.
/s13e/ &nodev. &nodev. &nodev. &nodev. &nodev.
; e13s/ &svopen. &nulldev. &syread. &sywrite. &sysgtty.

The program mknod(1M) creates special files. For example. the following would create part of
the initially-supplied /fev directory: .

cd /dev

mknod console ¢ 0 0

mknod error ¢ 20 0

mknod mem ¢ 2 0: mknod kmem ¢ 2 1: mknod null ¢ 2 2
mkned tty ¢ 13 0

mknod rp0 b 0 0: mknod rrp0 ¢ 7 0

mknod mt0 b 1 0: mknod rmt0 ¢ 6 0

mknod mi4 b | 4: mknod rmi¢ ¢ 6 4

After the special files have been made. their access modes shouid be changed to appropriate
values by chmad(1). For example: ‘

cd /dev

chmod 622 console
chmod 444 error
chmod 440 mem kmem
chmod 666 null

chmod 666 tty

chmod 400 rp0 rrp0
chmod 666 mt0 rmi0
chmod 666 mt4 rmid

Assuming the disk drives are major device number 0 (block-type) and major device number 7
(character-type). the following commands can be used to make the special files for disk drives
1-7. each containing sections 0-7:

)

Serting Up PWBIUNIX 11

cd /dev
forainl 234567
do
for bin012345¢67
do
mknod rpSaSb b 0 03aSb
mknod rrpSaSh ¢ 7 03aSh
done
done
chmod 400 erpe

Note that for disks, an octal number scheme is maintained because each drive is split eight
ways. Thus, /devirp24 refers to section 4 of physical drive 2.

Minor device numbers for tape are a bit peculiar. The minor device number consists of the fol-
lowing four bits:

0= 800-bpi O=rewind | drive select
1= 1600-bpi || 1=no rewind

Therefore, the special file for tape drive 1, operating at 1600-bpi, with no rewind would be
made as follows:

mknod /dev/mt?? b 1 13
mknod /dev/emt?? ¢ 6 13

File names have no meaning to the operating svstem itself. only the major and minor device
numbers are important. However, many programs expect that a particular file is a certain dev-
ice. Thus. by convention, special files are named as follows:

block device conf.c ldev
RPO3 disk p rp*
RP04/5/6 disk hp rp*
RS03/4 fixed head disk hs rSe
TUI10 tape tm mite
TU16 tape ht mte
character device conf.c Idev
DL11 asynch line ki tty=
DH11 asynch line mux dh ttys
DZ11 asynch line mux dz tty=
DN11 auto cail unit dn dn=-
DU11 synch line du du»
DQS11B synch line dags rjei
KMC1! micro kme kmc=
DZ11/KMCI1 assist dzk tty=
LP11 line printer Ip lp=*
RPO3 disk P rrpe
RP04/5/6 disk hp rTp*
RS03/4 fixed head disk hs TS
TU10 tape tm mite
TU16 tape ht mte
error err error
memory mm mem, kmem, null

terminal sy tty

12 Serting Up PWBIUNIX

For those devices with a /dev name ending in **«"", this character is replaced by a string of digits
representing the minor device number. For exampie:

mknod /dev/mtl b 1 1}
mknod /dev/rp24 b 0 024
mknod /dev/tty03 ¢ 1 3

There is a special file. /dev/swap, that is used by the program ps(1). This file must reflect what
device is used for swapping and must be readabie. For example:

rm /dev/swap

mknod /dev/swap b 0 0

chmod 440 /dev/swap

chown sys /dev/swap; chgrp sys /dev/swap

3.4 File Systems

Each physical pack is split into eight logical sections. This split is defined in the operating sys-
tem by a tabie with eight entries. Each tabie entry is two words long. The first specifies how
many blocks are in the section, the second specifies the starting cylinder: see 4p(4) (RP04/5/6)
and rp(4) (RPO3) for defauit cylinder and biock assignments.

These values are described to the system in the header file /usr/includelsysiio.h and may be
changed by using the editor ed(1). After such a change. the system must be made again (see
Section 3.2).

A file system starts at block O of a section of the disk and may be as large as the size of that
section: if it is smaller than the size of a section. the remainder of that section is unused. Note
that the sections themselves may overiap physical areas of the pack. but the file systems must
never overiap.

The program mk/st1M) is used to initialize a section of the disk to be a file system. Next, the
program labelit(1M) is used to label the file system with its name and the name of the pack.
Finally. the file system may be checked for consistency by using fsck(1M). The file system
may then be mounted using mounr(1M).

4. ADMINISTRATIVE FILES
4.1 /etc/motd
This. file contains the message-of-the-day. It is printed by logm(1) after every successful /fo¢mn.

4.2 /ete/re

On the transition between inir states. /erc/imir invokes /bin/sh to run Jetc/rc (must have executable
modes). In order for /etc/rc to properiy handle the removal of temporary files and the mounting
and unmounting of file systems. it is invoked with three arguments: the new state. the number
of times this state has been entered. and the previous state. When the system is initially
booted. /erc/rc is invoked with arguments **1 0 0''; when state two (multi-user) is subsequently
entered (by the operator typing in /et¢/init 2), the arguments are =20 1.

When state 2 is entered more than one time (via another /ete/init 2). no action will be taken
by this file. This enabies the system administrator to add or delete /ogin processes while the
system is in multi-user mode (see /erc/inittab below).

Daemons may be invoked either by /erc/rc or by including lines for them in /ferc/imitiab.
The /ercirc file is also used to initialize KMC11 microprocessors (see /erc/d-kload below).
This file must be edited to suit local conditions: see inir(8).

[

DN T

Sening Up PWBIUNIX 13

4.3 /etc/inittab

This file indicates to /erc/init which processes to create in each inir state. By convention, state 1
is single-user mode, and state 2 is muiti-user mode. For example, the following line creates a
sample single-user environment:

l:co:c:/bin/sh </dev/console >/dev/console 2>/dev/console

This indicates that for state 1, a process with the arbitrary unique identifier co should be
created. The program invoked for this process shouid be the Shell, and when it exits, it should
be reinvoked (c flag).

To attach a /ogin process to the console when in the multi-user state, add the following line:
2:co:c:/etc/getty console 4

and for line /dev/iy00 for use by 300/150/110/1200 baud terminals. add the following line:
2:00:c:/etc/getty tty00 0 3600

The arguments to gerrv(8) are the device, speed table entry. and the number of seconds to
allow before hanging up the line.

This file must be edited to suit local conditions: see gery(8), inir(8), and inintab(3).
4.4 /etc/dzkload

This file can be invoked as a command by /erc/rc. It contains instructions for initializing each
KMC1! microprocessor that is to function as a controller for one or more DZ11 communica-
tions multiplexors (see dh(4)). This file must be edited to suit the configuration.

4.5 /etc/passwd

This file is used to describe each user to the system. You must add a new line for each new
user. Each line has seven fields separated by colons:

1. Login name:
Normally 1-6 characters, first character alphabetic. rest alphanumeric. no upper-case charac-
ters.

2. Encrypted password:
[nitially null, filled in by passwd(l). The encrypted password contains 13 bytes, while the
actual password is limited to a maximum of 8 bytes. The encrypted password may be fol-
lowed by a comma and up to 4 more bytes of **age’ information.

3. User-id:
A number between 0 and 65.535; 0 indicates the super-user. User-ids 0 through 99 are
reserved (most of them for future use). Presently. these user-ids are reserved:

daemon::1: daemons
bin::2: software administration:
sys::3: system operation;
adm::4: system administration:
uucp::5: UNIX-t0-UNIX file copy:
rjes:68: remote job entry administration:
games::19: miscelianeous: never a real user,
4. Group-id: :

A number between 0 and 65.535; Group-ids 0 through 99 are also reserved. The defauit
group is 1 (other).

5. Accounting information:
This field is used by various accounting programs. [t usually contains the user name,
department number, and account number.

14 ' | Serung Up PWBIUNIX

6. Login directory:
Full pathname (keep them reasonably short).

~

Program name:
If null. /bin/sh is invoked after successful /login. If present. the named program is invoked
in place of /bin/sh.

For exampie:

ghh::138:11:6824-G.H.Hurtz(4357):/usr/ghh:
grk::266:13:6510-S.P.LeName(4466) :/usr/grk:/bin/rsh

See also passwd(5). login{1), passwd(1).
4.6 /etc/group

This file is used to describe each eroup to the system. Each line has four fields separated by
cotons:

group name:

encrypled password:

numerical group-id:

list of all lowr names in the group. separated by commas.

See also group(3),
4.7 /etc/profile

When the Shell is executed and is the leader of a process group. as is the case when it is
invoked by /ovin. it will read and execute the commands in /erc/profile before executing the com-
mands in the user’s .prosife file. This allows the system administrator io set up a standard
environment for all’ users (e.g.. executing umask(1). setting Shell variubles) and take care of
any other housekeeping details (such as news =n).

4.8 /etc/checklist

This file contains a list of default devices to be checked for consistency by the /sck(1M) pro-
gram. The devices normally correspond to those mounted when the sysiem is in muin-user
mode. For example. a sample checklist would be:

/dev/rp0
/dev/rrpl

Note that the roor device is specified as a block device. while all others are specified as character
devices. Character devices can be checked faster than block devices. The roor device is
specified as a block device in order for the fsck program to detect when the roor is being
checked. so that if this file system is modified. an immediate reboot will be requested. '

4.9 /ete/shutdown

This file contains procedures to gracefully shut down the sysiem in preparation for filesave or
scheduled downtime.

4.10 /etc/filesave.?

This file contains the detailed procedures for the local filesave. .
4.11 /usr/adm/paccet

This file contains the process accounting information. see accr{ M),
4.12 /usr/adm/wtmp

This file is the log of ail /ogin processes.

re

e

Serting Up PWBIUNIX 15

S. REGENERATING SYSTEM SOFTWARE

System source is found under the /usr/src directory. The sub-directories are named cmd (com-
mands). lib (libraries), urs (the operating system), head (header files), and uril (utilities): see
mk(8) for details on how to remake system software.

. The accounting routine that deals with holidays and the prime/non-prime time split must be

recompiled at the end of the year (it is currently correct for BTL-Murray Hill in 1979). The file
is Jusrisrclemdlaccilliblpnpsplit.c. A reminder is sent to lusrladmlacciiniteflog, the standard place for
such messages. starting a week before year-end and continuing until pnpsplit.c has been recom-
piled.

6. UNIX FILE SYSTEM CONVERSION

Procedures have been developed for converting UNIX file systems from the PWB/UNIX Edi-
tion 1.2 format to the PWB/UNIX Release 2.0 format.

6.1 Preliminaries

The new systemn should be generated and decently testing before file system conversion is per-
formed. Do not convert without spare packs— that is courting disaster. [t is best to keep the
oid packs for several days. and to make backup tapes as well.

We strongly advise that a “‘root pack™ of your Edition 1.2 system (/unix, /etc, /bin, and the
otficial part of /fusr) be saved for a long time. [Initially, it will be the only way to access Edition
1.2 backup tapes.)

The old file systems should be pruned of marginal files. Old object files will not work under
Release 2.0. and should be removed (e.g.. files named a.our. core. ».0). along with your local

' commands stored in /bin, fletc, flib, lusrfbin. lusrllib. Users should be encouraged to clean house.

6.2 Copying from the Old System
The following steps should be executed by the super-user on an idle, stand-alone (old) system:

cd / file-system-name
find . —print | cpio —oB >/dev/rmt0
For 1.600-bpi, use appropriate device

Unless there are a great many linked files. a 1,600-bpi. 2,400-foot reel should hoid the max-
imum Edition 1.2 file system (65K blocks). An 800-bpi tape will hoid approximately 40K
blocks. Find can also be used to pick up parrs of file systems that can be combined later as
described below.

6.3 Copying to the New System
Re-create each file system as follows:

mkdir /file-sysiem-name '

mkfs /dev/rrp?? blocks:inodes 7 418

For RPO3 disks, the last argument above shouid be 200
labelit /dev/rrp?? file-system-name pkname

mount /dev/cp?? /file-system-name

cd /file-system-name

Mount the tape created on the old system

cpio —idmB6 </dev/rmt0

For 1,600-bpi., use appropriate device

If you are combining the smaller Edition 1.2 file systems,
you may copy in more than one tape per new file system

16 Serting Up PWBIUNIX

After the tapes have been copied in, the new file system should be unmounted and checked '

(using fsck(1M)). It would then be wise to make a tape or disk backup of the new file system.

January 1980

()

‘)

